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Abstract— This paper presents an algorithmic approach to
design reliable ReRAM based Processing-in-Memory (PIM)
architecture for Deep Neural Network (DNN) acceleration
under intrinsic stochastic behavior of ReRAM devices. We
employ the dynamical fixed point (DFP) data representation
format to adaptively change the decimal point location based
on the data range, minimizing the unused most significant
bits (MSBs). Further, we propose a device variability aware
(DVA) training methodology where stochastic noise is added
to the parameters during training to enhance the robustness of
network to the parameter’s variation. Simulations indicate that,
on average, the proposed algorithms improve the computing
accuracy by more than 20% considering various benchmark
DNNs (convolutional and recurrent). Moreover, the proposed
approach enhances robustness of the DNN to noisy input data.

I. INTRODUCTION

Deep neural networks (DNNs) have shown great promise
for a wide range of applications, including image classifi-
cation [1], speech recognition [2], language processing [3],
and computer games [4], to name a few. Deep learning also
created demand for energy-efficient hardware accelerators.
Dedicated application specific integrated circuit (ASIC) has
been intensively investigated to improve the efficiency of
DNN acceleration [5], [6]. However, the major computation
of DNNs: vector-matrix and matrix-matrix multiplication
are data intensive, making the memory access latency and
energy consumption the key bottlenecks to further improve
the computation efficiency with a conventional von Neumann
architecture.

Direct integration of computation and memory, namely,
processing-in-memory (PIM) provides a promising solution
to overcome the memory barrier and enable design of
DNN accelerators with orders of magnitude improvement
for energy efficiency. Recently, emerging non-volatile mem-
ory (NVM), in particular, resistive random access memory
(ReRAM) based mixed-signal PIM architecture have been
extensively researched to design efficient machine learning
accelerators due to its fast read/write speed, high density,
and high on-off ratio. Several recent works have demon-
strated that ReRAM based DNN (CNN and RNN) accelerator
achieve promising speed/efficiency gain over GPU and ASIC
solutions [7]–[10].

A major challenge for designing reliable ReRAM based
DNN accelerator is the inherent unreliability of the ReRAM
devices, i.e., the stochastic variations of device resistance
(variation exists in both high resistance state (HRS) and low
resistance state (LRS)). Unlike the digital approach where
the computation can be accurately performed as long as

the bit-width is precise enough, the computation inside the
ReRAM crossbar (i.e. multiplication-accumulation operation
(MAC)) is executed in an analog fashion. Deviation of device
resistance directly leads to errors in the sum-of-products
result, thereby significantly degrading computing accuracy
[10], [11].

Recent papers have developed hardware-based techniques
to improve robustness of DNN under ReRAM variations. For
example, Chen et. al. presented a dual-reference multilevel
sense amplifier (SA) to improve the sensing accuracy and
ReRAM cell is used as binary device to diminish the
overlapped region between two resistance levels [9]. Lin et.
al. proposed a simulation framework to model the impact
of noise to the accuracy of ReRAM based DNN accelerator
and a workload-dependent sensing scheme is developed for
better inference accuracy [12].

In this paper, we proposed a complementary, algorithm-
driven approach to design reliable DNN accelerator with
unreliable ReRAM devices. The paper makes following key
contributions:

• We employ the dynamic fixed point (DFP) data repre-
sentation [13] for mapping DNN weight matrices into
the ReRAM crossbar during inference. In particular, we
use different decimal point for each layers of neural net-
work to maximize the utilization of ReRAM devices and
reduce errors introduced by the unused most significant
bits (MSBs).

• We propose a device-variation-aware (DVA) training
methodology to enhance the robustness of neural net-
work. By injecting random noise in the parameters dur-
ing training, the trained model demonstrates high degree
of resilience to parameter variation during evaluation
stage.

We evaluate the proposed algorithms with CNNs (AlexNet
and VGG) for image classification task and RNNs (simple
RNN and stacked LSTM) for human activation recognition
task. We observe that for all the benchmark applications,
the computing accuracy improved by 24% on average across
different levels of device variability (from 0% to 50%). The
proposed algorithms also enhance the network robustness
to input noise, making it suitable for deployment on low-
power system with noisy sensors (such as low resolution
camera). The proposed method can be used with any existing
ReRAM based DNN accelerators with negligible hardware
design overhead, and no inference speed/energy-efficiency
drop.
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Fig. 1. (a) CNN with Conv layer, Pooling layer, and Fully-connected layer. (b) Basic RNN and LSTM.

