What the Fork: A Study of Inefficient and Efficient
Forking Practices in Social Coding

Shurui Zhou
Carnegie Mellon University, USA

ABSTRACT

Forking and pull requests have been widely used in open-source
communities as a uniform development and contribution mech-
anism, giving developers the flexibility to modify their own fork
without affecting others before attempting to contribute back. How-
ever, not all projects use forks efficiently; many experience lost
and duplicate contributions and fragmented communities. In this
paper, we explore how open-source projects on GitHub differ with
regard to forking inefficiencies. First, we observed that different
communities experience these inefficiencies to widely different de-
grees and interviewed practitioners to understand why. Then, using
multiple regression modeling, we analyzed which context factors
correlate with fewer inefficiencies. We found that better modularity
and centralized management are associated with more contribu-
tions and a higher fraction of accepted pull requests, suggesting
specific best practices that project maintainers can adopt to reduce
forking-related inefficiencies in their communities.

CCS CONCEPTS

« Software and its engineering — Collaboration in software
development; Open source model.

KEYWORDS

Fork-based development, Collaboration, Modularity, Centralized
Management

ACM Reference Format:

Shurui Zhou, Bogdan Vasilescu, and Christian Késtner. 2019. What the Fork:
A Study of Inefficient and Efficient Forking Practices in Social Coding. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE °19),
August 26-30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338918

1 INTRODUCTION

Collaboration is essential for software development at scale, in
both industrial and open-source projects. Inadequate models of
collaboration can stifle innovation and severely hurt common in-
frastructure, e.g., when code structure does not align with team
structure [43]. Although open source has achieved enormous pro-
ductivity gains [25, 40], sustainability of the open-source movement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3338918

Bogdan Vasilescu
Carnegie Mellon University, USA

Christian Kastner
Carnegie Mellon University, USA

StDev =0.22 StDev =0.19

] / \]
£ £
= [=4
[} (5]
© el

_ _

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

% Forks contributing back PR merged ratio
(a) (b)
= 2
B B
5 StDev = 0.059 5 StDev = 0.02
kel hel
- ——

0.0%

% 25% 50% % 100%
% Duplicate PRs among rejected PRs

() (@
Figure 1: Density plots of four inefficient forking practices with

high variance among projects in our sample. The arrow points to-
wards higher efficiency. The dashed line shows the median.

2.5% 5.0% 7.5%
% Hard forks among all forks

is in question without models of collaboration that incorporate vol-
unteers and avoid undue burden on few maintainers [28, 78]. In this
paper we focus on a specific, important aspect: how to effectively
and efficiently collaborate on a common code base with forks.

The notion of forking in open source has evolved: Traditionally,
forking was the practice of copying a project and splitting off new
independent development; forking was rare and was often intended
to compete with or supersede the original project [34, 57, 59]. Nowa-
days, forks in distributed version control systems are public copies
of repositories in which developers can make changes, potentially,
but not necessarily, with the intention of integrating those changes
back into the original repository. With the rise of social coding
and explicit support in version control systems, forking of reposi-
tories has become very popular [38, 63]: e.g., over 114,120 GrTHUB
projects have more than 50 forks, and over 9,164 projects have more
than 500 forks as of June 2019, with numbers rising quickly.

However, developing with forks does not come without costs. In-
dependent development means contributions are not always visible
to others, unless an explicit merge-back attempt is made. With a
growing number of forks, coordination overhead rises [23]. Specifi-
cally, we note four challenges: (1) lost contributions—changes pub-
lished in forks, but not integrated back into the original repository,
are hard to find and de-facto lost for the larger community [84];
(2) rejected pull requests—developers who attempt to contribute but
are rejected may be frustrated and refrain from future contribu-
tions [72]; (3) redundant development—developers may indepen-
dently implement similar functionality in forks without coordina-
tion [38, 39, 84]; and (4) fragmented communities—a lower bar for
forking can encourage developers to maintain multiple product vari-
ants in parallel, fragmenting the community and making it difficult
for users to identify the variant of a project that best fits their needs
or that is most actively developed [35]. Overall, we consider lost
contributions, rejected pull requests, redundant development, and

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

fragmented communities as development process inefficiencies
and we study how projects can reduce such inefficiencies.’

