ReRAM based Processing-in-memory Architecture
for Recurrent Neural Network Acceleration

Yun Long, Student member, IEEE, Taesik Na, Student member, IEEE, and Saibal Mukhopadhyay,
Senior member, IEEE

Abstract—We present a recurrent neural network (RNN)
accelerator design with resistive random-access memory
(ReRAM) based processing-in-memory (PIM) architecture.
We measure the system throughput and energy efficiency
with detailed circuit and device characterization.
Re-programmability is enabled with our design and a RNN
friendly pipeline is employed to increase the system
throughput. We observe that on average the proposed
system achieves 79x improvement of computing efficiency
compared with GPU baseline. Our simulation also indicates
that to maintain high accuracy and computing efficiency,
the read noise standard deviation should be less than 0.2,
the device resistance should be at least 1 MQ, and the
device write latency should be minimized.

Index Terms—Recurrent neural network (RNN),
ReRAM, processing in memory (PIM), long short-term
memory (LSTM), gated recurrent unit (GRU), human
activity recognition

I. INTRODUCTION

Machine learning has achieved the state-of-the-art
performance across a wide range of applications, such as
image classification [1], video recognition [2], natural language
processing (NLP) [3], and gaming strategies [4], to name a few.
Further, deep neural networks (DNNs) can even outperform
human-level performance in a few tasks, for example,
ImageNet classification [5], and board game Go [4].
Meanwhile, the neural networks complexity and parameter size
have skyrocketed over the past few years. Despite the fast
advance in general-purpose graphics processing unit (GPGPU),
its energy efficiency is still far less than the ultimate
‘Intelligence’, human brain, which contains 10'° neurons and
10'* synapses but only consumes ~20 Watts [6]. One of the
bottlenecks comes from the fact that the von Neumann
architecture separates the memory and processing unit,
introducing significant data movement energy as well as data
access latency [7].

Manuscript received September 7%, 2017; revised November 29", 2017;
accepted February 28™, 2018. This material is based on work supported in part
by National Science Foundation (#1740197) and Semiconductor Research
Corporation.

Yun Long, Taesik Na, and Saibal Mukhopadhyay are with the School of
Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mails: yunlong@gatech.edu;
taesik.na@gatech.edu; saibal@ece.gatech.edu).

To address this, emerging non-volatile memory, especially
resistive random-access memory (ReRAM) based processing-
in-memory (PIM) architecture has been studied to accelerate
DNN computation [8-10]. Thanks to the PIM architecture and
massive data-level parallelism, significant improvements of
computing speed and energy efficiency have been
demonstrated [8-11].

Most of the prior ReRAM accelerators focus on accelerating
convolutional neural networks (CNNs) but lack supports for
recurrent neural networks (RNNs). The core concept of RNN is
to utilize the sequential information with a feedback loop, i.c.
the output of RNN depends not only on current input but also
the previous computation results. In practice, long short-term
memory (LSTM) [12] and gated recurrent unit (GRU) [13] are
the most popular RNN configurations and have demonstrated
unprecedented performance for tasks including Human activity
recognition (HAR) [14], video recognition [2], and NLP [3,
15], to name a few.

There are two reasons making existing ReRAM CNN
accelerators not suitable for RNN computing. First, in CNN,
the inputs are independent from each other and the output is
computed based on current input. However, this is not true for
RNN since the computation of RNN requires both current input
and results from previous steps. The time-dependence makes
the pipeline in prior ReRAM CNN accelerator designs not
feasible for RNN computing. Second, the operations of RNN is
different with CNN especially for LSTM and GRU which
contain not only matrix-vector multiplication and non-linear
functions but also element-wise multiplication [12, 13, 16].

The acceleration of RNN computation using GPU [15],
field-programmable gate array (FPGA) [16, 17], and CMOS
application-specific integrated circuit (ASIC) [18] has been
explored in prior works. This work presents a ReRAM based
RNN accelerator design utilizing PIM architecture. The
contributions of this paper are summarized as follows:

e We present a ReRAM based system architecture to
accelerate RNN computation. The processing engine (PE)
is divided into three subarrays: ReRAM crossbar subarrays
for matrix-vector multiplication; special function unit
(SFU) subarrays for non-linear function; and multiplier
subarrays for element-wise operations.

e A RNN friendly pipeline is employed to increase the
system throughput. Dataflow control is discussed for both
inference and programming phase. The proposed design

mailto:saibal@ece.gatech.edu

supports various RNN configurations including the basic
RNN, LSTM, and GRU.

e We characterize the system throughput, area, and power
consumption with detailed circuit and device modeling
based on 28nm CMOS technology. We observe that our
design achieves 79x computing efficiency improvements
compared with GPU baseline on average. We also compare
our design with existing machine learning accelerators
implemented on various platforms, including ReRAM,
FPGA, and ASIC.

o We investigate the computing accuracy considering device
variation. The accuracy drop is insignificant when the
device noise deviation is less than 0.2. Simulation also
indicates that the system performance drops significantly
when considering re-programming, indicating the device
writing latency must be minimized to achieve high
performance.

e We propose that, to maintain high accuracy and computing
efficiency, the read noise standard deviation should be less
than 0.2, the device resistance should be at least 1 M.

The paper is organized into the following sections. Section 11
describes the background. Section III presents the system
architecture and dataflow control. Section IV discusses the
details of implementing the system. Section V presents the
results, and section VI concludes the paper.

II. BACKGROUND

A. Resistive random-access memory (ReRAM)

A ReRAM device consists of three layers. A resistive
switching layer (e.g. HfO., NiO, TiO,, ALO; or their
combination) sandwiched between top and bottom electrodes
(e.g. Pt, TiN) [19]. Device resistance can be modulated via
applying set or reset voltage. A lot of works have been done to
explore physical resistive switching mechanism of ReRAM
[20-22]. In this work, we employ the Ion transportation
recombination (ITR) model [20]. In ITR model, the complex
ion transportation and recombination process is simplified into
the growth and rupture of Conductive filament (CF) in the
resistive layer. Resistance of device is controlled by the size of
the gap (X in Fig. 1(a)) between the electrode and the tip of the
CF.

A simplified physical mechanism model, based on the ITR
theory for bipolar ReRAM, is adapted in this paper from prior
works [20, 23, 24]. We fit this model with existing
experimental data [19, 23], shown in Fig. 1(b-d). As this model
captures the dynamic behavior of the ReRAM switching, it
helps to analyze the write latency and energy. Should note that
we can use the same model (with different parameters) to fit
experiment data from different devices. As illustrated in Fig.
1(b-d), device in [23] (TiN/TiO/HfO/TiO/HfOx/Pt structure)
shows very different on/off resistance compared with [19]
(TiN/HfO/Pt structure). With parameter tuning, our model can
fit the experiment data from both works very well.