II. PRELIMINARIES

A. Deep Neural Network

Convolutional Neural Networks (CNNs) are the heart
of modern machine learning systems due to their superior
performance across a wide range of applications. Figure
1(a) shows a simple CNN structure containing 1 convolution
(Conv) lyaer, 1 pooling layer and 1 fully-connected (FC)
layer. The primary computation of a CNN exists in the Conv
layers, which perform the convolution operation via applying
a set of filters on the input feature maps (ifmaps). Pooling
layer is utilized to down-sample the output feature maps
(ofmaps) from the Conv layer to progressively reduce the
spatial size of the representation and number of parameters.
ReLU (not shown in the figure) is the abbreviation of
Rectified Linear Units, which is meanly used to provide more
non-linearity to the networks. FC layer typically serves as
the last few layers of a CNN, where the neurons have full
connections to all activations in the previous layer.

The idea behind Recurrent Neural Network (RNN) is
to utilize the sequential information, i.e. the output not only
depend on the current input but also the previous computa-
tions. With the unique feature of having memory for previous
calculations, RNN becomes a popular models that have
shown great promise in many time-dependent applications
such as NLP, video prediction, dynamical system modeling,
to name a few. The left side of Figure 1(b) shows the
basic RNN structure. Long short term memory (LSTM) is
developed to solve the gradient vanishing issues of basic
RNN [14] via a gating mechanism (including input gate,
forget gate and output gate), as shown in the right of Figure
1(b). LSTM (and its variant, GRU) shows better performance
over a variety of problems, making them popular RNN
models for deep learning.

B. ReRAM based DNN Accelerators

Figure 2(a) show the structure of ReRAM cell. The
resistive switching layer (HfOx, TiO2, Al2O3 or their
combinations) is sandwiched between two electrodes. The
device resistance is modulated by set and reset voltage.
During set process, the oxygen ions escape from the lattice
and vacancies generate in-place, resulting a oxygen vacancies
based conductive filament for electrons hopping, and thus,
the cell state is in LRS. Reset is a reverse process which
causes the rupture of conductive filament, leaving a gap

between the tip of filament and the top electrode. Since there
is no direct path for electron to flow through, the device is
reset to HRS. Further, by controlling the gap length, device
can be reset to different resistance value (i.e. multi-level cell).

The core component of ReRAM based DNN acceler-
ator is the Vector Matrix Multiplier (VMM) engine that
performs the multiplication-accumulation (MAC) operation.
The VMM engine is composed of a crossbar array and its
peripherals, as shown in 2(b). Neural network’s parameters
are first programmed as the devices conductance, input
feature maps are fed as word line (WL) voltage, and the
current summed at each bitline (BL) leads to the result for
MAC operation. The digital-to-analog (DAC) and analog-to-
digital (ADC) conversions are required in and out of the
array. In practice, rather than storing a whole parameter in a
single device, multiple devices connecting to the same WL
are used to represent one parameter with each cell stores 1-
2 bits. Similarly, to reduce the overhead of DAC, the input
to the WL is divided into several segments (1-2 bits per
cycle) and sequentially fed into the crossbar. The final result
is summed together with a shift&add unit.

C. Variability in ReRAM

The stochastic variation of ReRAM device resistance
presents as a key challenge for the design of reliable ReRAM
DNN accelerator. Recent study [15] shows that the variabil-
ity is one of the intrinsic feature of ReRAM due to the
stochastic nature of the generation and rupture of oxygen
vacancies. Beside the device-level randomness, other factors
such as fluctuation of res/reset voltage, noise introduced
during fabrication can also contribution to the variation.
Device measurements indicate that the resistance distribution

Fig. 2. (a) ReRAM structure and its resistive switching mechanism. (b)
ReRAM crossbar for vector matrix multiplication.



