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Abstract—Neuromorphic photonics has experienced a recent
surge of interest over the last few years, promising orders of magni-
tude improvements in both speed and energy efficiency over digital
electronics. This paper provides a tutorial overview of neuromor-
phic photonic systems and their application to optimization and
machine learning problems. We discuss the physical advantages of
photonic processing systems, and we describe underlying device
models that allow practical systems to be constructed. We also de-
scribe several real-world applications for control and deep learning
inference. Finally, we discuss scalability in the context of designing
a full-scale neuromorphic photonic processing system, considering
aspects such as signal integrity, noisé, and hardware fabrication
platforms. The paper is intended for a wide audience and teaches
how theory, research, and device concepts from neuromorphic pho-
tonics could be applied in practical machine learning systems.

Index Terms—Deep learning, machine learning, more-
than-Moore computing, neuromorphic photonics, nonlinear
programming, optimization, photonic hardware accelerator,
photonic integrated circuits, photonic neural networks, silicon
photonies, wavelength-division multiplexing (WDM).

I. INTRODUCTION

A. Scope of This Paper

HIS paper is intended for both machine learning (ML)
T researchers interested in how photonics can accelerate
machine learning tasks, and neuromorphic photonics (NP)
researchers exploring how to best relate device metrics to
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system-level processing benchmarks. In other words, it attempts
to create a bridge to computer engineering so that neuromorphic
photonics can be understood as a viable option for neuromor-
phic computing by the high-performance computing and signal
processing communities. Here, we argue that the field of neu-
romorphic photonics is ripe for expansion, given that critical
concepts that enable neuromorphic computing with photonics
have already been demonstrated. We hope this paper offers an
introductory but detailed overview as well as a glimpse at the
future of this emerging field.

B. Motivation: Machine Learning Outlook and Role of Optics

Artificial Intelligence (AI) has always captured our imagi-
nation. AI has the potential to drastically change almost every
aspect of our lives through new medical treatments, new assis-
tive robots, intelligent modes of transportation, and much more.
Inspired by the human brain and spurred by the advances in deep
learning, the past six years has seen a renaissance in AL IBM[1],
[21, HP [3], Intel [4], and Google [5], [6], have all shifted their
core technological strategies from “mobile first” to “Al first”.
Deep learning with artificial neural networks (ANNSs) [71 have
expanded from image recognition [8]-[11] to translating lan-
guages [12], generating realistic speech indistinguishable from
that of a human [13], and beating humans at highly complex
strategy games like Go [14]. The general consensus amongst
the scientific and private sector community is that three fac-
tors will drive the future advance of Al better algorithms, more
training data, and the amount of compute power available for
training. While there has been no shortage of innovative ar-
chitecture variants for these neural networks nor data to train
them, the most pressing bottleneck for Al is now processing
power (Fig. 1). Over the last six years, the amount of compute
power required to train state-of-the-art Al has been doubling
every 3.5 months [15]. For instance, Googles AlphaGo Al re-
quires 1920 CPUs and 280 GPUs, which translates into massive
power consumption, reaching around $3000 USD in electric
bill per game. Training neural networks also takes a consider-
able amount of computational time. For example, image clas-
sification tasks with residual neural networks (ResNet-200) re-
quires 8 GPUs and takes more than three weeks of training to
achieve classification error rates at around 20.7% [11]. Tradi-
tional CPUs, GPUs and even neuromorphic electronics (IBM
TrueNorth [2] and Google TPU [5]) have improved both en-
ergy efficiency and speed enhancement for learning (inference)
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Fig. 1. High-performance computing is dominated by deep learning which
is quickly saturating available compute growth [15]. The orange dots show the
total amount of compute, normalized to petaflop/s-day, that was used to train
each of selected neural network architectures [9], [11], [42]-[49]. The blue dots
show the trend of Moore’s law. (A petaflop/s-day is the number of operations of
performing 1015 operations per second for one day, whichintotal is 8.64 x 1019
operations).

tasks. However, electronic architectures face fundamental lim-
its as Moores law is slowing down [16]. Furthermore, moving
data electronically on metal wires has fundamental bandwidth
and energy efficiency limitations [17], thus remaining a critical
challenge facing deep learning hardware accelerators [18]. Pho-
tonic processors can significantly outperform electronic systems
that fundamentally depend on interconnects. Silicon photonic
waveguides bus data at the speed of light. The associated energy
costs are currently on the order of femtojoules per bit [19] and,
in the near future, attojoules per bit [20], [21]. Aggregate band-
widths continue to increase by combining multiple wavelengths
of light (i.e., wavelength-division multiplexing (WDM)), the-
oretically topping out at 10 Tb/s per single-mode waveguides
using 100 Gb/s per channel and up to 100 channels. On-chip
scaling of many-channel dense WDM (DWDM) systems may
be possible with comb generators in the near future [22].

Recently, there has been much work on photonics processors
to accelerate information processing and reduce power con-
sumption using: artificial neural networks [23]-[27], spiking
neural networks [28]-[35]. and reservoir computing [36]-[39].
By combining the high bandwidth and efficiency of photonic
devices with the adaptive, parallelism and complexity attained
by methods similar to those seen in the brain, photonic proces-
sors have the potential to be at least ten thousand times faster
than state-of-the-art electronic processors while consuming less
energy per computation [40], [41].

However, even though the analog operations at the core of
neuromorphic photonic processors exhibit greater efficiency and
speed compared to digital hardware, most of Al tasks, including
those shown in Fig. 1, need to be interfaced with electronic sys-
tems, thereby costing significant overheads in these metrics. As
a result, neuromorphic photonics should not be understood as
a one-size-fits-all deep learning hardware accelerator, but as a
promising way of executing complex tasks using artificial neu-
ral networks to process gigahertz parallel signals in real-time
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for which digital hardware would have been unsuitable. Some
of these photonic neural networks can also be trained using tra-
ditional deep learning algorithms, even though they are not de-
signed to accommodate the diversity of deep neural networks
commonly studied by computer scientists.

C. How Neuromorphic Photonics Can Improve Machine
Learning

The primary goal of neuromorphic photonics is to physically
emulate a neural network in real-time as efficiently and as fast
as possible. In machine learning terms, this corresponds to per-
forming the equivalent of inference. Secondarily, it provides a
way to accelerate training algorithms for neural networks, aiding
in the process of fraining, which requires much more advanced
implementation and computing power. Ordinarily, in machine
learning, training a network is performed in data-center-grade
hardware over long periods of time. The trained network is
then deployed to the “edge” of computing networks, which use
smaller hardware, e.g. mobile phones, IoT devices or embedded
systems, for inference and analytics collection. In this paper, we
will focus on using neuromorphic photonics for enhancing infer-
ence tasks because 1) it forms the compute basis for all machine
learning and 2) it maps well to pure photonic hardware.

a) Inference Acceleration: Neural networks have been used
in many real-world tasks primarily due to the accelerating
progress in computational efficiency of electronics. Many of
these tasks require a neural network inference engine at its core,
performing real-time classification, pattern matching, nonlin-
ear optimization or even sophisticated control algorithms, espe-
cially in robotics (Sec. II-A). In these applications, training can
be performed separately and in low-frequency intervals, like a
“software upgrade”, and is not crucial for the well-functioning
of the task.

Model-Predictive Control is an example of such an application
explored thoroughly throughout the paper. It is based on solving
a multi-variable quadratic optimization problem with linear con-
straints (Eq. 1) in order to compute the next actuation step. The
computation time of the solution is critical and determines the
latency of the controller (lower is better). The lower the latency,
the more the controller can accommodate fast-changing, unsta-
ble systems [50]. State-of-the-art electronic controllers can offer
latency on the order of 10 ms [51], compared to 10ns order-of-
magnitude that the neuromorphic photonic circuit that we will
detail in Sec. II-B can achieve.

b) Parallelism: Asmentioned earlier, neuromorphic photon-
ics combines the interconnect advantages of photonics and the
computation efficiency of electronics for emulating neural net-
works in hardware. Most technological breakthroughs men-
tioned in Sec. I-B rely on making the memory and the processing
units close to each other and as distributed as possible. That is
the operational principle of GPUs and TPUs, which are spe-
cialized to execute expensive matrix-multiplication operations
across large arrays of data. The compiler slices the data and dis-
tributes them into separate units operating in parallel. Similarly,
in neuromorphic photonics, the compute power is physically dis-
tributed across the neural network, with each neuron performing
small bits of computation in parallel. The configuration memory
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of the network is distributed in the tuning of optical components,
which perform weighted addition inside each photonic neuron
(Sec. IV-B).

¢) Passive Interconnects: Photonic neurons are passively in-
terconnected with optical waveguides, each bussing data with
~4 THz bandwidth. Moreover, these interconnects are passive
and switchless, requiring no dynamic power to route data be-
tween neurons. They are also clockless, with information flow-
ing from one layer of neurons to another at the speed of light,
enabling sub-nanosecond latency between subsequent layers.
Finally, they are scalable, because the cost of moving data stays
virtually constant with increasing distances due to low wave-
guide loss.

d) Ultrafast Optoelectronics: Each neuron can use ultrafast
optoelectronic devices as a nonlinear unit [52]: e.g. excitable
lasers with sub-nanosecond pulses [28] or modulators with tens
of GHz speed [23] (cf. Sec. IV-C). In this strategy, neural net-
works can enjoy the energy efficiency of real-time analog sig-
nal processing while being able to encode information with
digital amplitudes (e.g. spikes) thereby being robust to noise
accumulation.

D. Envisioning a Neuromorphic Processor

In neuromorphic photonics, there is an isomorphism between
the analog artificial neural networks and the underlying pho-
tonic hardware, which allows continuous functions to be fully
represented in an analog way. An analog representation of in-
formation avoids overhead energy consumption and speed re-
duction caused by sampling and digitization into binary streams
processed by clocked logic gates. But because of this analog
representation, we cannot dissociate the information that flows
through the neural network from the photonic physics that im-
pacts distortion, noise and loss. This prevents computer engi-
neering researchers from obtaining a good understanding of the
trade-offs and constraints of neuromorphic photonics. At the
same time, it also makes it very hard for device engineers to
understand how individual device metrics can affect the perfor-
mance of an entire application.