Prior work that studied the fork-based development model sug-
gests high variance in how and why developers use forks. For
example, Stanciulescu et al. [73] found for Marlin, a heavily-forked
open-source firmware project for 3D printers (over 5,800 forks on
GrtHus), that most forks are inactive (no update after forking point)
and used for configuration rather than new feature development,
while only few are actively maintained. Similarly, Jiang et al. [45]
found, after surveying 124 GiTHUB developers, that some created
forks with the intention of contributing back (46 %), while others
simply used them as a backup. We also found that GrTHUB projects
are quite different with respect to the discussed inefficiencies, as
shown in Figure 1 and as we will discuss in Section 3.

In this paper, we study the differences among open source com-
munities in terms of forking practices, identify and measure ineffi-
ciencies, and model how characteristics and practices, such as mod-
ularity and centralized management, are associated with these inef-
ficiencies. Specifically, we investigate the research question: What
characteristics and practices of a project associate with more
efficient forking practices? Understanding what influences in-
efficiencies can help communities to design interventions and to
improve communication, onboarding, and sustainability.

Concretely, we derived potential characteristics and practices that
could affect forking (in)efficiency by (a) asking open-source develop-
ers about their forking practices and (b) exploring exiting theories
on distributed collaboration. We then tested these hypotheses at
scale on GITHUB data: We designed measures for four inefficien-
cies and potential characteristics and practices, collected data from
1131 GrTHUB projects with different number of forks, and used
multiple regression modeling. We found that better modularity of
the project structure and more centralized management practices
for contributions are strong predictors of more contributions and
more merged pull requests. Interestingly, our models also reveal a
tradeoff: centralized management also associates with higher risk
of community fragmentation through hard forks, as does a low
pull request acceptance rate. Our results suggest best practices that
project maintainers can adopt if they want to make fork-based de-
velopment more efficient. Our operationalizations and results also
lay the foundation for future tool support, such as benchmarking
projects and highlighting inefficient practices [16].

In a nutshell, we make the following contributions:

o We design measures for open source community inefficiencies
and observe differences among projects along these measures.
o We identify relevant context factors from literature analysis and

15 interviews and derive 8 corresponding hypotheses.

o We fit statistical models that associate context factors with inef-
ficient practices across 1131 GITHUB projects.

I Throughout this paper, we use the term inefficiency to concisely describe potential
inefficiencies in collaboration. It is important to note that not all development that is
not eventually integrated should be avoided. In fact, competition can be a driver for
creativity or for exploring better solutions, and the drawbacks of redundancies might
be outweighed by reduced coordination costs [12, 33, 52, 70, 80]. However, we argue,
and find in our interviews, that modern forking practices often lead to inefficiencies
that many developers would like to reduce. We aim to find ways in which project leads
can influence practices (and their outcomes) if they chose to set such goals; it does not
imply a goal to avoid all redundancies or always integrate all changes.

Zhou, Vasilescu and Kistner, et al.

2 RELATED WORK: HISTORY OF FORKING

Before social coding, forking traditionally referred to the intention
of splitting an independent development line (e.g., forking Jenk-
ins from Hudson over governance disagreements) to compete with
the original repository, often under a new name. Here, we refer to
forking in the sense of creating a public copy of a git repository,
often with the goal of contributing to the original project; we refer
to the traditional notion of splitting development as hard forking,.

Hard forks have been discussed controversially: The right for
hard forks (codified in open-source licenses) was seen as essential
for guaranteeing freedom and useful for fostering disruptive inno-
vations [34, 57, 59], encouraging a survival-of-the-fittest model [81],
but hard forks themselves were often seen as antisocial and as risky
to projects, since they could fragment a community and lead to
confusion for both developers and users [34, 48, 57, 65]. There are
not many cases where both communities survived after a hard fork,
with a prominent exception being the BSD variants [63, 64, 68].

Past research on forking focused primarily on hard forks in
open source, where a popular topic was understanding motivations
for forking [21, 30, 48, 58, 68, 79]. For example, Nyman et al. [58]
analyzed self-described reasons for hard forking, and found that
variants targeting specific needs or user segments are the most
common, followed by variants for different hardware (porting), bug
fixes, and reviving abandoned projects. Researchers also argued
that forking can be a suitable foundation for variant management [7,
30, 32, 71] and to overcome governance disputes [36].

Recent work focused on collaborative development with forks on
social coding platforms. The openness of social coding creates trans-
parency [23, 24] by making development activities in forks public
and making pull request (PR) contributions visible. Prior work stud-
ied GITHUB’s pull-request model to investigate the reasons and
factors that affect the PR evaluation process [38, 39, 77, 82]. Among
the findings, both technical and social factors affect the chance of
acceptance, such as the quality of the PR and the submitters’ social
connection to core members of the community.