B. ReRAM PIM architecture and the accelerator design

It has been demonstrated that some emerging technology

based non-volatile memory such as ReRAM, Phase change

On state Off state
Top Top 1e-3
Electrode Electrode
Reset
le-4 ehse
% < *
O ® 4—361 T 1e-5
O e
OO Conductive 31e6 7 o
0O Filament - Set failure
2OG le-7 E t data from (28]
() 0 © Experiment data from
o Do
) Vacancy 10-8
Bottom 0o 05 1 15 2 25
Electrode Voltage (V)
(a) (b)
1e-3
Increase write voltage e |
1e7 - IS,
le-4 —
c
< Y
— o
@ 1e-5¢ Increase reset voltage E
= 1%}
3 O Experiment data from [28] 2
{6 || Simulation data, stop at -1.5v 13
€0 | Simulation data, stop at -2.0v
—— Simulation data, stop at -2.75v
—Simulation data, stop at -3.25v
1e-7
-3 -2 -1 0 0 100 200 300 400

Reset Voltage (V) Pulse number

©
Fig. 1. (a) Simplified ITR resistive switching model. (b) Device SET
operations with different initial gap length. (c) Device RESET
operations with applied voltage. (d) Resistance modulation with
RESET pulses. The pulse width is 50ns. Experiment data are from
[24, 28].

memory (PCM), and spin-transfer torque magnetic RAM
(STT-MRAM) can perform logic operation beyond storage [8,
9, 25, 26]. This unique feature allows them to serve for both
computation and memory, enabling the PIM architecture. A
commonly used PIM architecture is shown in Fig. 2(a), a
memory bank is divided into three segments: memory
subarrays which serves as conventional memory; buffer
subarrays which serves as data buffer; and processing
subarrays which are utilized to process the data. Private data
ports are introduced between buffer subarrays and processing
subarrays for high data bandwidth. Further, this private data bus
is isolated from main memory bus, hence, it doesn’t consume
the bandwidth of main memory [8]. As an energy-efficient
technique, PIM best exploits the data locality by reconfiguring
part of the memory blocks as processing units. Moreover, data

Multiple banks

"
o £
Host Memory @ Buffer |&|Processing
(CPU) subarrays || subarrays|% | subarrays
(@ e TR
1 =n)
i BL jBL BL BL » :
DAC Vs = Vit Giy
\ \ \ \ WL =
i V1
g ‘%\ \ \%\ \ wiL N
= . cee S V2
2 i :
T n_l\ \%\ ‘%\ \%\ WL ;2%\
in VUn-1, |
DAC WL
= AR R Y gn}
01 02 On-1 |On Un |
 — ‘ Shared ADCs ‘ gn§
ReRAM device ‘ ShiftgllAdd ‘

(b) (c)

Fig 2. (a) PIM architecture. (b) ReRAM crossbar for matrix-vector
multiplication. (¢) Current is summed at bitline.

can be directly accessed and transmitted internally without any
external memory interfaces. PIM provides large memory
bandwidth and fast data access, also reduces the data moving
energy, which are very critical to data demanding applications
such as machine learning. Among all the candidates, ReRAM
based PIM architecture attracts lots of research attentions since
that ReRAM has fast writing speed, CMOS compatibility, high
on-off ratio and analog feature, i.e. multi-level cell (MLC) [19,
27]. Recent works have demonstrated that ReRAM based PIM
architectures achieve orders of magnitude speed and energy
efficiency improvements compared with the GPUs and ASIC
designs on CNN acceleration [8, 9, 11].

As shown in Fig. 2(b), the core component of ReRAM based
accelerator is a crossbar-based processing engine (PE) for
matrix-vector multiplication. During computation, neural
network’s parameters are first programmed into the ReRAM
devices. Then input vectors are fed into the crossbar array as
wordline (WL) supply voltage. As illustrated in Fig. 2(c), based
on Kirchhoff’s law, the current summed at each bitline (BL)
results the matrix-vector multiplication. Since the computing
inside the crossbar array is in analog fashion, DAC and ADC
are required for the WL/BL peripherals. Further, due to limited
storage capacity of single ReRAM device, multiple cells
connecting to the same WL are used to represent one parameter
value. For example, 8 ReRAM devices are utilized to represent
one 16-bit number with each cell stores 2 bits. Shift & add
blocks are used to sum up the computation result from different
columns. Further, it is not practical to implement a 16-bit DAC
for each row of ReRAM crossbar. Therefore, the input number
is divided into several segments and sequentially fed into the
network. For instance, 16 clock cycles are needed for a 16-bit
input value with 1-bit (the read voltage is either 0 or 1) per
cycle.

Note that one-resistor-one-transistor (1 T1R) structure is now
widely used for ReRAM crossbar design to increase the
selectivity and reduce the leakage current [10, 28]. Fig 2 only
shows the ReRAM cell for simplicity.

C. Prior works on Neural Network using ReRAM

A lot of works have been done to explore ReRAM based
machine learning accelerator design. PRIME [8] proposes a
PIM architecture to accelerate CNN computation with a
detailed analysis of the data representation scheme. ISAAC
[11] presents a full-fledged ReRAM CNN accelerator design.
System throughput and power consumption are modeled with
comprehensive circuit analyses. PipeLayer [9] further
optimizes the data flow and pipeline, adds the feature for
on-line training. Besides accelerating CNN computing,
ReRAM has been widely explored for neuromorphic
computing. Recently, Presioso et al. fabricated a 12x12
ReRAM crossbar prototype with a fully operational
neuromorphic network which can successfully classify 3x3
pixel black/white images into 3 categories [29].

D. Recurrent Neural Networks

Fig. 3(a) shows the basic RNN structure. RNN takes both the
current sample (x;) and the previous calculated network state

(a) (b)
Fig 3. (a) Basic RNN structure. (b) LSTM structure.

(h;) as the network input. The feedback loop gives RNN the
ability to remember and make decision based on previous
information. Equations 1-2 shows the computation for the basic
RNN cell:

h; = tanh(x, U + h,_ W + bias) (D)
y: = softmax(h.V) (2)

where x;, h;, y; are the current input, hidden state, and output
for current time step, respectively; U, W,V are the matrices
which contain the trainable parameters. In theory, RNN is
capable of handling long-term dependencies with the feedback
loop. However, in practice, it is difficult for RNN to have
long-term memory due to the vanishing gradient problem [30].

LSTM are explicitly designed to combat vanishing gradients
through a gating mechanism [12]. As shown in Fig. 3(b), a
LSTM cell contains three gates: input gate i,, forget gate f;,
and output gate o,. They are called gates because the sigmoid
function squashes the values of these vectors between 0 and 1,
and by multiplying them element-wisely with another vector,
we can then define how much information can pass through
(i.e. behave like a gate). To be more specific, the forget gate
defines how much of the previous state you want to let through;
the input gate defines how much of the newly computed state
for the current input you want to let through; and the output
gate defines how much of the internal state you want to pass
through. All the gates have the same dimensions which equal to
the size of hidden state. The computation of LSTM is defined in
the following equations.

i=0o(x U+ h_ W+ b)) 3)
f=o(x U +h_ W' +b) (4)
0=0(xU°+ h;_,W°+b,) (5)
g = tanh(x,U9 + h,_ W9 + bg) (6)
¢ = ;1 Of + gOI (7)
h; = tanh(c;) o (8)

We observe that there are three main operation types:
matrix-vector multiplication (e.g. x,U' and h,_ W'),
non-linear function (sigmoid o and hyperbolic tangent tanh),
and element-wise multiplication (e.g. g®i).

