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Abstract: As society’s appetite for information continues
to grow, so does our need to process this information with
increasing speed and versatility. Many believe that the
one-size-fits-all solution of digital electronics is becom-
ing a limiting factor in certain areas such as data links,
cognitive radio, and ultrafast control. Analog photonic
devices have found relatively simple signal processing
niches where electronics can no longer provide sufficient
speed and reconfigurability. Recently, the landscape for
commercially manufacturable photonic chips has been
changing rapidly and now promises to achieve economies
of scale previously enjoyed solely by microelectronics.
By bridging the mathematical prowess of artificial neu-
ral networks to the underlying physics of optoelectronic
devices, neuromorphic photonics could breach new
domains of information processing demanding signifi-
cant complexity, low cost, and unmatched speed. In this
article, we review the progress in neuromorphic photon-
ics, focusing on photonic integrated devices. The chal-
lenges and design rules for optoelectronic instantiation
of artificial neurons are presented. The proposed pho-
tonic architecture revolves around the processing network
node composed of two parts: a nonlinear element and a
network interface. We then survey excitable lasers in the
recent literature as candidates for the nonlinear node and
microring-resonator weight banks as the network inter-
face. Finally, we compare metrics between neuromorphic
electronics and neuromorphic photonics and discuss
potential applications.
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1 Introduction to neuromorphic
engineering

The success of digital electronics has created a data-hun-
gry consumer society, which in turn reinvested in more
capable, faster, and cheaper machines. For decades, the
transistor count of CPUs doubled every 2 years, a trend
that became known as Moore’s law. Microprocessor clock
rates also increased exponentially, but current leakage in
nanometric nodes became prevalent, causing a halt to this
growth at about 4 GHz [1]. At the same time, the past decade
has seen the breakdown of Dennard scaling [2]; the power
density of microelectronic chips no longer stays constant as
they get denser, that is, smaller transistors do not consume
less power. The recent shift to multicore scaling alleviated
these constraints, but the breakdown of Dennard scaling
has limited the number of cores than can simultaneously be
powered on with a fixed power budget and heat extraction
rate, giving rise to the “dark silicon” phenomenon [3]. Pro-
jections for the 8 nm node indicate that more than 50% of
the chip will be “dark” [3]. Fundamentally, these issues can
be traced to two primary physical bottlenecks: the band-
width limitations of metal interconnects and the energy
consumption and subsequently heat generation of digital
switching [4]. In summary, operating speed and power effi-
ciency of CPUs have reached physical barriers that cannot
be addressed through Dennard scaling. Consequently, this
has opened up new opportunities in unconventional infor-
mation processing architectures, which include an array of
different processing modalities [5].

The computational efficiency, measured in joules per
MAC (multiply and accumulate operation, as revisited in
Section 5), have been scaling similarly (Koomey’s law),
but it has slowed down significantly in the last few years;
it has only improved by a factor of about two over the last
14 years, and it is now reaching an asymptotic power effi-
ciency wall of about 100 pJ/MAC.
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Respecting power budgets is now a top priority for
digital processors. Data centers, Wi-Fi routers, and Inter-
net traffic represent a tremendous electric energy con-
sumption. Current trends indicate a shift of electricity
usage from consumer device use to network and data
centers [6, 7]. In the worst-case scenario, at the rate at
which societal consumption and production of data is
growing, it is predicted that fixed-access networks (Wi-Fi
and LAN) and data centers will consume up to 33% of the
world’s energy use [6].

To counter that trend, power-aware large-scale inte-
gration techniques in photonics are just emerging, being
pushed forward by data communication applications and
a market need for increased information flow between
processors, on both macro and micro scales [7, 8]. This has
led to an explosion in photonic integrated circuits (PIC),
which are already finding their way into fast Ethernet
switches for servers and supercomputers and will likely
emerge in more traditional processor architectures as
electronic interconnects fail to keep up with data volume.
The average energy efficiency of the world’s fastest super-
computers lies in the order of 1 nJ/FLOP [Gre], where FLOP
stands for floating-point operation, a standard computing
unit. In green data centers and high-performance comput-
ers, there is an urgent need for unconventional, special-
purpose coprocessors with efficiencies beyond 1 nJ/FLOP,
with a caveat: these coprocessors must operate at the
same throughput handled by the high-speed digital and
analog circuits it interfaces with, so they do not become
a bottleneck.

This efficiency level is not fundamentally impossi-
ble. In fact, the human brain is estimated to being able to
compute an amazing 10 MAC/s using only 20 W of power
[9] IMAC operation; cf. Section 5, similar to FLOP but more
appropriate for digital signal processors (DSP)]. It does
this with 10" neurons with spike firing rate of ~1 Hz but
with a large number of interconnects per neuron (10*),
highlighting the importance of distributed processing (see
Section 2.1). The calculated computational efficiency for
the brain is therefore nine orders of magnitude beyond
that of current supercomputers (<aJ/MAC). “Neuro-
morphic computing” offers hope to building large-scale
“bioinspired” hardware for specialized processing while
attempting computational efficiencies past the von
Neumann efficiency wall toward those of a human brain.

1.1 Neuromorphic microelectronics

Various technologies have demonstrated large-scale
spiking neural networks (SNNs) in electronics, including,
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notably, Neurogrid as part of Stanford University’s Brains
in Silicon program [10], IBM’s TrueNorth as part of the
Defense Advanced Research Projects Agency’s (DARPA)
SyNAPSE program [11], HICANN as part of the University
of Heidelberg’s FACETS/BrainScaleS project [12], and
University of Manchester’s neuromorphic chip as part of
the SpiNNaker project [13]; the latter two are under the
flagship of the European Commission’s Human Brain
Project [14].

Whereas von Neumann processors rely on a single
point-to-point link between memory and CPU, a neuro-
morphic processor typically requires a large number of
interconnects (i.e. ~100 s of many-to-one fan-in per pro-
cessor) [9]. This requires a significant amount of multi-
casting, resulting in a distributed communication burden.
This, in turn, introduces fundamental performance
challenges that result from capacitive loads and radia-
tive physics in electronic links in addition to the typical
bandwidth-distance-energy limits of point-to-point con-
nections [15]. Realistically scalable systems are ultimately
forced to adopt a combination of crossbar time-division
multiplexing (TDM) and/or packet switching (e.g. [11]).
Address-event representation (AER) introduces the over-
head of representing spike as digital codes instead of
physical pulses. This abstraction at the architectural level
allows virtual interconnectivity to exceed wire density by
a factor related to the sacrificed bandwidth, which can
be orders of magnitude [16]. SNNs based on AER are thus
effective at targeting biological timescales and the asso-
ciated application space: real-time applications (object
recognition) in the kHz regime [11, 13] and accelerated
simulation in the low MHz regime [12]. However, neu-
romorphic processing for high-bandwidth applications
that require GHz operation per neuron (such as sensing
and manipulating the radiospectrum and for hypersonic
aircraft control) must take a fundamentally different
approach to interconnection.

1.2 Why neuromorphic photonics?

Photonics has revolutionized information transmission
(communication and interconnects), whereas electron-
ics, in parallel, has dominated information transforma-
tion (computation). This leads naturally to the following
question: how can we unify the advantages of the two as
effectively as possible? [17]. CMOS gates only draw energy
from the rail when and where called upon; however, the
energy required to driving an interconnect from one gate
to the next dominates CMOS circuit energy use. Relay-
ing a signal from gate to gate, especially using a clocked
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scheme, induces penalties in latency and bandwidth com-
pared to an optical waveguide passively carrying multi-
plexed signals.

This suggests that starting up a new architecture from
a photonic interconnection fabric supporting nonlinear
optoelectronic devices can be uniquely advantageous in
terms of energy efficiency, bandwidth, and latency, side-
stepping many of the fundamental trade-offs in digital
and analog electronics. It may be one of the few practi-
cal ways to achieve ultrafast, complex on-chip processing
without consuming impractical amounts of power [18].

Complex photonic systems have been largely unex-
plored due to the absence of a robust photonic integration
industry. Recently, however, the landscape for manufac-
turable photonic chips has been changing rapidly and
now promises to achieve economies of scale previously
enjoyed solely by microelectronics. In particular, a new
photonic manufacturing hybrid platform that combines
in the same chip both active elements (e.g. lasers and
detectors) and passive elements (e.g. waveguides, resona-
tors, and modulators) is emerging [19]. A neuromorphic
photonic approach based on this platform could poten-
tially operate 6-8 orders of magnitude faster than neuro-
morphic electronics when accounting for the bandwidth
reduction of virtualizing interconnects [20] (cf. Figure 1).