In this paper, we seek to weave a thread between these two
extremes. On the one hand, we propose a processor architecture
with an abstraction hierarchy that can be understood by computer
engineers and machine learning experts (Sec. V). On the other
hand, we will consider what physical effects have an important
role in building neuromorphic processors based on an integrated
photonics platform (Sec. VI).

¢) Neuromorphic Processor Architecture: At this stage of
photonic manufacturing and packaging platforms, we envision
a photonic integrated circuit containing a reconfigurable neu-
ral network dedicated to performing inference tasks (Proces-
sor Core, Fig. 10), surrounded by auxiliary devices such as
laser sources, waveform generators, photodetector arrays, and
erbium-doped fiber amplifiers. This core is controlled by a com-
mand & conirol micro-controller, an autonomous circuit whose
task is to guarantee that the processor core is running according
to its program. The overall processor is interfaced with the real
world by a conventional digital controller, e.g. FPGA, CPU and
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RAM, which stores programs, learning algorithms, data, and
higher-level commands for the low-level micro-controller.

f) Hardware Considerations: Analog hardware are known
to introduce corrupting noise to signals. The presence of noise
affects how much optical power is necessary to sustain a cer-
tain signal-to-noise ratio (SNR) (hardware metric) and a certain
performance benchmark (application metric). Limited dynamic
range of analog neurons and imprecision of weight elements can
cause signal distortions that must be accounted for by an accu-
rate hardware model. In addition, loss must be compensated with
amplification to maintain cascadability of neural layers. These
non-idealities must be taken into account at asystemic level, with
individual devices working in concert to compensate them. For
example, networks can be trained using extra neurons in order
to mitigate inaccuracies caused by noisy signals. Training algo-
rithms can also take into account global hardware constraints
and fabrication variations. This means that trade-offs in speed,
power consumption and size are computed at a system level and
are therefore application-specific — it cannot be an extrapolation
of individual devices’ performance.

g) Photonic Platforms: Integration platforms for photonics
also dictate how practical and how efficient neuromorphic pho-
tonic circuits can be (Sec. VIL). The most mature technology is
silicon photonics, whose high-volume manufacturing allows for
the most repeatable and robust platform for photonic circuits.
Using silicon as a substrate also enables greater compatibility
with digital electronic technology, allowing more compact so-
lutions for neuromorphic hardware. A great disadvantage of sil-
icon photonics is the reliance on external lasers, typically built
in M-V platforms, which require difficult and expensive co-
packaging solutions. There are many applications driving the
research community to find an industry-compatible solution for
lasers-on-silicon, with good candidates such as ITI-V/Si hybrid
fabrications, or quantum dot lasers grown directly on silicon.
Industrial experts predict enabling innovations in the next five
years that will allow neuromorphic photonic processors to be
fabricated in a single die.

E. Organization of the Paper

This introduction walks through the intersection between ma-
chine learning (ML) and neuromorphic photonics (NP). The rest
of the paper is organized as follows: Applications — Artificial
Neural Networks — Photonic Physics — Processor Architec-
ture — Hardware Considerations — Compatible Platforms —
Design & Simulation.

Specifically, Section II describes computing tasks suitable
for NP, with a particular example of model-predictive control
(Appendix A). Section III provides a model for an artificial
neural network compatible with neuromorphic photonic hard-
ware, and gives an intuitive example of how neural networks can
perform general analog computations. In Section IV, we com-
ment on key properties of photonic devices that render them as
uniquely suitable candidates for ultrafast neuromorphic comput-
ing. Section V introduces a processor architecture that interfaces
a photonic integrated circuit with a general-purpose computer
(Appendix B contains a more formal hardware description). In
Section VI, we introduce hardware constraints and trade-offs
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that only exist at the neural network level. In Section VII, we
provide an roadmap of fabrication platforms for consecutive
generations of neuromorphic photonic hardware. Finally, in Sec-
tion VIII we overview methods for accurate circuit simulation of
an NP chip, which are necessary for layout validation and func-
tional verification of NP processors. The appendices provide
very important concepts, but contain more technical details and
requires deeper background in other areas, and for that reason,
they were separated from the main text of the paper.

Because of the wide scope of this paper, we chose to present
the concepts in each section at an introductory level. The sections
are generally organized in increasing order of specificity and
complexity. The reader will find more detail in the references
or appendices reviewed therein. That said, some sections, such
as V, VI, VIII and the appendices, sit at the cutting-edge of the
field and, as a result, should be read more as a roadmap than a
review.

II. APPLICATIONS OF NEUROMORPHIC PHOTONICS

The introduction presented neuromorphic photonics as a
means to build ultrafast, reconfigurable hardware that is capable
of solving real-world machine learning tasks. The processor ar-
chitecture that will be introduced in this paper is mostly suited
for analog-dominant, highly-parallel, high-speed applications
for which digital processing struggles to process in real-time.
As a result, this section discusses a few tasks that take particular
advantage of the low-latency and high-parallelism of photonics.
We identify three main classes of tasks, and then we go into
the details of a quadratic program problem as an example task
revisited throughout the paper.

A. Classification of Tasks

These tasks can be categorized into three: nonlinear program-
ming, feedforward inference, and feedback control.

Nonlinear programming refers to optimization problems with
nonlinear objective function and/or nonlinear constraints. These
problems are computationally very expensive for digital com-
puters, so applications that depend on nonlinear programming
are limited to low-speed tasks. Neural networks (NNs) can solve
some of these problems with a specially-configured recurrent
neural network, such as a “Hopfield network™. [53]-[55]. There
are many problems that can be translated into a well-defined
quadratic program (QP), and here we will study an “iterative”
problem that requires a QP solution per time step.

Feedforward inference refers to problems that require a ma-
chine to compute functions of inputs as quickly as possible, e.g.
tracking the location of an object via radar. These problems are
typically well-behaved in the sense that the outputs change con-
tinuously with small changes to inputs. But they also include
classification tasks in which the outputs represent discrete an-
swers or decisions for different inputs. The latter problems are
very common in modern machine learning and are prevalent in
most Al systems.

Feedback control is the most challenging because it relies
upon interaction with a changing outside environment. It is sim-
ilar to feedforward inference, except that the network must be
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reconfigured as a result of the output of the neural computa-
tion, therefore requiring recurrent connections and sometimes
short-term memory. Alluding to the tracking example above,
this feedback can allow the network to keep tracking the object
even in the presence of vibration or partial views. Neuromor-
phic photonics can enable new applications because there is no
general-purpose hardware capable of dealing with microsecond
environmental variations.

B. Nonlinear Programming: Quadratic Programming,
Model-Predictive Control

There are a number of high-speed control problems — for ex-
ample, controlling plasma in aircraft actuators, fusion power
plants, guiding of drones, etc. — that are currently bottlenecked
by the ability to perform high-speed, low-latency computations.
Model-predictive control (MPC) is an advanced technique to
control complex systems, and is widely used in chemical plants
and refinaries [51]. MPC outperforms traditional PID control
methods because it estimates effects of possible actions a few
steps in the future, but that adds a lot of complexity to the control
law. As a result, MPC has lacked computational tractability at
speeds higher than kHz because of the limitations of electron-
ics [51]. Thanks to photonics, these limitations can be overcome
and the control law can be computed in up to hundreds of MHz.
Here, we show that a neuromorphic processor can enable MPC
for plants with sub-microsecond stability timescales.

To demonstrate the idea of high-speed control with MPC, in-
stead of considering the control problem of chemical plants, we
consider an example of tracking a moving target with match-
ing speed while respecting constraints on position and acceler-
ation. Suppose that the moving target is in a two-dimensional
space (say z-y plane) with the reference trajectory (y(t), z(t)) =
(t,2sin(t)), and the goal is to approach the moving target un-
der the constraints |y| < 1, |az| < 4, |ay| < 4, where £ is time
and ay, ay are the acceleration in x and y direction respectively.
The goal of the neuromorphic photonic processor is to sense the
target’s position and control the acceleration of the tracker.

Translating this task into a neuromorphic processor config-
uration requires three steps (Fig. 2). First, we mathematically
map the MPC task into a quadratic program (QP). Second, we
compute the optimal configuration of a recurrent neural network
capable of converging to the solution of the QP problem in real
time. Finally, based on the network parameters, we configure a
photonic neural network that emulates the mathematical model.
The derivations are given in Appendix A.

a) Step 1: Mathematically, this problem is equivalent to solv-
ing an optimization problem with quadratic objective function
and a set of linear constraints [56] at discrete time steps:

min l.fTPi’? +§ X
7 2
1)
subject to: GX < R,

where X represents the change of the control variables (i.e. the
change of acceleration); P models the tracker’s response (o these
changes; ¢ represents the relative position and velocity between
tracker and target; G is similar to P and represents which parts
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Fig. 2. Schematic figure of the procedure to implement the MPC algorithm

on a neuromorphic photonic processor. Firstly, map the MPC problem to QF.
Then, construct a QP solver with continuous-time recurrent neural networks
(CT-RNN). Finally, build a neuromorphic photonic processor to implement the
CT.RNN. The details of how to map MPC to QP, and how to construct a QP
solver with CT-RNN are given in Appendix A.