I
[
Bank 1 Processing subarrays
 Non-linear functions
le=p! > SFU array 1
¢= 1+e4
[e | ||| e .
- L[- Eooa)| ||
(CPU) <:> g g ¢ '.g o > O] ! Matrix-vector multi
© 5 © —
S S > @ 5 [« [ReRAM crossbar, =48
R g array || [|]| S-eeeemmemmeeeeee-
= le=p! PR R
|| | Element-wise multi !
- <> | Multi array C=AOB

Fig 4. System architecture overview.

A variation of LSTM is called Gated recurrent unit (GRU)
[13]. It combines the forget gate and input gate into a single
update gate and demonstrates good performance for various
applications.

I1I.

In this section, we first present the system architecture
overview. Then we discuss the function of each sub-block in
the processing engine. The dataflow and pipeline are then
presented.

SYSTEM DESIGN

A. System architecture overview

Fig. 4 presents an overview of the proposed system
architecture. Similar with prior PIM architectures, the memory
bank is divided into three partitions, including the memory
subarrays, buffer subarrays, and processing subarrays. Even
though the processing arrays can also be used for data storage
[8], we observe that the redesigned array peripherals impose
extra data access latency, therefore, the processing subarrays
are dedicated for computing in our design.

As mentioned earlier, existing ReRAM PIM architectures
are not suitable for accelerating RNN computation. To make it

One bank

RNN friendly, we further divide the processing subarrays into
three segments: ReRAM crossbar array for the matrix-vector
multiplication; special function unit (SFU) array for the
non-linear functions; and multiplier array handling the
element-wise multiplication.

B. Details of system design

Fig. 5 shows a detailed system architecture and the WL/BL
peripherals design.

The wordline peripherals support both reading and
programming. The switching between reading mode and
programming mode is realized by an analog multiplexer (MUX)
designed with two transmission gates. The behavior of the
analog MUX is controlled by the read enable signal (C,.) from
dataflow controller. When C,, is enabled, the MUX is
transparent to read voltage from the read voltage buffer (design
with an Op-amp configured in voltage follower mode) and
blocks the write voltage. The read voltage is generated from the
DAC which transfers the input digital data into analogy voltage.
On the other hand, when the C,., is low, the MUX is transparent
to write input signal and blocks the read voltage input.

Bitline peripherals. The first stage of BL peripherals
computation is to sample the current from each column, convert
it into voltage and hold it for later analog to digital conversion.
This can be accomplished by an Op-amp based sample and hold
circuit. Note that the same Op-am in wordline peripherals can
be reused here with a capacitor inserted in the feedback loop
(Op-amp configured in current integrator mode rather than
voltage follower mode [31]). In next stage, ADC is required to
convert the analog voltage signal to digital value. One ADC is
shared for all the columns in a crossbar because ADC consumes
a lot of power and area [11, 32]. A shift & add unit (SAU) is
integrated after the ADC to accumulate data from different BLs

WL Peripherals

o T Out ---=-=-mmmmmmy
£ . 2 s T
8- — @ 5 C 1
=3 © 5] re Vi
g T' ReRAM £° ReRAM From i !
g 2 Crosshar S ° Crosshar controller i
= S o - i
2 & L |
8 \5\: " & m ... momoE |$\: NN omomom . Vread

Memory }%j Buffer Buff- BL Peripherals Buff BL Peripherals i

Array | E | Array \
§ Buff BL Peripherals Buff BL Peripherals =
E i = o e o T s o
E: o . s,
z 2. 2. '
5 = ReRAM 2. ReRAM BL R
Z & " Crossbar { " Crossbar Shared cross ReRAM crossbar
§' 1 §' : To output
: : = EPT L shift & Add | bufer
@ @ : : L ADC n I
Current
integrator -
controller AMP: Op-amp WL: wordline BL: bitline MUX: multiplexer

SFU: special function unit Buff: memory buffer Mult: multiplier.

Fig 5. System architecture and the WL/BL peripherals design.

and different cycles. Finally, the digital output will be
temporarily stored at the local buffer and then collected back to
the buffer subarray.

Special function unit (SFU) and Multiplier. Even though
ReRAM crossbar array can efficiently perform computation for
matrix-vector multiplication, it is not feasible to solve complex
mathematical equations such as sigmoid function (g),
hyperbolic tangent function (tanh), and rectified linear unit
(ReLU) which are widely used in neural networks serving as
activation function. Thus, we implement SFU to handle the
computation for complex mathematical functions.
Element-wise multiplication is another important operation of
LSTM and GRU. We implement an additional multiplier array
to handle the element-wise multiplication operation.

Local buffers. During inference, local buffers receive data
from buffer subarrays and send the data to WL peripherals.
They also collect computing results from BL peripherals and
send them back to buffer subarrays. Local buffers are
distributed and placed close to crossbar arrays. The addresses
for read/write are controlled by dataflow controller and are
identical for all local buffers.

Dataflow controller. The dataflow of the proposed system
is controlled by the dataflow controller. On the top level, it
coordinates the dataflow between memory subarray and buffer
subarray, it also manages the data transmission between the
buffer subarray and local buffers. During inference, the
dataflow controller enables the read enable signal C,, for all
crossbars. Therefore, the inference input voltages can drive the
corresponding WLs while the programming voltage is blocked.
On the other hand, during writing, the C,.. signal is disabled to
let the writing voltage get through.

C. Dataflow and pipeline

One of the unique features of RNN computation is the data
dependency, i.e. the computing in current step relies on the
results of previous step. Therefore, the dataflow and pipeline of
ReRAM based CNN accelerator is not suitable to accelerate
RNN computing. In this section, we first illustrate how to map
RNN computing to our design and then propose a RNN friendly
pipeline execution framework. We use LSTM as an example.
Analysis for the basic RNN and GRU should follow the same
procedure.

Before mapping metrices-vector multiplication to ReRAM
crossbar array, we need to re-organize the input and parameter
matrices. Take equation (3) as an example, two pairs of
matrix-vector multiplication are concatenated into one:

Ui
Wi

Note that adding the bias b; to the matrix-vector
multiplication is trivial since we can use a row of ReRAM cells
to store the bias value and force the read voltage to be 1. Fig. 6
(a) shows the matrix-vector operation after concatenation. Here
we assume the input vector size is 2 and hidden state vector size
is 3. After concatenation, parameter matrix (concatenation of U
and W) are programmed into ReRAM cells and input matrix
(concatenation of x, and h;_,) are used as WL input, shown in

x U4+ e Wi+ b; = [x¢ he_q] [] +b (9

sate

Input &
current state

Next state

ReRAM crossbar
(b)

Fig 6. (a) Matrix-vector multiplication after concatenation. (b)
Mapping the computing to ReRAM crossbar array.