Fig. 3. Factors that can affect the computing accuracy of ReRAM based
DNN accelerator.

of ReRAM (both HRS and LRS) follows normal distribution
or log-normal distribution [12], [15].

The impact of device variability to the computing accuracy
is determined by three factors, namely, the deviation of the
statistical distribution (σ), device on/off ratio (ron/off ) and
how many bits to be stored in a cell. Figure 3(a) and (b)
shows that large deviation reduces the read margin and error
occurs when the device is programmed into the overlapped
region. Similarly, as shown in Figure 3(c), small on/off
ratio squeezes the margin between different resistance states.
When the device is used as MLC (Figure 3(d)), neighbouring
states tends to have larger overlap, making the computation
more error-prone. Recent works [9], [10], [12] use ReRAM
as binary device (i.e. 1bit per cell) to improve the computing
reliability. We also consider using binary ReRAM based
VMM engine for the rest of the paper.

III. PROPOSED METHODOLOGY

A. Dynamical fixed point data representation

Dynamical fixed point (DFP) is a special data repre-
sentation formation which allows us to adaptively change
the location of the decimal point based on the range of
data [13]. The concept of DFP is quite useful considering
the fact that the range of parameters inside each layer of
DNN can vary a lot. As shown in Figure 4(a), we plot
the weights distribution of AlexNet trained with CIFAR-10

dataset. The weight distribution in the first Conv layer is
10x larger than the later FC layers. With conventional fixed
point data format, the variation in the first few MSBs (most
significant bit) can be very detrimental for small parameter
value especially in the case where the device on/off ratio is
not large enough.

For example, using conventional fixed point to accommo-
date the weights of Alexnet, we need 1 bit for sign, 2 bits
for integer and 5 bits for fraction. Let’s say we chose one
parameter (Â = 0.125) and program it to ReRAM devices, as
in Figure 5. The stored weight would be identical to Â if the
device is ideal (i.e. resistance on/off ratio RH : RL =∞ and
resistance shift ∆ = 0). However, if the device has limited
on/off ratio (i.e. RH : RL = 10), a large readout error can
be observed due to the non-zero current read from MSBs.
The readout value can be further disturbed if we consider the
device resistance shift (i.e. RH : RL = 10 and ∆ = 0.1). As
illustrated in the second part of Figure 5, the final readout
from a realistic ReRAM crossbar (A = 0.505) skews more
than 300% with conventional fixed point data representation.

On the other hand, with DFP, we can left shift the decimal
point position to make sure there is no unused MSBs,
significantly reducing the readout error. As shown in Figure
5, with DPF, the readout from ReRAM crossbar only shows
7% shew over the original weight value.

We also evaluate the benefits of DFP under different on/off
ratio statistically, as demonstrated in Figure 4(b), suggesting
DFP together with higher on/off ratio can help to reduce the
readout error caused by device variability. For the rest of the
paper, we assume the on/off ratio is 1000, which is a realistic
number from recent measurement data [15].

We should note that prior works have demonstrated that
dynamic fixed-point representation is beneficial to speed up
the training/inference of machine learning applications [13].
In this work, rather than accelerating DNN computing, we
exploit the dynamic fixed point as a technique to reduce the
impact of device variation.

B. Device-Variation-Aware Training

The training of DNN is a process to find the optimal point
for the loss function (also called cost function) inside the
parameter space. However, as shown in the top of Figure
6, a small skew from the optimal point leads to a huge

Fig. 4. (a) Parameters distribution from different layers of AlexNet. (b) Parameters readout error caused by limited on/off device ratio (RH : RL =
10, 100, 1000) and resistance variation (σ = 10%).
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Fig. 5. Convention fixed point v.s. DFP.

Fig. 6. Top: The comparison between optimal point and optimal region of
the loss function in parameter space. Bottom: Pseudo code for DVA training
process.

increase for the loss function, indicating the DNN accuracy
is sensitive to parameter variation. On the other hand, if there
is an optimal region in which the loss function is relatively
small (may not achieve the global minimum) everywhere, we
can then use the parameters inside this region to establish a
noise robust network.

