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Photonic neural networks have the potential to

revolutionize the speed, energy efficiency and
throughput of modern computing—and to give

. Moore’s law-style scaling a new lease on life.
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SYNERGISTIC APPROACH

Neuromorphic photonics uses modern fabrication techniques to
implement efficient, scalable analog photonics operations.
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n an age overrun with information, the ability to
process vast volumes of data has become crucial.
The proliferation of microelectronics has enabled
the emergence of next-generation industries to
support emerging artificial-intelligence services
and high-performance computing. These data-inten-
sive enterprises rely on continual improvements in
hardware—and the demand for data will continue to
grow as smart gadgets multiply and become ever more
integrated into our daily lives. Unfortunately, however,
those prospects are running up against a stark reality:
the exponential hardware scaling in digital electronics,
most famously embodied in Moore’s law, is fundamen-
tally unsustainable.
This situation suggests that the time is ripe for
a radically new approach: neuromorphic photon-
ics. An emerging field at the nexus of photonics and
neuroscience, neuromorphic photonics combines the
advantages of optics and electronics to build systems
with high efficiency, high interconnectivity and high
information density. In the pages that follow, we take
alook at some of the traditional challenges of photonic
information processing, describe the photonic neural-
network approaches being developed by our lab and
others, and offer a glimpse at the future outlook for
this emerging field.
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Moving beyond Moore

In the latter half of the 20" century, microprocessors
faithfully adhered to Moore’s law, the well-known pre-
diction of exponentially improving performance. As
Gordon Moore originally predicted in 1965, the den-
sity of transistors, clock speed, and power efficiency
in microprocessors doubled approximately every 18
months for most of the past 60 years.

Yet this trend began to languish over the last decade.
A law known as Dennard scaling, which states that
microprocessors would proportionally increase in
performance while keeping their power consumption
constant, has broken down since about 2006; the result
hasbeen a trade-off between speed and power efficiency.
Although transistor densities have so far continued to
grow exponentially, even that scaling will stagnate once
device sizes reach their fundamental quantum limits
in the next ten years.

One route toward resolving this impasse lies in
photonicintegrated circuit (PIC) platforms, which have
recently undergone rapid growth. Photonic communica-
tion channels are not bound by the same physical laws
as electronic ones; as a result, photonic interconnects
are slowly replacing electrical wires as communica-
tion bottlenecks worsen. PICs are becoming a key
part of communication systems in data centers, where



Neuromorphic photonics combines the advantages of optics
and electronics to build systems with high efficiency, high
interconnectivity and high information density.

microelectronic compatibility and high-yield, low-cost
manufacturing are crucial. Because of their integration,
PICs can allow photonic processing at a scale impos-
sible with discrete, bulky optical-fiber counterparts,
and scalable, CMOS-compatible silicon-photonic sys-
tems are on the cusp of becoming a commercial reality.

PICs have several unique traits that could enable
practical, scalable photonic processing and could leap-
frog the current stagnation of Moore’s law-like scaling
in electronic-only settings:

Speed. Electronic microprocessor clock rates cannot
exceed about four GHz before hitting thermal-dissipation
limits, and parallel architectures, such as graphic pro-
cessing units, are limited to even slower timescales. In
contrast, each channel in a photonic system, by default,
can operate at upwards of twenty gigahertz to support
fiber optic communication rates.

Information density. Paradoxically, despite the large
sizes of on-chip photonic devices—whose lower bound
on size must exceed the wavelength of the light that
travels through them—PICs can pack orders of mag-
nitude more information in every square centimeter.
One reason is that photonic signals operate much
faster, thereby shuffling much more data through the
system per second. Another is that lightwaves exhibit
the superposition property, which allows for optical
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multiplexing: waveguides can carry many signals along
different wavelengths or time slots simultaneously
without taking up additional space. This combination
enables an enormous amount of information—easily
more than one terabyte per second—to flow through a
waveguide only half a micron wide.

Energy efficiency. Photonic operations have the poten-
tial to consume orders of magnitude less power than
digital approaches. This property comes from so-called
linear photonic operations (that is, those that can be
described using linear algebra). Transmission elements
are sometimes considered to dissipate no energy; how-
ever, it always takes energy to generate, modulate and
receive light signals. Nonetheless, the lack of a funda-
mental energy cost per operation means that photonic
processors may not be subject to the unfavorable scaling
laws that have stymied further performance returnsin
electronic systems.