Sequential inputs Processing subarrays

(5 [() [[[=
ReRAM arrays SFUs Multipliers

T

T2 Next state
Ty [A] [k8] —| [
Ty _’ h?
Ts : [n§] —| [nf]
Ts : w] —| [14]

Element-wise
multiplication

Non-linear
function

Matrix-vector
multiplication

Fig 7. Three stages pipeline for RNN computation.

Fig. 6 (b). For simplicity, in Fig. 6 we assume that each cell can
store one parameter value. In practice, due to limited device
precision, multiple adjacent cells in the same row are used to
store one element and the input signals are also partitioned into
several segments and fed into the network sequentially. After
computation, results will be first temporary stored in the local
buffer and then transmitted back to the buffer subarrays.

The computation for element-wise multiplication and
non-linear functions are relatively straightforward. The
dataflow controller fetches the data from buffer subarrays to
SFU/multiplier array and then collects the results back to buffer
arrays.

We develop a RNN friendly pipeline execution flow to
increase the system throughput, shown in Fig. 7. Assume we

Selected array Selected column

BL SL BL
WL
_|
contraller Bl
WL
_”:ll—:l—
——
C5: Column select signal C,: Read enable signal
(a)
Pulse 1 !
e inNpininipipipipipEs
TowL PUse I XA XTX DX AND) -

counter

Pulse
WL
Voltage TLTM
(b)
Fig 8. The programming schemes. (a) One column of a crossbar is
programmed simultaneously. (b) Pulse series based programming.

The conductance change is determined by how many pulses the WL
received.

Pulse
counter

have three input sequences (A, B, and C) which will be
processed by the LSTM network. For example, A, to A4 are the
first 6 words in a sentence and we want to predict the 7" word
based on them. At the first clock cycle T, input vector A; and
the hidden state vector h§ calculated from previous stage are
fed into the ReRAM crossbar for matrix-vector operations. In
next cycle T,, input vector from another sequence B and the
corresponding hidden state h& are fed into the crossbar array;
meanwhile, the result of matrix-vector multiplication of A; and
h§ are sent to SFU arrays to perform non-linear function
operations. Then, in the third cycle T3, temporary results for
sequences A and B are moved forward to the next step, and
sequence C starts the matrix-vector operation. At the end of T,
the new hidden state hf for sequence A is generated. At the
next clock cycle Ty, the second input vector A, from sequence
A can be fetched to the processing engine since the hidden state
h# is ready. With the proposed pipeline, all the processing units
in the system are busy, therefore, the maximum throughput can
be achieved.

IV. IMPLEMENTATION

In this section, we first present how to enable
re-programmability (i.e. device programming), then we discuss
the circuit level implementation of the sub-blocks. To get an
accurate estimation for power and area, we synthesis the digital
design (including dataflow controller, multiplier, and SFU)
with Design Compiler and PrimeTime based on 28nm CMOS
technology from Synopsys [33]. We also run SPICE simulation
for the analog sub-blocks (including Op-amp and analog
multiplier) with 32nm PTM model (28nm model is not
available in the PTM library) [34].

A. Programmability

Efficient programming is always challenging for ReRAM
crossbar array as the write operation normally requires much
longer time and consumes more energy than reading [3, 35].

Further, during reading/inference, all the ReRAM devices are
involved. Devices connecting to the same WL receive the same
input voltage. Therefore, reading can be performed with 1 read
clock cycle. However, during writing, each cell needs to be
programmed differently and might have diverse values
compared with its neighborhood. Thus, multiple clock cycles
are required to program an array. Array-level parallel
programming scheme has been proposed in prior work [36].
However, the complexity of peripheral circuit design and the
ultra-high power density make it prohibitive for large-scale
implementation.

In our design, the programming is performed in a
column-wise fashion. As shown in Fig. 8, the column selecting
signal C. is used to determine which column to be
programmed by turning on the selector transistors of the
corresponding column via the select-line (SL). As shown in Fig.
8(a), only the cells in the first column can be programmed while
all the other cells are disconnected from the network.

Moreover, ReRAM cells can be programmed into different
states, controlled by the number of pulses it receives, as
illustrated in Fig. 8(b). The shared pulse generator consistently
output identical pulses (same amplitude and length). The pulse
counter, initialized with the total number of pulses, counts
down once when receiving one pulse. When it counts down to
zero, it will block the pulse to be sent to the WL.

With the proposed writing scheme, it takes N writing cycles
to programa N X N ReRAM crossbar array. Note that typically
the writing is much slower than reading, therefore, it is highly
desired that no re-programming occurs during computing. In
section V, we show that the performance will significantly drop
when the neural network size is larger than the system capacity
(i.e. re-programming is required).

B. Wordline driving ability

A major circuit design challenge of ReRAM accelerator is
the WL driving ability issue. It is unrealistic to directly use the
output of DAC or other digital circuits to drive the wordline of
ReRAM crossbar since they can’t provide enough current to
drive resistive load. A common approach to increase the
driving ability is to insert a buffer stage between the DAC and
crossbar array [8, 9, 31]. The buffer can be designed with an
operational amplifier (Op-amp) configured at voltage follower
mode, as shown in Fig. 9(a). The driving ability is determined
by the Op-amp output stage bias current (i.e. transistor size).
Increasing the output stage transistors size can reduce the
output impedance therefore alleviate the read voltage drop
effect. Fig. 9(b) shows the Op-amps power to drive different
ReRAM crossbar array size with less than 10% read voltage
drop considering various device resistance. We observe that the
power consumption of Op-amp increases proportionally with
array size and device conductance (i.e. the reverse of device
resistance). Therefore, to reduce the power and area overhead
of WL buffer, we constrain the ReRAM array size to be 128 x
128. And, in the rest of this paper, we assume the on-state
resistance is 1 MQ (i.e. LRS is 1 MQ). We should note that
device with high resistance has been reported in prior works
with a tradeoff of other device characterizations such as low

Resistor chain

Digital | |
input
Ry R, Rp—1 Ry
ol eeoe
Voltage follower : : ! :
Jmmmnnee Yeron
R,
+ L
Ry R, Ry Ry

Voltage followe

(@)
__ 1.00E+07
% Device resistance ()
& 1.00E+06 i"——1.00E+04 |
2 | —o~1.00E+05 !
S 1.00E+05 | i —==1.00E+06
s | ——1.00E+07 !
c H \
% 1.00E+04 '._._.1_'.0.ng9§..'
£
>
(2}
& 1.00E+03
(8]
]
g
S 1.00E+02

o Vv » > © 2 1

N fia) © U N2 N v
il o w D ¥ o K
N %) © 59 ©! U F

N ,ﬁ;) N Q’LD‘
N
ReRAM crossbar array size
(b)

Fig 9. Wordline output voltage drop due to limited driving ability: (a)
circuit schematic, and (b) Op-map power scaling for different
ReRAM crossbar size.

on/off ratio and worse uniformity [27, 36].

C. System implementation

Op-amp design: Op-amp is the most important component
because it is the key component of the WL driver (Op-amp
configured in voltage follower mode) as well as the sample and
hold circuit (Op-amp configured in current integrator mode).
To reduce the power consumption and area, we design a simple
two-stage Op-amp with detailed SPICE simulations in 32nm
CMOS technology.