QP Solver
2N neurons

Constraint Checker
MN neurons

Fig.3. Schematic figure of construction of a QP solver with CT-RNN. In this
example, N = 3, which is the prediction horizon, M = 6, which is the number
of inequalities, and 2 is the vector dimension.

of the motion of the tracker’s we want to constrain; and finally
| represents how far we are from violating the constraints.

b) Step 2: Equation 1 can be solved using a network with
24 neurons with the configuration shown in Fig. 3. These are
enough to accommodate a prediction horizon of 3 steps, the
number of steps in the future modeled by MPC. The neurons
can be separated into two populations. The first population con-
sisting of 6 neurons represents the control variables a,, ay in the
prediction window. The second population formed by the other
18 neurons represents the constraints of the system (6 constraint
inequalities x 3 steps of prediction horizon). The first popu-
lation is configured with a weight matrix based on P, which is
fixed between steps, and bias vector based on the vector g, which
varies between steps. The second population is configured with
GT (fixed) and R (variable), so that it is activated only near the
constraint boundaries (Fig. 3), inhibiting the first population of
neurons (Fig. 4). In this scheme, the first population of neurons
converges to the solution of Eq. 8.

c) Step 3: Here, we show the tracking task and the simulated
behavior the recurrent network in Fig. 4. The key to accelerate
the MPC algorithm is to solve the QP problem quickly. Pho-
tonic neural networks offer a convergence time in the order of
10 ns, about a million times faster than the state-of-the-art elec-
tronic devices (~10 ms) [57]. Sections III, IV, and V explore in
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of the tracker at each time step respectively. The inset shows that the controller
predicts a constraint violation and starts turning the tracker to avoid violating the
acceleration’s constraint. (bottom) The “constraint checker” neurons fire around
t — 0.5 and between £ = 2 and ¢ = 4, inhibiting the output of the “QP solver
neurons” such that the outcome of the system does not violate the acceleration
and position constraints, respectively.

more detail how model-predictive control can be programmed
in a neuromorphic photonic processor and this example will be
revisited later.

111. ARTIFICIAL NEURAL NETWORKS

Three key elements are present in artificial neural networks:
a nonlinear networkable node (neuron), interconnection (net-
work) and information representation (coding scheme). A sim-
ple but common model of a neuron is shown in Fig. 5. In this
model, neural networks are interconnected in a weighted di-
rected graph, in which the connections are called synapses. The
input of a neuron (s;) carries a weighted sum of the outputs
from other neurons (x;). Then, the neuron integrates the sum
over time and produces a nonlinear response, called an activa-
tion function, which typically looks like a threshold function.
The output is broadcast to all succeeding nodes in the network.
As we will see in Sec. VI, the weights can be positive (exci-
tatory) or negative (inhibitory), but must be finite, and can be
represented by a real number. The interconnections of the net-
work can be described by a weight matrix. Programming the
network can be done via a fraining algorithm, which under-
stands how real-valued variables (information) can be encoded
and decoded on the network, and optimizes the weight matrix
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Fig.5. Building blocks of an artificial neuron with simple synaptic model. The output is to be connected to other neurons, forming a neural network. This model

can be described by Eqg. 2.

so that the decoded output matches the expected outputs ina
training set.

Most neural networks used in machine learning have contin-
uous activation functions, which have achieved state-of-the-art
classification accuracy in a wide variety of tasks [58]. These net-
works can be theoretically demonstrated to be universally able to
carry out digital and analog computations [59]. More recently,
spiking neurons were investigated following experimental re-
sults from neuroscience, which realized that some tasks solved
by our brain cannot be solved by conventional neural networks
at the same speed. Spiking neural networks have a richer mod-
eling capacity and higher power efficiency and have inspired
research in electronic [60], [61] and photonic spike process-
ing [52]. There has been many investigations into a variety of
optical neuron systems [62]1-[64]. Recently, we demonstrated
an integrated excitable laser acting as a spiking neuron [28],
[65], [66] capable of integrating multichannel sub-nanosecond
signals and ‘firing’ spikes when incoming pulses correlated in
time, which is exactly the functionality that conventional net-
works cannot reproduce with the same efficiency. In this paper,
we will focus on conventional neural networks, which can be
modeled with a simple first-order ODE (Eq. 2), where y;(t) is
the output of the 7°" post-synaptic neuron, x;(t) is the input
from the :** pre-synaptic neuron, 7; is the time constant of the
4% neuron, wj,; is the weight of connection from the i to
jt*neuron, b; is the bias of the j** neuron, G, Gy are the
pre- and post-synaptic gain of the 5" neuron, and o;(x) is the
activation function of the 5% neuron node. Modeling and pro-
cessing with spiking neural networks is far more complex, and
it is out of the scope of this paper. SNNs are still under active
research by computational neuroscientists, whose goal is to un-
derstand how cognitive skills emerge from the self-organization
of spiking neural networks [67], [68].

i =5 ¥ Chea [Uj (bj + Ghos D Wjiifiﬂ 2

A. Strategies of Photonic Neuromorphic Hardware

As discussed in Sec. I-D, there is a physical isomorphism
between ANNSs and the photonic hardware. In it, information
flows through the hardware in the analog domain, susceptible
to propagation loss and noise accurnulation. This problem is
solved in digital systems by representing information in binary

electrical signals, which can be thresholded by logic gates and
its errors eliminated by error correction codes. But in an analog
neuromorphic processor, analog data manipulation requires a
careful consideration of a large number of physical trade-offs,
constraints, and dependencies as systems are designed.

Therefore, we need to model neurons under hardware-realistic

assumptions. These assumptions are very common in machine
learning and at the same time very amenable for photonics.

¢ Synaptic weights are simply real-valued weights without
any temporal filters. Since signals are analog, they can only
be weighted by values between —1 and 1. This can be
overcome by adjusting the gain of a post-synaptic amplifier.

¢ Each weight will have a certain precision expressed in bits,
e.g. 4-bit weights can have 16 independent values from —1
to 1. This is because weight control circuitry are limited by
the calibration complexity and DAC precision.

e There is no synaptic plasticity.

e Summation is completely linear.

e The bandwidth of the weighted sum s; is at most as large
as the bandwidth of individual signals x;.

e The nonlinear node has to obey a simple hysteresis-free
first-order ODE with short-memory, such as Eq. 2, or in
the case of spiking, with a short refractive period.

e The neuron model is subject to various sources of noise,

_as detailed in Sec. VI-A, which must be taken into account
during training.

B. Programining the Network

The processing capabilities of the network rest more in the
connectivity and weights than the transfer function of the non-
linear units. As a rule of thumb, any activation function, so long
as it is well-behaved (e.g. continuous, bounded and monotonic),
are candidates for neurons which can be trained to accommo-
date the requires transformation. The price to be paid for having
simple neurons is that bigger networks are necessary. Fig. 6
shows an example of a single neural layer encoding the value
of z € [0,1], and the weights necessary to produce represen-
tations of z, z> and z>. Then we can use a linear combina-
tion of those weights to represent any third-order polynomial
in f(x) = az® + bz® + cz + d. Note that although the figure
only shows one example of polynomial approximation, multi-
ple polynomials can be approximated in parallel. NNs can be
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Fig. 6. Example of polynomial approximation (f{z) = 3z® —2? — ) by
one layer of neurons with a bounded ReLU activation function. Here, N = 5
neurons “interpolate” a polynomial curve in five points in the interval [0,1]. The
weight matrix computation was done in two steps, to ease understanding. First,
we computed optimal weights for interpolating =, 22, 3, and second, used these
weight vectors to produce an equivalent weight vector expression for estimating
any third-order polynomial f(z).

made to approximate any such functions to any degree of preci-
sion provided that enough neurons are present [69].

h) Training: In the example above, we can frain the weights
by a supervised learning algorithm. It goes like this: we generate
one million random samples of z; € [0, 1], then we compute
f(z;), and store the pairs into a fraining set in one million rows.
The training task consists in finding the right neural network
shape and the right weight matrix that best approximates the
function f(-). Because we knew the relation f(-), we were able to
manually craft a neural network that solves the task (see Fig. 6),
but this approach also works for unknown functions f. The good
news is that for known functions and known network shape, it
is possible to deterministically compile the best weight matrix
for the job with a software called Nengo [69].

i) Inference: Once the network is trained, it is ready fo ex-
ecute what is is programmed for (¢.g. computing f(z) with
low latency). In Al this is called inference. Inference requires
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different hardware metrics than training. The primary metric in
inference is latency, as opposed to updating weight values. Pho-
tonic neurons could outperform at inference especially since
their latency is roughly determined by the speed of light.

C. Learning: Online and Offline

Whenever there is a change in the nature of the data being
treated by the machine, it is necessary to refrain the network to
prepare for these changes. This is called learning. It can be done
online, i.e. gradually being reconfigured as it performs inference,
or offline, where a separate computer retrains the network based
on a batch of new training data and halts the inference hardware
to reconfigure it.

Neuromorphic computing generally follows a slow-learning
principle, which distinguishes it from a deep learning hardware
accelerator. That means that the reconfiguration rate (learning) is
much slower than the data rate (processing). As a result, learning
algorithms can be significantly sophisticated and implemented
in a co-integrated digital circuit with dedicated memory. The
applications listed in Sec. II-A all require a slow-learning rate,
e.g. milliseconds, but fast processing, e.g. nanoseconds.

Online learning can be performed by an iterative update rule,
which evaluates some characteristic property of the output of the
network (or neurons) and then computes a gradient for the weight
matrix. Computing the gradient involves many inferences, yet
it itself does not require ultrafast hardware. Thus, learning can
be implemented by a dedicated circuit co-integrated with the
inference circuit. Co-integration is important because learning
rules are more complex than inference, so they will likely not
be implemented by pure photonics. Software neural networks
can implement online learning at the expense of reduced in-
ference speed, but hardware neural networks require dedicated
circuit elements in the processor, requiring significantly more
size, weight, and power. Section V presents neuromorphic pro-
cessor architectures that enable new opportunities for learning
in neuromorphic photonics.

IV. PHOTONIC PHYSICS
A. O/E/O

Photonics is uniquely great for creating parallel channels of
communication that do not interfere with each other. This is
mainly due to the non-interacting nature of photons. This same
property is the one that makes “computing” with light so hard.
Because of that, we cannot employ all the tools we learn in
the quantum mechanics of solid state semiconductors to manip-
ulate photons as well as we do electrons. For the same reason
that electronic digital gates are possible, electronic interconnects
have limited performance in communication. Due to cross-talk,
two parallel wires cannot transmit twice as much information as
an individual wire. )

Neuromorphic photonics takes advantage of both approaches
and offers optoelectronic hardware that can support high-
throughput, scalability, and reconfigurability at the same time.
This results in an O/E/O approach, in which inputs are
optically multiplexed and weighted, but by summing them,
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Fig.7. Conceptofanintegrated broadcast-and-weight network [35]. A micror-
ing resonator (MRR) weight bank provides the key functionality to configure
connection strengths in the analog wavelength-multiplexed (WDM) network.
Tuning each MRR between the on- and off-resonance states determines how
much of a given WDM channel is split between 2 ports of a balanced photode-

tector. The detected signal drives an electro-optic (E/O) converter, such as a
laser, which generates a new optical signal at a unique wavelength. Figure is
taken from [70].

get converted into a high-speed electronic photocurrent (O/E,
Fig. 7), which then drives an electrically-driven light source
(E/O) [41] (Fig. 5). In 2014, we proposed an architecture called
broadcast-and-weight [35] based on this principle that was ex-
amined experimentally in [70]. Weights implemented by mi-
crorings were shown to exhibit weight accuracy and precision
of 5.1 bits [71].

