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Abstract In previous works we developed a three-
dimensional large deformation constitutive theory for
a dual cross-link hydrogel gel with permanent and tran-
sient bonds. This theory connects the breaking and
reforming kinetics of the transient bonds to the non-
linear elasticity of the gel network. We have shown
that this theory agrees well with experimental data
from both tension and torsion tests. Here we study the
mechanics of a Mode III or anti-plane shear crack for
this particular class of rate dependent solids. We first
show that our constitutive model admits a non-trivial
state of anti-plane shear deformation.We then establish
a correspondence principle for the special case where
the chains in the network obey Gaussian statistics. For
this special case there is a one to one analogy between
our model and standard linear viscoelasticity. We also
study the asymptotic behavior of the time dependent
crack tip field, and show that for a wide class of net-
work energy density functions, the spatial singularities
of these fields are identical to a hyper-elastic, cracked
body with the same but undamaged networks.
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1 Introduction

A hydrogel is a network of polymer chains swollen
in water. Due to the large water content, they can be
highly compliant (with shear moduli ranging from a
few Pa to 100 kPa), bio-compatible and exhibit low
friction, making them ideal candidates for many bio-
engineering applications such as scaffolds for cells in
tissue engineering (Kuo andMa2001; Lee andMooney
2001), artificial cartilage (Kwon et al. 2014) and vehi-
cles for drug delivery (Qiu and Park 2001). However,
the high water content of these gels also limits their use
as structural materials since they have very low resis-
tance to fracture. There have been rapid advances in
this field since 2003, when Gong et al. (2003) synthe-
sized a highly extensible double network (DN) hydro-
gel with fracture toughness ∼103 J/m2, comparable to
that of synthetic rubber. This gel consists of two inter-
penetrating networks: the first network is tightly cross-
linked and swollen while the second network is loosely
cross-linked and highly extensible (Gong et al. 2003;
Webber et al. 2007). When subjected to mechanical
loading, the first network bears most of the load and
undergoes progressive damage and the second exten-
sible network prevents the formation and growth of
macroscopic cracks (Brown 2007; Gong 2010; Naka-
jima et al. 2013;Wang and Hong 2011). More recently,
several research groups (Henderson et al. 2010; Lin
et al. 2010; Mayumi et al. 2013; Narita et al. 2013; Sun
et al. 2012, 2013) have found that highly stretchable

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10704-018-00335-9&domain=pdf
http://orcid.org/0000-0001-7270-6000


78 C. Y. Hui et al.

and tough hydrogels can also be made by replacing the
covalent bonds in the stiff network by temporary physi-
cal bonds. Since physical bonds can reform after break-
age, upon unloading and resting, theseDNgels can par-
tially or fully recover to their original state depending
on the resting period. Due to the kinetics of the physical
bonds, these self-healing gels exhibit time dependent
behavior similar to nonlinear viscoelastic solids (Lin
et al. 2010; Mayumi et al. 2013; Narita et al. 2013; Sun
et al. 2012, 2013).

There are many open questions on the rate depen-
dent mechanical behavior of these gels. Until our
recent works (Long et al. 2014, 2015) there have
been no quantitative constitutive descriptions for the
large strain time dependent behavior of these gels. In
these works (Long et al. 2014, 2015) we studied the
mechanical behavior of a poly(vinylalcohol) (PVA)
dual crosslinked gel with PVA chemically crosslinked
by glutaraldehyde and physically crosslinked by Borax
ions (Mayumi et al. 2013; Narita et al. 2013). Although
this gel has lower resistance to fracture in comparison to
the polyampholyte gel developed bySun et al. (2013), it
has a well-defined simple chemical structure with only
one type of physical crosslink between PVA chains. As
a result, in linear rheology tests, the loss modulus has
a well-defined relaxation time. In addition, the dynam-
ics of bond breaking and healing are found experimen-
tally to be nearly independent of strain over a wide
range of strain amplitude, which is typically not the
case for more complex gels. From this perspective it
serves a model system to study the interplay between
bond kinetics and macroscopic mechanical behavior
of the hydrogel having transient crosslinks. In several
papers (Guo et al. 2016; Long et al. 2014, 2015), we
have shown that a three-dimensional constitutivemodel
which combines the finite strain elasticity of the net-
works with the kinetics of bond breaking and reattach-
ment can accurately predict the behavior of uni-axial
tension and torsion tests with complex loading histo-
ries.

Although there have been some experimental stud-
ies on the fracture behavior of these self-healing gels
(Mayumi et al. 2016), we are not aware of any quan-
titative analyses of their fracture mechanics. This is
because these gels are often subjected to very large
deformation; the nonlinearity due to finite strain kine-
matics and material behavior as well as history depen-
dence make quantitative analysis extremely difficult.
Our aim is to provide such an analysis, albeit for the

simple case of Mode III or anti-plane shear fracture.
The kinematic simplicity of Mode III fracture allows
us to reduce the mathematical complexities associated
with plane strain or plane stress cracks and to gain
insight into the mechanics of fracture in more com-
plex geometries. For example, Rice studied the stresses
due to sharp notches in elastic–plastic solids loaded in
anti-plane shear using the hodograph technique (Rice
1967), Chitaley and McClintock (1971) studied the
plastic deformation of a steady state growing crack
under anti-plane shear. More recently, Long and Hui
studied the effect of finite chain extensibility on the
stress and strains near the tip of Mode III crack (Long
and Hui 2015).