Prior work confirmed also that forking provides increased oppor-
tunities for community engagement [23, 24, 38, 39, 53]; e.g., over
half of the commits in the Marlin project come from forks [73].
Biazzini et al. defined three collaboration models of open source
projects on GITHUB by understanding the dispersion of commits
created by forks in the community, and revealed that collaboration
patterns may differ significantly among projects [13]. More gener-
ally, it has been observed that communities often adopt a shared
culture of common practices, but cultures can differ significantly
among communities [15]. We study which aspects of a community’s
culture associates with collaboration efficiency.

Overall, most prior work focused on hard forks, though under-
standing the acceptance of contributions through individual pull
requests has recently come in focus. In contrast, we study forks as
a collaboration mechanism at the project level and focus on factors
associated with project-wide inefficiencies.

3 INEFFICIENCIES IN FORKING

To motivate our research, we explore to what degree forking inef-
ficiencies are common and differ across open-source projects.

A Study of Inefficient and Efficient Forking Practices in Social Coding

Inefficiency: Lost contributions. Some developers publish
changes in their own forks, but not also upstream, in the original
project. Although technically public, these changes are hard to find
and potentially lost for the larger community [84]. Fung et al. [35]
report that only 14 % of all active forks of nine popular JavaScript
GiTHUB projects integrated back any changes; extrapolating, this
can amount to significant inefficiencies regarding development
talent and lost effort across open source. In prior work [84], we
found that developers are often interested in activities by other
developers, but simply are not able to follow details in that many
forks proactively—e.g., they cite a developer discovering a feature
in a fork as “If it only exists in this fork, then I want to somehow
get this feature into my fork.” Only very recently tools have been
proposed to help developers monitor forks at scale [4, 66, 84].

We regard a community in which more developers attempt to
contribute their changes upstream as more efficient. In our sample
of 1131 GiTHUB projects, we identified the fraction of forks that
attempt to contribute any changes back among all active forks (we
will explain details regarding dataset and measurement in Section 4).
In Fig 1(a), we show high variance across projects in the degree to
which developers attempt to contribute their changes from forks
back upstream, ranging from projects in which almost no forks
attempt to contribute back, to projects where almost all forks do.
These strong differences in observed efficiency raise the question
of why these projects are so different and how project maintainers,
if they wish to do so, can encourage more contribution attempts.

Inefficiency: Rejected pull requests. Not all attempted con-
tributions are accepted by project maintainers. When developers
submit a pull request (PR) that gets rejected, they can perceive this
as a waste of their effort and get discouraged from contributing
further [72]. One common reason for rejecting a PR is misalignment
with the maintainers’ vision of the project [8, 72]. From the com-
munity’s perspective, a project in which most PRs are accepted can
be considered as more effective with regard to contributor efforts.
Observing the rate of rejected PRs among all closed PRs in our 1131
GrtHus projects plotted in Fig 1(b) (details in Section 4), we see that
in most projects a majority of PRs are accepted, but also note the
high variance. Again, we would like to identify whether different
project characteristics or practices can explain why some projects
accept most PRs whereas others accept only a small percentage,
and how project maintainers can strive for more efficiency.

Inefficiency: Redundant development. Globally decentral-
ized fork-based development can be especially challenging because
of fewer opportunities for rich interaction and direct communica-
tion [44]: Contributors can find it hard to maintain awareness of
the project’s trajectory or other developers [41, 42], which may lead
to redundant development, in which two or more people indepen-
dently work on similar functionality in forks without awareness
of each other. Redundant development is a common reason for
rejecting PRs in many projects [38, 72, 83]; in prior work, we and
others have developed tooling to detect such duplicates [49, 67, 83].
Working on a change just to discover that other developers have
previously or in parallel performed similar changes can also be
demotivating. We consider projects that reduce accidental redun-
dancies as more efficient.

Plotting the fraction of PRs rejected due to redundancies in

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Fig 1(c) (details in Section 4), we can observe that redundant develop-
ment is a small but pervasive problem (mean 3.4 %; max 51 %). Again,
we observe high variance across projects, worth investigating.

Inefficiency: Fragmented communities. Even on modern so-
cial coding platforms, diffusion of efforts, similar to those discussed
for hard forks (Section 2), can be observed: Many secondary forks
(i.e., forks of forks) contribute to other forks, but not to the original
repository; and forks slowly drift apart [35, 71]. Such fragmentation
can threaten the sustainability of open-source projects when scarce
resources are additionally scattered, causing redundant work. For
example, Marlin has several hard forks, such as Ultimaker which
has evolved into an independently managed project with over 170
own forks; fragmentation-related inefficiencies can be observed,
for example, in a PR for Marlin fixing an issue (PR #10119) that was
fixed already 2 years earlier in Ultimaker (PR #118). Hard forks are
rare, but potentially expensive for a community. Plotting the per-
centage of hard forks among all the sampled forks of each project
in Fig 1(d) (details in Section 4), we again observe high variance,
raising the question of what kind of projects are more susceptible
to hard forks.