DAC: The design of DAC is trivial since 1-bit DAC is just a
simple voltage buffer. In this paper, we divide the 16-bit fixed
point number into 16 1-bit numbers and sequentially feed them
to the ReRAM crossbar arrays. This is similar with prior works
and has been proved as a sweet spot for ReRAM based
accelerator [9, 11].

ADC: ADC is non-trivial and has been reported as the main
bottleneck for computing speed and introduces great power and
chip area overhead [11, 37]. We employ an 8-bit 1.2 GS/s (Giga
samples per second) successive approximation register (SAR)
ADC design which is optimized for energy efficiency and area
[32]. As mentioned earlier, 1 ADC is shared for an entire
ReRAM crossbar array to reduce the energy/area overhead. Our
simulation indicates that ADC is also the major bottleneck of
the system performance in our deisgn, introducing significant

Taylor Chebyshev PWL-1 PWL-2
expansion
Accuracy*® 2.5e-3 6.4e-4 1.1e-2 4.8e-4
of intervals 10 10 10 50
of coefficients 30 50 20 100
Power (uW) 1273 1688 1068 2904
Area (um?) 4009 5212 3028 9357
Clock frequency 500 MHz
(a)
d1=0.0; // temporary variable . Coefiicients:
d2=0.0; // temporary variable Coefficients 1oe ZICIen s
Il i Register vty
approximation range [a, b]] o, 1,2 nl
y1=(2.0*x-a-b)/(b-a); // y1 is parameter ’ o

y2=2.0*y1; // y2 is parameter [TTTT]

/I n'is the number of coefficients

for (j=n-1; j>0; j--) SFU SFU SFU SFU
sv=d1; // temporary result
/I [0, 1, 2...] are coefficients
d1=y2"d1-d2+cfj+1]; SFU | | sFu | | sFu| | sFu
d2=sv;

end

result=y1*d1-d2+0.5*c[1]; // final result

Chebyshev approximation Based SFUs

(b) (c)
Fig 10. (a)Comparison of different SFU designs. (b) Pseudo code for
Chebyshev approximation. (c) SFU array and coefficients register.

power (43% of system power) and area (49% of the chip area)
overhead.

Digital sub-blocks: There are several digital circuits in our
design, including the multiplier, SFU, shift & add unit and the
dataflow controller. The multiplier in our design supports
16-bit fixed point number operation since it has been
demonstrated that 16-bit is sufficient for most machine learning
applications [38].

There are multiple different approaches for the SFU design
including Taylor expansion based approximation, Chebyshev
approximation [39], and piece-wise linear function (PWL). As
illustrated in Fig. 10(a), we compare the accuracy and
synthesized power/area number of these approaches. The
accuracy is measured using sigmoid function (a popular
non-linear function used in neural network). And the synthesis
results are from 28 nm CMOS technology. With same number
of intervals (10 interpolations in the input range [-5, 5]), the
Chebyshev exhibits the best accuracy but consumes more
power and area since it has more coefficients and computation.
PWL approach (PWL-1) have lowest power and smallest area
but the accuracy is not good enough. With more coefficients
(i.e. interpolations) (PWL-2), we observe comparable accuracy
with Chebyshev approach, but the power/area are significantly
higher since it has much more coefficients.

In this work, we employ the Chebyshev approximation since
it provides the best accuracy with moderate power and chip
area overhead. The procedure of Chebyshev approximation is
shown in Fig. 10 (b). The coefficients are first calculated with
CPU and pre-loaded into the local register file. During
computing, SFU will access the register file and calculate the
non-linear function, as shown in Fig. 10 (c).

In prior ReRAM accelerator works, circuits are designed to
solve a specific function [8, 11, 14]. Compared with them, the
SFU based approach is advantageous since it has more
flexibility, can be easily reconfigured (i.e. load different
coefficients) to solve different functions.

TABLE I: Power consumption and area for sub-blocks in the

proposed design.
Component Power (mW) | Area (um?) Number
WL peripherals 1.9 40.9
BL peripherals 5.0 1550
Local buffer 0.16 648.0 128
ReRAM array 0.01 147.5
Dataflow controller 0.3 300 1
SFU 1.68 5212 16
Multiplier 0.18 1155 4
Bank total 932.86 0.39 mm? N/A

Memory array and local buffer: We design our own
simulator to model the read/write power and latency based on
the experimental data calibrated ITR model [20, 23, 24]. We
assume the size of 1TIR structure is 10F? where F is the
minimum lithography length in 28nm technology. Similar with
prior works [11, 40], eDRAM are employed as local buffer. The
power and area of eDRAM is modeled based on [11].

The power consumption and area for each sub-block are
listed in Table I.

V. RESULTS

A. Experiments setup

Benchmark: We evaluate the system performance with two
RNN based applications. One is NLP where we want to predict
the next word in the sentence based on previous input
vocabularies. The dataset is available at [41]. The Second
application is human activity recognition (HAR) and we use the
dataset from [42]. For both applications, we evaluate the
performance with three RNN configurations: basic RNN,
LSTM, and GRU. For all networks, the number of hidden layer
features are 128 (i.e. the length for hidden state vector is 128).
Should aware that our system can also be utilized to accelerate
the computing for feedforward neural networks such as
Multi-layer perceptron (MLP) and CNN. Hence, we also
include MLP/CNN into our benchmark. The benchmark MLP
has one hidden layer with 256 hidden neurons. The CNN
contains 2 Convolutional layers, and 1 fully connected layer.
The benchmark information is summarized in Table II.

TABLE II. Benchmarks

Datasets Description Networks Hidden *Ops/frame
state
*bRNN 5.6x10°
NLP Predlc.t ne?<t word from LST™ 128 2. 2%10°
previous input words

GRU 1.7x10®

*bRNN 2.2x106

HAR Classify human af:tmty LSTM 128 9.0x10°
from 6 categories.

GRU 6.7x10°

i igi MLP 256 3.9x10°
MNIST Hand wrlFten' digits

classification CNN / 9.8x106

*bRNN: basic RNN Ops/frame: number of operations per input sample

GPU Dbaseline: We perform the experiments with
Tensorflow deep learning framework [43] running on a
NVIDIA GeForce GTX 1080Ti GPU.

Source code. All the source code (based on Tensorflow) is
available for download at https://github.gatech.edu/ylong32.