Many previous works use a linearized version of
anti-plane shear which assumes small deformation. As
noted by the seminal work of Knowles (1977), only
a certain class of hyper-elastic incompressible solids
admits a non-trivial state of anti-plane shear defor-
mation. Since our constitutive model is nonlinear vis-
coelastic, it is not clear that it admits a non-trivial
state of anti-plane shear deformation. The proof that it
indeed does and a brief reviewof our constitutivemodel
are given in Sects. 2 and 3 of this paper. In Sect. 4, we
studied several special cases which lends insight to the
time dependent deformation and stress fields in these
gels. Summary and discussion is given in Sect. 4.

2 Review of constitutive model

We briefly review our constitutive model. Details can
be found in our previous works (Guo et al. 2016; Long
et al. 2014). Macroscopically the gel is assumed to
be isotropic and incompressible. It consists of two
independent networks: the chemical crosslinks form a
permanent elastic network and the physical crosslinks
form a transient elastic network that can break and reat-
tach with rates independent of the stress or strain acting
on it.We assume the chemical cross-links do not break.
Further, when a polymer chain in the transient network
breaks, it instantaneously releases the strain energy it
carries. Also, when a broken chain reattaches at time
τ , it has zero strain energy at that time, even though the
transient network is under stress. The deformation of
temporary chains reconnected at time τ is described by
the deformation gradient tensor Fτ→t . The superscript
τ → t indicates that the temporary chain experiences
the deformation history from its birth (reattachment)
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Finite strain theory of a Mode III crack 79

at τ to the current time t . The total strain energy is
equal to the sum of the strain energy carried by each
chain in both networks and is given by an energy den-
sity function. Although not necessary, we assume the
strain energy densities of the undamaged networks are
the same; denoted by W , a function only of the strain
invariant I1 ≡ tr

[
FTF

]
, where F is the deformation

gradient. We also assume the breaking and reattach-
ing of the physical chains reaches a dynamic equilib-
rium soon after the gel is synthesized. This steady state
assumption implies that the breaking and reattachment
rates are equal and independent of time. These rates are
denoted by γ̄∞.

Without loss of generality, we assume loading com-
mences at t = 0 and prior to that no mechanical load-
ing has ever been applied. With these assumptions, the
nominal stress tensor P is related to the deformation
gradient Fτ→t by

P = −p
(
F0→t

)−T + 2 [n(t) + ρ] W ′(I1)
∣∣
I1=H(0,t)

×F0→t + 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′(I1)

∣∣
I1=H(τ,t)

×Fτ→t
(
F0→τ

)−T
dτ (1a)

where W ′(I1) = dW/d I1 and

• p is the Lagrangemultiplier which enforces incom-
pressibility,

• ρ is the molar fraction of the chemical crosslinks,
• In the integral term of (1a), W ′(I1) is evaluated at

I1 = H(x, τ, t) ≡ tr
[(
Fτ→t

)T Fτ→t
]
to account

for the fact that the strain energy carried by tempo-
rary chains that are reattached at τ and survive to
the current time t depends only on the deformation
during this period of time.

• φB ((t − τ) /tB)

= [1 + (αB − 1) (t − τ) /tB]
1/(1−αB ) (1b)

is the “survivability” function, the fraction of physical
crosslinks that are formed at time τ and remain attached
at time t ≥ τ . Here tB is the characteristic time for
breaking and 1 < αB < 2 is a material parameter.
Physically, the 2nd integral term in (1a) accounts for
the forces carried by chains that reattach at different
times 0 ≤ τ ≤ t and survives to the current time t.

• n (t) is the fraction of physical crosslinks that are
attached at t = 0 and survive until current time
t ≥ 0 and is given by

n(t) ≡ γ̄∞
∫ ∞

t
φB (τ/tB) dτ

= γ̄∞
tB

2 − αB

[
1 + (αB − 1)

t

tB

] 2−αB
1−αB

(1c)

Note that n(t) is a decaying function of time since 2 >

αB > 1.
To gain physical insight, consider the special case

of uniaxial tension; (1a) reduces to

P11 = 2 [ρ + n(t)] W ′ (I1)
∣
∣
H(0,t)

[
λ(t) − 1

λ2(t)

]

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (I1)

∣
∣
H(τ,t)

×
[

λ(t)

λ2(τ )
− λ(τ)

λ2(t)

]
dτ (1d)

whereP11 is the nominal stress and λ is the stretch ratio
in the loading direction, and

I1 (t) = λ2 (t) + 2

λ (t)
,

H (τ, t) = [λ (t) /λ (τ)]2

+ 2λ (τ) /λ (t) , τ < t, (1e)

The first term on the right hand side of (1d) describes
the loss of stress due to breaking of the original tem-
porary strands while the integral term describes the
recovery of stress from the reattachment of temporary
strands.

In our previous works (Guo et al. 2016; Long et al.
2014, 2015), we have demonstrated that our model can
accurately predict the mechanical behavior of the PVA
dual-crosslink hydrogel subjected to complex load-
ing histories. Figure 1 highlights some recent data on
cyclic test where a uniaxial tension specimen is first
loaded at a certain stretch rate, then unloaded at a
different stretch rate. The solid lines are experimen-
tal data and the dotted lines are obtained using our
model usingmaterial parameters determined separately
from relaxation tests. Since the focus of this work
is on crack tip fields, details of experimental proce-
dures and fitting methods will not be repeated here.
More data including rheology and torsion tests can
be found in Guo et al. (2016) and Long et al. (2014,
2015).

