
Abstract—We present a recurrent neural network (RNN) 
accelerator design with resistive random-access memory 
(ReRAM) based processing-in-memory (PIM) architecture. 
We measure the system throughput and energy efficiency 
with detailed circuit and device characterization. 
Re-programmability is enabled with our design and a RNN 
friendly pipeline is employed to increase the system 
throughput. We observe that on average the proposed 
system achieves 79x improvement of computing efficiency 
compared with GPU baseline. Our simulation also indicates 
that to maintain high accuracy and computing efficiency, 
the read noise standard deviation should be less than 0.2, 
the device resistance should be at least 1 M𝛀, and the 
device write latency should be minimized. 

Index Terms—Recurrent neural network (RNN), 
ReRAM, processing in memory (PIM), long short-term 
memory (LSTM), gated recurrent unit (GRU), human 
activity recognition 

I. INTRODUCTION 
achine learning has achieved the state-of-the-art 
performance across a wide range of applications, such as 

image classification [1], video recognition [2], natural language 
processing (NLP) [3], and gaming strategies [4], to name a few. 
Further, deep neural networks (DNNs) can even outperform 
human-level performance in a few tasks, for example, 
ImageNet classification [5], and board game Go [4]. 
Meanwhile, the neural networks complexity and parameter size 
have skyrocketed over the past few years. Despite the fast 
advance in general-purpose graphics processing unit (GPGPU), 
its energy efficiency is still far less than the ultimate 
‘Intelligence’, human brain, which contains 1010 neurons and 
1014 synapses but only consumes ~20 Watts [6]. One of the 
bottlenecks comes from the fact that the von Neumann 
architecture separates the memory and processing unit, 
introducing significant data movement energy as well as data 
access latency [7].  

To address this, emerging non-volatile memory, especially 
resistive random-access memory (ReRAM) based processing- 
in-memory (PIM) architecture has been studied to accelerate 
DNN computation [8-10]. Thanks to the PIM architecture and 
massive data-level parallelism, significant improvements of 
computing speed and energy efficiency have been 
demonstrated [8-11].  

Most of the prior ReRAM accelerators focus on accelerating 
convolutional neural networks (CNNs) but lack supports for 
recurrent neural networks (RNNs). The core concept of RNN is 
to utilize the sequential information with a feedback loop, i.e. 
the output of RNN depends not only on current input but also 
the previous computation results. In practice, long short-term 
memory (LSTM) [12] and gated recurrent unit (GRU) [13] are 
the most popular RNN configurations and have demonstrated 
unprecedented performance for tasks including Human activity 
recognition (HAR) [14], video recognition [2], and NLP [3, 
15], to name a few.  

There are two reasons making existing ReRAM CNN 
accelerators not suitable for RNN computing. First, in CNN, 
the inputs are independent from each other and the output is 
computed based on current input. However, this is not true for 
RNN since the computation of RNN requires both current input 
and results from previous steps. The time-dependence makes 
the pipeline in prior ReRAM CNN accelerator designs not 
feasible for RNN computing. Second, the operations of RNN is 
different with CNN especially for LSTM and GRU which 
contain not only matrix-vector multiplication and non-linear 
functions but also element-wise multiplication [12, 13, 16]. 

The acceleration of RNN computation using GPU [15], 
field-programmable gate array (FPGA) [16, 17], and CMOS 
application-specific integrated circuit (ASIC) [18] has been 
explored in prior works. This work presents a ReRAM based 
RNN accelerator design utilizing PIM architecture. The 
contributions of this paper are summarized as follows: 

• We present a ReRAM based system architecture to 
accelerate RNN computation. The processing engine (PE) 
is divided into three subarrays: ReRAM crossbar subarrays 
for matrix-vector multiplication; special function unit 
(SFU) subarrays for non-linear function; and multiplier 
subarrays for element-wise operations. 

• A RNN friendly pipeline is employed to increase the 
system throughput. Dataflow control is discussed for both 
inference and programming phase. The proposed design 
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supports various RNN configurations including the basic 
RNN, LSTM, and GRU.  

• We characterize the system throughput, area, and power 
consumption with detailed circuit and device modeling 
based on 28nm CMOS technology. We observe that our 
design achieves 79x computing efficiency improvements 
compared with GPU baseline on average. We also compare 
our design with existing machine learning accelerators 
implemented on various platforms, including ReRAM, 
FPGA, and ASIC. 

• We investigate the computing accuracy considering device 
variation. The accuracy drop is insignificant when the 
device noise deviation is less than 0.2. Simulation also 
indicates that the system performance drops significantly 
when considering re-programming, indicating the device 
writing latency must be minimized to achieve high 
performance. 

• We propose that, to maintain high accuracy and computing 
efficiency, the read noise standard deviation should be less 
than 0.2, the device resistance should be at least 1 MΩ. 

The paper is organized into the following sections. Section II 
describes the background. Section III presents the system 
architecture and dataflow control. Section IV discusses the 
details of implementing the system. Section V presents the 
results, and section VI concludes the paper.  

