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Abstract An emerging field at the nexus of photonics/neuroscience, neuromorphic photonics combines
the advantages of optics/electronics. In this tutorial, we will look at challenges of photonic information
processing, describe photonic neural-network approaches, and offer a glimpse at this field’s future.

Introduction

Neuromorphic (i.e., brain-inspired) processors
are widely considered as one the next frontiers in
computing. The proliferation of microelectronics
has enabled the emergence of next-generation
industries to support emerging artificial intelli-
gence services and high-performance computing.
These data-intensive enterprises rely on contin-
ual improvements in hardware. The demand for
data will continue to grow as smart gadgets mul-
tiply and become increasingly integrated into our
daily lives. However, this rapidly expanding space
has been subverted by a stark reality: exponen-
tial hardware scaling in digital electronics is fun-
damentally unsustainable.

Neuromorphic photonics (Fig. 1) is an emerg-
ing field at the interface of photonics and neuro-
science that combines the advantages of optics
and electronics to build systems with high effi-
ciency, high interconnectivity and high information
density " . In this tutorial, we will ook at some of
the traditional challenges of photonic information
processing, describe the photonic neural-network
approaches being developed by our lab and oth-
ers, and conclude with a future outlook of neuro-
inspired photonic processing

The Emergence of Photonic Neural Networks
Instead of using digital 0’'s and 1’s, neural net-
works represent information in analog signals,
which can take the form of either continuous real
number values, or spikes, in which information
is encoded in the timing between short pulses®.
Rather than abiding by a sequential set of instruc-
tions, neurons process data in parallel and are
programmed by the connections between them
(Fig. 2). The input into a particular neuron is a
linear combination—also referred to as weighted
sum—of the output of other neurons. These con-
nections can be weighted with negative and pos-
itive values, respectively, which are called “in-
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Fig. 1: Performance scaling between electronic and photonic
neuromorphic hardware. TrueNorth is a leading electronic
neuromorphic platform developed by I1BM; Neurogrid:
Stanford; HICANN: Heidelburg; SpiNNaker: Manchester.

hibitory” and “excitatory” synapses. The weight is
therefore represented as a real number, and the
interconnection network can be expressed as a
matrix.

Photonics is a promising technology to imple-
ment neural networks (Fig. 2). The greatest com-
putational burden in neural networks lies with
the interconnectivity: in a system with N neu-
rons, if every neuron can communicate with every
other (plus itself), this results in N2 connections.
Just one more neuron adds N more connections,
which can be prohibitive if N is large. Photonic
systems could address this problem in two ways:
1) waveguides can boost interconnectivity by car-
rying many signals at the same time through op-
tical multiplexing, and 2) low-energy, photonic op-
erations can reduce the computational burden
of performing linear functions such as weighted
sum. For example, by associating each node with
a color of light, a network could support N ad-
ditional connections without necessarily adding
any physical wires. A comparison of the poten-
tial speed and efficiency of photonic based sys-
tems is shown in Fig 1. These advantages have
motivated researchers to investigate a number of
photonic neural models that exhibit a large range
of interesting properties.
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Fig. 2: Photonic neural nets (right) can solve the interconnect
bottleneck by using one waveguide to carry signals from
many connections (easily N2~10, 000) simultaneously.

Photonic Neuron Implementations
Researchers have engineered dynamical lasers
to resemble the biological behavior of neurons L
an example of an integrated system currently un-
der investigation at Princeton is shown in Fig. 3.
Laser neurons are capable of operating approx-
imately 100 million times the speed of their bio-
logical counterparts, owing to the speed of opto-
electronic physics over biochemical interactions.
They represent neural spikes via optical pulses by
operating under a dynamical regime called “ex-
citability” Excitability is a behavior in feedback
systems in which small inputs that exceed some
threshold cause a major excursion from equilib-
rium, which in the case of a laser neuron, re-
leases an optical pulse. This event is followed by
a recovery back to equilibrium, or refractory pe-
riod.

We discovered® a theoretical link between the
dynamics of semiconductor lasers and a com-
mon neuron model used in computational neuro-
science, and demonstrated how a laser with an
embedded graphene section could effectively em-
ulate such behavior”, Building from these resulis,
a number of researchers have fabricated, tested,
and proposed a variety of laser neurons with var-
ious feedback conditions®. These include two-
section models in semiconductor lasers, photonic
crystal nanocavities, polarization sensitive verti-
cal cavity lasers, lasers with optical feedback or
optical injection, and linked photodetector-laser
systems with receiverless connections or reso-
nant tunneling.

A recently demonstrated® approach based on
optical modulators has been investigated recently
that has the potential to exhibit much lower con-
version costs from one processing stage to an-
other. In addition, it would be fully integrated sys-
tems on silicon photonic platforms.