3 Existence of anti-plane shear deformation

Our proof follows the approach of Knowles (1977). As
noted by Knowles: “A solid which occupies a cylindri-
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Fig. 1 Experimental results and model prediction of the stress-
stretch behavior of one PVA dual-crosslink hydrogel sample
in constant rate uniaxial tension tests of different loading and
unloading rates. The solid curves are experimental results and
the dashed curves are model predictions. The material parame-
ters in our model are: μρ = 3.8091 kPa, μγ̄∞ = 18.68 kPa/s,
αB = 1.6137, tB = 0.6606 s

cal region in its undeformed configuration is said to be
deformed to a state of anti-plane shear if the displace-
ment of each material point is parallel to the generators
of the cylinder (which we took to be in the direction of
the unit vector E3) and is independent of x3, the out of
plane coordinate.” We identify a material point in the
undeformed reference configuration by the 2D vector

x ≡ xαEα α = 1, 2 (2a)

Here {E1,E2,E3} are orthonormal vectors which form
a right handed basis. In the following, we used the
summation convention of summing over repeated
indices. Also, we assume quasi-static deformation in
the absence of body forces.

By definition, the only non-vanishing displacement
is w (x1, x2, t) in the out of plane direction. A straight
forward but tedious calculation using the definition of
deformation gradient and Fτ→t = (

F0→τ
)−1 F0→t

shows that the matrices representing the tensors F0→t

andFτ→t
(
F0→τ

)−T
with respect to theCartesian basis

{E1,E2,E3} are:

[
F0→t

]
=

⎡

⎣
1 0 0
0 1 0
w,1 (x, t) w,2 (x, t) 1

⎤

⎦ , (2b,c)

Fτ→t
(
F0→τ

)−T =
⎡

⎣
1 0 −w,1 (x, τ )

0 1 −w,2 (x, τ )

�w,1 �w,2 ω33

⎤

⎦

where

w,α ≡ ∂w/∂xα, (2d–f)

�w (x, t, τ ) = w (x, t) − w (x, τ ) and

ω33 = 1 − w,1 (x, τ )�w,1 −w,2 (x, τ )�w,2

Also,

H (x, 0, t) ≡ tr

[(
F0→t

)T
F0→t

]
(2g)

= 3 + w,α (x, t)w,α (x, t)

H (x, τ, t) = tr
[(
Fτ→t)T Fτ→t

]
(2h)

= 3 + �w,α (x, t, τ ) �w,α (x, t, τ )

Substituting (2b–h) into (1a), the nominal stress com-
ponents are:

P3α = 2 [n(t) + ρ]W ′ (H0) w,α

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H)�w,α dτ (3a)

P33 = −p +
{

2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0

φB

(
t−τ
tB

)

W ′ (H) (−w,1 �w,1 −w,2 �w,2 +1) dτ

}

(3b)
P11 = P22 = −p + 2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ (3c)

Pα3 = pw,α (x, t) − 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)

W ′ (H)w,α (x, τ ) dτ (3d)
P12 = P21 = 0 (3e)

Since the quantity inside the curly bracket in (3b) is
independent of x3, the equilibrium equation in the out
of plane direction P3α,α +P33,3 = 0 reduces to

p,3 = P3α,α = 2 [n(t) + ρ]
[
W ′ (H0) w,α

]
,α

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

) (
W ′ (H)�w,α

)
,α dτ

(4)
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Since the RHS of (4) is independent of x3, p must be a
linear function of x3, that is,

p = φ(x, t)x3 + c(x, t) (5a)

where

φ(x, t) = 2 [n(t) + ρ]
[
W ′ (H0) w,α

]
,α

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
(
W ′ (H)�w,α

)
,α dτ ,

(5b)

and c(x, t) is an undetermined function. To determine
c(x, t), in-plane equilibrium requires:

P11,1 +P13,3 = −p,1 +
[
2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ

]
,1

+ p,3 w,1 = 0 (6a)

P22,2 +P23,3 = −p,2 +
[
2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ

]
,2

+ p,3 w,2 = 0 (6b)

Equation (6a,b) can be rewritten as
[
p − 2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ

]

,α

− p,3 w,α = 0 (7)

Substituting (5a) into (7) gives:

p,α =
[
2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ

]

,α

+φ(x, t)w,α (8)

where H0 = H (x, 0, t) and we hide the arguments in
H to simplify notation. Since theRHS of (8) is indepen-
dent of x3, p,α must be independent of x3; substituting
(5a) into (8) shows that

φ,α (x, t) = 0 ⇒ φ(x, t) = f (t) , (9)

for some unknown f (t). Equation (5a) can now be
written as

p = f (t)x3 + c(x, t) (10)

Substituting (10) into (8) with φ(x, t) = f (t) and inte-
grating gives:

c(x, t) = f (t)w(x, t) + 2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ + d(t)

(11)

where d(t) is an arbitrary function of time.
To determine the functions f (t) and d(t), we use

the fact that the crack faces are traction free for all
times. Here when we assume the crack is straight and
occupies a closed interval C on x2 = 0, the traction
free condition is:

P21 = P22 = P23 = 0 ∀t x1 ∈ C (12)

By (3e), P21 = 0 is automatically satisfied. Using (3d),
(10) and (11), the condition P22 = 0 on the crack face
is

− f (t)x3 − f (t)w(x, t) − d(t) = 0, (13)

for all times and all x3, these imply

f (t) = d (t) = 0 (14)

Substituting (14) into (11) and using (10), p is

p = c(x, t) = 2 [n(t) + ρ]W ′ (H0)

+ 2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) dτ (15)

A special case is when the chains obey Gaussian statis-
tics, for this case W is neo-Hookean, i.e.,

W = μ

2
(I1 − 3) ⇒ W ′ = μ

2
(16)

where μ is the small strain shear modulus. Direct eval-
uation of the integral in (15) using (1b) and (16) results
in

p = μ [n(t = 0) + ρ] . (17)

For this special case p is a constant, independent of
deformation and time. Finally, (15) and (3a, 3d) imply
that P3α = Pα3 and this ensures the true stress is sym-
metric. The true stress tensor can be computed using
τ = P

(
F0→t

)T
and is

τ11 = τ12 = τ22 = τ21 = 0,
τ3α = P3α = 2 [n(t) + ρ]W ′ (H0) w,α

+ 2γ̄∞
∫ t
0 φB

(
t−τ
tB

)
W ′ (H)�w,α dτ ,

τ33 = P31w,1 +P32w,2 +P33

(18a–c)

The nominal stress P33 in (3b) can be simplified using
(15) and is
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P33 = −2γ̄∞
∫ t

0
φB

(
t − τ

tB

)
W ′ (H) (18d)

[w,1 �w,1 +w,2 �w,2] dτ

Note, in contrast to linearized anti-plane theory, neither
of the out of plane stress component P33 nor τ33 are
zero. Although this stress is completely determined by
the shear stresses and the displacement gradient, they
have higher singularity at the crack tip than the out of
plane shear stresses because the displacement gradi-
ents are also singular there. Like the T stress in plane
fracture, τ33 is parallel to the crack plane and in hyper-
elastic crack problems, it has no effect on the energy
release rate. However, the T stress is known to affect
the stability of crack path (Cotterell and Rice 1980).
Unlike the T stress, τ33 is highly singular and therefore
in theory, could affect crack path in a significant way. If
this hypothesis is correct, then the normal to the crack
plane should rotate about the x1 axis in Fig. 2. How-
ever, we are not aware of any literature that discuss this
effect.

We end this section by noting that (9) and (14) imply
that the partial differential equation (PDE) governing
the displacement w is:

2 [n(t) + ρ]
[
W ′ (H0)w,α

]
,α +2γ̄∞

∫ t

0
φB

(
t − τ

tB

)

(
W ′ (H) �w,α

)
,α dτ = 0 (19)

Note that (19) is not the general equation for anti-plane
shear deformation since it uses the traction free bound-
ary condition on the crack faces to determine f and d.

4 Results

In the following, we assume the specimen geometry
and the manner of loading are consistent with anti-
plane shear deformation. Although it is possible to
consider multiple cracks, we assume a single trac-
tion free stationary crack occupying the interval C =
{a ≤ x1 ≤ b, x2 = 0}. We allow a to be infinite, for
example, a = −∞, b = 0, corresponds to a semi-
infinite crack. An example is shown in Fig. 2.

4.1 Relaxation test

Relaxation test is commonly used to study themechani-
cal behavior of rate dependent solids. In an ideal relax-

Fig. 2 The undeformed specimen consists of an infinite strip of
height 2h with a semi-infinite crack. The strip is infinite in the x1
and x3 (out of plane) direction and is loaded by imposing equal
and opposite out of plane displacement in the upper and lower
faces

ation test, the boundary of the specimen is subjected
to a fixed displacement instantaneously. For example,
in the strip specimen shown in Fig. 2, this boundary
condition is

w(x1, x2 = ±h, t ≥ 0+) = ±w0, (20)

wherew0 is the imposed out of plane displacement.We
seek a solutionwE (x) in which the displacement in the
cracked body is independent of time, i.e.,

w(x1, x2, t) = wE (x1, x2) (21)

This assumption implies that�w in the integral in (19)
is identically zero for all times. Thus, the governing
equation for the displacement is:
[
W ′ (H0) w,α

]
,α = 0 (22)

where H0 = 3+w,α (x)w,α (x). It is interesting to note
that (22) is the governing equation of anti-plane defor-
mation for a hyper-elastic solid with strain energy den-
sity function W (I1). Knowles (1977) and Rice (1967)
have shown that the nonlinear PDE (22) can be trans-
formed to a linear PDE using the Holograph transform.
This fact allows us to establish the following correspon-
dence principle for relaxation crack problems. That is,
in a relaxation test, the displacement of the cracked
body is independent of time and is identical to displace-
ment wE of an identical hyper-elastic cracked body
with the same energy density function W . However,
the true stresses are time dependent and decay with
time according to:

τ3α = P3α = 2 [n(t) + ρ]W ′ (3 + wE ,β wE ,β
)

wE ,α ≡ [n(t) + ρ] τE3α (23a)

τ33 = [n(t) + ρ] [τE31wE ,1 +τE32wE ,2] (23b)

where the subscript E in displacement and stress are
used to indicate that these fields belong to the hyper-
elastic solid. Thus, the stresses in the cracked body
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Finite strain theory of a Mode III crack 83

behaves like a hyper-elastic body where the shear
modulus is multiplied by a decaying function of time.
Since n(t → ∞) = 0, the cracked body relaxes to a
hyper-elastic cracked body with reduced modulus μρ

at long time. Physically, this stress relaxation corre-
sponds to the breaking of physical bonds that are loaded
at t = 0+, the integral term vanishes since physical
bonds that are healed do not carry any load.