B. WDM Channels

Guided light waves can have multiple independent degrees of
freedom, or ‘modes’: wavelength, polarization, spatial modes.
Optical fibers optimize these degrees of freedom to increase data
transmission capacity.

A neuromorphic photonic network requires the ability to
weight individual channels prior to summation at the “soma”.!
Thus, signals representing the outputs of individual neurons
must be individually addressed in one of these channels. And
synaptic connections to a particular neuron mustbe implemented
with multiplexing and demultiplexing circuits that interconnect
the networks.

There have been many proposals for creating neuromor-
phic synaptic weights with wavelength-division multiplexing
(WDM) or spatial-division multiplexing (SDM). The approach
our group adopts is WDM, in which all channels coexist in a
single waveguide attached to all neural units. We use microring
resonator (MRR) weight banks to provide simultaneous filtering
and weighting functionality. The total number of WDM channels
available in a single waveguide is limited by the finesse of mi-
croring weights and photodetector bandwidth, plus an insertion
loss to weightability ratio derived in [70]. Resonators typical of
silicon photonic platforms with finesse of 368 [72] could sup-
port 108 channels in a one-pole configuration or 367 channels
using the two-pole enhancement, which we showed in [73].

1 §oma is the main body of the neuron, which aggregates the sum of all synaptic
inputs.
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This fan-in number can be understood as the totdl number of
input synaptic weights for each neuron. Because all channels are
in a single waveguide (called a broadcast inteconnect waveguide
cf. Fig. 7), these signals can be broadcast to all neural units
attached to it. However, as networks are usually not all-to-all-
connected, the total number of neurons could be much greater.
This enables multi-level broadcast hierarchy, facilitating very
complex and realistic types of networks [74].

C. Nonlinear Dynamics

The third component of the neuron is a nonlinear unit, ca-
pable of applying the function o(-) (see Sec. TII). The kind of
nonlinearity in the transfer function can be divided into spik-
ing or non-spiking, leading to two schemes of neural networks:
continuous-time (CT) neural networks and spiking neural net-
works (SNNs). Neither scheme requires specific transfer func-
tions between input and output (see Sec. V), so long as they
have a nonlinear transfer function (for example a ReLU or a
sigmoid function). This nonlinearity is also important for noise
suppression and cascadability (see Sec. VI-B).

There is a range of optoelectronic devices that are capable of
displaying neuron-like behavior. They range from electrically in-
jected excitable lasers to all-optical bistable laser cavities. [52].
In order to be compatible with a neural model, however, we need
an electrically-injected single-wavelength light source (E/O).
This can be in the form of a standard laser or modulator, or an
excitable laser. For microfabrication purposes, this device needs
to be co-integrated with the networking circuit, e.g. in silicon
photonics. We note that choosing a different light-generation
device, for example optically injected lasers, is possible, but re-
quires rethinking the entire network architecture from scratch,
since that removes the advantage of using a photodetector for
WDM summing while generating current. There is no simple
way to perform all-optical summation of several WDM signals,
therefore a new networking architecture, different from that of
B&W, must be constructed to use other multiplexing schemes
(see Sec. IV-B).

j) Example 1: MRR Modulator for Artificial Neural Nei-
works: Recently, Tait et al. showed the first silicon-photonic
modulator neuron, depicted in Fig. 8. This paper [23] is the
first to demonstrate a photonic neuron that is compatible with
both silicon photonics and a well-defined network architecture
that implements broadcast-and-weight with tunable spectral fil-
ter banks. By showing bistability in a neuron that can drive itself
(as an autapse), it therefore follows that the neuron can drive
other identical neurons, thereby completing the picture of a sili-
con photonic network fully compatible with mainstream silicon
photonic foundry platforms. The results on the right of Fig. 8
depict the modulator neuron’s response to two inputs (A and
B) at different wavelengths. For addition, they are sent into the
same port of the neuron’s balanced PD; for subtraction, they are
sent into complementary ports. It demonstrates that the neuron
is capable of fan-in, converting two inputs at different wave-
lengths into one output at one wavelength. Depending on the
bias, the neuron can have a linear transfer function (i.e., A+ B
or A — B) or a rectifying transfer function (i.e., (A + B)? or
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Fig.8. Left: (a) False color confocal micrograph of a silicon microring (MRR)
modulator neuron. Two photodetectors (PDs) are electrically connected to an
MRR modulator, resulting in an O/E/O transfer function. (b) Cross-section of
the MRR modulator with embedded PN modulator and N-doped heater. Right:
Modulator neurons performing burst addition and two channel rectification with
two separate inputs (wavelengths) illustrating excitatory and inhibitory behavior.
From [23].
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Fig.9. Left: Micrograph of an excitable laser. The chip is an indium phosphide-
based device fabricated by Heinrich Heriz Institute. I, I'5 are the current put
into large and small section respectively. The photocurrent Ip,;, generated by
PD2 flows into the large section under a reverse bias condition. The output of
the two-section DFB and the input of PD2 travel through waveguides coupled
to benchtop instruments via a V- groove fiber array. Right: Nonlinear response
of the excitable laser. Reproduced from [28].

(A — B)?). The fact that input optical signals affect changes in
the output optical signal is significant because that output could,
in principle, be fed to other neurons; furthermore, the fact that
multiple signals can be “weighted” by positive and negative val-
ues and their sum then influencing the output is an indicator that
the MRR neuron can be networked with multiple inputs and
outputs.

k) Example 2: Excitable Laser for Spiking Neural Networks:
One design of using an excitable laser as a neuron’s nonlinear
unit is shown in Fig. 9 [28]. The excitable laser consists of two
electrically isolated and optically coupled distributed feedback
(DFB) sections. This current-pumped semiconductor laser can
be excited or inhibited by a perturbation in its injected current,
which is from the photodetectors attached to it. This was the first
demonstration of the photodetector-driving concept (proposed
in [75]) applied to excitable lasers. As shown on the right side
of Fig. 9, the laser’s excitable behavior allows it to exhibit both
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Fig. 10. Simplified schematics of a Neuromorphic Processor. Thanks to in-
tegrated laser sources and photodetectors, it can input and output RF signals
directly as an option to optically-modulated signals. The waveform generator
allows for programming arbitrary stimulus that can be used as part of a machine
learning task.

integration and thresholding, which are the main functionalities
of a spiking neuron. This platform is the first step to construct a
spiking neural network.

V. NEUROMORPHIC PROCESSOR ARCHITECTURE

This section describes a vision for how to create a useful neu-
romorphic processor and how it can be interfaced with a general-
purpose computer from a user’s perspective to achieve specific
applications. First, we need to take a step back and understand
the differences between programming for general-purpose pro-
cessors and for application specific computing with application-
specific integrated circuits (ASICs). A CPU processes a series
of computation instructions in an undecided amount of time and
is not guaranteed to be completed. Neural networks, on the other
hand, can process data in parallel and in a deterministic amount
of time.

Unlike conventional processors, the concept of a ‘fixed’ in-
struction set on top of which computer software can be devel-
oped is not useful for ASIC hardware. Here, the neuromorphic
processor is composed of custom components with specific ap-
plications and specific instructions, which cannot generalize fo
a common software language. As a result, a hardware descrip-
tion language (HDL) is more appropriate because it describes
the intended behavior of a hardware in real-time. In Sec. V-A,
we will discuss the need for a high-level processor specifica-
tion that users can interface with, while offering more details,
including a prototype circuit definition of an ideal ‘neuron’ writ-
ten in an HDL, in Appendix B. This is followed by Sec. V-B, in
which we describe how to compose different circuits to build a
neuromorphic photonic processor.
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A. Pracessor Firmware Specifications

When we speak of neural networks, there are two layers of
abstraction: physical and behavioral. The physical layer con-
tains the set of neuromorphic circuits necessary for emulating
neural networks. The behavioral layer describes how informa-
tion is encoded, transformed, and decoded as it flows along a
network, and how the network should learn new behavior from
new information. The former will be discussed in Section VIII,
and the latter explored here.

As neuromorphic processors attain higher levels of techno-
logical readiness, they need to be understod by potential users
without background in integrated photonics. New hardware de-
velopment must invariably be done in tandem with software
specification. Here, HDLs are useful because they describe cir-
cuits in a way that a computer can understand and simulate.
At the same time it is a specification, which gives hardware
engineers the freedom to implement it in different platforms.
It creates an abstraction hierarchy that breaks down the circuit
into different levels of detail, from a large structure such as a
digital memory module e.g., in a conventional processor, to the
individual transistor level.

This abstraction is necessary to allow integrated photonics
professionals to be able to build neuromorphic processors fo
spec. It also allows them to simulate speed and power consump-
tion before sending a chip layout for manufacture — these metrics
depend not only on the performance of individual photonic de-
vices inside a chip, but also more importantly on system tradeoff
choices.

As an example, suppose that a particular neural network that
executes an inference task can be implemented using a conven-
tional or a spiking neural network. Both of these networks re-
quire different coding schemes, but could be used to accomplish
the same task with different efficiencies and speed. It is obvious
that these coding schemes require different hardware, but they
also require different control algorithms and network configura-
tion. That is why it is important to be able to express the function
of the neuromorphic circuit without fixing the hardware, as is
exemplified in Table III (Appendix B).