In summary, we observe indicators of possible inefficiencies
in most projects and high variance in how developers use forks.
Suspecting that there are ways to actively encourage more efficient
outcomes, we study to what degree project characteristics and
practices associate with inefficiencies.

4 DETERMINANTS OF INEFFICIENCIES

We used a mixed-method approach to answer our research question:
What characteristics and practices of a project associate with more
efficient forking practices? We started qualitatively with interviews
and literature analysis to identify candidate context factors (project
characteristics and practices) that may influence effectiveness of
fork-based development in a project, deriving eight hypotheses. We
subsequently operationalize measures for context factors and inef-
ficiencies, collect data from 1131 GiTHUB repositories, and quan-
titatively test our hypotheses using multiple regression modeling.

4.1 Identifying potential context factors

We pursued two strategies in parallel: interviews with active open-
source contributors and analysis of the literature on distributed
collaboration. This way, we collect perceptions of inefficiencies and
their causes from practitioners and can contrast practices in differ-
ent open-source systems, while at the same time also considering
theories describing factors for efficient distributed collaboration,
albeit established in contexts outside of fork-based development.
Specifically, we interviewed 15 maintainers and fork owners
of several popular open-source projects, including Bitcoin, Marlin,
Smoothieware, and scikit-learn (the number of forks ranged from
60 to 18.2K; all interviewees had public email addresses on their
GrTHuUB profiles), about efficient and inefficient practices and what
might influence them. We stratified our sample of interviewees to
include maintainers of projects with many forks, maintainers of
projects with many duplicate PRs, developers who contributed to
many open-source projects, and developers who made changes in

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

forks without attempting to contribute back. We conducted 12 inter-
views over Skype or email and 3 in person at two mixed academic-
practitioner conferences. To analyze the transcripts, we conducted
axial coding. This way we identified context factors that may af-
fect the collaboration efficiencies, considering also the theories we
found in the literature on distributed collaboration.

Modularity affects forking practices. Interviews: Discussions
with contributors familiar with both Marlin and Smoothieware re-
vealed an interesting contrast: Marlin (6,600 forks) and Smooth-
ieware (720 forks) are both frequently forked open-source 3D printer
firmware projects, but contributors familiar with both perceive
very different practices. Learning from Marlin’s maintainability
challenges due to crosscutting implementations, Smoothieware was
designed modularly and emphasizes loose coupling and extension
through separate modules, so that developers can add functionality
without having to modify Smoothieware’s core. A developer who
is familiar with both projects indicated that Smoothieware follows
more professional and industrial development practices, such as sub-
mitting smaller and more cohesive changes. One interviewee indi-
cated not contributing their significant extensions back to Marlin be-
cause of high integration effort. On GiTHUB, some projects have an
extremely modular structure, e.g., homebrew contains a collection of
scripts or plug-ins that are assembled automatically, such that many
contributions simply add files instead of modifying existing ones.

Modularity was not entirely uncontroversial in our interviews
though, e.g., one Smoothieware contributor suggested that modu-
larity helped with some extensions, but made others harder: “So
many restrictions that you can’t just modify anything in the base code.
[...] All this makes the code upgradeable, clean, and manageable, but
the development progress is much slower because [...] some functions
cannot be integrated with those restrictions.” This suggests trade-
offs regarding the rigidity that modularity imposes on developers,
making certain changes hard or impossible.

Literature: Our interview observations align with theory (outside
of social forking contexts) about the importance of modularity for
(distributed) collaboration. For example, Parnas [61] and Conway
[22] have both argued for the importance of modularity for col-
laboration and division of labor. Herbsleb and Grinter [43] found
modularity, aligning with work assignments, to be essential for a
geographically distributed software project. Researchers and prac-
titioners have also emphasized the importance of modularity for
open-source development [47, 55, 75]. For example, Torvalds [75]
claims “for without [modularity], you cannot have people working
in parallel” and Midha and Palvia [55] found that modularity is
positively associated to technical success of open-source projects.
Specifically, MacCormack et al. [51] suggested that more modular
projects could be more attractive to potential contributors. It is
hence plausible that modularity also has positive effects on col-
laboration efficiency in fork-based development among loosely-
connected developers on social coding platforms. At the same time,
researchers have found that many aspects of a software system are
difficult to implement modularity [74] and that too rigid compati-
bility requirements might hinder innovation [15]; also, modularity
does not always align with how developers think [60].