1.3 Emergence of neuromorphic photonics

The key criteria for nonlinear elements to enable a scal-
able computing platform include [17] thresholding,
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Figure 1: Speed and efficiency metrics that are accessible by
various neuromorphic hardware platforms.

On the top right, the two photonic neuron platforms studied in Ref.
[20]: hybrid 111-V/Si stands for 11I-V/silicon hybrid platform SNN PIC.
Sub-A stands for subwavelength photonics. The other points refer
to the recent electronic neuromorphic hardware, as discussed in
Section 5. The regions highlighted in the graph are approximate
based on qualitative trade-offs of each technology.
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fan-in, and cascadability. Past approaches to optical
computing have met challenges realizing these criteria;
so far, no optical logic device satisfying all of them has
been proposed. More recent investigations, introduced in
the following sections, have concluded that a photonic
neuromorphic processor could satisfy them by imple-
menting a model of a neuron as opposed to the model of
a logic gate.

Early work in neuromorphic photonics involved fiber-
based spiking approaches for learning, pattern recogni-
tion, and feedback [21-23]. Spiking behavior resulted from
a combination of semiconductor optical amplifiers (SOA)
together with a highly nonlinear fiber thresholder, but
they were neither excitable nor asynchronous and there-
fore not suitable for scalable, distributed processing in
networks.

“Neuromorphism” implies a strict isomorphism
between artificial neural networks and optoelectronic
devices (Section 2). There are two research challenges
necessary to establish this isomorphism: the nonlinear-
ity (equivalent to thresholding) in individual neurons, as
discussed in Section 3, and the synaptic interconnection
(related to fan-in and cascadability) between different
neurons, as discussed in Section 4. Once the isomor-
phism is established and large networks are fabricated,
we anticipate that the computational neuroscience and
software engineering will have a new optimized processor
for which they can adapt their methods and algorithms
(cf. Section 6).

Recent investigations have concluded that a photonic
subcircuit called the processing network node (PNN)
could satisfy them by implementing a model of a neuron
as opposed to the model of a logic gate.

Photonic unconventional computing primitives such
as the PNN (Section 3) address the traditional problem of
noise accumulation by interleaving physical representa-
tions of information. Representational interleaving, in
which a signal is repeatedly transformed between coding
schemes (digital-analog) or physical variables (electronic-
optical), can grant many advantages to computation and
noise properties. From an engineering standpoint, the
logical function of a nonlinear neuron can be thought
of as increasing signal-to-noise ratio (SNR) that tends to
degrade in linear systems, whether that means a continu-
ous nonlinear transfer function suppressing analog noise
or spiking dynamics curtailing pulse attenuation and
spreading. As a result, we neglect purely linear PNNs as
they do not offer mechanisms to maintain signal fidelity
in a large network in the presence of noise.

The optical channel alone is highly expressive and
correspondingly very sensitive to phase and frequency
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noise. For example, the networking architecture proposed
in Section 4 relies on wavelength-division multiplexing
(WDM) for interconnecting many points in a photonic
substrate together. Any proposal for networking compu-
tational must address the issue of practical cascadabil-
ity: transferring information and energy in the optical
domain from one neuron to many others and exciting
them with the same strength without being sensitive to
noise. This is notably achieved, for example, by encoding
information in energy pulses that can trigger stereotypi-
cal excitation in other neurons regardless of their analog
amplitude.

In this article, we review the progress in neuromor-
phic photonics research, focusing especially on integrated
photonic devices. An elegant parallel between neural net-
works and optoelectronic devices such as excitable lasers
can be established and exploited for processing. Section 2
introduces the concept of a “photonic neuron” followed
by a discussion on its feasibility. Then, Section 3 presents
a review on recent research on optical devices that could
be used as a primitive node in photonic neural networks.
Section 4 presents a networking architecture that effi-
ciently channelizes the spectrum of an integrated wave-
guide. Finally, Section 5 provides a quantitative analysis
of neuromorphic photonics in the context of electronic
approaches.

2 Photonic neuron

2.1 What is an artificial neuron?

Neuroscientists research artificial neural networks as an
attempt to mimic the “natural processing” capabilities of
the brain. These networks of simple nonlinear nodes can
be taught (rather than programmed) and reconfigured
to best execute a desired task; this is called “learning”.
Today, neural nets offer state-of-the-art algorithms for
machine intelligence such as speech recognition, natural
language processing, and machine vision [24].

Three elements constitute a neural network: a set of
nonlinear nodes (neurons), configurable interconnec-
tion (network), and information representation (coding
scheme). An elementary illustration of a neuron is shown
in Figure 2. The network consists of a weighted directed
graph, in which connections are called synapses. The
input of a neuron is a linear combination (or weighted
addition) of the outputs of the neurons connected to it.
Then, the particular neuron integrates the combined
signal and produces a nonlinear response, as represented
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Figure 2: Nonlinear model of a neuron.

Note the three parts: (i) a set of “synapses” or “connecting links”;
(ii) an “adder” or “linear combiner”, performing weighted addition;
and (iii) a nonlinear “activation function”. From Ref. [18].

by an “activation function”, usually monotonic and
bounded.

Three generations of neural networks were histori-
cally studied in computational neuroscience [25]. The first
was based on the McCulloch-Pitts neural model, which
consists of a linear combiner followed by a step-like acti-
vation function (binary output). These neural networks
are Boolean-complete, that is, they have the ability of sim-
ulating any Boolean circuit and are said to be universal
for digital computations. The second generation imple-
mented analog outputs, with a continuous activation
function instead of a hard thresholder. Neural networks
of the second generation are universal for analog compu-
tations in the sense that they can uniformly approximate
arbitrarily well any continuous function with a compact
domain [25]. When augmented with the notion of “time”,
recurrent connections can be created and exploited to
create attractor states [26] and associative memory [27] in
the network.

Physiological neurons communicate with each other
using pulses called action potentials or spikes. In tradi-
tional neural network models, an analog variable is used
to represent the firing rate of these spikes. This coding
scheme called “rate coding” was believed to be a major, if
not the only, coding scheme used in biology. Surprisingly,
there are some fast analog computations in the visual
cortex that cannot possibly be explained by rate coding.
For example, neuroscientists demonstrated in the 1990s
that a single cortical area in macaque monkeys is capable
of analyzing and classifying visual patterns in just 30 ms in
spite of the fact that these neurons’ firing rates are usually
below 100 Hz (i.e. less than 3 spikes in 30 ms) [25, 28, 29],
which directly challenges the assumptions of rate coding.
In parallel, more evidence was found that biological
neurons use the precise timing of these spikes to encode
information, which led to the investigation of a third gen-
eration of neural networks based on a “spiking neuron”.
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The simplicity of the models of the previous genera-
tions precluded the investigation of the possibilities of
using “time” as resource for computation and commu-
nication. If the “timing” of individual spikes itself carry
analog information (“temporal coding”), then the energy
necessary to create such spike is optimally employed to
express information. Furthermore, Maass showed that
this third generation is a generalization of the first two
and, for several concrete examples, can emulate real-
valued neural network models while being more robust to
noise [25].

For example, one of the simplest models of a spiking
neuron is called “leaky integrate-and-fire” (LIF), as
described in Eq. (1). It represents a simplified circuit model
of the membrane potential of a biological spiking neuron.

EVAG)

T () 1)

=—é(vm(t)—VL)+1

app

if v_(6)>V,, ., then release a spike and set V_() - V__,
where V_(t) is the membrane voltage, R is the membrane
resistance, V| is the equilibrium potential, and Iapp is the
applied current (input). More biorealistic models, such as
the Hodgkin-Huxley model, involve several ordinary dif-
ferential equations and nonlinear functions.

However, simply simulating neural networks on a
conventional computer, be it of any generation, is costly
because of the fundamentally serial nature of CPU archi-
tectures. Biorealistic SNNs present a particular challenge
because of the need for fine-grained time discretization
[30]. Engineers circumvent this challenge by employing
an event-driven simulation model that resolves this issue
by storing the time and shape of the events expanded in a
suitable basis in a simulation queue. Although simplified
models do not faithfully reproduce key properties of corti-
cal spiking neurons, it allows for large-scale simulations
of SNNs, from which key networking properties can be
extracted. These costs defeat the purpose of using spiking
neurons for engineering applications.

Alternatively, one can build an unconventional, dis-
tributed network of nonlinear nodes that directly use
the physics of nonlinear devices or excitable dynamical
systems, significantly dropping energetic cost per bit.