II. BACKGROUND 

A. Resistive random-access memory (ReRAM) 
A ReRAM device consists of three layers. A resistive 

switching layer (e.g. HfOx, NiO, TiO2, Al2O3 or their 
combination) sandwiched between top and bottom electrodes 
(e.g. Pt, TiN) [19]. Device resistance can be modulated via 
applying set or reset voltage. A lot of works have been done to 
explore physical resistive switching mechanism of ReRAM 
[20-22]. In this work, we employ the Ion transportation 
recombination (ITR) model [20]. In ITR model, the complex 
ion transportation and recombination process is simplified into 
the growth and rupture of Conductive filament (CF) in the 
resistive layer. Resistance of device is controlled by the size of 
the gap (𝑋 in Fig. 1(a)) between the electrode and the tip of the 
CF.  

A simplified physical mechanism model, based on the ITR 
theory for bipolar ReRAM, is adapted in this paper from prior 
works [20, 23, 24]. We fit this model with existing 
experimental data [19, 23], shown in Fig. 1(b-d). As this model 
captures the dynamic behavior of the ReRAM switching, it 
helps to analyze the write latency and energy. Should note that 
we can use the same model (with different parameters) to fit 
experiment data from different devices. As illustrated in Fig. 
1(b-d), device in [23] (TiN/TiOx/HfOx/TiOx/HfOx/Pt structure) 
shows very different on/off resistance compared with [19] 
(TiN/HfOx/Pt structure). With parameter tuning, our model can 
fit the experiment data from both works very well. 
B. ReRAM PIM architecture and the accelerator design 

It has been demonstrated that some emerging technology 
based non-volatile memory such as ReRAM, Phase change 

memory (PCM), and spin-transfer torque magnetic RAM 
(STT-MRAM) can perform logic operation beyond storage [8, 
9, 25, 26]. This unique feature allows them to serve for both 
computation and memory, enabling the PIM architecture. A 
commonly used PIM architecture is shown in Fig. 2(a), a 
memory bank is divided into three segments: memory 
subarrays which serves as conventional memory; buffer 
subarrays which serves as data buffer; and processing 
subarrays which are utilized to process the data. Private data 
ports are introduced between buffer subarrays and processing 
subarrays for high data bandwidth. Further, this private data bus 
is isolated from main memory bus, hence, it doesn’t consume 
the bandwidth of main memory [8]. As an energy-efficient 
technique, PIM best exploits the data locality by reconfiguring 
part of the memory blocks as processing units. Moreover, data 

 
Fig. 1. (a) Simplified ITR resistive switching model. (b) Device SET 
operations with different initial gap length. (c) Device RESET 
operations with applied voltage. (d) Resistance modulation with 
RESET pulses. The pulse width is 50ns. Experiment data are from 
[24, 28]. 
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Fig 2. (a) PIM architecture. (b) ReRAM crossbar for matrix-vector 
multiplication. (c)  Current is summed at bitline. 
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can be directly accessed and transmitted internally without any 
external memory interfaces. PIM provides large memory 
bandwidth and fast data access, also reduces the data moving 
energy, which are very critical to data demanding applications 
such as machine learning. Among all the candidates, ReRAM 
based PIM architecture attracts lots of research attentions since 
that ReRAM has fast writing speed, CMOS compatibility, high 
on-off ratio and analog feature, i.e. multi-level cell (MLC) [19, 
27]. Recent works have demonstrated that ReRAM based PIM 
architectures achieve orders of magnitude speed and energy 
efficiency improvements compared with the GPUs and ASIC 
designs on CNN acceleration [8, 9, 11].  

As shown in Fig. 2(b), the core component of ReRAM based 
accelerator is a crossbar-based processing engine (PE) for 
matrix-vector multiplication. During computation, neural 
network’s parameters are first programmed into the ReRAM 
devices. Then input vectors are fed into the crossbar array as 
wordline (WL) supply voltage. As illustrated in Fig. 2(c), based 
on Kirchhoff’s law, the current summed at each bitline (BL) 
results the matrix-vector multiplication. Since the computing 
inside the crossbar array is in analog fashion, DAC and ADC 
are required for the WL/BL peripherals. Further, due to limited 
storage capacity of single ReRAM device, multiple cells 
connecting to the same WL are used to represent one parameter 
value. For example, 8 ReRAM devices are utilized to represent 
one 16-bit number with each cell stores 2 bits. Shift & add 
blocks are used to sum up the computation result from different 
columns. Further, it is not practical to implement a 16-bit DAC 
for each row of ReRAM crossbar. Therefore, the input number 
is divided into several segments and sequentially fed into the 
network. For instance, 16 clock cycles are needed for a 16-bit 
input value with 1-bit (the read voltage is either 0 or 1) per 
cycle.  

Note that one-resistor-one-transistor (1T1R) structure is now 
widely used for ReRAM crossbar design to increase the 
selectivity and reduce the leakage current [10, 28]. Fig 2 only 
shows the ReRAM cell for simplicity. 

C. Prior works on Neural Network using ReRAM 
A lot of works have been done to explore ReRAM based 

machine learning accelerator design. PRIME [8] proposes a 
PIM architecture to accelerate CNN computation with a 
detailed analysis of the data representation scheme. ISAAC 
[11] presents a full-fledged ReRAM CNN accelerator design. 
System throughput and power consumption are modeled with 
comprehensive circuit analyses. PipeLayer [9] further 
optimizes the data flow and pipeline, adds the feature for 
on-line training. Besides accelerating CNN computing, 
ReRAM has been widely explored for neuromorphic 
computing. Recently, Presioso et al. fabricated a 12x12 
ReRAM crossbar prototype with a fully operational 
neuromorphic network which can successfully classify 3x3 
pixel black/white images into 3 categories [29]. 