Photonic signal processing

Optical signal processing has a rich history, but opti-
cal systems have had difficulty achieving scalability in
computing. Extensive research has focused on imple-
menting optical-computing operations using both digital
bits and continuous-valued analog signals. Concepts
for neuro-inspired photonic computing originally

Photonic neural network

waveguide

Von Neumann architectures (left), relying on sequential input-output through a central processor, differ fundamentally
from more decentralized neural-network architectures (middle). Photonic neural nets (right] can solve the interconnect
bottleneck by using one waveguide to carry signals from many connections (easily N>~10,000) simultaneously.
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envisioned systems that used vertically oriented light
sources or spatial light modulators together with free-
space holographic routing. Many researchers imagined
that an optical computer would consist of a 3-D holo-
graphic cube programmed to route signals between
arrays of LEDs.

Although optical logic devices later developed into
the switches and routers that form today’s telecom-
munications infrastructure, optical computing did not
achieve the same level of success. Researchers realized
that the scaling laws for electronic components could
continue to address the bottlenecks in traditional pro-
cessors for many years to come. The ceaseless march of
Moore’s law meant that, while optical computing sys-
tems might outperform electronics in the short term,
microprocessors would eclipse them in several years.

A close look at the hardware reveals that the past
challenges of optical computing—and, particularly,
optical neural computing—lay chiefly in a few factors:
the continued favorable scaling of electronic devices,
the packaging difficulties associated with free-space
coupling and holographic interconnects, and the diffi-
culty in shrinking optical devices. Now, about 30 years
later, the landscape has changed tremendously. With
Moore’s law confronting fundamental limitations, the
scaling of electronics can no longer be taken for granted.
Meanwhile, large-scale integration techniques are start-
ing to emerge in photonics, driven by telecommunication
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Electronic vs. photonic neural nets

Neuromorphic architectures potentially sport better speed-
to-efficiency characteristics than state-of-the-art electronic
neural nets (such as IBM’s TrueNorth, Stanford University’s
Neurogrid, the University of Heidelburg’'s HICANNJ, as
well as advanced digital electronic systems (such as the
University of Manchester’s SpiNNaker).
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applications and a market need for increased informa-
tion flow both between and within processors.

These changes have led to an explosion in PICs,
which are already finding their way into fast Ethernet
switches in servers and data centers. Microwave photon-
ics are also emerging as a contender for radio-frequency
applications, now enabled by the low cost of microchip
photonic integrated components. Researchers have
implemented digital photonic devices in various tech-
nologies, including fibers, waveguides, semiconductor
devices and resonators.

Both the analog and the digital approaches to optical
computing, however, still face challenges. Increasing
the number of analog operations leads to noise and
degrades signal integrity, limiting the potential com-
plexity of optical processors. And, while digital systems
filter out noise during every step and can fix errors after
they occur—making it easy for engineers to design com-
plex systems with many interacting components—the
high scaling cost of digital photonic devices makes this
approach both prohibitively expensive and impractical.

Photonic neural networks

Neural network approaches represent a hybrid between
the purely digital and analog approaches, allowing for
more efficient processors that are both less resource-inten-
sive and robust to noise. But what is a neural network?

Most modern microprocessors follow the so-called
von Neumann architecture, in which machine instruc-
tions and data are stored in memory and share a central
communication channel, or bus, to a processing unit.
Instructions define a procedure to operate on data,
which is continually shuffled back and forth between
memory and the processor.

Neural networks function quite differently.
Individually, neurons can perform simple operations
such as adding inputs together or filtering out weaker
signals. In groups, however, they can implement far
more complex operations through the formation of
networks. Instead of using digital 0’s and 1's, neural net-
works represent information in analog signals, which
can take the form of either continuous real-number
values or of spikes in which information is encoded in
the timing between short pulses. Rather than abiding
by a sequential set of instructions, neurons process
data in parallel and are programmed by the connec-
tions between them.

The input into a particular neuron is a linear com-
bination—also referred to as a weighted addition—of



Rather than abiding by a sequential set of instructions,
neurons process data in parallel and are programmed by the

connections between them.

the output of other neurons. These connections can be
weighted with negative and positive values, respec-
tively, which are called (borrowing the language of
neuroscience) inhibitory and excitatory synapses. The
weighting is therefore represented as a real number,
and the interconnection network can be expressed as
a matrix.