B. Architecture Components

l) Processor Core: A “photonic neuron” is a device contain-
ing three sub-unit: a weighting, a summing, and a nonlinear unit
(see Fig. 5), that can be scalably networked with other neurons.
Because of this network aspect, we defined this interpretation
of a neuron as a processing-network node (PNN) [41, Sec. 2].
In this paper, the word ‘neuron’ in the context of photonics
must be understood as a PNN. Using WDM-compatible neu-
rons, there is a compatible networking architecture that uses a
broadcast-and-weight protocol for interconnections [35], [41,
Sec. 4]. The general idea is that a single broadcast waveguide
loop can hold N independent WDM channels which can be inter-
faced by any photonic neuron (corresponding to a unique wave-
length) attached to it. These broadcast loops can be connected
with each other in a cellular-network hierarchy, by reusing the
wavelength spectrum of silicon photonics (Sec. VII-A). Read-
ily available silicon-photonic foundries can already implement
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all of the components of a high-density broadcast-and-weight
system [23], [25] containing ~10* weights/mm? with current
routing overhead (200%). This corresponds fo an equivalent of
10 TMAC/s/mm?? processing power with 30 fJ/MAC efficiency,
for 7-bit analog MACs. This is in comparison to digital electronic
architectures currently under development, which are in the 0.5
TMAC/mm?—pl/MAC range [28]. But as detailed in Sec. VI-E,
these metrics can only be properly compared when tallying the
aggregate size and power consumption of the full processor ar-
chitecture, not just the MAC computations, especially if its data
stream is not analog. A photonic integrated circuit (PIC) con-
taining a reconfigurable PNN lies at the core of a neuromorphic
photonic processor’s architecture (Fig. 10 (A)). It can have in-
ternal or external laser sources, depending on the platform (Sec.
VII), and electrical or optical I/O, but it needs to be controlled by
an electronic circuit, referred to here as a Command & Control
circuit.

m) Command & Control Circuit: Beyond being susceptible
to fabrication variations (as discussed in Sec. VI-D), PICs are
sensitive to thermal fluctuations and electronic damage. The
Command & Control circuit (Fig. 10(B)) ensures that the in-
ference circuit is well calibrated and run as intended. It takes a
desired set of weights, and then synthesizes information from
external laser parameters and embedded optical power moni-
tors to achieve these weights. The fundamental technology for
this control has been previously demonstrated in silicon photon-
ics [71], [76]. This micro-controller has a very high analog DC
1/O count because each electronically-controlled weight in the
neuromorphic photonic processor requires a unique analog in-
put, therefore it must contain an analog-to-digital interface that
can be configured digitally by a reconfiguration circuit. Cir-
cuits based on this design should be able to reprogram about
10000 weights in less than one millisecond, a subject of current
research.

n) Reconfiguration Circuit: The reconfiguration circuit
(Fig. 10 (C)) receives instructions from a CPU, live-data from the
environment and the state of the command and control (C&C)
circuit and makes decisions about how the network is to be con-
figured in real-time. It is best implemented with a combination
of interconnected FPGA, CPU, and RAM modules.? This cir-
cuit acts as the boundary between the photonic engineers and
the digital hardware programmers. Therefore, it must be the one
that receives the instructions (synthesized and assembled from
an HDL program) and takes care of not only configuring the
core processor but also handling training, on-line learning, and
digital and analog interconnects.

o) Interfacing with the Real World: The entire processing
unitdescribed here is being useful to a bigger application. For ex-
ample, the MPC task requires high-speed RF inputs and outputs,
as shown in Fig. 10, and the neuromorphic processor is capable
of completing the task in the analog domain, without the need

2MAC: multiply-and-accumulate operations, i.e., operations of the form a =
a + w x a forsignals x, weight w, and accumulate variable a. The performance
of such systems are typically measured in MAC/s or JMAC.

3FPGA: Field-programmable gate array. CPU: Central processing unit.
RAM: Random-access memory. These are common modules in modern digital
hardware.
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for expensive and power-hungry high-speed digital-analog con-
version. Furthermore, the processor cannot be insulated from
the rest of the plant; it might need different control solutions
depending on temperature conditions, time-of-day, humidity or
even human-made decisions. An example is temperature gra-
dient control: in addition to causing all the resonances to shift
in silicon photonic elements, they can also cause linewidth and
gain spectra shifts in lasers. In some cases, they can completely
change lasing conditions or cause some wavelengths to tum off,
due to limitations such as gain clamping. The system must be
designed to account for that, gathering as much information as
possible from the environment and from onboard sensors. Asa
result, it is crucial to maintain a high-bandwidth communica-
tion link with a computer motherboard, represented as GPIO in
Fig. 10. :

V1. HARDWARE CONSIDERATIONS
A. Signal-to-Noise Ratio

Are noisy signals and noisy circuits a problem for neural net-
works? Neuroscience has shown that the neural circuits in our
brain operate under a tremendously noisy environment, and yet
it has clearly been robust to noise. The main reason for this is
that brains use redundant neural circuits to encode and process
information, so that damage in one neural pathway can be cor-
rected and properly compensated by downstream circuits in the
cortex. The secondary reason is that neural algorithms them-
selves do not have the same expectations of exactitude as digital
algorithms. With that as an inspiration, one can design neural
circuits that are specifically robust to noise. Noise-aware training
can be used to prepare an ideal network for noisy data [77]. The
particular case in which the networks themselves are imperfect
are discussed in Sec. VI-D.

The sources of noise in hardware can be modeled mathemat-
ically as additive noise terms in Eq. 2. The training procedure
should take this noise into account. Curiously, in some machine
learning techniques, noise and defects are often artificially added
to neural networks in order to prevent overfitting effects.
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where:

e N,: Weight precision, originated from electronic fluctua-
tions from the C&C circuit.

® Nposi: Post-summation amplifier noise. In neuromorphic
photonics, this can correspond to a transimpedance ampli-
fier (TIA) placed in the RF link between O/E and E/O 7.
This noise is dependent on optical intensity (e.g. shot-
noise) and can be modelled as Gaussian.

® Ny Pre-synaptic amplifier noise. In neuromorphic pho-
tonics, this can be generated via amplified spontaneous
emission (ASE) of the optical amplifier. This can be mod-
elled as dependent on the fan-out of the neuron.
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® Ng,o: Nonlinear-unit noise. In neuromorphic photonics,
this can be generated by the relative intensity noise (RIN)
of a laser source. This can be modelled as dependent on
the average E/O bias and average laser source power.

B. Cascadability

An important requirement in neuromorphic hardware is the
notion of cascadability: the ability of one neuron to excite and
communicate with a number of other neurons. This number is
called fan-out. Many all-optical and optoelectronic elements ex-
hibit nonlinear input-output transfer functions, but this does not
mean they can drive other like devices. Optics faces special chal-
lenges in satisfying the critical requirements of cascadability and
fan-in [78], [79].

The need for cascadability stems directly from the isomor-
phism between analog artificial neural networks and the underly-
ing photonic hardware, as discussed in Sec. I-D. This means that
taking advantage of neuromorphic photonics requires a one-to-
one correspondence between every neuron in a neural network
and their hardware counterpart. For example, if a neural network
classification task requires 5 layers with 10 neurons each, one
needs to use hardware with at least 50 neurons to implement it.
An alternative would be to use the same 10 neurons to emulate
a 5-layer deep network, iteratively storing its output, reconfig-
uring weights to represent the next layer, and reinjecting inputs,
repeating 5 times. This approach is undesirable because although
it uses fewer neurons, the limited memory bandwidth and power
efficiency would impose both latency and power overhead.

p) Gain Cascadability: Gain cascadability means the abil-
ity of one neuron excited with a certain strength to evoke an
equivalent response in a downstream neuron. In other words,
the differential gain must be greater than the fan-out. High-gain
optical-to-optical nonlinearity is difficult to achieve using non-
linear optics. In optical devices based on semiconductor modu-
lation or Kerr effect, the output signal (probe) affects the mate-
rial properties in the same way as the input signal (pump). This
necessitates weak probes and very small pump-to-probe gains
(e.g. the fiber neurons in [80], [81]). One approach to increase
nonlinearity strength is with resonant cavities.

q) Physical Cascadability: In addition to having enough
gain, the output must be of the same physical format as the in-
put. Resonant devices often impose constraints on wavelengths
such that the output wavelength is necessarily different from
the input [31], [63], [82]. While one such neuron might be able
to drive another, the second then cannot drive the first. Opti-
cal signals have a phase degree of freedom that also must be
accounted for. Neurons whose behavior changes depending on
phase [83] can only be robust and repeatable if they introduce
ways to regenerate the output phase. Some interconnect schemes
are phase-dependent, which means they would require neurons
that regenerate optical phase into a known state in order to cas-
cade through a second interconnect layer [26]. Ultrafast devices
that can regenerate phase have yet to be proposed. Cascadabil-
ity conditions can be met with an O/E/O signal pathway that
can accept inputs at any wavelength and output at any desired
wavelength [35], [75], [84], [85].
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When the physical cascadability condition is met, the neuron
should be able to drive itself. A methodology for demonstrating
gain and physical cascadability, employed in [23], [25], [33], is
to connect a neuron to itself and show that two different stable
states can be maintained. Here, we assume that the implicit con-
dition of input-output isolation is satisfied. This concept means
that the output generated by one neuron should not disrupt its
input (which can be shared with other neurons).

An interesting feature of cascadable optical neurons that
also have input-output isolation is that one can directly in-
stantiate a recurrent neural network (RNN), because the op-
tical signals can be directly fed back to the network without
the need for memory storage. As an example, in the applica-
tion described in Sec. II-B, the recurrent network’s output is
accessed only after it has converged to a solution, i.e. after many
“jterations”.

r) Noise Cascadability: In analog neuromorphic processors,
neuron variables are represented by physical variables, such
as the power envelope of a lightwave signal. When an opti-
cal signal splits, it gets weaker. With enough attenuation of the
signal, noise begins to corrupt the signal. This process deter-
mines the maximum fan-out possible to maintain signal integrity.
This limitation can be modelled mathematically as constraints
in the configuration parameters of the network. For example,
3 lwyi] < I /I, where w;; here indicates a weight value and
I; indicates the strength (or laser power) of neuron jand Ipa
certain noise floor.