D. Recurrent Neural Networks 
Fig. 3(a) shows the basic RNN structure. RNN takes both the 

current sample (𝑥𝑡) and the previous calculated network state 

(ℎ𝑡)  as the network input. The feedback loop gives RNN the 
ability to remember and make decision based on previous 
information. Equations 1-2 shows the computation for the basic 
RNN cell: 

ℎ𝑡  tanh(𝑥𝑡𝑈 + ℎ𝑡  𝑊 + 𝑏 𝑎𝑠)                     (1) 

𝑦𝑡  𝑠 𝑓𝑡𝑚𝑎𝑥(ℎ𝑡𝑉)                                              (2) 

where 𝑥𝑡 , ℎ𝑡 , 𝑦𝑡 are the current input, hidden state, and output 
for current time step, respectively; 𝑈,𝑊, 𝑉  are the matrices 
which contain the trainable parameters. In theory, RNN is 
capable of handling long-term dependencies with the feedback 
loop. However, in practice, it is difficult for RNN to have 
long-term memory due to the vanishing gradient problem [30].  

LSTM are explicitly designed to combat vanishing gradients 
through a gating mechanism [12].  As shown in Fig. 3(b), a 
LSTM cell contains three gates: input gate  𝑡, forget gate 𝑓𝑡, 
and output gate  𝑡. They are called gates because the sigmoid 
function squashes the values of these vectors between 0 and 1, 
and by multiplying them element-wisely with another vector, 
we can then define how much information can pass through 
(i.e. behave like a gate). To be more specific, the forget gate 
defines how much of the previous state you want to let through; 
the input gate defines how much of the newly computed state 
for the current input you want to let through; and the output 
gate defines how much of the internal state you want to pass 
through. All the gates have the same dimensions which equal to 
the size of hidden state. The computation of LSTM is defined in 
the following equations.  

  𝜎(𝑥𝑡𝑈
 + ℎ𝑡  𝑊

 + 𝑏 )                        (3) 

𝑓  𝜎(𝑥𝑡𝑈
𝑓 + ℎ𝑡  𝑊

𝑓 + 𝑏𝑓)                      (4) 

  𝜎(𝑥𝑡𝑈
𝑜 + ℎ𝑡  𝑊

𝑜 + 𝑏𝑜)                      (5) 

  𝑡𝑎𝑛ℎ(𝑥𝑡𝑈
𝑔 + ℎ𝑡  𝑊

𝑔 + 𝑏𝑔)              (6) 

𝑐𝑡  𝑐𝑡  ⨀𝑓 +  ⨀                                        (7) 

ℎ𝑡  𝑡𝑎𝑛ℎ(𝑐𝑡)⨀                                            (8) 

We observe that there are three main operation types: 
matrix-vector multiplication (e.g. 𝑥𝑡𝑈

  and ℎ𝑡  𝑊
 ), 

non-linear function (sigmoid 𝜎 and hyperbolic tangent 𝑡𝑎𝑛ℎ), 
and element-wise multiplication (e.g.  ⨀ ).  

 
Fig 3. (a) Basic RNN structure. (b) LSTM structure. 
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A variation of LSTM is called Gated recurrent unit (GRU) 
[13]. It combines the forget gate and input gate into a single 
update gate and demonstrates good performance for various 
applications.  

III. SYSTEM DESIGN 
In this section, we first present the system architecture 

overview. Then we discuss the function of each sub-block in 
the processing engine. The dataflow and pipeline are then 
presented.  

A. System architecture overview 
Fig. 4 presents an overview of the proposed system 

architecture. Similar with prior PIM architectures, the memory 
bank is divided into three partitions, including the memory 
subarrays, buffer subarrays, and processing subarrays. Even 
though the processing arrays can also be used for data storage 
[8], we observe that the redesigned array peripherals impose 
extra data access latency, therefore, the processing subarrays 
are dedicated for computing in our design.  

As mentioned earlier, existing ReRAM PIM architectures 
are not suitable for accelerating RNN computation. To make it 

RNN friendly, we further divide the processing subarrays into 
three segments: ReRAM crossbar array for the matrix-vector 
multiplication; special function unit (SFU) array for the 
non-linear functions; and multiplier array handling the 
element-wise multiplication.  

B. Details of system design 
Fig. 5 shows a detailed system architecture and the WL/BL 

peripherals design.  
The wordline peripherals support both reading and 

programming. The switching between reading mode and 
programming mode is realized by an analog multiplexer (MUX) 
designed with two transmission gates. The behavior of the 
analog MUX is controlled by the read enable signal (𝐶𝑟𝑒) from 
dataflow controller. When 𝐶𝑟𝑒  is enabled, the MUX is 
transparent to read voltage from the read voltage buffer (design 
with an Op-amp configured in voltage follower mode) and 
blocks the write voltage. The read voltage is generated from the 
DAC which transfers the input digital data into analogy voltage. 
On the other hand, when the 𝐶𝑟𝑒 is low, the MUX is transparent 
to write input signal and blocks the read voltage input.  