This inspires us to implement a device-variation-aware
(DVA) training methodology where we intentionally add
noise to DNN parameters during training to improve the
robustness. The pseudo code in Figure 6 illustrates how we
add noise to convolution layer. For each training batch, we
randomly generate a noise matrix with the same size of the
convolution kernel specifying the mean and deviation. Then
we add the noise to the parameters by element-wise multi-
plication and use the noised kernel for the rest operations.
Similar procedure is implemented for fully-connected layer
and computation inside basic RNN/LSTM.

We have developed a noise model to correlate the device

variability with the parameter noise while considering the bit-
level representation of the parameters analytically. We first
assume the device variation follows Gaussian distribution and
the standard deviation is proportional to the mean value:

X ∼ N(µ, σ2 = (γµ)2) (1)

where γ is a constant coefficient reflecting device noise
level. Assuming the DNN parameter is 4-bit number
(w3w2w1w0), the target readout value would be:

(2)S = 8w3 + 4w2 + 2w1 + w0

Since each device follows an independent normal distri-
bution, the distribution for the sum (S) is derived as:

(3)S ∼ N(8w3 + 4w2 + 2w1 + w0, σ
2
parameter)

(4)σ2
parameter = γ2[(8w3)2 + (4w2)2 + (2w1)2 + (w0)2]

This analytic model helps us to statistically characterize
the DNN parameter noise distribution given the device
variation. For example, with device deviation coefficient
γ = 10%, the DNN parameter distribution roughly follows
a normal distribution with σP = 8%P where P is the value
of parameters.

In summary, if the variability in the ReRAM process is
known, we develop the corresponding noise model and use
that to introduce noise during DNN training. Therefore, the
trained DNN become inherently aware of device variation.
Besides, in the following section we also study the effect
of mismatch between (i) the actual ReRAM variation ex-
perienced during inference and (ii) the ReRAM variation
assumed during training.

IV. SIMULATION RESULTS

We evaluate the proposed algorithms with 4 bench-
marks, including AlexNet and VGG for image classifica-
tion (CIFAR-10 dataset), basic RNN and LSTM for human
activity recognition (UCI-HAR). We implement the DNN
models with tensorflow machine learning framework and
runs on a Nvidia GTX-1080Ti GPU. Recent study shows
that ReRAM can achieve 1000x on/off ratio and the device
variation (σ) varies from 5% to 50% of the resistance value
[15]. Therefore, we run simulation based on these device
characterizations and use the device as a binary cell.

A. Variability Simulation

Since a device only store one bit for a parameter, the
device variation can’t be directly interpreted as the noise
of DNN parameters. The first part of Figure 7 shows the
computation flow using ReRAM crossbar as the computing
engine. We first need to convert the decimal parameter matrix
(Pdecimal) to a corresponding binary format (Pbinary) and
program each bit to an ReRAM device. Noise is added to the
programmed value based on the device variability. Then we
sum up the noised binary matrix (Pbinary−noised) column-
wisely, quantize with ADC, and shift&add the partial results
together. A Monte-Carlo analysis of the preceding flow can
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be performed using circuit simulators to model the effect of
ReRAM variation to MAC outputs.

However, the detail approach discussed above, although
accurate, but computationally in-efficient when implemented
in a DNN software simulation platform. Therefore, as shown
in the later part of Figure 7, we propose to directly convert
the noisy binary weight matrix (Pbinary−noise) back to its
decimal format (Pdecimal−noise) and run simulation using
existing software framework. One should note that these two
approaches are essentially identical if the ADC is ideal. Our
approach is still a good approximation even with non-ideal
ADC. For example, assuming 8-bit ADC for a crossbar with
64 rows and device variation is 0.2, we randomly chose
a matrix (programmed into ReRAM crossbar) and vector
(used as input) to perform MAC operation. The output result
after normalization for MAC operation is 1.0, 1.0146, and
1.0147 for accurate solution, detailed evaluation flow (top
part of Figure 7), and our approximation (bottom part of
Figure 7), respectively. This indicates the mismatch between
our approximation and the detailed simulation is negligible
comparing with the error introduced by device variation.