Noise cascadability has been thoroughly studied before [86].
Assuming that this noise is generated in an uncorrelated way,
there are two methods for avoiding it to propagate across a net-
work. The first is using multiple redundant neurons to encode the
same signal, because signals add linearly, but noise is suppressed
via the central limit theorem. (3.7 S+ N; = n-S+/n-N)

The second way is to make use of the transfer function of
the nonlinear unit to effectively have a negative noise figure.
The main idea is that the signal and the noise undergo different
gains. This concept is clearly illustrated in Fig. 9, where only
perturbations above the noise floor, such as a train of spikes, can
trigger an output spike. If we can take advantage of that property,
then there is no need to build redundant circuits for the sake of
mitigating noise. :

Noise can be mathematically modelled as in VI-A, and its
effect on training can be compensated for, but the noise cascad-
ability metric provides us with a figure of merit for neuromorphic
hardware that is useful for benchmarking purposes.

C. Dynamic Range

The other challenge with analog signal processing in general
is dynamic range, which is defined roughly as the ratio between
the maximum and the minimum tolerable amplitudes of a signal.
Analog devices have a fixed dynamic range, which needs to be
taken into account (and not violated!) during the training step.
Mathematically, this can be written as global constraint equation,
e.g Vi ¥, wjs - i < Imax/Io, where I'max /I is the dynamic
range of the neuron’s input photodetector.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 5, MARCH 1, 2019

Similarly, its output (see Fig. 5), y;, is represented by a phys-
ical quantity (optical power), and is limited below by optical
noise and above by maximum laser power.

D. Training Imperfect Networks

Neuromorphic hardware are prone to have manufacturing and
environmental variations that are not always possible to be cor-
rected by hardware circuits or quality assurance. It might also
be that after extended usage, the same neuromorphic hardware
experiences a drift in its internal parameters. It might also be pos-
sible that a neuromorphic hardware offered to the programmer
contains neurons with different activation functions that closely
resemble each other buf are not exact.

These features must be taken into account by the training
algorithm. So it is important that the statistics and the parameters
described in this section be known to the assembler/trainer. Ma-
chine learning researchers have demonstrated methods to train
neural networks with varying degrees of weight precision [87],
with binary weights and activation functions [88], and with finite
weight magnitudes as well [89].

This all means that two separate neuromorphic processors
should be able perform the same functionality, despite fabrica-
tion variations, by pre-correcting the variations at the assem-
bly step. Should a processor become too adrift, with enough
deviation from the “normality”, one could halt the assembly
step to prevent malfunction or further damages to the photonic
substrate.

E. Electronics vs. Photonics

Energy consumption is especially critical for scaling com-
puting systems to larger processing densities, since modern
digital chips today are largely limited by thermal dissipation
limits. When looking at the bottlenecks of computing systems
— and high performance computing (HPC) systems, in partic-
ular — there are two primary sources of energy consumption:
data movement, and performing linear operations such as matrix
multiplications. In highly parallel processors, i.e., the Google
TPU [6] or an FPGA - data movement can be as large as 85%
(or more) of the total energy cost.

Photonics has the potential to address these bottlenecks di-
rectly. Electronic interconnects dissipate power according to
their capacitance, which scales linearly with the length of the
wire. In contrast, photonic communication channels are nearly
dissipationless outside of the fixed E/O and O/E conversion cost,
and scale in a nearly distance-independent way. They can also
carry a vast amount of information per cross sectional area, a
property well known by the photonic interconnects community
that can allow for bandwidth densities currently unheard of in
the electronic domain up to this point [79].

Secondly, photonic linear operations are also nearly dissipa-
tionless, requiring Mach Zehnder arrays [26] or spectral filter-
ing [35] for fully reconfigurable linear computations. This is in
stark contrast to digital electronic systems, which require indi-
vidual processing units for each linear operation, coupled with a
communication system that allows for message passing between
each node.
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Although a detailed analysis of such trade-offs is outside the
scope of this work, a simple example can be used to illustrate
the power of using neuromorphic photonics to compute linear
operations. Since the act of performing each operation is non-
dissipative, one only pays the cost of generating and receiving
the signals. Foran N x N matrix operation, this cost scales with
N rather than N2 . Current digital systems require more than
a half of a picojoule of energy for every MAC operation [6],
[90]. The cost of an optical transceiver in an optical commu-
nication channel can easily be 1 pJ/bit or less [91]. If we use
similar machinery to perform matrix operations (wherein each
bit, in the previous case, becomes a time slot for a vector input
and output) and use N = 128 wavelengths, our effective energy
consumption would be less than 10 fJ. This is more than 50
times greater in energy efficiency than current state-of-the-art in
digital electronics, without significant architectural changes to
what is already available.

This practical number is far from fundamental. In particular,
optical communication channels are expected to be pushed down
to the low femtojoule range as more efficient photonic devices
are employed with electronics scaled to smaller nodes [21]. This
means that, since we can effectively divide the Joule/MAC effi-
ciency by N as N increases, the fundamental limit is sufficiently
in the low attojoule range.

In order to directly reap the benefits of this energy efficiency,
we assume that the input and output of the processor are analog.
Otherwise, A/D or D/A* data conversion costs could overwhelm
energy savings of this approach, as well as limit total throughput
but not its latency. Because of these uncertainties, a full compari-
son between neuromorphic photonics and electronics requires 1)
an application or task to be evaluated, 2) identification of which
devices are used and how much power they consume, and 3) and
a dynamic vs. static power scalability analysis. There are still a
number of practical problems that must be addressed before this
is achievable (cf. Fig. 11) but there is a great deal of promise for
the future efficiency of using neuromorphic photonics to perform
computations over current approaches today.

VII. FABRICATION PLATFORMS

The ultimate goal of a neuromorphic processor is to be com-
patible and interfaced with the rest of the computer, i.e. it needs
to be self-contained, robust to temperature fluctuations and vi-
brations, and with only electrical I/O. Therefore, devices on a
neuromorphic processor (including light sources, passives, and
actives) must all function together.

Currently, there is no single commercially available fabrica-
tion platform that can simultaneously offer high-quality devices
for WDM weighting, high-speed photodetection, light genera-
tion, and low-power transistors on a single die; state-of-the-art
devices in each of these categories use different photonic ma-
terials (silicon nitride, germanium, indium phosphide, gallium
arsenide, etc.) with incongruous fabrication processes (silicon-
on-insulator, CMOS, FinFETs, and others.)

4 Analog-to-Digital and vice versa.
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Fig. 11. Technological challenges facing silicon photonics. CMOS and laser
source integration in addition to advanced packaging techniques will facilitate
self-contained neural networks, while waveguide, photodetector, and modulator
development will aid photonic neural network commercialization. Adapted from
Ref. [92].

Here, we discuss a road-map of fabrication platforms for con-
secutive generations of neuromorphic photonic hardware, keep-
ing in mind the commercial viability of each.

A. Silicon Photonics

Silicon is a natural candidate for a photonic neural network
substrate because it is CMOS-compatible, which mediates low-
cost, high-volume manufacturing and integration with electron-
ics while utilizing silicon’s transparency at optical communica-
tion wavelengths (i.e. 1270-1625 nm.)

Due to the wide range of applications for silicon photon-
ics [93], it is currently at the maturity level of electronics in
the 1980°s [92]. Monolithic silicon photonic wafers can include
high-speed active and passive elements such as modulators, pho-
todetectors, and microring filters, but for full silicon photonics
integration, package design must include a) silicon photonic die
design, b) parallel waveguide interconnect technology, c) chip-
to-waveguide assembly, d) thermal management, and e) elec-
tronic logic element integration with photonics ICs [94]. How-
ever, manufacturers do not currently assemble electrical/thermal
elements and chip-to-fiber interconnects, among other chal-
lenges shown in Fig. 11 [94].

CMOS technology either requires bulk silicon substrates,
or thin silicon-on-insulator (SOI) wafers, with the former be-
ing greater in supply and economic efficiency. Silicon photon-
ics usually requires thick SOI wafers with a relatively lower
supply chain that is more expensive. Electronics feature sizes
are smaller than photonics, so fabrication is commercially
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infeasible. However, these hurdles are being overcome with
technology such as “zero-change” SOI platforms, in which
all photonic devices are manufactured according to electrical
foundry design flow, allowing transistors and photonic devices
to be fabricated on the same chip, but with lasers off chip [95],
[96].

B. III-V + Silicon Photonics

Waveguides and modulators, which form the backbone of
photonic neural networks, are made of silicon, which has a re-
fractive index ranging from 1.45 (oxide index) to as high as
3.48 (silicon index) [97] at the wavelength of 1550 nm that can
be controlled thermally, electrically, mechanically (strain), or
chemically (doping). Although silicon lasers are infeasible at
room temperature due to its indirect bandgap, the large span of
silicon’s refractive index allows efficient evanescent coupling to
waveguides made of ITI-V materials due to phase matching con-
ditions at similar refractive indices. Using external lasers with
monolithic silicon photonics requires precise alignment of light
to the waveguide, which is difficult and expensive, so presently,
it is not commercially viable [98]. Using solely a III-V platform
would neglect silicon’s advantages. A laser source manufactured
directly on chip has therefore been a prime objective for silicon
photonics, and silicon/III-V hybrid lasers are a key ingredient
in spiking neural networks [28]. The two current approaches
involve either I11-V to silicon wafer bonding (heterogeneous in-
tegration) or butt-coupling with precise assembly (the hybrid
approach) [99], [100].

s) Heterogeneous Integration: In a series of steps, lasers on
HI-V wafers are aligned and bonded to SOI wafers. SOI wafers
implement passive rib waveguides by etching the top silicon
layer, which is then optimized with additional steps for coupling
to ITI-V waveguides on wafers that are later aligned and bonded
on top of the SOI wafers [101].

Though companies such as Kaiam, Luxtera, and Kotura/ Mel-
lanox have developed short-term solutions [94], lasers still re-
quire greater power efficiency, lower packaging cost, and better
heat flow management in order to be economically viable for
industrial application.

t}) Quantum Dot Lasers: One potential solution to this prob-
lem is growing lasers on silicon. Typically, this results in defects
at the interface between III-V materials and silicon. However,
quantum dot (QD) lasers can alleviate these detrimental effects
because QDs operate independently of one another. Therefore,
the lasers can be grown directly onto silicon, but fabrication
reliability does not currently reach commercial standards [102].