As a concrete example, assume that the energy den-
sity function is given by

W (I1) = μ

2B

{[
1 + B

N
(I1 − 3)

]N

− 1

}

, (24)

whereμ is the small strain shearmodulus, N > 1/2 is a
strain hardening parameter and B > 0 is a dimension-
less material constant. The special case of N = 1 cor-
responds to a neo-Hookean solid; for this reason, this
model is called the “Generalized neo-Hookean (GNH)”
solid.

The asymptotic displacement wE and the true tress
field τE3α near the crack tip for a GNH solid was
obtained by Knowles (1977). With respect to a polar
coordinate system (r, θ) in the reference configuration,
they are

wE ∼ Krmv(θ) m = 1 − 1

2N
θ ∈ [−π, π ]

(25a)

τE3α ∼ μK 2N−1
( B
N

)N−1
τ̂α (θ) r−(1−(1/2N )),

τ̂α (θ) = ĥN−1 (θ)
[(
1 − 1

2N

)
v (θ) cα (θ)

+ v̇ (θ) εβαcβ (θ)
]

(25b)

τE33 ∼ μK 2N
(
B

N

)N−1

ĥN (θ) r−1 (25c)

where v̇ (θ) = dv/dθ , εβα is the 2D alternator where
ε11 = ε22 = 0, ε12 = −ε21 = 1 and

c1 (θ) = cos θ, c2 (θ) = sin θ (25d)

v (θ) = sin (θ/2)

⎡

⎣

√

1 − 2 (1 − 1/N )2 cos2 (θ/2)

1 + ω (θ, N )

⎤

⎦

[ω (θ, N ) + (1 − 1/N ) cos θ ]
N−1
2N (25e)

ω (θ, N ) =
√
1 − (1 − 1/N )2 sin2 θ (25f)

ĥ (θ) = (2N − 1)2

4N 3 [(1 − 1/N ) cos θ + ω (θ, N )]−1/N

(25g)

Equations (25b, 25c) show that the stress field near the
crack tip increases with strain hardening. Indeed, for
very large N , all non-vanishing components of the true

stress tensor are proportional to 1/r . Also, as noted
earlier, τE33 � τE3α as r → 0. Since all Mode III
crack tip fields has the same functional form given by
(25a–25c), K can be interpreted as an intensity fac-
tor. However, K cannot be determined by a local anal-
ysis since it depends on specimen geometry and the
manner of loading. Knowles (1977) has shown that for
GNH cracked bodies loaded under anti-plane shear, K
is related to the path independent J integral by

A2nK 2N = B1−N fN
πμ

J,

fN =
(
4N 4

)N

N (2N − 1)2N−1 (
2N 2 − 2N + 1

) (26)

An example where J can be obtained by elementary
means is the strip sample shown in Fig. 2. Assuming
that the upper and lower edges of the strip are sub-
jected to a uniform displacement ±w0, translational
invariance implies that

J = 2hW∞ (27)

whereW∞ is the strain energy density at x1 = ∞ given
by

W∞ = μ

2B

{[
1 + B

N

(w0

h

)2]N

− 1

}

(28)

Substituting (28) into (27) and using (26) relates the
intensity factor K to the applied displacement w0, i.e.,

K 2N = hB−N fN
π

{[
1 + B

N

(w0

h

)2]N

− 1

}

(29a)

For very large deformations where w0/h � 1, (29a)
is well approximated by

K =
(
h fN
π

)1/2N 1√
N

w0

h
(29b)

Since the local stresses is proportional to K 2N−1 [see
(25b, 25b)], (29b) implies that for large N the local
stresses increase very rapidly with the imposed far field
strain w0/h.

For the special case of N = 1, the stresses are given
by

τE31 ∼ −μK

2
r−1/2 sin (θ/2) (30a)

τE32 ∼ μK

2
r−1/2 cos (θ/2) (30b)

τE33 ∼ μK 2r−1/4 (30c)

where K = 2w0√
πh

.
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As is well known, the out of plane shear stresses
τE3α are identical to the linearized small strain anti-
plane theory. For this case K is related to the ModeIII
stress intensity factor KI I I by KI I I = √

π/2μK . A
keydifference between the linear and large deformation
theory is that τE33 = 0 in the linearized theory whereas
this is the dominant singularity in the nonlinear theory.