Photonics appears to be an ideal technology with
which to implement neural networks. The greatest
computational burden in neural networks lies in the
interconnectivity: in a system with N neurons, if every
neuron can communicate with every other neuron (plus
itself), there will be N? connections. Just one more neuron
adds N more connections—a prohibitive situation if N
is large. Photonic systems can address this problem in
two ways: waveguides can boost interconnectivity by
carrying many signals at the same time through optical
multiplexing; and low-energy, photonic operations can
reduce the computational burden of performing linear
functions such as weighted addition. For example, by
associating each node with a color of light, a network
could support N additional connections without nec-
essarily adding any physical wires.

We can understand this better through the example
of a multiply-accumulate (MAC) operation. Each such
operation represents a single multiplication, followed
by an addition. Since, mathematically, MAC operations
comprise dot products, matrix multiplications, convo-
lutions and Fourier transforms, they underlie much of
high-performance computing. They also constitute the
most costly operations in both hardware-based neural
networks and machine-learning algorithms. In the
digital domain, MACs occur in a serial fashion, which
means that the time and energy costs increase with the
number of inputs.

In contrast, passive lightwave devices, such as
wavelength-sensitive filters, do not inherently dissipate
energy and can efficiently perform such operations in
parallel. They can therefore greatly enhance high per-
formance computing, especially systems that rely on
matrix multiplication. In addition, reprogrammabil-
ity is possible with tunable photonic elements. These
advantages have motivated researchers to investigate a

A laser neural
network being
tested at Princeton
University.

Princeton University Lightwave Lab, 2017

variety of photonic neural models that exhibit a range
of interesting properties.

A spectrum of implementations

One such photonic neural model, currently under inves-
tigation in our lab, involves engineering dynamical
lasers to resemble the biological behavior of neurons.
Laser neurons, operating optoelectronically, can operate
at approximately 100 million times the speed of their
biological counterparts, which are rate-limited by bio-
chemical interactions. These lasers represent neural
spikes via optical pulses by operating under a dynami-
cal regime called excitability. Excitability is a behavior
in feedback systems in which small inputs that exceed
some threshold cause a major excursion from equilib-
rium—which, in the case of a laser neuron, releases an
optical pulse. This event is followed by a recovery back
to equilibrium, the so-called refractory period.

We have found a theoretical link between the dynam-
ics of semiconductor lasers and a common neuron model
used in computational neuroscience, and have demon-
strated how a laser with an embedded graphene section
could effectively emulate such behavior. Building from
these results, a number of research groups have fabri-
cated, tested and proposed laser neurons with various
feedback conditions. These include two-section models
in semiconductor lasers, photonic-crystal nanocavities,
polarization-sensitive vertical cavity lasers, lasers with
optical feedback or optical injection, and linked photo-
detector—laser systems with receiverless connections or
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Left: A photonic neural network that can be implemented in silicon photonics. Right: The on-chip system with modulator
neurons displays a characteristic oscillation called a Hopf bifurcation, which confirms the presence of an integrated neural
network. Princeton University Lightwave Lab, 2017/ A. Tait et al., Sci. Rep. 7, 7430 (2017).

resonant tunneling. A recently demonstrated approach
based on optical modulators has the potential to exhibit
much lower conversion costs from one processing
stage to another, and to be fully integrated on silicon-
photonic platforms.

Toward scalable networks

Researchers have lately investigated interconnection
protocols that can tune to any desired network con-
figuration. Arbitrary weights allow a wide array of
potential applications based on classical neural net-
works. Several notable approaches use complementary
physical effects in this regard.

Broadcast-and-weight. A broadcast-and-weight neural
network architecture, demonstrated by our group at the
Princeton Lightwave Lab, uses groups of tunable filters
to implement weights on signals encoded onto multiple
wavelengths. Tuning a given filter on and off resonance
changes the transmission of each signal through that
filter, effectively multiplying the signal with a desired
weight. The resulting weighted signals travel into a
photodetector, which can receive many wavelengths
in parallel to perform a summing operation.

Broadcast-and-weight takes advantage of the enor-
mous information density available to on-chip photonics
through the use of optical multiplexing, and is compat-
ible with a number of laser neuron models. Filter-based
weight banks have also been investigated both theoreti-
cally and experimentally in the form of closely packed
microring filters, prototyped in a silicon-photonic
platform. And the interconnect architecture of a fully
integrated superconducting optoelectronic network
recently proposed by scientists at the U.S. National
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Institute of Standards and Technology—and said to
offer potentially unmatched energy efficiency—could
be compatible with broadcast-and-weight.