Here, we will discuss recent advances in neuromor-
phic photonic hardware and the constraints to which
particular implementations must subject, including
accuracy, noise, cascadability, and thresholding. A suc-
cessful architecture must tolerate eventual inaccuracies
and noise, indefinite propagation of signals, and provide
mechanisms to counteract noise accumulation as the
signal traverses across the network.
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2.2 Basic requirements for a photonic
neuron

An artificial neuron described in Figure 2 must perform
three basic mathematical operations: vector multiplica-
tion (weighting), spatial summation (addition), and a
nonlinear transformation (activation function). Moreover,
the inputs to be weighted in the first stage must be of the
same nature of the output — in the case considered here,
photons.

As the size of the network grows, additional mecha-
nisms are required at the hardware level to ensure the
integrity of the signals. The neuron must have a scalable
number of inputs, referred to as “maximum fan-in” (N),
which will determine the degree of connectivity of the
network. Each neuron’s output power must be strong
enough to drive at least N, others (“cascadability”). This
concept is tied closely with that of “thresholding”: the
SNR at the output must be lower than at its input. Cascad-
ability, thresholding, and fan-in are particularly challeng-
ing to optical systems due to quantum efficiency (photons
have finite supply) and amplified spontaneous emission
(ASE) noise, which degrades SNR.

2.3 Photonic neuron module: PNN

A networkable photonic device with optical I/0, provided
that it is capable of emulating an artificial neuron, is
named a PNN [31]. Formulations of a photonic PNN can be
divided into two main categories: all-optical and optical-
electrical-optical (O/E/O), respectively classified accord-
ing to whether the information is always embedded in the
optical domain or switches from optical to electrical and
back. We note that the term “all-optical” is sometimes very
loosely defined in engineering articles. Physicists reserve
it for devices that rely on parametric nonlinear processes,
such as four-wave mixing. Here, our definition includes
devices that undergo nonparametric processes as well,
such as semiconductor lasers with optical feedback, in
which optical pulses directly perturb the carrier popula-
tion, triggering quick energy exchanges with the cavity
field that results in the release of another optical pulse.
WDM efficiently uses the spectral window of optical
waveguides, maximizing the information throughput in
a single waveguide. Therefore, it is highly desirable and
crucial to design a PNN that is compatible with WDM.
All-optical versions of a PNN must have some way to sum
multiwavelength signals, and this requires a population
of charge carriers. On the contrary, O/E/O versions could
make use of photodetectors (PD) to provide a spatial sum of
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WDM signals. The PD output could drive an E/O converter,
involving a laser or a modulator, whose optical output is a
nonlinear result of the electrical input. Instances of both
techniques are presented in Section 3.

2.3.1 All-optical PNNs

Coherent injection models are characterized by input
signals directly interacting with cavity modes, such that
outputs are at the same wavelength as inputs (Figure 3A).
Because coherent optical systems operate at a single
wavelength A, the signals lack distinguishability from one
another in a WDM-encoded framework. As demonstrated
in Ref. [32], the effective weight of coherently injected
inputs is also strongly phase dependent. Global optical
phase control presents a challenge in synchronized laser
systems but also affords an extra degree of freedom to
configure weight values.

Incoherent injection models inject light in a wave-
length A, to selectively modulate an intracavity property
that then triggers excitable output pulses in an output
wavelength A, (Figure 3B). A number of approaches
[33-36], including those based on optical pumping, fall
under this category. Although distinct, the output wave-
length often has a stringent relationship with the input
wavelength. For example, excitable micropillar lasers
[35, 37] are carefully designed to support one input mode
with a node coincident with an anti-node of the lasing
mode. In cases where the input is also used as a pump
[38-40], the input wavelength must be shorter than that
of the output to achieve carrier population inversion.

WDM networking introduces wavelength constraints
that conflict with the ones inherent to optical injection.

Output

ML gl
e g

2,20, 2

A b N )

Figure 3: General classification of semiconductor excitable lasers
based on (A) coherent optical injection electrical injection, (B) non-
coherent optical injection, and (C) full electrical injection. Each of
these lasers can be pumped either electrically or optically.
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One approach for networking optically injected devices is
to attempt to separate these wavelength constraints. In an
early work on neuromorphic photonics in fiber, this was
accomplished with charge-carrier-mediated cross-gain
modulation (XGM) in an SOA [21-23].

2.3.2 O/E/O PNNs

In this kind of PNN, the O/E subcircuit is responsible for
the weighted addition functionality, whereas the E/O is
responsible for the nonlinearity (Figure 3C). Each subcir-
cuit can therefore be analyzed independently. The analy-
sis of an O/E WDM weighted addition circuit is referred to
Section 4.

The E/O subcircuit of the PNN must take an elec-
tronic input representing the complementary weighted
sum of optical inputs, perform some dynamical or non-
linear process, and generate a clean optical output on
a single wavelength. Figure 4 classifies the six different
ways in which nonlinearities can be implemented in
an E/O circuit. The type of nonlinearity, corresponding
to different neural models, is separated into “dynami-
cal systems” and “continuous nonlinearities”, both of
which have a single input u and output y. A continu-
ous nonlinearity is described by a differential equation
y=f(y,u). This includes continuous-time recurrent
neural networks (CTRNNs) such as Hopfield networks.
The derivative of y introduces a sense of time, which
is required to consider recurrent networking, although
it does not exclude feedforward models where time
plays no role, such as perceptron models. A dynami-
cal system has an internal state X and is described by
x=g(¥, w); y=h(X, y, u), where the second differential
equation represents the mapping between the internal
state X and the output y. There are a wide variety of
spiking models based on excitability, threshold behav-
ior, and relaxation oscillations, covered, for example, in
Ref. [43].

Physical implementations of these nonlinearities can
arise from devices falling into roughly three categories:
pure electronics, electro-optic physics in modulators,
and active laser behavior (Figure 4). Figure 4A illustrates
spiking lasers, which are detailed in Section 3 and offer
perhaps the most promise in terms of garnering the full
advantage of recent theoretical results on spike process-
ing efficiency and expressiveness. Figure 4B is a spiking
modulator. The work in Ref. [44] might be adapted to fit
this classification; however, to the authors’ knowledge, an
ultrafast spiking modulator remains to be experimentally
demonstrated. Figure 4C illustrates a purely electronic
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Laser nonlinearity

Modulator nonlinearity
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Figure 4: Classification of O/E/O PNN nonlinearities and possible implementations.

(A) Spiking laser neuron. (B) Spiking modulator. (C) Spiking or arbitrary electronic system driving a linear electro-optic (E/O) transducer
— either modulator or laser. (D) Overdriven continuous laser neuron, as demonstrated in Ref. [41]. (E) Continuous modulator neuron, as
demonstrated in Ref. [42]. (F) Continuous purely electronic nonlinearity with optical output. From Ref. [18].

approach to nonlinear neural behavior. Linear E/O could
be done by either a modulator or a directly driven laser.
This class could encompass interesting intersections with
efficient analog electronic neurons in silicon [45, 46]. A
limitation of these approaches is the need to operate slow
enough to digitize outputs into a form suitable for elec-
tronic TDM and/or AER routing.

Figure 4D describes a laser with continuous nonline-
arity, an instantiation of which was recently demonstrated
in Ref. [41]. Figure 4E shows a modulator with continuous
nonlinearity, the first demonstration of which in a PNN
and recurrent network is presented in [42]. The pros and
cons between the schemes in Figure 4D and E are the same
ones brought up by the on-chip vs. off-chip light source
debate, currently under way in the silicon photonics com-
munity. On-chip sources could provide significant energy
savings [47]. They require the introduction of exotic mate-
rials to the silicon photonics process to provide optical
gain, but active research in this area has the goal of making
this feasible [48, 49]. The opposing school of thought
argues that on-chip sources are still a nascent technol-
ogy [50]. Whereas fiber-to-chip coupling presents practi-
cal issues [51], discrete laser sources are cheap and well
understood. Furthermore, on-chip lasers dissipate large
amounts of power [52], the full implications of which may
complicate system design [50]. Modulator-based neurons
could provide a more technologically feasible, although
lower performing, alternative to spiking laser neurons for
near-term large-scale integrated photonic neural systems.
In either case, the conception of a PNN module, consisting
of a photonic weight bank, detector, and E/O converter, as
a participant in a broadcast-and-weight network could be
applied to a broad array of neuron models and technologi-
cal implementations.