Bitline peripherals. The first stage of BL peripherals 
computation is to sample the current from each column, convert 
it into voltage and hold it for later analog to digital conversion. 
This can be accomplished by an Op-amp based sample and hold 
circuit. Note that the same Op-am in wordline peripherals can 
be reused here with a capacitor inserted in the feedback loop 
(Op-amp configured in current integrator mode rather than 
voltage follower mode [31]). In next stage, ADC is required to 
convert the analog voltage signal to digital value. One ADC is 
shared for all the columns in a crossbar because ADC consumes 
a lot of power and area [11, 32]. A shift & add unit (SAU) is 
integrated after the ADC to accumulate data from different BLs 

 
Fig 4. System architecture overview. 
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Fig 5. System architecture and the WL/BL peripherals design. 



 

 

and different cycles. Finally, the digital output will be 
temporarily stored at the local buffer and then collected back to 
the buffer subarray.  

Special function unit (SFU) and Multiplier. Even though 
ReRAM crossbar array can efficiently perform computation for 
matrix-vector multiplication, it is not feasible to solve complex 
mathematical equations such as sigmoid function ( 𝜎 ), 
hyperbolic tangent function (𝑡𝑎𝑛ℎ), and rectified linear unit 
(ReLU) which are widely used in neural networks serving as 
activation function. Thus, we implement SFU to handle the 
computation for complex mathematical functions. 
Element-wise multiplication is another important operation of 
LSTM and GRU. We implement an additional multiplier array 
to handle the element-wise multiplication operation.  

Local buffers. During inference, local buffers receive data 
from buffer subarrays and send the data to WL peripherals. 
They also collect computing results from BL peripherals and 
send them back to buffer subarrays. Local buffers are 
distributed and placed close to crossbar arrays. The addresses 
for read/write are controlled by dataflow controller and are 
identical for all local buffers. 

Dataflow controller. The dataflow of the proposed system 
is controlled by the dataflow controller. On the top level, it 
coordinates the dataflow between memory subarray and buffer 
subarray, it also manages the data transmission between the 
buffer subarray and local buffers. During inference, the 
dataflow controller enables the read enable signal 𝐶𝑟𝑒 for all 
crossbars. Therefore, the inference input voltages can drive the 
corresponding WLs while the programming voltage is blocked. 
On the other hand, during writing, the 𝐶𝑟𝑒 signal is disabled to 
let the writing voltage get through.  

C. Dataflow and pipeline  
One of the unique features of RNN computation is the data 

dependency, i.e. the computing in current step relies on the 
results of previous step. Therefore, the dataflow and pipeline of 
ReRAM based CNN accelerator is not suitable to accelerate 
RNN computing. In this section, we first illustrate how to map 
RNN computing to our design and then propose a RNN friendly 
pipeline execution framework. We use LSTM as an example. 
Analysis for the basic RNN and GRU should follow the same 
procedure.  

Before mapping metrices-vector multiplication to ReRAM 
crossbar array, we need to re-organize the input and parameter 
matrices. Take equation (3) as an example, two pairs of 
matrix-vector multiplication are concatenated into one: 

𝑥𝑡𝑈
 + ℎ𝑡  𝑊

 + 𝑏  [𝑥𝑡 ℎ𝑡  ] [
𝑈 

𝑊 ] + 𝑏        (9) 

Note that adding the bias 𝑏  to the matrix-vector 
multiplication is trivial since we can use a row of ReRAM cells 
to store the bias value and force the read voltage to be 1. Fig. 6 
(a) shows the matrix-vector operation after concatenation. Here 
we assume the input vector size is 2 and hidden state vector size 
is 3. After concatenation, parameter matrix (concatenation of 𝑈 
and 𝑊) are programmed into ReRAM cells and input matrix 
(concatenation of 𝑥𝑡 and ℎ𝑡  ) are used as WL input, shown in 

Fig. 6 (b). For simplicity, in Fig. 6 we assume that each cell can 
store one parameter value. In practice, due to limited device 
precision, multiple adjacent cells in the same row are used to 
store one element and the input signals are also partitioned into 
several segments and fed into the network sequentially. After 
computation, results will be first temporary stored in the local 
buffer and then transmitted back to the buffer subarrays. 

The computation for element-wise multiplication and 
non-linear functions are relatively straightforward. The 
dataflow controller fetches the data from buffer subarrays to 
SFU/multiplier array and then collects the results back to buffer 
arrays.   

We develop a RNN friendly pipeline execution flow to 
increase the system throughput, shown in Fig. 7. Assume we 

 
Fig 6. (a) Matrix-vector multiplication after concatenation. (b) 
Mapping the computing to ReRAM crossbar array. 
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Fig 7. Three stages pipeline for RNN computation. 
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have three input sequences ( ,  , and 𝐶 ) which will be 
processed by the LSTM network. For example,    to    are the 
first 6 words in a sentence and we want to predict the 7th word 
based on them. At the first clock cycle   , input vector    and 
the hidden state vector ℎ 

  calculated from previous stage are 
fed into the ReRAM crossbar for matrix-vector operations. In 
next cycle   , input vector from another sequence   and the 
corresponding hidden state ℎ 

  are fed into the crossbar array; 
meanwhile, the result of matrix-vector multiplication of    and 
ℎ 
  are sent to SFU arrays to perform non-linear function 

operations. Then, in the third cycle   , temporary results for 
sequences   and   are moved forward to the next step, and 
sequence 𝐶 starts the matrix-vector operation. At the end of   , 
the new hidden state ℎ   for sequence   is generated. At the 
next clock cycle   , the second input vector    from sequence 
  can be fetched to the processing engine since the hidden state 
ℎ 
  is ready. With the proposed pipeline, all the processing units 

in the system are busy, therefore, the maximum throughput can 
be achieved.  