Coherent. A coherent approach, which uses destruc-
tive or constructive interference effects in optical
interferometers to implement a matrix-vector operation
on incoming signals, was recently demonstrated by a
research team led by Marin Soljac¢i¢ and Dirk Englund
and at the Massachusetts Institute of Technology, USA.
In such an architecture there is no need to convert from
the optical domain to the electrical domain; hence, inter-
facing a coherent system with photonic, nonlinear nodes
(for example, based on the Kerr effect) could in principle
allow for energy efficient, passive all-optical processors.

The coherent approach is, however, limited to only
one wavelength, and requires devices much larger
than tunable filters, which puts a cap on the infor-
mation density that the approach can achieve in its
current form. In addition, all-optical interconnects
must grapple with both amplitude and phase, and no
solution has yet been proposed to prevent phase noise
accumulation from one stage to another. Nonetheless,
the investigation of large-scale networking schemes
is a promising direction for the integration of various
technologies in the field towards highly scalable on-
chip photonic systems.

Reservoir computing. A contrasting approach to
tunable neural networks being pursued by a number
of labs, reservoir computing extracts useful information
from a fixed, possibly nonlinear system of interacting
nodes. Reservoirs require far fewer tunable elements
than neural-network models to run effectively, making



Neuromorphic photonic processing has the potential to one day
usher in a paradigm shift in computing—creating a smarter,

more efficient world.

them less challenging to implement in hardware; how-
ever, they cannot be easily programmed. These systems
have utilized optical-multiplexing strategies in both
time and wavelength. Experimentally demonstrated
photonic reservoirs have displayed state-of-the-art per-
formance in benchmark classification problems, such
as speech recognition.

Marching ahead

It remains to be seen in what ways photonic processing
systems will complement microelectronic hardware, but
current technological developments look promising. For
example, the fixed cost of electronic-to-photonic con-
version is no longer as energetically unfavorable as in
the past. A modern silicon-photonic link can transmit
a photonic signal using only femtojoules of energy per
bit of information, whereas thousands of femtojoules of
energy are consumed per operation in even the most
efficient digital electronic processors, including IBM’s
TrueNorth cognitive computing chip and Google’s ten-
sor processing unit.

The comparisons should get better still as perfor-
mance scaling in optoelectronic devices continues to
improve. New modulators or lasers based on plasmonic
localization, graphene modulation or nanophotonic
cavities have the potential to increase efficiency. The
next generation of photonic devices could potentially
consume only hundreds of attojoules of energy per time
slot, allowing analog photonic MAC-based processors
to consume even less per operation.

In light of these developments, photonic neural net-
works could find a place in many applications. These
systems can act as a coprocessor for performing compu-
tationally intense linear operations—including MACs,
Fourier transforms and convolutions—by implementing
them in the photonic domain, potentially decreasing
the energy consumption and increasing the through-
put of signal processing, high-performance computing
and artificial-intelligence algorithms. This could be a
boon for data centers, which increasingly depend on
such operations and have consistently doubled their
energy consumption every four years.

Photonic processors also have unmatched speeds and
latencies, which make them well suited for specialized
applications requiring either real-time response times
or fast signals. One example is a front-end processor in
radio-frequency transceivers. As the wireless spectrum
becomes increasingly overcrowded, the use of large,
adaptive phased-array antennas that receive many more
radio waves simultaneously may soon become the norm.
Photonic neural networks could perform complex sta-
tistical operations to extract important data, including
the separation of mixed signals or the classification of
recognizable radiofrequency signatures.

Still another application example lies in low-latency,
ultrafast control systems. It’s well understood that
recurrent neural networks can solve various problems
that involve minimizing or maximizing some known
function. A processing method known as Hopfield
optimization requires the solution to such a problem
during each step of the algorithm, and could utilize
the short convergence times of photonic networks for
nonlinear optimization.

Fiber optics once rendered copper cables obsolete
for long-distance communications. Neuromorphic
photonic processing has the potential to one day usher
in a similar paradigm shift in computing—creating a
smarter, more efficient world.

Mitchell A. Nahmias, Bhavin J. Shastri, Alexander N. Tait,
Thomas Ferreira de Lima and Paul R. Prucnal (prucnal@
princeton.edu) are with the Department of Electrical Engi-
neering, Princeton University, Princeton, N.J., USA.
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