Both discussed all-optical and O/E/O PNN approaches
depend on charge carrier dynamics, whose lifetime even-
tually limits the bandwidth of the summation operation.
The O/E/O strategy, however, has a few advantages: it
can be modularized, it uses more standard optoelectronic
components, and it is more amenable to integration.
Therefore, here, we gave more attention to this strategy.
Moreover, although the E/O part of the PNN can involve any
kind of nonlinearity (Figure 4), not necessarily spiking, we
are focusing on spiking behavior because of its interesting
noise resistance and richness of representation. As such,
we study here excitable semiconductor laser physics with
the objective of directly producing optical spikes.

In this light, the PNN could be separated into three
parts, just like the artificial neuron: weighting, addition,
and neural behavior. Weighting and adding define how
nonlinear nodes can be “networked” together, whereas
the neural behavior dictates the “activation function”
shown in Figure 2. In Section 3, we review the recent devel-
opments of semiconductor excitable lasers that emulate
spiking neural behavior. In Section 4, we discuss a scal-
able WDM networking scheme.

3 PNN part I: excitable lasers

In the past few years, there has been a bloom of optoelec-
tronic devices exhibiting excitable dynamics isomorphic to
a physiological neuron. Excitable systems can be roughly
defined by three criteria: (a) there is only one stable state
at which the system can indefinitely stay at rest; (b) when
excited above a certain threshold, the system undergoes a
stereotypical excursion, emitting a “spike”; and (c) after
the excursion, the system decays back to rest in the course
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Figure 5: Excitable dynamics of the graphene excitable laser.

Blue and red curves correspond to input and output pulses, respectively. (A) Cutaway architecture of a hybrid InGaAsP-graphene-silicon eva-
nescent laser (not to scale) showing a terraced view of the center. (B) Cross-sectional profile of the excitable laser with an overlaid electric
field (E-field) intensity |E [* profile. (C~E) Excitable dynamics of the graphene “fiber” laser. (C) Excitatory activity (temporal integration of
nearby pulses) can push the gain above the threshold, releasing spikes. Depending on the input signal, the system can have a suppressed
response due to the presence of either subthreshold input energies (integrated power _|.|9(t)|2 dt) or (D) a refractory period during which the
laser is unable to pulse (regardless of excitation strength). (E) Restorative properties: repeatable pulse shape even when inputs have differ-

ent energies. Reproduced from Shastri et al. [39]. Licensed under CC BY.

of a “refractory period” during which it is temporarily less
likely to emit another spike.

3.1 Example of excitability behavior
analogous to LIF

Excitable behavior can be realized near the threshold of
a passively Q-switched two-section laser with saturable
absorber (SA). Figure 5A and B shows an example of inte-
grated design in a hybrid photonics platform. This device
comprises a III-V epitaxial structure with multiple quantum
well (MQW) region (the gain region) bonded to a low-loss
silicon rib waveguide that rests on a silicon-on-insulator
(SOI) substrate with sandwiched layers of graphene acting
as an SA region with a sandwiched heterostructure of
two monolayer graphene sheets and an hexagonal boron
nitride (hBN) spacer. The gain section of this structure is
electrically pumped. The full cavity structure includes III-V
layers bonded to silicon and a quarter-shifted wavelength
grating. The laser emits light along the waveguide struc-
ture into a passive silicon network. Figure 5C-E shows
experimental data from a fiber ring laser prototype, dem-
onstrating the key properties of excitability.

In general, the dynamics of a two-section laser com-
posed of a gain section and an SA can be described by
the Yamada model [Egs. (2)-(4)] [53]. This 3D dynamical
system, in its simplest form, can be described by the fol-
lowing undimensionalized equations [34, 37]:

d%tyG[A-G(t)—G(t)I(t)W(’-‘) @
d%P=VQ[B—Q(t)—aQ(f)I(f)] G
%t 7,[G()-QO) - 1I(6) +¢f (G), “

where G(t) models the gain, Q(f) is the absorption, I(t) is
the laser intensity, A is the bias current of the gain region,
B is the level of absorption, a describes the differen-
tial absorption relative to the differential gain, y, is the

relaxation rate of the gain, 7a is the relaxation rate of the
absorber, y, is the inverse photon lifetime, 6(t) is the time-
dependent input perturbations, and ¢f(G) is the spontane-
ous noise contribution to intensity; ¢ is a small coefficient.

In simple terms, if we assume electrical pumping at
the gain section, the input perturbations are integrated
by the gain section according to Eq. (2). An SA effectively
becomes transparent as the light intensity builds up in the
cavity and bleaches its carriers. It was shown in [34] that
the near-threshold dynamics of the laser described can be
approximated to Eq. (5):

460 __,, (60~ a)+00); ©)
dt
if G(t)>G,, ... then release a pulse and set G(t) >G,__,
where G(t) models the gain, y,, is the gain carrier relaxa-
tion rate, and A is the gain bias current. The input 6(t)
can include spike inputs of the form 0(t)=zi6i(t—ri)
for spike firing times 7, G, ., is the gain threshold, and
G__ ~0is the gain at transparency.

v (¢)

C
N

:_é(vm(t)—n)+lapp(t);

if v.()>V, .., then release a spike and set V_() > V__,
where V_(t) is the membrane voltage, R_ is the membrane
resistance, V| is the equilibrium potential, and Iapp is the
applied current (input).

One can note the striking similarity to the LIF
model in Eq. (1): setting the variables y,=1/R C_, A=V,
0(t) =Iapp(t)/RmCm, and G(t)=V_(t) shows their algebraic
equivalence. Thus, the gain of the laser G(t) can be thought
of as a virtual “membrane voltage”, the input current A as
a virtual “equilibrium voltage”, etc.

A remarkable difference can be observed between the
two systems, though: whereas in the neural cell membrane
the timescales are governed by an R _C_ constant of the
order of milliseconds, the carrier dynamics in lasers are
as fast as nanoseconds. Although this form of excitability
was found in two-section lasers, other device morpholo-

gies have also shown excitable dynamics. The advantage
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Table 1: Characteristics of recent excitable laser devices. Note that this table does not have a one-to-one correspondence with Figure 4,
because some of them are not E/O devices. However, we observed that devices A, D, and F belong to category 2.3.2(a) and device E

resembles more closely category 2.3.2(c).

Device Injection scheme Pump Excitable dynamics Refs.
A. Two-section gain and SA Electrical Electrical ~ Stimulated emission  [34-37, 39, 54-61]
B. Semiconductor ring laser Coherent optical Electrical  Optical interference [44, 62-65]
C. Microdisk laser Coherent optical Electrical  Optical interference [32, 66]
D. 2D Photonic crystal nanocavity? Electrical Electrical Thermal [67-69]
E. Resonant tunneling diode PD and laser diode® Electrical or incoherent optical Electrical Electrical tunneling [70-72]
F. Injection-locked semiconductor laser with Electrical Electrical Optical interference [73-83]
delayed feedback
G. Semiconductor lasers with optical feedback Incoherent optical Electrical Stimulated emission [84-90]
H. Polarization switching VCSELs Coherent optical Optical Optical interference [33,91,92]

aTechnically, this device is not an excitable laser but an excitable cavity connected to a waveguide.
The authors call it “excitable optoelectronic device” because the excitability mechanism lies entirely in an electronic circuit rather than the

laser itself.

of constructing a clear abstraction to the LIF model is that
it allows engineers to reuse the same methods developed
in the computational neuroscience community for pro-
gramming a neuromorphic processor. In the next section,
we present recent optical devices with excitable dynamics.

3.2 Semiconductor excitable lasers

Optical excitability in semiconductor devices are being
widely studied both theoretically and experimentally.
These devices include multisection lasers, ring lasers,
photonic crystal nanocavities, tunneling diode attached
to laser diodes, and semiconductor lasers with feedback,
as summarized in Table 1. We group them under the termi-
nology “excitable lasers” for convenience, but exceptions
are described in the caption of the table.

Generally speaking, these lasers use III-V quantum
wells or quantum dots for efficient light generation.
However, they fall into one of three injection categories
(illustrated in Figure 3) and possess very diverse excit-
ability mechanisms. It is difficult to group the rich dynam-
ics of different lasers — which often requires a system of
several coupled ordinary differential equations to repre-
sent it — using classification keywords. We focus on two
fundamental characteristics: the way each laser can be
modulated (injection scheme column) and on the physi-
cal effect that directly shapes the optical pulse (excitable
dynamics column).

The injection scheme of the laser will determine
whether it is compatible to all-optical PNNs (Section 2.3.1)
or O/E/O PNNs (Section 2.3.2). Some of them (B, C, and
H) operate free of electrical injection, meaning that bits of
information remain elegantly encoded in optical carriers.