4.2 A special case: neo-Hookean

We are not aware of any analytical technique to obtain
the general solution of (19) with arbitrary energy den-
sity function (see Sect. 4.3 for more details). How-
ever, the special case of Gaussian chains where W
is neo-Hookean can be solved exactly. For this case,
W ′ = μ/2 and (19) reduces to

[n(t) + ρ]w,αα +γ̄∞
t∫

0

φB

(
t − τ

tB

)

(�w,α) ,α dτ = 0 (31a)

Equation (31a) can be simplified by noting that the inte-
gral term is

γ̄∞
t∫

0

φB

(
t − τ

tB

)
(�w,α) ,α dτ = γ̄∞w,αα

(x, t)

t∫

0

φB

(
t − τ

tB

)
dτ − γ̄∞

t∫

0

φB

(
t − τ

tB

)
w,αα (x, τ ) dτ

= w,αα (x, t) [n0 − n(t)] − γ̄∞
t∫

0

φB

(
t − τ

tB

)
w,αα (x, τ ) dτ (31b)

where we have used (1c) and n0 ≡ n(t = 0) . Substi-
tuting (31b) into (31a), the governing PDE becomes:

(n0 + ρ)w,αα (x, t) − γ̄∞
t∫

0

φB

(
t − τ

tB

)
w,αα (x, τ ) dτ = 0 (32)

Equation (32) is a linear Volterra integral equation of
the second kind with a continuous kernel. It is well

known that such equations has a unique solution (Kress
2014) which in this case is the trivial solution where

w,αα = 0 (33)

Thus, the displacement field satisfies the 2D Laplace
equation, just as in the linearized small strain anti-plane
shear theory. For the out of plane shear stresses, (18b)
reduces to

τ3α = P3α = μ [n0 + ρ]w,α (x, t) − μγ̄∞
t∫

0

φB

(
t − τ

tB

)
w,α (x, τ ) dτ (34a)

whereas

τ33 = μ [n0 + ρ] |∇w (x, t)|2
−2μγ̄∞w,α (x, t)
t∫

0

φB

(
t − τ

tB

)
w,α (x, τ ) dτ

+ μγ̄∞
t∫

0

φB

(
t − τ

tB

)
|∇w (x, τ )|2 dτ (34b)

Correspondence principle
Equation (31a) can be written in a more suggestive

form by defining a time dependent modulus

μR (t) ≡ μ [ρ + n(t)] (35)

Integrating by parts and using (35) and (1c) shows that
(31a) canbe rewritten in the formof a linear viscoelastic
model

τ3α = P3α = μR (t) w,α (x, t = 0)

+
t∫

0

μR (t − τ)
∂w,α (x, τ )

∂τ
dτ (36)

whereμR (t) is interpreted as the shear relaxation func-
tion. Equation (36) implies that the usual correspon-
dence principle of linear viscoelasticity applies to our
model. Two simple examples are:

(i) if traction boundary conditions are prescribed, then
the stresses in the cracked body are the same as
the stresses in an identically elastic cracked body
(τE3α) subjected to the same traction (these stresses
are independent of the shear modulus), and the dis-
placement field can be obtained by inversion of (36)
using Laplace transform, that is,
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w,α = C (t) τE3α (x, 0)

+
t∫

0

C (t − τ)
∂τE3α (x, τ )

∂τ
dτ (37a)

whereC (t) is the creep function and is related toμR (t)
by the convolution identity

t∫

0

μR (t − τ)C (τ ) dτ = t. (37b)

(ii) If a displacement boundary condition is prescribed
on the cracked body (except on the traction free
crack faces), then the displacement field is the same
as the displacement of an identical neo-Hookean
cracked body (wE ), which is independent of mod-
ulus, and the stresses can be found using (36). One
can now use the large library of elastic crack solu-
tions to solve a gel fracture problem.

Formore general boundary conditions, the solution can
be obtained using Laplace transform.

The correspondence principle implies that the dis-
placement and shear stresses near the crack tip must
have the form:

w ∼ 2KI I I (t)

μ

√
r/2π sin (θ/2) r → 0 (38a)

(
τ31
τ32

)
∼ KI I I (t)√

2πr

(− sin (θ/2)
cos (θ/2)

)
(38b,c)

where KI I I is the Mode III stress intensity factor.
An example is a center crack of length 2a in an

infinite block subjected to remote cyclic displacement
of the form :
w (x1, x2 = ±∞, t) = ε∞x2 sinωt (39)

Thegeometry is shown inFig. 3.By the correspondence
principle, the displacement field everywhere is

w (x1, x2, t) = (ε∞ sinωt)

Im
[√

z2 − a2
]

where z = x1 + i x2

(40)

where i = √−1 . The crack opening displacement is

w
(|x1| ≤ a, x2 = 0±, t

) = (γ∞ sinωt)
√
a2 − x2

(41)

Fig. 3 An infinite block with a center crack 2a subject to remote
cyclic displacement in Mode III

The shear stresses are

τ32 + iτ31 = ε∞√
1 − a2/z2

t∫

0

μR (t − τ)
∂ sinωτ

∂τ
dτ

(42)

For very long times it is easy to show that the shear
stresses approach a steady state given by

τ32 + iτ31 → τ ss32 + iτ ss31 = ε∞√
1 − a2/z2

[
μ̃′
R (ω) sinωt + μ̃′′

R (ω) cosωt
]

(43a)

where

μ̃′
R (ω) = μρ + μω

∞∫

0

n (η) sinωηdη

= μρ + μγ̄∞
tB

2 − αB
− μγ̄∞

tB
αB − 1

∫ ∞

0
cos

(
ωtB

αB − 1
x

)
(1 + x)

1
1−αB dx,

(43b)
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μ̃′′
R (ω) = μω

∞∫

0

n (η) cosωηdη = μγ̄∞
tB

αB − 1

∫ ∞

0
sin

(
ωtB

αB − 1
x

)
(1 + x)

1
1−αB dx (43c)

are the storage and loss modulus respectively, and the
second expressions of μ̃′

R (ω) and μ̃′′
R (ω) are obtained

by integration by parts and substituting the variable
x ≡ (αB − 1) η/tB . The long time modulus is given
by μρ. Because of dissipation caused by the breaking
and reattaching of physical cross-links, the stresses are
not in phase with the applied displacement.