B. System performance and comparison with other platforms

We first evaluate the computing efficiency and compare with
our GPU baseline. The computing efficiency is represented in
term of GOP/s/W (Giga operations per second per Watt). The
GPU power is measured by nvidia-smi provided by NVIDIA
CUDA toolkit. Fig. 11(a) shows the computing efficiency
comparison considering different datasets and networks. We
observe that the average improvement across all the RNN
benchmarks are 79x. Interestingly, experiment results indicate
that the GPU computing efficiency for MLP/CNN is lower than
RNN. This is mainly caused by input data access latency. To be
more specific, the input data for feedforward networks all
comes from external memory. Differently, input data of RNN
are the concatenation of input data and hidden state calculated
from previous stage. Since the hidden state are temporary data
which only exist in GPU’s L1/L2 cache, it can be directly
fetched without the latency for accessing external memory. In
our PIM architecture, both the input data and temporary hidden
state are stored in the buffer subarrays, therefore, the
performance for computation of RNN and MLP/CNN is similar.
The second reason impacting the GPU performance for CNN
computing is that the data structure of convolutional operation
should be re-organized for matrix-vector multiplication. This

:‘5; 1000 Frame rate (Fps) for benchmarks

% 100 71X 45x 53x 90x 53x p@ax 465x 681x 79x Frame rate GPU Our work

% bRNN 877.2K 289.6 K

9 NLP LSTM 319.5K 68.0 K

g 10

S GRU 359.7K 88.0 K

e . bRNN | 161.0K | 69.4K

(0]

o I I HAR LSTM 58.2 K 146 K

é‘ 01 I [| GRU 64.6 K 19.8 K

8 bRNN LSTM GRU [bRNN LSTM GRU | MLP CNN MNIST MLP 196.2K 65.4 K
NLP HAR MNIST verage CNN 57.4 K 254 K

mGPU = Our work

(a)

(b)

Fig 11. (a) Computing efficiency in terms of GOP/s/Watt. (b) System throughput in terms of frame rate (Fps).

TABLE III. Comparison with other hardware accelerators.

Accelerator ESE ISAAC Pipelayer | DaDianNao EIE Our work
Name
Target CNN CNN
networks RNN e ol e RNN RNN
Technology 22 nm 32 nm / 28 nm 45 nm 28 nm
Approach FPGA ReRAM ReRAM ASIC ASIC ReRAM
Training No No Yes No No No
support
Parameter DRAM eDRAM ReRAM eDRAM SRAM ReRAM
storage (In situ) (In situ)
Computing
efficiency 6.88 380.7 142.9 286.4 174.1 116.3
(GOP/s/W)

overhead no longer exists in our system since the parameters
are pre-loaded into the ReRAM crossbar arrays.

Should aware that the throughput (i.e. frames per second) of
our system is less than the GPU, as shown in Fig 11(b). This is
because our system only consumes 0.6 Watt while the average
GPU power is around 200 Watt, enabling more than 300x
improvements for the energy consumption.

We also compare the computing efficiency of our system
with prior works, including FPGA based LSTM accelerator,
ESE [16]; ReRAM based CNN accelerators, ISAAC [11] and
PipeLayer [9], and ASIC based CNN/RNN accelerator,
DaDianNao [40] and EIE [18]. The results are summarized in
Table III. The FPGA based approach demonstrates the lowest
performance because it stores the parameters in the external
DRAM. Also, the maximum clock frequency for FPGA is
much lower than the ASIC, which further constrains the
performance. Compared with ReRAM based CNN accelerator,
we demonstrate similar performance with PipeLayer but less
than ISAAC. The reason is that prior works do not consider the
driving ability issue and ignore the power consumption of the
WL buffer which is one of the major energy hungry component
(52.7% of the total power in our design). If ignore the power
consumption on the WL buffer, our design can achieve
performance with 341 GOP/s/W, which is similar with ISAAC.
We show that the overheads associated with the peripheral
circuit can significantly degrade the computing efficiency.

We observe that the ASIC approach achieves the
state-of-the-art computing efficiency. The primary reason is
that ASIC designs employ large size on chip memory to store
the parameters; therefore, the data movement energy is reduced.
However, in ASIC designs, both eDRAM and SRAM are
volatile memory, the stored data will vanish after power off,
making it not suitable for platforms with limited energy budget
such as mobile devices. On the contrary, ReRAM based design
is advantageous since the parameters are stored in non-volatile
memory. Therefore, we conclude that if the computing is
performed in datacenter where the power supply is sufficient
and stable, ASIC based approach is preferred, if the computing
is performed in a distributed low power platform, the ReRAM
approach provides more benefits.

C. Enhance performance with lower bit-precision
Previous analyses assume that all the parameters and input

data are represented with 16-bit fixed point number. To further
enhance the computing efficiency, we explore using lower bit

0.9

— 8100

> 08 g
S 3
5 07 2
g ° =
2 0.6 2700 @
o

o EY
© Q
e T @
@ 04 900 3
@ bRNN <
O 03 —8— Performance 8
02 300 I
0.1 \%

0 100
2 4 6 8 10 12 14 16

Bit precision from 2-bit to 16-bit

Fig 12. System performance with lower bit-precision.

precision for computing. Fig. 12 shows the trade-off between
computing efficiency and classification accuracy. The data in
Fig. 12 is based on HAR dateset. Similar results can be
observed for other datasets. Simulation indicates that 8-bit
precision demonstrate satisfactory results while lower bit
precision (less than 6-bit) show significant accuracy drop. This
is consistent with the result in prior work [38]. With 8-bit
precision, the performance (GOP/s/W) is 4 times higher than
16-bit.

D. Impact of device variations

The device variation of ReRAM can significantly deteriorate
system performance. Device variation comes from the
stochastic formation and rupture of conductive filament in the
resistive layer of ReRAM (i.e., generation and recombination
of oxygen vacancy is stochastic) [20, 24]. Variations exist in
cycle-to-cycle operation and from one device to another device.
Variations can be caused by read or write operation, properties
of resistive materials, and various fabrication factors. In this
work, we consider using Gaussian noise to represent the device
variation. Other forms of device noises such as bit-flip error or
random telegraph noise (RTN) can be analyzed in a similar way.
We use the following equation to represent the Gaussian noise
of device conductance:

Inoise = YGideal (1 + N(0, 02))

where gijeq; 18 the expected device conductance without
variation; N (0, 62) is the normal distribution with mean equals
to 0 and standard variation o. It has been measured that the
variation is normally less than 0.2 [19].

We evaluate the computing accuracy in terms of the
classification accuracy for the benchmarks. As shown in Fig. 13,
we observe that the accuracy drop is insignificant when the
standard deviation of the added Gaussian is less than 0.2.
However, the accuracy drops a lot for all the benchmark tests
when the noise level is large. Data in Fig. 13 also indicates that
the performance of LSTM and GRU are better than the basic
RNN especially for a more complex dataset. For example, with
HAR dataset, the performance of the basic RNN is not
satisfactory (only 69%) while both LSTM and GRU achieve
around 90% accuracy.

(10)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Recognition accuracy

bRNN LST™M

NLP

GRU

m0 =01

bRNN

0.2

LST™M
HAR
03 W04 m0.5

GRU MLP CNN

MNIST

Noise level (o)

Fig 13. Computing accuracy with different levels of device variation.

E. Handling large scale networks

Prior ReRAM based works do not consider the need for
re-programming during inference. They assume that the
network parameters are programmed into the processing arrays
and never change [8, 9, 11, 14]. Even though PipeLayer
characterizes the device writing, it only considers the weight
update during training [9]. However, re-programming can be
necessary, especially when the energy budget is constrained
and the system capacity is not enough to hold all parameters
simultaneously. It is critical to get a more comprehensive
understanding about the system performance with
re-programming considered.