IV. IMPLEMENTATION 
In this section, we first present how to enable 

re-programmability (i.e. device programming), then we discuss 
the circuit level implementation of the sub-blocks. To get an 
accurate estimation for power and area, we synthesis the digital 
design (including dataflow controller, multiplier, and SFU) 
with Design Compiler and PrimeTime based on 28nm CMOS 
technology from Synopsys [33]. We also run SPICE simulation 
for the analog sub-blocks (including Op-amp and analog 
multiplier) with 32nm PTM model (28nm model is not 
available in the PTM library) [34]. 

A. Programmability 
Efficient programming is always challenging for ReRAM 

crossbar array as the write operation normally requires much 
longer time and consumes more energy than reading [3, 35]. 

Further, during reading/inference, all the ReRAM devices are 
involved. Devices connecting to the same WL receive the same 
input voltage. Therefore, reading can be performed with 1 read 
clock cycle. However, during writing, each cell needs to be 
programmed differently and might have diverse values 
compared with its neighborhood. Thus, multiple clock cycles 
are required to program an array. Array-level parallel 
programming scheme has been proposed in prior work [36]. 
However, the complexity of peripheral circuit design and the 
ultra-high power density make it prohibitive for large-scale 
implementation. 

In our design, the programming is performed in a 
column-wise fashion. As shown in Fig. 8, the column selecting 
signal 𝐶𝑐  is used to determine which column to be 
programmed by turning on the selector transistors of the 
corresponding column via the select-line (SL). As shown in Fig. 
8(a), only the cells in the first column can be programmed while 
all the other cells are disconnected from the network.  

Moreover, ReRAM cells can be programmed into different 
states, controlled by the number of pulses it receives, as 
illustrated in Fig. 8(b). The shared pulse generator consistently 
output identical pulses (same amplitude and length). The pulse 
counter, initialized with the total number of pulses, counts 
down once when receiving one pulse. When it counts down to 
zero, it will block the pulse to be sent to the WL.  

With the proposed writing scheme, it takes 𝑁 writing cycles 
to program a 𝑁 × 𝑁 ReRAM crossbar array. Note that typically 
the writing is much slower than reading, therefore, it is highly 
desired that no re-programming occurs during computing. In 
section V, we show that the performance will significantly drop 
when the neural network size is larger than the system capacity 
(i.e. re-programming is required).  

B. Wordline driving ability 
A major circuit design challenge of ReRAM accelerator is 

the WL driving ability issue. It is unrealistic to directly use the 
output of DAC or other digital circuits to drive the wordline of 
ReRAM crossbar since they can’t provide enough current to 
drive resistive load. A common approach to increase the 
driving ability is to insert a buffer stage between the DAC and 
crossbar array [8, 9, 31]. The buffer can be designed with an 
operational amplifier (Op-amp) configured at voltage follower 
mode, as shown in Fig. 9(a). The driving ability is determined 
by the Op-amp output stage bias current (i.e. transistor size). 
Increasing the output stage transistors size can reduce the 
output impedance therefore alleviate the read voltage drop 
effect. Fig. 9(b) shows the Op-amps power to drive different 
ReRAM crossbar array size with less than 10% read voltage 
drop considering various device resistance. We observe that the 
power consumption of Op-amp increases proportionally with 
array size and device conductance (i.e. the reverse of device 
resistance). Therefore, to reduce the power and area overhead 
of WL buffer, we constrain the ReRAM array size to be 128 x 
128. And, in the rest of this paper, we assume the on-state 
resistance is 1 𝑀Ω (i.e. LRS is 1 𝑀Ω). We should note that 
device with high resistance has been reported in prior works 
with a tradeoff of other device characterizations such as low 

 
Fig 8. The programming schemes. (a) One column of a crossbar is 
programmed simultaneously. (b) Pulse series based programming. 
The conductance change is determined by how many pulses the WL 
received. 



 

 

on/off ratio and worse uniformity [27, 36]. 

C. System implementation 
Op-amp design: Op-amp is the most important component 

because it is the key component of the WL driver (Op-amp 
configured in voltage follower mode) as well as the sample and 
hold circuit (Op-amp configured in current integrator mode). 
To reduce the power consumption and area, we design a simple 
two-stage Op-amp with detailed SPICE simulations in 32nm 
CMOS technology.  

DAC: The design of DAC is trivial since 1-bit DAC is just a 
simple voltage buffer. In this paper, we divide the 16-bit fixed 
point number into 16 1-bit numbers and sequentially feed them 
to the ReRAM crossbar arrays. This is similar with prior works 
and has been proved as a sweet spot for ReRAM based 
accelerator [9, 11].  