While present technology does not support commercially vi-
able laser integration with silicon, the increase in demand for
silicon photonics in addition to promising research in QD lasers
grown on silicon substrates does point towards a future with a
commercial photonic neural network fabricated on silicon/ III-V
chips, as demonstrated by (Fig. 11).

VIII. DESIGN & SIMULATION

A successful circuit design should be able to predict com-
plex system behavior in the presence of optical, electrical, or
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thermal stimuli [103]. The silicon photonics design process usu-
ally involves device design and simulation, circuit design and
simulation, layout, verification, tape-out and mask preparation.
For operational neuromorphic technology, a physical model and
hardware simulation is necessary. Here, ‘simulation’ means a
way to accurately compute the performance of an existing hard-
ware in which individual components have been studied, fabri-
cated, validated and optimized for neuromorphic processing.

A. Hardware Model of the Neuron

In digital electronic development, it is well known that trace
lengths and shapes, metal pad geometry, and heat dissipation
can lead to impedance mismatch, unintended low-pass filtering
and overall system performance degradation. Photonic devices
on the same chip can also affect each other, primarily because
they are much more sensitive to heat then electronic gates. As
a result, an accurate simulator that takes parasitics into account
can help impose appropriate constraints in the final route and
placement steps during layout.

However, software has not yet been developed to fully simu-
late a complex photonic circuit in this way. Typically, there are
four different approaches to circuit simulation, described by Bo-
gaerts and Chrostowski [103]: a) The firstapproach is to separate
the electronic and photonic circuit simulators entirely, but it is
not suitable for neuromorphic photonics because it lacks the abil-
ity to deal with the intrinsic optical-electrical-optical conversion
detailed in Sec. IV-A. b) Another approach involves exchanging
signals between simulators, which is sufficient for \-of-concept
demonstrations but its computational requirement scales badly
with larger networks. ¢) A third approach is to map photonic
circuits to an electronic equivalent circuit and reuse the tools de-
veloped over the years for analog circuit simulation. This proved
to be several orders of magnitude faster then than the previous
approach [104], but it requires manual modeling of layout-level
parasitics at a schematic level, which is fundamentally incompat-
ible with electronic design automation (EDA) philosophy (see
Sec. VIII-D). 4) Finally, the photonics and electronics can be
implemented in the same simulator. Current tools still do not
offer full-scale optoelectronic simulation of large circuits, but
private companies are making progress in this area [105].

In parallel to the development of simulation tools, we advo-
cate that neuromorphic photonics should make use of ahardware
abstraction layer, discussed in Sec. V-A and Appx. B, which will
allow for a physically accurate neural network simulation with-
out the need to capture the physics of individual optoelectronics
devices. ‘

B. Layout Floorplanning

Without automation, the current layout floorplanning ap-
proach is to optimize device placement with human intuition.
Once the processor schematic is fixed, the layout designer can
layout a neural network under the constraints given by the sys-
tems engineer.

For example, suppose that the same abstract neural network
can be implemented in hardware in two ways that achieve the
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same overall results. One way uses ‘neurons’ that are close to-
gether, clustered in one side of the chip with shorter traces to
bond pads, and the other decides to use neurons scattered across
the chip. In the first scenario, the network run with lower latency
and higher speed due to the fact that the interconnects were sim-
pler, but it would be more noisy and imprecise, because of ther-
mal crosstalk and higher power requirements since control is
more difficult. In the second scenario, the independent neurons
would be less noisy and operate under tighter power budgets,
but speed would be compromised, as well as lower accessibility
to other patts of the chip.

The systems engineer can work with the layout designer to
optimize the chip for lower power or raw speed, but in our expe-
rience, human layout design is expensive and time consuming,
leading invariably to sub-optimal layouts. Automating that task
will allow the systems engineer to exercise greater control over
the performance of the chip.

C. Modular Layout & Simulation

While simulations do not exist for entire photonic networks,
silicon photonics does provide infrastructure for laying out and
simulating individual optoelectronic devices procedurally. This
approach is based on programmable cells, or “PCells”, pro-
grammed in scripting languages paired with software such as
SKILL in Cadence, Ample in Mentor Graphics Pyxis, SPT in
Phoenix Software, Python, which is used in IPKISS, KLayout,
and Synopsys PyCell Studio, and Tcl, which is used in Synopsys,
and Mentor Graphics or Matlab [103]

PCells such as microring modulators and filters are included
in many silicon photonic process-design kits, and can be in-
dependently tested and verified experimentally by different re-
search groups. With experimentally-validated data, a realistic
parametric model can be written in a hardware-description lan-
guage. More importantly, with the appropriate implementation,
these models can be composed to form larger devices with some
guarantees of performance, e.g. a ‘neuron’ PCell (cf. Appx. B).

D. Spiking Neural Network Simulation: A Case Study

Here we showcase a concrete example of how a spiking neural
network can be physically simulated in the context of a concrete
machine learning task.

As mentioned earlier, we have previously proposed an equiv-
alent circuit-based simulator for two-section photonic excitable
lasers (SIMPEL). By mapping the excitable laser’s rate equa-
tions into a circuit model, SPICE analysis can be used as an
efficient and accurate engine for numerical calculations, capa-
ble of generalization to a variety of different types of laser neu-
rons found in literature [ 104]. On the other hand, compilers such
as nengo [106] translate a task to a neural network configura-
tion with minimal training via a Neural Engineering Framework
(NEF). NEF is a methodology that organizes a neural network
to compute desired neural functions from its inputs values and
specified properties, solving for connection weight matrices be-
tween neural layers [107].
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Fig. 12.  An example of a hardware simulation procedure. For the post-
fabrication simulation, given a photonic excitable neural network hardware
design, we use a physical model simulator SIMPEL, which can simulate the
behavior of the device and translate the physical parameters into neural network
variables. Then, we plug the information from SIMPEL into Nengo to evaluate
how accurately the hardware completes the task.

This process is depicted in Fig. 12, which shows the di-
rection of simulation steps typically performed pre- and post-
fabrication. In the case of a modulator-based neuron, there is a
direct signal analogy between the network and the circuit model,
explored in ref. [25]. However, for a spiking neuron, both simula-
tors need to agree on the encoding of information in train pulses.
In this case, it is typical to use the pulse-frequency to represent
the strength of the signal (a strategy called ‘rate-coding’). With
that information, we know how to generate and collect signals
to and from spiking photonic neural networks.

Similar to sub-circuits in FPGAs, photonic neural networks
need to be assembled with optimized speed and power consump-
tion, requiring a pre-fabrication simulation as shown in Fig. 12.
For the pre-fabrication simulation, given a specific task that we
want the hardware to implement, we use nengo to transform the
problem into neural networks. Then, we plug the neural network
parameters into the physical model simulator. The simulator will
calculate the estimate power consumption, total computation
time, etc. Based on this result, we can design our hardware with
optimized physical parameters and performance estimates.

IX. CONCLUSION

This article walked through the important developments in
the nascent field of Neuromorphic Photonics [40]. Researchers
around the world have recognized the potential that photonics
has to offer for ultrafast neuromorphic computing, but there is
still a wide gap of understanding between integrated photonic
device engineers and machine learning experts about how it can
be integrated in a system. By presenting an overview of the
field while zooming into specific details and models, we hope
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this article clarifies how a neuromorphic processor can be built.
Proof-of-concept devices and systems have already been demon-
strated, and the field has reached the boundaries of Computer
Engineering. This paper provided a roadmap for expanding re-
search in the direction of transforming neuromorphic photonics
into a viable and useful candidate for accelerating neuromorphic
computing.

APPENDIX A
PrOTONIC NEURAL NETWORK TO SOLVE MPC

The MPC algorithm can only be implemented if the feed-
back control loop latency is orders of magnitude smaller than
the update rate. Thus, a neuromorphic photonic processor with a
high-speed processing rate paves a way for the implementation
of MPC algorithms. Here, we demonstrate how to implement an
MPC algorithm on a neuromorphic photonic processor mathe-
matically. The procedure can be divided in three steps:

a) Map an MPC algorithm to a quadratic programming (QP)

problem mathematically [56]
b) Construct a QP solver with a continuous-time recurrent
neural network (CT-RNN) [108]

¢) Build the recurrent neural network (QP solver) in a pho-

tonic system

a) Map MPC to QP: Consider a discrete-time system with
state variable £, control input sequence of the system 4, and the
measured output (observables) £. At the k*" time step, dynamics
of the system can be described as:

(k + 1|k) = Az(k) + Ba(k)

i(k) = C&(k), ‘
where the notation &(k + i|k) represents the predicted result of
state variable & at time step k + 7. A, B, C are the constant ma-

trices given by the system’s equation of motion. For the example
described in Sec. I, Eq. 4 can be written as:

@

z(t + At) 10 At 07 =@
y(t+At) | |01 0 At y(t)
ve(t + At) 00 1 0] |wl®)
vy(t + At) 00 0 1] vl
B ~ s v e
#(k+1]k) A a(k)
A2 o
0 At?/2] [ag(t)
Tl a0 {ay(t)}
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B
x(t) |
[:c(t)] e [1 00 0} y(t) )
y(t) 0100 |ve(t) |’
- alle-mentll "
2(k) C % =,
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where the state variable is £ = [z, y, vy, vy]T, the control vari-
able is @ = [ag, ay]T, and the measured output is 2 = [z, y]7,
and A,B,C matrices are the corresponding terms shown
inEq. 5.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 37, NO. 5, MARCH 1, 2019

The reference trajectory is denoted by 7*(k), and the objective
function is calculated in the form of:

H,
VR = 3 Nk +ilk) —#(E+ il
i=Hy
Hu-1 ©)
+ Y ldadk+ ik,
i=0

= [|2(k) = T®)I® + lAUE)|”

where H,, is the horizon window, H, is the prediction horizon,
H,, is the control horizon, Ad(k + i|k) = @(k + i|k) — a(k +
i— 1|k), and Z(k), T (k), AU(k) are defined as:

Z(k) = [£(k + Hylk), 2(k + Hy + 1|k), ..., 2(k + Hylk)"
T(k) = [P(k + Hylk),#(k + Hy + 1|k), ..., #(k + H,|k)"
AU(E) = [Ad(klk), Ak + 1|E), ..., Ad(k + Hy — k)T

The goal is to find the optimal Al/(k),p; such that we can up-
date the system variables and minimize the objective function.
Minimizing V' (k) can be reduced to a QP problem [56]

min ~FTPX + T
7 2

(M
subject to: gi= ﬁ,

where X = AlU(k), P and §, independent of Al (k), are calcu-
lated by replacing terms in Eq. 4 to Eq. 6. G and h are given by
the constraints of the system.

b) Construct a QP Solver with CT-RNN: The model of a
continuous-time recurrent neural network (CT-RNN) can be
expressed as a set of ordinary differential equations coupled
through a weight matrix. For the #*" neuron in the CT-RNN, the
time evolution equation is:

T = —yilt) + o z wyz;(t) +bi |, 6]

Jj=1

where y;(£) is the output of the i" post-synaptic neuron, x;(t) is
the input from the j** pre-synaptic neuron, 7; is the time constant
of the i** neuron, w; ; is the weight of connection from the 7
to i*"neuron, b; is the bias of the i*® neuron, and o;(z) is the
activation function of the i*® neuron node. Note the similarity
between Eq. 8 and Eq. 2.