Using LSTM as an example, we gradually increase the size
of hidden states and evaluate the system throughput and
running time with the system capacity unchanged (512 KB),
shown in Fig. 14. When the hidden state number is small (<
500), the parameters of the network can be mapped to the
system simultaneously. Moreover, multiple small LSTMs can
be mapped to the system together, allowing processing several
input sequences at the same time. On the other hand, if the
hidden state size reaches a threshold when the parameter size is
larger than the system capacity, re-programming occurs. We
observe a drastic performance and speed drop due to
re-programming. Further increasing the number of hidden state
introduces more programming cycles along with more
throughput and speed drop. Should aware that neural networks
with different size of hidden state may have different
performance even though they have same number of
re-programming. For example, we consider LSTM with 600
and 900 hidden state (the parameter size is 628 KB and 928 KB,
respectively). Since the system capacity is 512 KB, requiring 1
re-programming for both networks. Remember that the reading
time is a constant, the inference time are same for these two
networks. However, networks with more hidden states have
more computation. Therefore, the performance (GOP/s) is
different.

As mentioned earlier, we can increase the number of
ReRAM processing arrays in a bank, or use multiple banks tiled
together to increase the system capacity, and thus, avoid the
re-programming issue. The energy consumption is proportional
to the system scale. Another solution is storing more bit per

o
o

10° . : ;

o

) eveb”ee? ‘9-0-0-96

@_O_Mo«)—o-oe 4 0-0-0-0-¢
1
l‘

il 1,43
{
£ No programming |
1

o
™

=)

1 programming 2 programming

o

1
*6 001
4 \ -0-Q o ©-0-0-0-¢
o’e 9 oo-o—cree © ©-0-0-&]

Throughput (GOP/s)

o
)
T
o

Running time to process 1 sequence (ms)

107 10°
0 300 600 900 1200 1500

Number of hidden state

Fig 14. System performance with different number of hidden state.

cells. For example, if one device can store 4-bit, then the
maximum capacity becomes 2 MB, 4 times larger than our
original design (2-bit/cell). But this will introduce more
computation error. The third approach is to increase the
crossbar size. However, to drive larger array, the WL buffer
size must be scaled up proportionally (more power
consumption). Moreover, ADC with more bit precision is
required for large crossbar array.

VI. CONCLUSION

We present a RNN accelerator design based on ReRAM PIM
architecture. The proposed architecture is suitable for various
RNN computation including the basic RNN, LSTM, and GRU.
We measure the system throughput and energy efficiency with
detailed circuits/devices characterization. We observe that the
computing efficiency of the proposed system achieves 79x
improvements compared with GPU baseline on average.
Further, the computing accuracy drop is insignificant when the
read noise standard deviation is less than 0.2. Lower
bit-precision such as 8-bit can enhance the performance with
insignificant accuracy loss. We observe that re-programming
during inference can significantly deteriorate the performance
and should be minimized.

REFERENCES
[1] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," in Advances in neural
information processing systems, 2012, pp. 1097-1105.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L.
Fei-Fei, "Large-scale video classification with convolutional neural
networks," in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725-1732.

A. Graves, A.-r. Mohamed, and G. Hinton, "Speech recognition with
deep recurrent neural networks," in Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on, 2013, pp.
6645-6649: IEEE.

D. Hassabis, "Artificial Intelligence: Chess match of the century,"
Nature, vol. 544, no. 7651, pp. 413-414,2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet:
A large-scale hierarchical image database," in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp.
248-255: IEEE.

S. B. Eryilmaz, D. Kuzum, S. Yu, and H.-S. P. Wong, "Device and
system level design considerations for analog-non-volatile-memory
based neuromorphic architectures," in Electron Devices Meeting
(IEDM), 2015 IEEE International, 2015, pp. 4.1. 1-4.1. 4: IEEE.

A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, "NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules," in High Performance Computer
Architecture (HPCA), 2015 IEEE 2lst International Symposium on,
2015, pp. 283-295: IEEE.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
"Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory," in Proceedings of the 43rd
International Symposium on Computer Architecture, 2016, pp. 27-39:
IEEE Press.

L. Song, X. Qian, H. Li, and Y. Chen, "PipeLayer: A pipelined
ReRAM-based accelerator for deep learning," in High Performance
Computer Architecture (HPCA), 2017 IEEE International Symposium
on, 2017, pp. 541-552: IEEE.

S. Yu, Z. Li, P.-Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian,
"Binary neural network with 16 Mb RRAM macro chip for classification
and online training," in Electron Devices Meeting (IEDM), 2016 IEEE
International, 2016, pp. 16.2. 1-16.2. 4: IEEE.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, "ISAAC: A
convolutional neural network accelerator with in-situ analog arithmetic
in crossbars," in Proceedings of the 43rd International Symposium on
Computer Architecture, 2016, pp. 14-26: IEEE Press.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J.
Schmidhuber, "LSTM: A search space odyssey," IEEE transactions on
neural networks and learning systems, 2016.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of
gated recurrent neural networks on sequence modeling," arXiv preprint
arXiv:1412.3555, 2014.

Y. Long, E. M. Jung, J. Kung, and S. Mukhopadhyay, "ReRAM
Crossbar based Recurrent Neural Network for human activity detection,"
in Neural Networks (IJCNN), 2016 International Joint Conference on,
2016, pp. 939-946: IEEE.

H. Sak, A. Senior, and F. Beaufays, "Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition," arXiv preprint arXiv:1402.1128, 2014.

S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, and
Y. Wang, "ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA," in FPGA4, 2017, pp. 75-84.

E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
"Accelerating recurrent neural networks in analytics servers: comparison
of FPGA, CPU, GPU, and ASIC," in Field Programmable Logic and
Applications (FPL), 2016 26th International Conference on, 2016, pp.
1-4: IEEE.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, "EIE: efficient inference engine on compressed deep neural
network," in Proceedings of the 43rd International Symposium on
Computer Architecture, 2016, pp. 243-254: IEEE Press.

B. Gao, Y. Bi, H.-Y. Chen, R. Liu, P. Huang, B. Chen, L. Liu, X. Liu, S.
Yu, and H.-S. P. Wong, "Ultra-low-energy three-dimensional
oxide-based electronic synapses for implementation of robust
high-accuracy neuromorphic computation systems," ACS nano, vol. 8,
no. 7, pp. 6998-7004, 2014.

B. Gao, S. Yu, N. Xu, L. Liu, B. Sun, X. Liu, R. Han, J. Kang, B. Yu, and
Y. Wang, "Oxide-based RRAM switching mechanism: A new
ion-transport-recombination model," in Electron Devices Meeting, 2008.
IEDM 2008. IEEE International, 2008, pp. 1-4: IEEE.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M.
Perego, and M. Fanciulli, "Conductive-filament switching analysis and
self-accelerated thermal dissolution model for reset in NiO-based
RRAM," in Electron Devices Meeting, 2007. IEDM 2007. IEEE
International, 2007, pp. 775-778: 1IEEE.

S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, K. Seo, J. Park, S.
Kim, and W. Lee, "RRAM-based synapse for neuromorphic system with
pattern recognition function," in Electron Devices Meeting (IEDM),
2012 IEEE International, 2012, pp. 10.2. 1-10.2. 4: IEEE.