However, as we have pointed out in Section 2.3, avoiding
the E/O conversion is much more difficult when you are
trying to build a weight-and-sum device compatible with
WDM, which is an essential building block for scalable
photonic neural networks (Section 4).

The excitable dynamics determines important prop-
erties such as energy efficiency, switching speed, and
bandwidth of the nonlinear node. The “optical interfer-
ence” mechanism typically means that there are two com-
peting modes with a certain phase relationship that can
undergo a 2n topological excursion and generating an
optical pulse in amplitude at the output port. This mecha-
nism is notably different from the others in which it does
not require an exchange of energy between charge carrier
populations and the cavity field. As a result, systems
based on this effect are not limited by carrier lifetimes
yet are vulnerable to phase noise accumulation. Other
mechanisms include photon absorption, stimulated emis-
sion, thermo-optic effect, and electron tunneling. There,
the electronic dynamics of the device governs the popula-
tion of charge carriers available for stimulated emission,
thereby dominating the timescale of the generated pulses.
Models of these mechanisms and how they elicit excit-
ability are comprehensively detailed in Ref. [93], but a
quantitative comparison between performance metrics of
lasers in Table 1 is still called for. Qualitatively, however,
excitable lasers can simultaneously borrow key properties
of electronic transistors, such as thresholding and cascad-
ability (cf. Section 1.3).

In addition to individual laser excitability, there have
been a few demonstrations of simple processing circuits.
Temporal pattern recognition [39] and stable recurrent
memory [39, 70, 74] are essential toy circuits that demon-
strate the basic aspects of network compatibility.
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3.3 Elemental circuits of excitable lasers

Although many neuromorphic semiconductor excitable
lasers have been proposed and demonstrated, few have
so far been interconnected in an integrated platform. In
this section, we discuss simple circuits that could be con-
structed using only two excitable lasers and that could
verify important properties of the tested technology. The
first one tests the property of cascadability, which funda-
mentally demonstrates that the excitable dynamics can
overcome noise and attenuation [44]. The second one tests
the capability of pattern recognition, which fundamen-
tally demonstrates the ability of such circuits to encode
and decode information present in spike timing.

3.3.1 Cascadability

As discussed in Section 2, the concept of cascadability
is crucial for creating strong recurrent connections and
neural networks of more than one neuron. Recurrent
connections are important in neuroscience because they
enable attractor networks and short-term information
retention, playing a crucial role in memory function and
recall [94]. Cascadability also enables the propagation
and multiplication of signals across the network, a neces-
sary requirement for distributed processing.
Cascadability has been proposed and numerically
demonstrated in both optically [44, 66] and electrically

T. Ferreira de Lima et al.: Progress in neuromorphic photonics =— 11

[39, 58, 60] injected lasers. Cascadability in optically
injected PNNs presents a challenge because optical inter-
ference is sensitive to optical phase noise. On the con-
trary, in O/E/O PNNs, it presents a challenge because
of the quantum efficiency limit — output pulses must
contain more photons than the inputs required to trigger
them. As discussed in Section 4, interconnection induces
a power penalty to the optical signal’s intensity. There-
fore, to drive a scalably large number of PNNs, amplifica-
tion could play a significant role in either the O/E or the
E/O stage.

A stable recurrent circuit was prototyped in an excita-
ble graphene fiber ring laser (Figure 6) [39]. This is a proof-
of-concept demonstration of cascadability and pulse
regeneration. This circuit represents a test of the device’s
ability to handle feedback and the stable shape of subse-
quent pulses is not only an indication of cascadability but
also of signal fidelity restoration.

3.3.2 Temporal pattern recognition

In the context of neurobiology, networks of spiking
neurons convert analog data (detected from the outside
world) into spike trains and recognize spatiotemporal
bit patterns. Spatiotemporal patterns play an important
role in both visual [95] and audio [96] cortical processing.
An interesting phenomenon that can happen in an SNN
with fixed delays is “polychronization”, as discovered by
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Figure 6: Self-recurrent bistable circuit.

(A) Set-up to test the self-referent connection. (B) Input and output waveforms. The first output pulse is fed back to the input after being delayed
by ~100 us, which initiates another excitatory pulse at the output. This recursive process results in a train of output pulses “ad eternum” at
fixed intervals. Inset shows an output pulse profile and sech? fitting curve. Reproduced from Shastri et al. [39]. Licensed under CC BY.
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Izhikevich [97]. A subset of a large network of neurons can
“polychronize” when a specific spatiotemporal stimulus is
presented to a small number of neurons, and that triggers
a repeatable, daisy-chain spiking pattern in the network.
The neurons activated by the input pattern forms a “poly-
chronous group”. Thus, the polychronous group can rec-
ognize a particular spatiotemporal pattern input into a
defined set of neurons. With synaptic plasticity, learning
could occur due to strengthening, appearance, or extinc-
tion of polychronous groups, adding an elastic memory
functionality to the network.

A simple pattern recognition circuit was prototyped
by cascading two excitable graphene fiber ring lasers
(Figure 7) with a delay  between them. The objective was
to distinguish (i.e. recognize) a specific input pattern: a
pair of pulses separated by a time interval At=t, equal to
the delay between the excitable lasers.

This simple circuit demonstrates important features
necessary for robust optical processing: well-isolated
input/output ports allow for the construction of feedfor-
ward networks, and the spatiotemporal recognition of
spikes allows the system to classify patterns. We expect
more complex recognition and decoding as the number of
neurons is increased.
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Figure 7: Temporal pattern recognition circuit.
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The recent progress in the field of integrated excitable
lasers is very encouraging. We identify in the literature
a collection of researchers in different parts of the world
producing responsible, scholarly work founded in experi-
mental validation and first principles. Today, multiproject
wafer services offer rapid prototyping of concept systems
in multiple platforms [98, 99], while device researchers are
working toward a powerful and versatile active/passive
photonic hybrid platform [19]. In addition, alternative
implementations of a PNN offer flexibility with respect
to which platform it could be instantiated. In summary,
these advances together with thorough qualitative analy-
sis have cleared the way for the creation of a reconfigura-
ble photonic neuromorphic processor.

4 PNN part Il: network architecture

4.1 Isomorphism to biological spiking
neuron

Neurons only have computational capabilities if they are
in a network. Therefore, an excitable laser (or spiking
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(A) Simple circuit with two cascaded graphene excitable lasers. (B) Measured output pulse peak power and pulse duration as a function

of the time interval between the two input pulses. (C) Measured input and output waveforms at specific instances: (i) At —7=- 45 us, (ii)
At=7=135 us, and (iii) At—-7=35 us. The output pulse energy is largest when At=7 showing the system only reacts to a specific spatiotem-
poral input pattern. Reproduced from Shastri et al. [39]. Licensed under CC BY.
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laser) can only be viewed as a neuron candidate if it is
contained in a PNN. The configurable analog connection
strengths between neurons, called weights, are as impor-
tant to the task of network processing as the dynamical
behavior of individual elements. In Section 3, we have dis-
cussed several proposed excitable lasers exhibiting neural
behavior and cascadability between these lasers. In this
section, we discuss the challenges involving the creation
of a network of neurons using photonic hardware, in par-
ticular, the creation of a weighted addition scheme for
every PNN. Tait et al. [31] proposed an integrated photonic
neural networking scheme called “broadcast-and-weight”
that uses WDM to support a large number of reconfigu-
rable analog connections using silicon photonic device
technology.

A spiking and/or analog photonic network consists
of three aspects: a protocol, a node that abides by that
protocol (the PNN), and a network medium that supports
multiple connections between these nodes. This section
will begin with broadcast-and-weight as a WDM protocol
in which many signals can coexist in a single waveguide
and all nodes have access to all the signals. Configurable
analog connections are supported by a novel device called
a microring resonator (MRR) weight bank (Figure 8). Sec-
tions 4.3 and 4.4 summarize the experimental investiga-
tions of MRR weight banks.

4.2 Broadcast-and-weight protocol

WDM channelization of the spectrum is one way to effi-
ciently use the full capacity of a waveguide, which can
have usable transmission windows up to 60 nm (7.5 THz
bandwidth) [103]. In fiber communication networks, a
WDM protocol called broadcast-and-“select” has been
used for decades to create many potential connections
between communication nodes [104]. In broadcast-and-
select, the active connection is selected not by altering
the intervening medium but rather by tuning a filter at the
receiver to drop the desired wavelength. Broadcast-and-
“weight” is similar but differs by directing multiple inputs
simultaneously into each detector (Figure 8B) and with a
continuous range of effective drop strengths between —1
and +1, corresponding to an analog weighting function.