ADC: ADC is non-trivial and has been reported as the main 
bottleneck for computing speed and introduces great power and 
chip area overhead [11, 37]. We employ an 8-bit 1.2 GS/s (Giga 
samples per second) successive approximation register (SAR) 
ADC design which is optimized for energy efficiency and area 
[32]. As mentioned earlier, 1 ADC is shared for an entire 
ReRAM crossbar array to reduce the energy/area overhead. Our 
simulation indicates that ADC is also the major bottleneck of 
the system performance in our deisgn, introducing significant 

power (43% of system power) and area (49% of the chip area) 
overhead. 

Digital sub-blocks: There are several digital circuits in our 
design, including the multiplier, SFU, shift & add unit and the 
dataflow controller. The multiplier in our design supports 
16-bit fixed point number operation since it has been 
demonstrated that 16-bit is sufficient for most machine learning 
applications [38].  

There are multiple different approaches for the SFU design 
including Taylor expansion based approximation, Chebyshev 
approximation [39], and piece-wise linear function (PWL). As 
illustrated in Fig. 10(a), we compare the accuracy and 
synthesized power/area number of these approaches. The 
accuracy is measured using sigmoid function (a popular 
non-linear function used in neural network). And the synthesis 
results are from 28 nm CMOS technology. With same number 
of intervals (10 interpolations in the input range [-5, 5]), the 
Chebyshev exhibits the best accuracy but consumes more 
power and area since it has more coefficients and computation. 
PWL approach (PWL-1) have lowest power and smallest area 
but the accuracy is not good enough. With more coefficients 
(i.e. interpolations) (PWL-2), we observe comparable accuracy 
with Chebyshev approach, but the power/area are significantly 
higher since it has much more coefficients. 

 In this work, we employ the Chebyshev approximation since 
it provides the best accuracy with moderate power and chip 
area overhead. The procedure of Chebyshev approximation is 
shown in Fig. 10 (b). The coefficients are first calculated with 
CPU and pre-loaded into the local register file. During 
computing, SFU will access the register file and calculate the 
non-linear function, as shown in Fig. 10 (c).  

In prior ReRAM accelerator works, circuits are designed to 
solve a specific function [8, 11, 14]. Compared with them, the 
SFU based approach is advantageous since it has more 
flexibility, can be easily reconfigured (i.e. load different 
coefficients) to solve different functions. 

 
(a) 

 
(b) 

Fig 9. Wordline output voltage drop due to limited driving ability: (a) 
circuit schematic, and (b) Op-map power scaling for different 
ReRAM crossbar size. 
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Fig 10. (a)Comparison of different SFU designs. (b) Pseudo code for 
Chebyshev approximation. (c) SFU array and coefficients register. 

d1=0.0; // temporary variable
d2=0.0; // temporary variable
// approximation range [a, b]
y1=(2.0*x-a-b)/(b-a);  // y1 is parameter
y2=2.0*y1; // y2 is parameter
// n is the number of coefficients
for (j=n-1; j>0; j--)

sv=d1; // temporary result
// c[0, 1, 2…] are coefficients
d1=y2*d1-d2+c[j+1]; 
d2=sv;

end
result=y1*d1-d2+0.5*c[1]; // final result

Coefficients
Register

Chebyshev approximation Based SFUs

SFU SFU SFU SFU

SFU SFU SFU SFU

Coefficients:
y1, y2
C[0, 1, 2, …, n]

(b) (c)

Taylor 
expansion Chebyshev PWL-1 PWL-2

Accuracy* 2.5e-3 6.4e-4 1.1e-2 4.8e-4

# of intervals 10 10 10 50

# of coefficients 30 50 20 100

Power (uW) 1273 1688 1068 2904

Area (um2) 4009 5212 3028 9357

Clock frequency 500 MHz

(a)



 

 

Memory array and local buffer:  We design our own 
simulator to model the read/write power and latency based on 
the experimental data calibrated ITR model [20, 23, 24]. We 
assume the size of 1T1R structure is 10F2 where F is the 
minimum lithography length in 28nm technology. Similar with 
prior works [11, 40], eDRAM are employed as local buffer. The 
power and area of eDRAM is modeled based on [11].     

The power consumption and area for each sub-block are 
listed in Table I.  

V. RESULTS 

A. Experiments setup 
Benchmark: We evaluate the system performance with two 

RNN based applications. One is NLP where we want to predict 
the next word in the sentence based on previous input 
vocabularies. The dataset is available at [41]. The Second 
application is human activity recognition (HAR) and we use the 
dataset from [42]. For both applications, we evaluate the 
performance with three RNN configurations: basic RNN, 
LSTM, and GRU. For all networks, the number of hidden layer 
features are 128 (i.e. the length for hidden state vector is 128). 
Should aware that our system can also be utilized to accelerate 
the computing for feedforward neural networks such as 
Multi-layer perceptron (MLP) and CNN. Hence, we also 
include MLP/CNN into our benchmark. The benchmark MLP 
has one hidden layer with 256 hidden neurons. The CNN 
contains 2 Convolutional layers, and 1 fully connected layer. 
The benchmark information is summarized in Table II.  

GPU baseline: We perform the experiments with 
Tensorflow deep learning framework [43] running on a 
NVIDIA GeForce GTX 1080Ti GPU.  

Source code. All the source code (based on Tensorflow) is 
available for download at https://github.gatech.edu/ylong32. 