4.3 Time dependent asymptotic crack tip fields

The difficulty with finding exact analytical solution
with (19) is that

W ′(H) = W ′ [3 + �w,α (x, τ, t)�w,α (x, τ, t)]

(44)

is a nonlinear function which depends on the history
of the displacement. Because of this feature, the holo-
graph transform does not work. Nevertheless, it is pos-
sible to obtain the asymptotic crack tip behavior for a
wide class of energy density functions. For concrete-
ness, we assume that the elasticity of the networks obey
the GNH model. Knowles (1977) has shown that the
displacement field near the crack tip has the form

wE = Krmv (θ) , r → 0 m = 1 − 1

2N
(45)

where K is a loading parameter and v (θ) is given by
(25e). In our case we must allow the loading parameter
K to be time dependent, which we indicate explicitly
by k (t), that is, we assume the crack tip displacement
has the form:

w = k (t) rmv (θ) ≡ k(t)χ (r, θ) , r → 0 (46)

where to simplify notation we denote χ (r, θ) ≡
rmv (θ). Note that the GNH is locally homogeneous,
in the sense that

W ′ [I1 → ∞] ≈ μ

2

(
B

N

)N−1

I N−1
1 N > 1 (47)

The case of N = 1 corresponds to the neo-Hookean
strain energy density function and was already consid-
ered above. The fact that Krmv (θ) is the local solution
of the elasticity problem means that

[
W ′ (I1) wE ,α

]
,α ∼ μ

2

(
B

N

)N−1

K
[
I N−1
1 χ,α

]
,α ∼ μ

2

(
B

N

)N−1

[
K 2N−1 (

χ,β χ,β
)N−1

χ,α

]
,α ∼ 0 (48)

to leading order as r → 0. Note the homogeneity of
W ′ ensures that this result is valid irrespective of the
value of K . Hence, by (46), the leading behavior of (2d)
and (2f) at the crack tip is:

H0 (x → 0, t) ≈ k2(t)
(
χ,β χ,β

)
, (49a,b)

H (x → 0, τ, t) ≈ [k(t) − k(τ )]2
(
χ,β χ,β

)

W ′ (H0) ∼ k2N−2(t)
(
χ,β χ,β

)N−1
, (49c,d)

W ′ (H) ∼
[
k2(t) − k2(τ )

]2N−2 (
χ,β χ,β

)

Equations (48) and (49) imply that
[
W ′ (H0) w,α

]
,α ∼ 0 and

[
W ′ (H) w,α

]
,α ∼ 0 as r → 0 (50)

This means that (19) is satisfied to leading order as
r → 0, so the asymptotic displacement as r → 0 must
be given by (46). Of course, the function k (t) cannot
be determined by local analysis, it depends on loading
history and geometry.

The near tip stresses are determined by substituting
(46) into (18b,c) and keeping only the leading order
terms, this results in

τ3α ∼ μ

(
B

N

)N−1

Klocal (t/tB) r−(1−(1/2N ))τ̂α (θ)

(51a)

Klocal (t/tB) = [n(t) + ρ] [k(t)]2N−1

+ γ̄∞
t∫

0

φB

(
t − τ

tB

)
[k(t) − k(τ )]2N−1 dτ (51b)

The function Klocal (t/tB) can be regarded as a local
intensity factor since it carries all the loading informa-
tion via k(t). The asymptotic behavior of τ3α is deter-
mined by (46), (51a, 51b) and (18c).

Matched asymptotics: small scale hardening

In our fracture experiments using plane stress edge
crack specimens, we find that the local crack open-
ing displacements agree surprising well with the pre-
diction of (1a) using the neo-Hookean energy density
function (Guo et al. 2018). This suggests that strain
hardening must be confined to a region �SH near the
crack tip that is very small in comparison with the
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Fig. 4 Schematics of the
small scale hardening

region of dominance of the stress field predicted using
the neo-Hookean model, which we denote by �K (see
Fig. 4). Assuming that this is the case for a Mode III
crack, we can link the near tip strain hardening behav-
ior predicted by (51a, 51b) to the applied loading on a
cracked body using a Small Scale Hardening (SSH)
approach – a variation of the Small Scale Yielding
approach in Elastic–Plastic Fracture (Zehnder 2012).
In this approach, we use a boundary layer formulation
where the physical crack is replaced by a semi-infinite
traction free crack and the actual boundary conditions
replaced by the neo-Hookean singular displacement at
large distances in comparison with �SH , as schemat-
ically shown in Fig. 4. In light of (34a), the far field
boundary condition are:

w → 2KI I I (t)

μ

√
r/2π sin (θ/2) as r → ∞ (52)

where KI I I (t) is the time dependent stress intensity
factor for the associated viscoelastic crack problem
(with the neo-Hookean work function).