The ability to control each connection, each weight,
independently is a crucial aspect of neural network
models. Weighting in a broadcast-and-weight network is
accomplished by a tunable spectral filter bank at each
node, an operation analogous to a neural weight. The
local state of the filters defines the interconnectivity
pattern of the network.
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Figure 8: Configurable analog weights in neuromorphic photonics.
(A) Broadcast-and-weight network. An array of source lasers outputs
distinct wavelengths (represented by solid color). These channels
are wavelength multiplexed (WDM) in a single waveguide (multi-
color). Independent weighting functions are realized by tunable
spectral filters at the input of each unit. Demultiplexing does

not occur in the network. Instead, the total optical power of each
spectrally weighted signal is detected, yielding the sum of the input
channels. The electronic signal is transduced to an optical signal
after nonlinear transformation. Adapted from Ref. [100]. (B) Tunable
spectral filter constructed using MRR weight bank. Tuning MRRs
between on- and off-resonance switches a continuous fraction

of optical power between drop and through ports. A balanced PD
yields the sum and difference of weighted signals. (C) Left: Optical
micrograph of a silicon MRR weight bank, showing a bank of four
thermally tuned MRRs. Right: Wide area micrograph, showing fiber-
to-chip grating couplers [101]. Adapted from Ref. [102].

A great variety of possible weight profiles allows a
group of functionally similar units to instantiate a tremen-
dous variety of neural networks. A reconfigurable filter can
be implemented by an MRR - in simple words, a waveguide
bent back on itself to create an interference condition. The
MRR resonance wavelength can be tuned thermally (as in
Figure 8C) or electronically on timescales much slower than
signal bandwidth. Practical, accurate, and scalable MRR
control techniques are a critical step toward large-scale
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analog processing networks based on MRR weight banks.
We present them in Section 4.3. The analysis of scaling and
design for MRR weight banks is then given in Section 4.4.

4.3 Controlling photonic weight banks

Sensitivity to fabrication variations, thermal fluctuations,
and thermal crosstalk have made MRR control an impor-
tant topic for WDM demultiplexers [105], high-order filters
[106], modulators [107], and delay lines [108]. Commonly,
the goal of MRR control is to track a particular point in the
resonance relative to the signal carrier wavelength, such
as its center or maximum slope point. On the contrary, an
MRR weight must be biased at arbitrary points in the filter
roll-off region to multiply an optical signal by a continuous
range of weight values. Feedback control approaches are
well suited to MRR demultiplexer and modulator control
[109, 110], but these approaches rely on having a reference
signal with consistent average power. In analog networks,
signal activity can depend strongly on the weight values,
so these signals cannot be used as references to estimate
weight values. These reasons dictate a feedforward control
approach for MRR weight banks.

4.3.1 Single-channel control accuracy and precision

How accurate can a weight be? The resolution required
for effective weighting is a topic of debate within the neu-
romorphic electronics community, with IBM’s TrueNorth
selecting four digital bits plus one sign bit [111]. In Refs. [102,
112], the continuous weight control of an MRR weight bank
channel was shown using an interpolation-based calibra-
tion approach. The goal of the calibration is to have a model
of applied current/voltage vs. effective weight command.
The calibration can be performed once per MRR and its
parameters can be stored in memory. Once calibration is
complete, the controller can navigate the MRR transfer func-
tion to apply the correct weight value for a given command.
However, errors in the calibration, environmental fluctua-
tions, or imprecise actuators cause the weight command to
be inaccurate. It is necessary to quantify that accuracy.

Analog weight control accuracy can be characterized
in terms of the ratio of weight range (normalized to 1.0) to
worst-case weight inaccuracy over a sweep and stated in
terms of bits or a dynamic range. The initial demonstra-
tion reported in Ref. [102] indicates a dynamic range of the
weight controller of 9.2 dB — in other words, an equivalent
digital resolution of 3.1 bits.

DE GRUYTER

4.3.2 Multichannel control accuracy and precision

Another crucial feature of an MRR weight bank is the
simultaneous control of all channels. When sources of
crosstalk between one weight and another are consid-
ered, it is impossible to interpolate the transfer function of
each channel independently. Simply extending the single-
channel interpolation-based approach of measuring a set
of weights over the full range would require a number of
calibration measurements that scale exponentially with
the channel count, as the dimension of the range grows
with channel count. Simultaneous control in the presence
of crosstalk therefore motivates model-based calibration
approaches.

Model-based, as opposed to interpolation-based,
calibration involves parameterized models for crosstalk-
inducing effects. The predominant sources of crosstalk
are thermal leakage between nearby integrated heaters
and, in a lab set-up, interchannel cross-gain saturation
in fiber amplifiers, although optical amplifiers are not
a concern for fully integrated systems that do not have
fiber-to-chip coupling losses. Thermal crosstalk occurs
when the heat generated at a particular heater affects
the temperature of neighboring devices (see Figure 8C).
In principle, the neighboring channel could counter this
effect by slightly reducing the amount of heat its heater
generates. A calibration model for thermal effects pro-
vides two basic functions: forward modeling (given a
vector of applied currents, what will the vector of result-
ant temperatures be?) and reverse modeling (given a
desired vector of temperatures, what currents should
be applied?). Models such as this must be calibrated
to physical devices by fitting parameters to measure-
ments. Calibrating a parameterized model requires at
least as many measurements as free parameters. Ref.
[113] described a method for fitting parameters with
O(N) spectral and oscilloscope measurements, where
N is the number of MRRs. As an example, whereas an
interpolation-only approach with 20 points resolu-
tion would require 20%=160,000 calibration measure-
ments, the presented calibration routine takes roughly
4 x [10(heater) + 20(filter) + 4(amplifier)| =136 total cali-
bration measurements. Initial demonstrations achieved
simultaneous four-channel MRR weight control with an
accuracy of 3.8 bits and precision of 4.0 bits (plus 1.0 sign
bit) on each channel (Figure 9). Although optimal weight
resolution is still a topic of discussion in the neuromor-
phic electronics community [9], several state-of-the-art
architectures with dedicated weight hardware have
settled on 4-bit resolution [111, 115].
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Figure 9: Demonstration and characterization of multi-channel analog weight control using microring resonator weight banks shown in Fig. 8.
(A) 2D weight sweep showing controller accuracy and precision. After the calibration procedure, the target weight was swept five times

over a grid of values from — 1 to 1 (black grid). Black points are measured weight data. Red lines show the mean offset from each target grid
point. Blue ellipses indicate one standard deviation around the mean. From this plot, it is deduced that the weight can be controlled with an
accuracy of 3.8 bits. (B) [6, 14, 32, 37, 51, 73, 84, 111, 114] Output time trace of signals corresponding to points labeled in (A). The expected
weighted signal is in red, whereas measured traces are in blue. From Ref. [113].

4.4 Quantitative analysis for photonic
weight banks

Engineering analysis and design rely on quantifiable
descriptions of performance called metrics. The natural
questions of “how many channels are possible” and sub-
sequently “how many more or fewer channels are garnered
by a different design” are typically resolved by studying
trade-offs. Increasing the channel count performance
metric will eventually degrade some other aspects of per-
formance until the minimum specification is violated.
Studying trade-offs between these metrics are impor-
tant for better designing the network and understanding its
limitations. Just as the case with control methodologies, it
was found that quantitative analysis for MRR weight banks
must follow an approach significantly different from those
developed for MRR demultiplexers and modulators [100].
In conventional analyses of MRR devices for multi-
plexing, demultiplexing, and modulating WDM signals,
the trade-off that limits channel spacing is interchannel
crosstalk [103, 116, 117]. However, unlike MRR demultiplex-
ers where each channel is coupled to a distinct waveguide
output [105], MRR weight banks have only two outputs
with some portion of every channel coupled to each. All
channels are meant to be sent to both detectors in some
proportion, so the notion of crosstalk between signals
breaks down (Figure 8B). Instead, for dense channel
spacing, different filter peaks viewed from the common
drop port begin to merge together. This has the effect of
reducing the weight bank’s ability to weigh neighboring
signals independently. To quantify this effect as a power
penalty, the cross-weight penalty metric must include

a notion of tuning “range” (Section 4.4.1). After this has
been described, an example channel density analysis is
carried out to derive the scalability of weight banks that
use microresonators of a particular finesse (Section 4.4.2).