Scalable Photonic Neural Networks
Recently, researchers have investigated intercon-
nection protocols that can tune to any desired net-
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work configuration. Arbitrary weights allow a wide
array of potential applications based on classical
neural networks. There are several notable ap-
proaches in the literature that use complementary
physical effects in this regard.

A neural network architecture called “broad-
cast and weight” uses groups of tunable filters
to implement weights on signals encoded onto
multiple wavelengths’. Tuning a given filter on
and off resonance changes the transmission of
each signal through that filter, effectively multi-
plying the signal with a desired weight. The re-
sulting weighted signals travel into a photodetec-
tor, which can receive many wavelengths in par-
allel to perform a summing operation. Broadcast
and weight takes advantage of the enormous in-
formation density available to on-chip photonics
through the use of optical multiplexing, and is
compatible with a number of laser neuron mod-
els. Filter-based weight banks have also been
investigated both theoretically and expetimentally
in the form of closely packed microring filters, pro-
totyped in a silicon photonic platiorm. A fully in-
tegrated superconducting optoelectronic network
was recently proposed to offer unmatched en-
ergy efficiency °. While based on an exotic super-
conducting platform, the interconnect architecture
could be compatible with broadcast-and-weight.

A “coherent” approach utilizes destructive or
constructive interference effects in optical inter-
ferometers to implement a matrix-vector opera-
tion of incoming signals®. There is no need to
convert from the optical domain to the electrical
domain; interfacing such systems with photonic,
nonlinear nodes (i.e., based on the Kerr effect)
could allow for energy efficient, passive all-optical
processors. However, the coherent approach is
limited to only one wavelength and requires de-
vices that are much larger than tunable filters, lim-
iting the information density of the approach in its




current form. In addition, all-optical interconnects
must grapple with both amplitude and phase and
there is still no proposed solution to prevent phase
noise accumulation from one stage to another.
Nonetheless, the investigation of large-scale net-
working schemes is a promising direction for the
integration of various technologies in the field to-
wards highly scalable on-chip photonic systems.

A contrasting approach to tunable neural net-
works, “reservoir computing,” extracts useful in-
formation from a fixed, possibly nonlinear sys-
tem of interacting nodes '°. Reservoirs require far
fewer tunable elements than neural network mod-
els to run effectively, making them less challeng-
ing to implement in hardware; however, they can-
not be easily programmed. These systems have
utilized optical multiplexing strategies in both time
and wavelength. Experimentally demonstrated
photonic reservoirs have displayed state-of-the-
art performance in benchmark classification prob-
lems, such as speech recognition.

Discussion

Although it remains to be seen in what ways pho-
tonic processing systems will complement micro-
electronic hardware, current technological devel-
opments point in a promising direction. For exam-
ple, the fixed cost of electronic to photonic conver-
sion is no longer as energetically unfavorable: a
modern silicon photonic link can transmit a pho-
tonic signal using only femtojoules of energy per
bit of information, while thousands of femtojoules
of energy are consumed per operation in even the
most efficient digital electronic processors, includ-
ing IBM’s TrueNorth cognitive computing chip and
Google’s tensor processing unit. This figure will
improve as optoelectronic devices are scaled in
performance. New modulators or lasers based
on plasmoenic localization, graphene modulation
or nanophotonic cavities have the potential to in-
crease this efficiency. The next generation of pho-
tonic devices could potentially consume only hun-
dreds of attojoules of energy per time slot, allow-
ing analog photonic processors to consume even
less per operation.

There are many applications of photonic neu-
ral network technologies, especially in light of
the developments mentioned above. For one,
photonic systems can act as a co-processor
to perform linear operations—including multiply-
accumulate operations, fourier transforms, and
convolutions—by implementing them in the pho-
tonic domain, potentially decreasing the energy

consumption and increasing the throughput of
signal processing, high performance computing
and artificial intelligence algorithms. This could
be a major boon for datacenters, which are in-
creasingly dependent on such operations and
have consistently doubled their energy consump-
tion every four years.

Secondly, photonic processors have un-
matched speeds and latencies, which make them
well-suited for specialized applications requiring
either real-time response times or fast signals.
One example is a front-end processor in radio
frequency transceivers. As the wireless spectrum
becomes increasingly overcrowded, the use
of large, adaptive phased-array antennas that
receive many more radio waves simultaneously
may soon become the norm. Photonic neural
networks could perform complex statistical op-
erations to extract important data, including the
separation of mixed signals or the classification
of recognizable radio frequency signatures. A
second example is in low-latency, ultrafast control
systems. It is well known that recurrent neural
networks can solve various problems that involve
minimizing or maximizing some known function.
A process method known as “Hopfield optimiza-
tion” requires the solution to such a problem
during each step of the algorithm, and could
utilize the short convergence times of photonic
networks for nonlinear optimization.

Just as fiber optics once rendered copper ca-
bles obsolete for long-distance communications,
neuromorphic photonic processing has the poten-
tial to one day usher a paradigm shift in computing
to create a smarter, more efficient world.
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