B. Accuracy Improvement under device variability

As shown in Figure 8(a), we plot the classification ac-
curacy of AlexNet under different device variation for the
baseline (i.e. no optimization), DFP enabled, and DFP+DVA
enabled configurations. The benefits of DFP is more notable
when the device variation is relatively small since the error
caused by unused MSBs is dominating. With higher device
variation, both baseline and DFP configuration show large
accuracy drop, indicating the network is sensitive to param-
eter noise. The DFP+DVA approach demonstrates the most
promising results with less than 7% accuracy drop even under
50% device variation. Similar observations are made in other
networks (VGG, basic RNN, and LSTM). As shown in Fig-
ure 8(b), we plot the average accuracy across varying device
variation (from 0 to 50%) for all four benchmark networks.
On average, 24% accuracy improvement is achieved. One
should note that for basic RNN, there is only one weight
matrix, thus only one decimal point globally. Therefore, DFP
configuration is essentially the same as the baseline. We
also note that the improvement for simple network (such
as the basic RNN) tends to be smaller. This is because with
less parameters and simpler structure, the network naturally
shows better robustness compared with larger and deeper
counterparts.
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Fig. 8. Accuracy analysis: (a) Inference accuracy of AlexNet with baseline,
DFP, and DFP+DVA configurations and (b) Average accuracy improvement
across different device variation level for AlexNet, VGG, basic RNN, and
LSTM.

C. Variation Mismatch between Training and Inference

We study DNN accuracy when device variation assumed
during training differs from the actual variation during in-
ference, for example, due to lack of exact knowledge or
variation changes over time (aging or temperature changes),
as shown in Figure 9. With small training noise, the accuracy
is approaching the ideal number (i.e. AlexNet trained on
GPU has 86.8% accuracy) when the evaluation noise is small
(top-left corner) but drops a lot once the evaluation variation
is large (bottom-left corner), implying the network has less
robustness to large variation. On the other hand, with large
training noise, we observe there is a slight accuracy drop
under zero evaluation noise (top-right corner) but the network
is much more robust: only 2% drop when the evaluation noise
increase from 0% to 50% (bottom-right corner). Therefore,
if exact variation information is not available, we suggest
training with a larger noise to improve reliability.

D. Impact of Non-Normal Variation

We study the classification accuracy of AlexNet under
log-normal [15] device variation. Accordingly, the DVA
algorithms also employ log-normal noise during training
stage. Table I shows that DFP+DVA produces the best per-
formance and robustness to device noise with 15% accuracy
improvement over the baseline approach. Interestingly, the
baseline shows slightly better results comparing with the case
when device variation follows normal distribution (as shown

TABLE I. Accuarcy of baseline, DFP, and DFP+DVA under log-normal
distribution.

0.0 0.1 0.2 0.3 0.4 0.5 Average
Baseline 0.85 0.83 0.76 0.69 0.57 0.39 0.67

DFP 0.86 0.84 0.79 0.75 0.60 0.40 0.72
DFP+DVA 0.86 0.84 0.83 0.81 0.79 0.73 0.82



Fig. 9. Classification accuracy of AlexNet under the mismatch between noise used during training and variation experienced during evaluation.
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in Figure 8(a)). We believe this is because the log-normal
distribution has a non-symmetric probability distribution
function (PDF) which tends to produces more small variables
than normal distribution.

E. Improving the robustness to input noise

We study whether DFP+DVA can improve robustness to
noise applied to the input data during inference. We introduce
random noise with normal distribution to the image and
run inference with models (AlexNet) trained with different
parameter noise. As in Figure 10, the accuracy drops quickly
with larger input image noise without DVA training. Much
better robustness is observed when a DVA trained model
is used for inference. Similar with the case in Figure 9,
DVA enhance the robustness but slight scarifies the accuracy
(less than 4% in the case of AlexNet) for clean images.
The robustness against input noise is a major advantage for
deployment of DNN in power-constrained platforms for real-
world applications, for example, to tolerate noise introduced
by low-power and low-cost cameras.

V. CONCLUSIONS

We propose algorithmic approaches to design a reliable
DNN accelerator with unreliable ReRAM devices. Our ap-
proaches are based on the dynamical fixed point data rep-
resentation and device variation aware training. The exper-
imental results demonstrate that the proposed approach not
only enhance the network robustness under device variation,
but also improves the accuracy when input contains noise.
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