4.4.1 Cross-weight power penalty metric

In the single-channel case, an ideal tunable weight bank
possesses a range of tuning states that include directing
an incident optical signal completely to a through port
(positive weight), completely to a drop port (negative
weight), or to any intermediate ratio of both (Figure 8B). If
a real weight incurs some loss, its weight range becomes a
subset of the ideal. If there is a difference in loss between
the drop and through ports, then the attainable weight
range will also be unbalanced. Because the neural
network abstraction should be able to provide a program-
mer with a range of weights from-1 to+1, we require
that the range is usable only up to the minimum absolute
extremum. Comparing the usable range to the ideal range
yields a ratio, W, which quantifies the real device’s ability
to perform tunable optical weighting.

cW(@-D)= min[mgx(ﬂ), ml?x(—u)} (6)

where p is the tuning parameter and u is the weight.

In the N-channel case, the ideal WDM weight bank is
able to switch WDM channels completely independently
from one another. However, if a given tuning parameter
can affect multiple weight values, then the bank’s weight
range cannot be linearly separated into a composition of
nonideal single-channel weight ranges. In other words,
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the N-dimensional range of states becomes warped.
Figure 10 depicts this mapping for a simulated two-chan-
nel bank that is parameterized by the MRR detunings.

As in the 1D case, a usable range can be defined as
the largest balanced interval (i.e. a zero-centered square
in 2D) that is completely covered by the attainable weight
range. The usable range (green square in Figure 10B) is
compared to the theoretical ideal (black bounding box in
Figure 10B) to obtain an amplitude ratio between usable
and ideal - a fill factor W.

This definition of cross-weight penalty can be
extended conceptually to higher dimensions and WDM
weight banks with an arbitrary number of channels. In N
dimensions, the boundary is a (N — 1)-dimensional closed
manifold parameterized by the (N - 1)-dimensional vector
S. The cross-weight penalty can then be defined as

cW (N-D)= min[max | . (5) |} @)
x s Liet.N "1
1
A B Ideal range —s
Tuning range Usable range
g 1 0.5
S o
£0.5 S
=1 (0]
3 =0
g 0.5(5 )1
etunin 10)
ol -05
-1
c -1 -0.5 0 0.5 1

Rel. Trans. (dB)

Frequency (linewidth units)

Figure 10: Example of cross-weight power penalty in a two-channel
MRR weight bank.

(A) The device has two tuning degrees-of-freedom, which are
resonance detunings of each filter. A (red, blue) color vector is

used to indicate tuning state, which means that (A) depicts (red=x,
blue=y). (B) The range of possible weight states attainable by the
weight bank relative to the ideal range (outer bounding box). (red,
blue) color indicates the tuning state that maps to a particular
weight point. The usable range (green box) is graphically the largest
square that lies fully within the possible weight range centered at
zero. (C) Drop port spectra of the same model over a 5x5 parameter
grid, with trace color used to indicate tuning. Frequency is normal-
ized so that the MRR 1 peak has a center of 0 and full-width half-
maximum (FWHM) of 1.0. Channel spacing in this simulation is 1.31
line widths and waveguide loss is 2 dB cm ~. From Ref. [100].
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W_quantifies the “effective insertion loss” of a pho-
tonic weight bank, provided that it is capable of fully inde-
pendent and balanced control. Supposing W =0.5, then
the weight bank is equivalent to an ideal W =1.0 weight
bank with an insertion loss of 0.5. W_can therefore be
stated as a power penalty in dB: — 10 log(W) describes the
additional input power (in dB) required to make a non-
ideal weight bank behave as an ideal weight bank.

4.4.2 Weight bank channel limits

The final step of channel density analysis is to study the
degradation of a limiting metric as WDM channel spacing
becomes more dense. A useful figure of merit for discuss-
ing the efficacy of a resonator-based circuit at a WDM
task is the ratio of finesse to channel count. A theoretical
minimum of this figure is 1.0.

Figure 11 shows the resulting power penalty contours
of —10 log(W)) vs. channel spacing, 8w, and bus length
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Yo}
o
=]
-
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= (e} CANR 7.
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~
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dw=22 dw=23.3 dw=4.4

Figure 11: Cross-weight power penalty surface as a function of
channel spacing dw and bus WG length offset AL.

Power penalty contours are plotted at 0.5 dB increments between
1dB (blue) and 10 dB (yellow). The penalty increases as channel
density decreases, eventually reaching an asymptote. This trade-off
also depends significantly and approximately periodically on AL,
indicating the influence of coherent multi-MRR interactions in the
bus WGs. (Outer panels) Ranges of possible weight states, plotted
as in Figure 10B, at 10 selected operating points that are indicated
in Figure 10A by red circles. The top row, AL=0.105, represents the
best-case trade-off between power and channel density, and the
bottom row, AL=0.037, represents the worst-case. From Ref. [100].
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changes, AL. The penalty is asymptotic in channel spacing,
meaning there is an absolute minimum channel spacing
regardless of acceptable power penalty. The power penalty
cannot quite reach 0 dB because of optical losses. In Ref.
[100], Tait et al. discovered that both the channel density
wall and the trade-off between density and power are sig-
nificantly affected by bus length changes. The resulting
approximate periodicity (here, ~0.12 in arbitrary length
units) is indicative of a coherent multi-MRR interference
condition that could be exploited to decrease the power
penalty figure [100]. What’s perhaps surprising is that the
effect of bus length remains significant even when chan-
nels are spaced relatively far apart. The 1 dB contour line
(blue) fluctuates between 2.7 and 3.4 line widths over a
period of AL.

WDM channel spacing, dw, can be used to deter-
mine the maximum channel count given a resonator
finesse. Whereas finesse can vary significantly with the
resonator type, normalized spacing is a property of the
circuit (i.e. multiplexer vs. modulators vs. weight bank).
Making an assumption that a 3 dB cross-weight penalty
is allowed, we find that the minimum channel spacing
falls between 3.41 and 4.61 line widths depending on bus
length. High finesse silicon MRRs, such as that shown in

Recurrent Broadcast Loop:
Neuron Cluster

)

Broadcast loop
Level 1
(BL:1)

Neuron cluster

Photonic neurons

Figure 12: Spectrum reuse strategy.
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Refs. [118] (finesse=368) and [119] (finesse=540), could
support 108 and 148 channels, respectively. Other types
of resonators in silicon, such as elliptical microdisks [120]
(finesse=440) and traveling-wave microresonators [121]
(finesse =1140), could reach up to 129 and 334 channels,
respectively.

MRR weight banks are an important component of
neuromorphic photonics - regardless of PNN imple-
mentation — because they control the configuration of
analog network linking photonic neurons together. In
Ref. [113], it was concluded that ADC resolution, sensitiv-
ized by biasing conditions, limited the attainable weight
accuracy. Controller accuracy is expected to improve by
reducing the mismatch between tuning range of inter-
est and driver range. Ref. [100] arrived at a scaling limit
of 148 channels for an MRR weight bank, which is not
impressive in the context of neural networks. However,
the number of neurons could be extended beyond this
limit using spectrum reuse strategies (Figure 12) proposed
in Ref. [31] by tailoring interference within MRR weight
banks as discussed in [100] or by packing more dimen-
sions of multiplexing within silicon waveguides, such
as mode-division multiplexing. As the modeling require-
ments for controlling MRR weight banks become more

Fully
interconnected
neuron cluster

Small-world
Neural network

Interconnected
SNN PICs

(A) Fully interconnected network by attaching PNNs to a broadcast loop (BL) waveguide. (B) Slightly modified PNN can transfer information
from one BL to another. (C) Using this scheme, neuron count in one chip is only limited by footprint, but PICs can be further interconnected

in an optical fiber network.
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computationally intensive, a feedback control technique
would be transformative for both precision and modeling
demands. Despite the special requirements of photonic
weight bank devices making them different from com-
munication-related MRR devices, future research could
enable schemes for feedback control.

5 Neuromorphic platform
comparison

We have recently produced a quantitative comparison
between neuromorphic hardware architectures [18, 20].
Weighted addition is critical for neural network imple-
mentations, and as the number of operations scales quad-
ratically with the number of nodes in all-to-all connected
networks, it represents the most costly hardware scalabil-
ity bottleneck [9]. Thus, for analysis, we can deconstruct
this operation as a parallelized set of MACs and use it as
a reference unit of computation. The MAC operation takes
the following form: a < a + (w+x). It includes both a mul-
tiplication (i.e. x is multiplied by the “weight” w) and an
addition (the result is accumulated to variable a).