B. System performance and comparison with other platforms 
We first evaluate the computing efficiency and compare with 

our GPU baseline. The computing efficiency is represented in 
term of GOP/s/W (Giga operations per second per Watt). The 
GPU power is measured by nvidia-smi provided by NVIDIA 
CUDA toolkit. Fig. 11(a) shows the computing efficiency 
comparison considering different datasets and networks. We 
observe that the average improvement across all the RNN 
benchmarks are 79x. Interestingly, experiment results indicate 
that the GPU computing efficiency for MLP/CNN is lower than 
RNN. This is mainly caused by input data access latency. To be 
more specific, the input data for feedforward networks all 
comes from external memory. Differently, input data of RNN 
are the concatenation of input data and hidden state calculated 
from previous stage. Since the hidden state are temporary data 
which only exist in GPU’s L1/L2 cache, it can be directly 
fetched without the latency for accessing external memory. In 
our PIM architecture, both the input data and temporary hidden 
state are stored in the buffer subarrays, therefore, the 
performance for computation of RNN and MLP/CNN is similar. 
The second reason impacting the GPU performance for CNN 
computing is that the data structure of convolutional operation 
should be re-organized for matrix-vector multiplication. This 

 
Fig 11. (a) Computing efficiency in terms of GOP/s/Watt. (b) System throughput in terms of frame rate (Fps). 
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71x 45x 53x 90x 53x 64x 465x 681x 79x

TABLE I: Power consumption and area for sub-blocks in the 
proposed design. 

 

Component Power (mW) Area (um2) Number

WL peripherals 1.9 40.9

128
BL peripherals 5.0 1550

Local buffer 0.16 648.0

ReRAM array 0.01 147.5

Dataflow controller 0.3 300 1

SFU 1.68 5212 16

Multiplier 0.18 1155 4

Bank total 932.86 0.39 mm2 N/A

TABLE II. Benchmarks 

 
*bRNN: basic RNN   Ops/frame: number of operations per input sample

Datasets Description Networks
Hidden 

state
*Ops/frame

NLP
Predict next word from 
previous input words

*bRNN

128

5.6x105

LSTM 2.2x106

GRU 1.7x106

HAR
Classify human activity 

from 6 categories.

*bRNN

128

2.2x106

LSTM 9.0x106

GRU 6.7x106

MNIST
Hand written digits 

classification

MLP 256 3.9x105

CNN / 9.8x106



 

 

overhead no longer exists in our system since the parameters 
are pre-loaded into the ReRAM crossbar arrays. 

Should aware that the throughput (i.e. frames per second) of 
our system is less than the GPU, as shown in Fig 11(b). This is 
because our system only consumes 0.6 Watt while the average 
GPU power is around 200 Watt, enabling more than 300x 
improvements for the energy consumption.  

We also compare the computing efficiency of our system 
with prior works, including FPGA based LSTM accelerator, 
ESE [16]; ReRAM based CNN accelerators, ISAAC [11] and 
PipeLayer [9], and ASIC based CNN/RNN accelerator, 
DaDianNao [40] and EIE [18]. The results are summarized in 
Table III. The FPGA based approach demonstrates the lowest 
performance because it stores the parameters in the external 
DRAM. Also, the maximum clock frequency for FPGA is 
much lower than the ASIC, which further constrains the 
performance. Compared with ReRAM based CNN accelerator, 
we demonstrate similar performance with PipeLayer but less 
than ISAAC. The reason is that prior works do not consider the 
driving ability issue and ignore the power consumption of the 
WL buffer which is one of the major energy hungry component 
(52.7% of the total power in our design). If ignore the power 
consumption on the WL buffer, our design can achieve 
performance with 341 GOP/s/W, which is similar with ISAAC. 
We show that the overheads associated with the peripheral 
circuit can significantly degrade the computing efficiency.  

We observe that the ASIC approach achieves the 
state-of-the-art computing efficiency. The primary reason is 
that ASIC designs employ large size on chip memory to store 
the parameters; therefore, the data movement energy is reduced. 
However, in ASIC designs, both eDRAM and SRAM are 
volatile memory, the stored data will vanish after power off, 
making it not suitable for platforms with limited energy budget 
such as mobile devices. On the contrary, ReRAM based design 
is advantageous since the parameters are stored in non-volatile 
memory. Therefore, we conclude that if the computing is 
performed in datacenter where the power supply is sufficient 
and stable, ASIC based approach is preferred; if the computing 
is performed in a distributed low power platform, the ReRAM 
approach provides more benefits. 
C. Enhance performance with lower bit-precision 

Previous analyses assume that all the parameters and input 
data are represented with 16-bit fixed point number. To further 
enhance the computing efficiency, we explore using lower bit 

precision for computing. Fig. 12 shows the trade-off between 
computing efficiency and classification accuracy. The data in 
Fig. 12 is based on HAR dateset. Similar results can be 
observed for other datasets. Simulation indicates that 8-bit 
precision demonstrate satisfactory results while lower bit 
precision (less than 6-bit) show significant accuracy drop. This 
is consistent with the result in prior work [38]. With 8-bit 
precision, the performance (GOP/s/W) is 4 times higher than 
16-bit. 