P. Huang, X. Liu, W. Li, Y. Deng, B. Chen, Y. Lu, B. Gao, L. Zeng, K.
Wei, and G. Du, "A physical based analytic model of RRAM operation
for circuit simulation," in Electron Devices Meeting (IEDM), 2012 I[EEE
International, 2012, pp. 26.6. 1-26.6. 4: IEEE.

X. Guan, S. Yu, and H.-S. P. Wong, "A SPICE compact model of metal
oxide resistive switching memory with variations," IEEE electron device
letters, vol. 33, no. 10, pp. 1405-1407, 2012.

G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, 1. Boybat, R. S.
Shenoy, P. Narayanan, K. Virwani, and E. U. Giacometti, "Experimental
demonstration and tolerancing of a large-scale neural network (165 000
synapses) using phase-change memory as the synaptic weight element,"
IEEE Transactions on Electron Devices, vol. 62, no. 11, pp. 3498-3507,
2015.

A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C.
Gamrat, W. S. Zhao, J.-O. Klein, S. Galdin-Retailleau, and D. Querlioz,
"Spin-transfer torque magnetic memory as a stochastic memristive
synapse for neuromorphic systems," /EEE transactions on biomedical
circuits and systems, vol. 9, no. 2, pp. 166-174, 2015.

S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B. Lee, B. Lee,
and H. Hwang, "Neuromorphic speech systems using advanced
ReRAM-based synapse," in Electron Devices Meeting (IEDM), 2013
IEEE International, 2013, pp. 25.6. 1-25.6. 4: IEEE.

C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, "Overcoming the challenges of crossbar resistive memory
architectures," in High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on, 2015, pp. 476-488: IEEE.
M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev,
and D. B. Strukov, "Training and operation of an integrated
neuromorphic network based on metal-oxide memristors," Nature, vol.
521, no. 7550, pp. 61-64, 2015.

Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term
dependencies with gradient descent is difficult," /IEEE transactions on
neural networks, vol. 5, no. 2, pp. 157-166, 1994.

X. Wu, V. Saxena, and K. Zhu, "A CMOS spiking neuron for dense
memristor-synapse connectivity for brain-inspired computing,”" in
Neural Networks (IJCNN), 2015 International Joint Conference on,
2015, pp. 1-6: IEEE.

L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brandli,
M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, "A 3.1 mW 8b
1.2 GS/s single-channel asynchronous SAR ADC with alternate
comparators for enhanced speed in 32 nm digital SOl CMOS," [EEE
Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3049-3058, 2013.

R. Goldman, K. Bartleson, T. Wood, K. Kranen, V. Melikyan, and E.
Babayan, "32/28nm Educational Design Kit: Capabilities, deployment
and future," in Microelectronics and Electronics (PrimeAsia), 2013
IEEE Asia Pacific Conference on Postgraduate Research in, 2013, pp.
284-288: IEEE.

W. Zhao and Y. Cao, "New generation of predictive technology model
for sub-45 nm early design exploration," /EEE Transactions on Electron
Devices, vol. 53, no. 11, pp. 2816-2823, 2006.

F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, "High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm," Nanotechnology, vol. 23, no. 7, p. 075201, 2012.

L. Gao, L.-T. Wang, P.-Y. Chen, S. Vrudhula, J.-s. Seo, Y. Cao, T.-H.
Hou, and S. Yu, "Fully parallel write/read in resistive synaptic array for
accelerating on-chip learning," Nanotechnology, vol. 26, no. 45, p.
455204, 2015.

M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam,
N. Ge, J. J. Yang, and R. S. Williams, "Dot-product engine for
neuromorphic computing: programming 1T1M crossbar to accelerate
matrix-vector multiplication," in Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, 2016, pp. 1-6: IEEE.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S.
Bates, S. Bhatia, N. Boden, and A. Borchers, "In-datacenter performance
analysis of a tensor processing unit," arXiv preprint arXiv:1704.04760,
2017.

[39] M. Price, J. Glass, and A. P. Chandrakasan, "14.4 A scalable speech
recognizer with deep-neural-network acoustic models and
voice-activated power gating," in Solid-State Circuits Conference
(ISSCC), 2017 IEEE International, 2017, pp. 244-245: IEEE.

[40] Y. Chen,T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
and N. Sun, "Dadiannao: A machine-learning supercomputer," in
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014, pp. 609-622: IEEE Computer Society.

[41] R. Atienza. (2017). LSTM by Example using Tensorflow. Available:
https://github.com/roatienza/Deep-Learning-Experiments

[42] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, "A Public
Domain Dataset for Human Activity Recognition using Smartphones,"
in ESANN, 2013.

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, and M. Devin, "Tensorflow: Large-scale
machine learning on heterogeneous distributed systems," arXiv preprint
arXiv:1603.04467, 2016.

Yun Long (S'15) received the B.S. degree in
microelectronics from Peking University,
Beijing, China in 2014. He is currently

d= = pursuing the Ph.D degree in Electrical and
Computer Engineering with the Georgia
- Institute of Technology, Atlanta, GA, USA.

" % . His current research insterests include
: emerging technology based machine
learning accelerator design and FPGA based high performance
computing for dynamical system modeling. He received the
Wousi Fellowship and National Fellowship in 2008 and 2009
when he was an undergraduate student in Peking University.

Taesik Na (S’14) received the B.S. and M.S.
degrees in electrical engineering and
computer science from Seoul National
University, Seoul, Korea, in 2006 and 2008,
respectively. He is currently pursuing the
Ph.D. degree in electrical and computer
engineering at the Georgia Institute of
Technology, Atlanta, GA, USA. From 2008
to 2013, he was a circuit design engineer with Samsung
Electronics Semiconductor Memory Division, Korea, involved
in the design of high-speed DRAMs. His current research
interests include low power and secure neuromorphic hardware
design. Mr. Na was a recipient of the Korea Foundation for
Advanced Studies (KFAS) Scholarship and the Kwanjeong
Educational Foundation Doctoral Fellowship during 2006—
2008 and 2013-2017, respectively.

Saibal Mukhopadhyay (S’99-M’07-
SM’11) received the B.E. degree in
electronics and telecommunication

engineering from Jadavpur University,
Kolkata, India, and the Ph.D. degree in
electrical and computer engineering from
Purdue University, West Lafayette, IN, in
2000 and 2006, respectively. He is currently a
Professor with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta. His
research interests include design of energy-efficient, intelligent,
and secure systems in nanometer technologies.

Dr. Mukhopadhyay was a recipient of the Office of Naval
Research Young Investigator Award in 2012, the National
Science Foundation CAREER Award in 2011, the IBM Faculty

Partnership Award in 2009 and 2010, the SRC Inventor
Recognition Award in 2008, the SRC Technical Excellence
Award in 2005, the IBM PhD Fellowship Award for years 2004
to 2005. He has authored or co-authored over 200 papers in
refereed journals and conferences, and holds five U.S. patents.
Dr. Mukhopadhyay is a Senior Member of IEEE.

https://github.com/roatienza/Deep-Learning-Experiments