For consistency, we compare architectures that have
similar functionality: we limit ourselves to fully recon-
figurable systems of SNNs. The analysis includes elec-
tronic neuromorphic architectures introduced in Section
1.1. For the photonically enhanced system, we studied an
optoelectronic neural network with PNNs instantiated
within the hybrid silicon/III-V platform [58, 122]. We also
consider a future photonic crystal instantiation based on
fundamental physical considerations. Calculated metrics

Table 2: Comparison between different neuromorphic processors.
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are based on realistic device parameters derived from the
literature.

Results are summarized in Table 2. The most strik-
ing figure is the number of operations per second, which
exceeds electronic platforms by three orders of magni-
tude compared to the analog/digital accelerated HICANN
and three orders of magnitude compared to the others
that are purely digital implementations. This stems from
both the high bandwidths and low latencies possible with
photonic signals. The optoelectronic approach is also
able to achieve energy efficiencies that are on the same
order of magnitude as those in electronics, which avoids
the heat problems that have prevented digital CMOS elec-
tronics from reaching similar operating bandwidths. The
optoelectronic approach is able to achieve such energy
efficiency at high speeds because power is mainly con-
sumed statically by the lasers, whereas the passive filters
have low leakage current. This contrasts to CMOS digital
switches, whose power consumption increases dynami-
cally with clock speed. Processor fan-in is similar in both
platforms despite very differing technologies. The area
per MAC is more stringent in a photonically enhanced
system, as photonic elements cannot be shrunk beyond
the diffraction limit of light. This is because each data
channel requires a weighting filter in the PNN, such as an
MRR pair, which adds a footprint penalty. However, this
is compensated by the fact that a single waveguide can
carry many wideband channels simultaneously, unlike
electronic wires. Nonetheless, although photonically
enhanced systems cannot compete with the miniaturiza-
tion of future nanoelectronics, the estimated footprint of
such a system is currently on par with some of the elec-
tronic systems presented here.

Chip MAC rate per Energy per Processor Area per Synapse

processor MAC (p)) fan-in MAC (um?) precision (bit)
Photonic hybrid 111-V/Si (current work) 20 GHz 1.3 108 205 5.1
Sub-A photonics (future trend) 200 GHz 0.0007 ~200 20 8
HICANN [12] 22.4 MHz 198.4 224 780 4
TrueNorth [11] 2.5 kHz 0.27 256 4.9 5
Neurogrid [10] £40.1 kHz 119 4096 7.1 13
SpiNNaker? [13] 3.2 kHz 6e5 320 217 16

I11-V/Si hybrid stands for estimated metrics of an SNN in a PIC in a IlI-V/Si hybrid platform. Sub-A stands for estimated metrics for a platform
using optimized subwavelength structures, such as photonic crystals. An MAC event occurs each time a spike is integrated by the neuron.
Neuron fan-in refers to the number of possible connections to a single neuron. The energy per MAC for HICANN, TrueNorth, Neurogrid, and
SpiNNaker was estimated by dividing wall-plug power to number of neurons and to operational MAC rate per processor. The area per MAC
was estimated by dividing the chip/board size to the number of MAC units (neuron count times fan-in). All numbers therefore include over-

heads in terms of footprint and area.

aNeurons, synapses, and spikes are digitally encoded in event headers that travel around cointegrated processor cores. Therefore, all

numbers here are based on a typical application example.
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6 Outlook

After half a century of continuous investment and com-
mercial success, digital CMOS electronics dominates the
industry of general-purpose computing. However, with
growing demand for connectivity, there is an urgent need
for ultrafast coprocessors that could relieve the stress in
digital processing circuits. Here, we have presented the
elements of a reconfigurable photonic hardware that can
emulate SNNs operating a billion times faster than the
brain. As we identify proper metrics for a neuromorphic
photonic processor, research efforts are incipiently tran-
sitioning from individual devices to systems design. We
are witnessing a fast maturation of standardized photonic
foundries in several platforms. Chrostowski and Hoch-
berg [98] said that we are entering a nascent era of fabless
photonics, where users can create computer-assisted chip
designs and have it fabricated by these foundries using
quality-controlled repeatable processes. We anticipate
that neuromorphic photonic coprocessors (Figure 13) will
be fabricated and packaged using fabless services in the
medium term.

Applications for neuromorphic photonic processors
can be clustered into two categories: (1) a front-end stage
for radiofrequency (RF) systems and data centers and
(2) ultrafast processing for specialized fast applications
[18]. The first category uses the low-latency, parallelism,
and energy-efficient properties of photonics to alleviate
the throughput of RF systems, for example, by execut-
ing dimensionality reduction tasks such as principal

Supervised learning
circuit
FPGA/CPU

{11 1 Digital
YyVYVYY 'gia

Weight control
circuit

47
e |
e |
e |
e |
e |
e |

N

b

%

=z

3

=

@

@

vvvvv

Low latency

SNN
N neurons

ouT

Figure 13: Diagram description of a fully packaged neuromorphic
processor.

Whereas two layers of electronics provide reconfigurability, the
photonic SNN permits low-latency functionality. N;: Fan-in of each
neuron.
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component analysis or blind-source separation. The
second category takes advantage of the raw speed (band-
width and latency) of the photonic processor to execute
iterative algorithms mapped to recurrent neural networks.

Neuromorphic photonic processors join a class of
photonic hardware accelerators designed to assist in
acquisition, feature extraction, and storage of wideband
waveforms [123]. These accelerators manipulate the spec-
trotemporal of a wideband signal, a task difficult to accom-
plish in analog electronics over broad bandwidth and
with low loss. Reservoir computing is another promising
model of analog computing. In reservoir-based models,
a fixed complex system (the reservoir) generates an enor-
mous number of nonlinear functions of inputs, and then
a readout layer is trained to approximate the desired task
out of a linear combination of reservoir functions. Res-
ervoir computers consisting of a photonic reservoir with
electronic readout layer have received substantial recent
attention from the photonics community and have experi-
mentally demonstrated a range of machine learning tasks
[124-128].

6.1 Real-time RF processing

After some initial front-end processing (i.e. heterodyning
and amplification), most radio transceiver systems are
processed by either DSPs or field programmable gate
arrays (FGPAs) for more complex signal operations.
However, the speeds of these processors (i.e. ~500 MHz)
limit the overall throughput of RF carrier signals, which
can easily be in GHz range. Clever sampling and paral-
lelization can help alleviate this bottleneck but at the cost
of much higher latency and a significant resource/energy
overhead. Specialized RF application-specific integrated
circuits (ASICs) are another option but are expensive,
require significant development time, and have limited
reconfigurability. Future imagined multiple-in multi-
ple-out (MIMO) systems — which, in the case of massive
MIMO, can be on the order of ~100 s of input and output
channels [129, 130] - are especially susceptible to this bot-
tleneck and may require a radically new solution.

Adding a photonic processing chip to the front of a
radio transceiver would allow very complex operations
to be performed in real time, which can significantly
offload electronic postprocessing and provide a techno-
logy to make faster, more relevant RF decisions on-the-fly.
Massive MIMO systems based on beamforming in phased
array antennas require a processor that can distinguish
and operate on hundreds of high bandwidth signals
simultaneously, a feat that is currently speed limited by
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current electronic processors [129, 131]. A photonic neural
network model is a perfect fit for addressing this kind
of technological challenge: efficient MIMO beamform-
ing relies on MAC operations that are already applied in
neural network models via “weighted addition”. In addi-
tion, classification algorithms can be built efficiently
using the neural network approach, allowing for RF fin-
gerprinting and signal identification.

6.2 Nonlinear programming

Another way of taking advantage of raw speed is via an
“iterative” approach. Iterative algorithms find success-
fully better approximations to a problem of interest and
often require many time steps to reach a desired solution.
A large class of problems that can be solved iteratively
include “linear and nonlinear programming problems”.

Quadratic programming (QP) are optimization prob-
lems with quadratic multivariable objective function
subject to constraints. A notable example of a compu-
tational problem that can be reduced to a QP includes
model predictive control (MPC). The ability of MPC to
handle large MIMO systems with physical constraints
has led to very successful applications in slow processes,
where there is sufficient time for solving the optimization
problem between sampling instants. The application of
MPC to faster systems, therefore, relies on new ways of
finding faster solutions to QP problems [132]. It has been
shown that QPs can be mapped onto recurrent neural net-
works that converge to an attractor state corresponding to
the solution of QPs [133].

Because one of the most salient advantages of a pho-
tonic approach is its low time-of-flight (in picoseconds)
between communicating processors, the convergence
rates can be significantly improved by implementing them
on a photonic platform. These processors represent some
of the most effective yet generalized tools for acquiring
and processing information and controlling highly mobile
systems, such as a hypersonic aircraft [134].
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