Equation (19) and dimensional analysis imply that
the displacements must have the form:

w = K 2
I I I (t)

μ2 D

(
r

K 2
I I I (t)/μ2

, θ, t/tB , γ̄BtB , B/N , ρ

)

(53)

where D is a dimensionless function of its dimension-
less arguments. Equation (46) implies that

K 2
I I I (t)

μ2 D

(
r

K 2
I I I (t)/μ2

, θ, t/tB , γ̄BtB, B/N , ρ

)

→ k (t) rmv (θ) r → 0 (54)

Equation (54) implies that

D

(
r

K 2
I I I (t)/μ2

, θ, t/tB , γ̄BtB, B/N , ρ

)

∼
[

r

K 2
I I I (t)/μ2

]m

ψ (t) v (θ) (55)

whereψ is some unknown function of time and is inde-
pendent of K 2

I I I (t)/μ2 . Comparison of (54) and (55)
shows that

k (t) =
[
K 2

I I I (t)

μ2

]1−m

ψ (t) (56)

Substituting (56) into (51b) and using 1 − m = 1/2N
gives:

Klocal (t/tB) =
⎡

⎢
⎣ [n(t) + ρ] [ψ (t)]2N−1 + γ̄∞

t∫

0

φB

(
t − τ

tB

)
[ψ(t) − ψ(τ)]2N−1 dτ

⎤

⎦

[
KI I I (t)

μ

] 2N−1
N

(57)

Equation (57) connects the remote Mode III stress
intensity factor KI I I (t) to the local stress intensity
factor Klocal. Unfortunately, the dimensionless func-
tion ψ (t) can be determined only by solving (19) with
the boundary condition (52). Finally, although we have
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used the GNH energy density function in deriving the
asymptotic fields and (57), there is nothing special
about this model. For example, the samemethod can be
applied to any energy density function as long as it is a
function of I1 and W ′ is locally homogeneous, that is:

W ′ [I1 → ∞] ≈ I β
1 , for some positive power β > 0

(58)

5 Summary and discussion

In this work, we studied the near tip stress and strain
fields of a Mode III crack in rate dependent hydro-
gels. We establish a global correspondence principle
for the special case where the undamaged network
obeys Gaussian statistics. We showed that the local
time dependent asymptotic stress and strain fields have
the same spatial dependence as the asymptotic stress
and strain field of a hyper-elastic solid, as long as the
energy density function is a function of I1 only and
W ′ is locally homogeneous. This result can be viewed
as a local correspondence principle for the crack tip
fields. We show that the near tip stress and strain fields
are completely determined by a time dependent stress
intensity factor Klocal (t). The local time dependent
damage process near the crack tip is governed by the
stress history. If we assume the region of local dam-
age is sufficiently confined so that there exists a region
near the crack tip where the stress field is completely
determined by the local stress intensity factor Klocal (t),
then the local strains and damagewould have to be con-
trolled by the history of Klocal (t). Hence Klocal (t) can
be used as a history dependent loading parameter to
determine when a pre-existing crack initiates growth.
Note that since the material is rate dependent, whether
a crack will grow or not depends on the entire time his-
tory Klocal (t), 0 ≤ t and not its current value alone. If
the network energy density function is neo-Hookean,
then the local stress intensity factor can be related to
the remote loading history using classical theory of
linear viscoelasticity via the correspondence principle,
as shown in Sect. 4.2. For networks that do not obey
Gaussian statistics, it is necessary to use the numerical
method to determine the dependence of Klocal (t) on the
loading history. Finally, this idea of using Klocal (t) as
a criterion for crack initiation in principle should apply
to plane stress and plane strain cracks, except in these
cases the asymptotic behavior of the stress field near the

crack tip is still to be determined. An interesting ques-
tion iswhether the local correspondence principle holds
for cracks loaded under plane stress or plane strain con-
ditions. We believe that it is possible to show that for
plane stress or plane strain stationary crack problems,
the asymptotic behavior of the integral term in Eq. (1a)
as the crack tip is approached is either subdominant
or has the same order of singularity as corresponding
the nonlinear elastic solution. If this is true, the spatial
variation of the near tip stress fields in our gel should
be identical to a hyper-elastic solid in which the chains
obey the samework function.We are currentlyworking
to prove this hypothesis.

Our analysis has several limitations. It assumes the
crack is stationary and we have not proposed a local
failure mechanism for the initiation of crack growth.
This failure mechanism is still being studied. Here we
note that the constitutive model cannot be applied to
study failure, since we have assumed that the chains
between chemical crosslinks cannot break. To study
crack growth, we must relax this assumption to allow
for chain breakage. Furthermore, it is reasonable to
expect that crack growth can change the asymptotic
behavior of the stress and strain fields near the crack tip,
as is well known in elastic–plastic and elastic-power-
lawcreepingmaterials (Chitaley andMcClintock 1971;
Hui and Riedel 1981). However, in slow crack growth,
it is likely that these asymptotic fields for growing
cracks are highly concentrated near the crack tip, and
as a result, the asymptotic fields of the stationary crack
may still control the crack growth process.

Adifferent limitationof our analysis is that it is based
on a constitutive model which is tested on a particular
hydrogel ((PVA) dual crosslinked gel) and hence may
not be applicable to other hydrogels with both chem-
ical and transient bonds. However, our recent work
(to be published) shows that, with some modification,
our constitutive model can be used to characterize the
mechanical properties ofmuch tougher systems such as
the polyampholyte hydrogel developed by Ihsan et al.
(2016).
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