For simplicity o;(z) can be a simple ReL.U function:

n e
ar= o) witj+Ji+lisig, fz20
oi(z) = =1

0, otherwise,

&)

where « is a positive constant given by the neuron’s character-
istic, .J; is the baseline activation term of the itPneuron, I, i,sig 18
the external input signal of the i*" neuron. The the relation of
bias b; to J and Ieig is by = (Ji + Ii,e19) /. At the steady state
of the CT-RNN, plugging Eq. 9 into Eq. 8, we find that:

(Id—aW)i = Lig+ J, (10)
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TABLEI
MAP BETWEEN NEURAL NETWORK ARCHITECTURE
AND QP PROBLEM PARAMETERS

Neural Network Parameters QP solver Neurons  Constraint Neurons

Weight Matrix (Id—P)/e Glo
External Inputs -q -k
DC Bias of Neuron Py -Gy

where I'd and W are the identity matrix and the weight ma-
trix of the network, respectively, ¥ = [y1, Y2, - Un]® » Lsig =
[Il,sig,IZ,sig,---7 In’sig]T, and J = [JI, Jz, wasy Jn}T We can
choose J as a baseline activation of a state 7o such that we
have:

J = (Id— aW)jp = P, (11)

Here, we identify P as Id — aW. Thus, now the steady state
solution of neurons can be expressed as:
P@-w)=1 (12)
If we identify § — yp as X, and I as —q, then we get the solution
of Eq. 7 under the unconstrained case (i.e. G = 0). So given
P, §, wecanconstruct W = L (Id — P),I = —§, and the steady
state solution of the neural network ¢ will the the solution of QP
shifted by gp. The result of g can be recovered from Eq. 11.
To deal with the constraints in the system, we construct an-
other set of neurons to give the penalty to the QP solver neurons
when the constraints are violated. The second population of neu-
rons are connected to the QP solver neurons as shown in Fig. 3.
The connection from the QP solver neuron is given by G. For
constraint neurons, the weight matrix W = G /a, the baseline
activation is J = —Gyj, and the external input to the neurons
is I = —h. With this construction, the input to the constraint
neurons will turn into:

Wi+b=G/ag+ (J+ ug)/a = (13)

G@—g)—h
o ‘

Notice that G(7 — 90) — F represents the constraint of the sys-
tem GX — h. Thus, the constraint neurons will fire only if the
constraint is violated. The penalty given by constraint neurons
is fed back to QP solver neurons with the connection shown in
the red dashed arrows in Fig. 3. The relation between Eq. 7 and
the neural network can be summarized in Table.I:

¢) Build the CT-RNN in a Photonic System: The photonic
neuron architecture is discussed in Section IV. As shown in
Fig. 7, each of the neuronal characteristics can be implemented
by photonic devices. The activation function of a neuron node
can be implemented by an excitable laser or a modulator. The
weighted connection in a CT-RNN can be implemented by MRR
weight banks. The bias of a neuron consists of DC and AC parts.
The DC bias is controlled by the DC current injected to the
excitable laser or modulator, and the AC perturbation is provided
by the photocurrents resulting from optical external input. Here,
in Table II, we provide a map for each term in the CT-RNN and
their photonic counterparts.
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TABLE I
MAP BETWEEN CT-RNN NEURAL NETWORKS
AND PHOTONIC NEURAL NETWORKS

CT-RNN Terminology Photonics Equivalent
CMOS Amplifier RC time

Actual averaged optical output power

Ty Time constant of post-synaptic node

Yi Qutput of post-synaptic node

Connection weights as calibrated by
MRR Weight Banks [35]

Nonlinear Transfer function for laser
or modulator

wy;  Weight of connection from pre-
1o post-synaptic node

Activation function of neuron

olz)

DC current injection and the
photocurrent caused by
external optical input

b; Bias of pre-synaptic node

APPENDIX B
FORMALIZING HARDWARE DESCRIPTION

As explained in Sec. V-A, a hardware description language
(HDL) is the most appropriate way of documenting a machine-
readable specification for optoelectronic circuits, distancing
hardware engineers from systems engineers. While being instru-
mental to the hierarchization of electronic circuits development,
this tool has not been used in the optoelectronics community un-
til very recently, with the development of Analox-Mixed Signal
(AMS) extension of VHDL and Verilog, the two most popular
HDLs [109], [110]. Here, we will use VHDL-AMS as an exam-
ple, but the arguments can be expanded into other languages as
well.

d) Design Automation: A VHDL-AMS code can be
synthesized® directly into low-level logic gates, analog circuits,
optoelectronic circuits, and a netlist. These must be placed and
routed in a layout, a process called implementation. This process
can be automated via schematic-driven layout [103, Sec. 4], or
performed manually. More importantly, a physical simulator can
then evaluate the performance of the circuit as it is laid out on
chip and back-annotate the schematic, informing the circuit sim-
ulator about loss, timing, voltage drops, etc. This is called Layout
vs. Schematic (LVS). This abstraction is necessary to allow inte-
grated photonics professionals to be able to build neuromorphic
processors fo spec.

e) High-Level Synthesis: Despite its high level of abstraction,
writing HDL code by hand can become unwieldy to hardware
engineers. That is why computer engineers created higher-level
languages (e.g. SystemC) that can accommodate an algorithmic
description of a behavior, which could then be synthesized to
HDL. Electrical engineering students are already familiar with
this concept when they program FPGA-based development kits
or Arduinos. A high-level synthesizer transcompiles® their code
into an HDL program and a Assembly machine code.” The HDL
program is assembled into instructions for the embedded FPGA,
and the machine code is sent directly to a memory unit thatis read
by a central processing unit (see Fig. 10). An abstraction like this
would be very useful for neuromorphic computing in general,
but in particular to neuromorphic photonics, since there is little

JSynthesis is the equivalent of compilation in programming languages.

S’I‘ranscompile means creating new source code, not necessarily at lower level.

7 Assembly code contains instructions targeted to a particular CPU architec-
ture.
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TABLE III
VHDL-AMS (PSEUDO)CODE FOR THE NEURON MODEL DESCRIBED IN
SECTION IIL THIS CODE DEFINES AN IDEAL INTERFACE THAT CAN BE
SIMULATED AND USED BY SOFTWARE ENGINEERS, AND IT SERVES AS
SPECIFICATION FOR HARDWARE ENGINEERS

ENTITY neuron IS
GENWERIC (
fan_in : NATURAL := 4;
gain_post : REAL := 1;
gain_pre : REAL := 1;
transfer_function : FUNC
Vi
PORT (
SIGNAL signal_in :
in OPTICAL_MULTICHANNEL; -- multiplexed inputs
SIGHAL signal_out:
out OPTICAL SINGLECHANNEL; -- 5 ingle~channel output
TERMINAL weight in :
in ELECTRICAL_DCARRAY {fan_in-1 DOWNTO 0);
TERMINAL bias_in :
in ELECTRICAL_HS;
TERMINAL grouncd_dc
TERMINAL ground_hs :
ELECTRICAL_HS; -— high-speed ground
TERMINAL vee : ELECTRICAL P R;
TERMINAL wdd : ELECTRICAL_POWER
Yi
END ENTITY neuxon;

:= logistic_function

high-speed b

ELECTRICAL_DC;

D¢ ground

ARCHITECTURE ideal of neuron IS
QUANTITY v_w ACROSS i_w THROUGH weight_in to ground_de;
QUANTITY v_b ACROSS i_b THRCUGH bias_in to ground hs;
VARIABLE s : REAL :=
VARIABLE tau: REAL

other specific gua

u

BEGIN
begin continuous-time process
assert len(signal_in)
-- pseudocode for
s := sum{weight_in[i] = gignal in(il);
signal_out’DOT == - (signal_out +
gain_pre » transfer_function(gain_post =
END ARCHITECTURE ideal;

1's ODE

-- Neuron
8)) / tau

user-friendly literature and knowledge available about photonic
components compared to electronic circuits.

f) Field-Programmability: Another feature of high-level syn-
thesis is that users of neuromorphic chips can reprogram the
processor by editing the high-level behavioral SystemC code.
Depending on the kind of application used (cf. Sec. 11), for exam-
ple, users might write a SystemC program that transcompiles to
an HDL requiring recurrent or feedforward networks with con-
tinuous or spiking neurons, coupled with Assembly code with
instructions for controlling a plant, optimizing a mathematical
formula, or connecting to a network of processors.

g) Continuous Operation: Here, we envision the neuromor-
phic processor as plugged into a motherboard and belonging to
a bigger computer or distributed network. In this model, an op-
erating system (OS) is responsible for managing the processor’s
/O and coordinate its execution with other conventional proces-
sors or computers. This OS should be able to manage complex
operations such as turning the processor core on and off, stor-
ing/loading the state of the controller, or, ina low-energy/energy-
saving mode, temporarily shut off lasers while waiting for more
data in the pipeline.
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