D. Impact of device variations  
The device variation of ReRAM can significantly deteriorate 

system performance. Device variation comes from the 
stochastic formation and rupture of conductive filament in the 
resistive layer of ReRAM (i.e., generation and recombination 
of oxygen vacancy is stochastic) [20, 24]. Variations exist in 
cycle-to-cycle operation and from one device to another device. 
Variations can be caused by read or write operation, properties 
of resistive materials, and various fabrication factors. In this 
work, we consider using Gaussian noise to represent the device 
variation. Other forms of device noises such as bit-flip error or 
random telegraph noise (RTN) can be analyzed in a similar way. 
We use the following equation to represent the Gaussian noise 
of device conductance: 

  𝑜  𝑒    𝑑𝑒𝑎𝑙 ∙ (1 + 𝑁(0, 𝜎 ))                   (10) 

where   𝑑𝑒𝑎𝑙  is the expected device conductance without 
variation; 𝑁(0, 𝜎 ) is the normal distribution with mean equals 
to 0 and standard variation 𝜎. It has been measured that the 
variation is normally less than 0.2 [19].  

We evaluate the computing accuracy in terms of the 
classification accuracy for the benchmarks. As shown in Fig. 13, 
we observe that the accuracy drop is insignificant when the 
standard deviation of the added Gaussian is less than 0.2. 
However, the accuracy drops a lot for all the benchmark tests 
when the noise level is large. Data in Fig. 13 also indicates that 
the performance of LSTM and GRU are better than the basic 
RNN especially for a more complex dataset. For example, with 
HAR dataset, the performance of the basic RNN is not 
satisfactory (only 69%) while both LSTM and GRU achieve 
around 90% accuracy.  

TABLE III. Comparison with other hardware accelerators. 

 

Accelerator 
Name

ESE ISAAC PipeLayer DaDianNao EIE Our work

Target 
networks

RNN CNN CNN CNN
CNN
RNN

CNN
RNN

Technology 22 nm 32 nm / 28 nm 45 nm 28 nm

Approach FPGA ReRAM ReRAM ASIC ASIC ReRAM

Training
support

No No Yes No No No

Parameter 
storage

DRAM eDRAM
ReRAM
(In situ)

eDRAM SRAM
ReRAM
(In situ)

Computing 
efficiency

(GOP/s/W)
6.88 380.7 142.9 286.4 174.1 116.3

 
Fig 12. System performance with lower bit-precision. 
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E. Handling large scale networks 
Prior ReRAM based works do not consider the need for 

re-programming during inference. They assume that the 
network parameters are programmed into the processing arrays 
and never change [8, 9, 11, 14].  Even though PipeLayer 
characterizes the device writing, it only considers the weight 
update during training [9].  However, re-programming can be 
necessary, especially when the energy budget is constrained 
and the system capacity is not enough to hold all parameters 
simultaneously. It is critical to get a more comprehensive 
understanding about the system performance with 
re-programming considered.  

Using LSTM as an example, we gradually increase the size 
of hidden states and evaluate the system throughput and 
running time with the system capacity unchanged (512 KB), 
shown in Fig. 14. When the hidden state number is small (< 
500), the parameters of the network can be mapped to the 
system simultaneously. Moreover, multiple small LSTMs can 
be mapped to the system together, allowing processing several 
input sequences at the same time. On the other hand, if the 
hidden state size reaches a threshold when the parameter size is 
larger than the system capacity, re-programming occurs. We 
observe a drastic performance and speed drop due to 
re-programming. Further increasing the number of hidden state 
introduces more programming cycles along with more 
throughput and speed drop. Should aware that neural networks 
with different size of hidden state may have different 
performance even though they have same number of 
re-programming. For example, we consider LSTM with 600 
and 900 hidden state (the parameter size is 628 KB and 928 KB, 
respectively). Since the system capacity is 512 KB, requiring 1 
re-programming for both networks. Remember that the reading 
time is a constant, the inference time are same for these two 
networks. However, networks with more hidden states have 
more computation. Therefore, the performance (GOP/s) is 
different. 

As mentioned earlier, we can increase the number of 
ReRAM processing arrays in a bank, or use multiple banks tiled 
together to increase the system capacity, and thus, avoid the 
re-programming issue. The energy consumption is proportional 
to the system scale. Another solution is storing more bit per 

cells. For example, if one device can store 4-bit, then the 
maximum capacity becomes 2 MB, 4 times larger than our 
original design (2-bit/cell). But this will introduce more 
computation error. The third approach is to increase the 
crossbar size. However, to drive larger array, the WL buffer 
size must be scaled up proportionally (more power 
consumption). Moreover, ADC with more bit precision is 
required for large crossbar array.  

VI. CONCLUSION  
We present a RNN accelerator design based on ReRAM PIM 

architecture. The proposed architecture is suitable for various 
RNN computation including the basic RNN, LSTM, and GRU. 
We measure the system throughput and energy efficiency with 
detailed circuits/devices characterization. We observe that the 
computing efficiency of the proposed system achieves 79x 
improvements compared with GPU baseline on average. 
Further, the computing accuracy drop is insignificant when the 
read noise standard deviation is less than 0.2. Lower 
bit-precision such as 8-bit can enhance the performance with 
insignificant accuracy loss. We observe that re-programming 
during inference can significantly deteriorate the performance 
and should be minimized.     
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