Hypotheses: Despite raised concerns, we hypothesize that a mod-
ular design of the software would make it easier to contribute to

Zhou, Vasilescu and Kistner, et al.

a project, which influences both whether developers attempt to
contribute and to what degree maintainers accept contributions:

H;. Projects with a better modular design have a larger fraction of
contributing forks.

Hy. Projects with a better modular design have a larger fraction of
merged pull requests.

Coordination mechanisms affect forking practices. Inter-
views: Interviewees of many projects, including Marlin and Smooth-
ieware, indicated that their communities welcome all PRs that may
benefit the larger community and that they are interested in ac-
tivities in various forks, though they find it hard to monitor them.
In contrast, an interviewee from the cryptocurrency project Bit-
coin (22,100 forks) expressed a different view: Bitcoin has adopted
a central management style, in which a relatively stable team of
core developers decides the direction of the project, and in which
features are discussed and decided upfront in an issue tracker (often
political and hard fought among different camps [50]). The issue
tracker records which forks contain the corresponding code changes
for each issue; other forks are of little interest to maintainers and
unsolicited PRs remain ignored for years. Similarly, one of the main-
tainers of the Python machine-learning project scikit-learn (16,300
forks) indicated that developers have little chance of integrating
their changes upstream unless they talk to the maintainers first.

Developers also perceive explicit coordination as a key mecha-
nism to avoid redundant development. Certain open-source com-
munities perceived redundancies as a significant problem and pro-
moted explicit coordination to combat it; e.g., Django adopted a
policy requiring contributors to communicate with the core team
upfront to claim issues before submitting patches [1]. A maintainer
of scikit-learn was even surprised about the existence of duplicate
PRs, because in their project explicit coordination (developers dis-
cuss with the core team before doing any work) is the norm.

Literature: Researchers have long studied different degrees of
explicit coordination and their tradeoffs in distributed collaboration,
often in corporate settings, e.g., Brandts and Cooper [17] found that
central coordination makes it easier to manage a division’s product
types but more difficult to take advantage of each division’s private
information. Comparing Linux and Wikipedia to traditional organi-
zations, Puranam et al. [62] observed that Linux uses a centralized
task-division strategy in which the initial problem formulation is
defined by the founder of a project, while Wikipedia’s task division
is decentralized, which the researchers associate with problems of
misinformation and duplication contributions. Regarding task allo-
cation, Linux and Wikipedia are both decentralized, so that tasks are
allocated through voluntary, self-selection of members into roles.
Shaikh and Henfridsson [69] studied the version control history
of Linux and observed that Linux changed its management strate-
gies as the community evolved—from centralized to decentralized:
The authors argued that the governance strategy is a configura-
tion of coordination processes, and governance varies across open
source communities. This matches our observation of different com-
munities with different coordination strategies. We expect to see
similar tradeoffs among coordination strategies also in new forms
of collaboration with forks in open source.

A Study of Inefficient and Efficient Forking Practices in Social Coding

Hypotheses: We hypothesize that projects coordinating contri-
butions upfront in an issue tracker reduce inefficiencies by en-
couraging more focused development activities that are more fre-
quently integrated, and rejecting fewer PRs because fewer PRs
misalign with the maintainer’s vision. We also hypothesize that
pre-communication, i.e., developers discussing their contributions
before submitting PRs, associates with fewer redundant PRs:

Hs. Projects pursuing a centralized management strategy have a
larger fraction of contributing forks.

Hy. Projects pursuing a centralized management strategy have a
larger fraction of merged pull requests.

Hs. Projects in which external developers tend to discuss or claim
an issue before submitting pull requests have a lower frequency of
redundant development.

Contribution barriers affect community fragmentation. In-
terviews: Some interviewees indicated that contribution barriers
led them to create a hard fork, e.g., the owner of a video recording
project explained ‘T submitted a PR but they rejected it. Because it is
incompatible to the maintainer’s vision [...] so I think, fine, I will keep
my own fork.” Later, this fork started to attract its own external
contributions. Also, as one Smoothieware interviewee said (quote
above), the rigidity that modularity imposes on developers makes
integrating certain changes hard or impossible, leading in some
cases to active but unmerged development; Bitcoin, with its rigor-
ous centralized management, is one of the projects that has the most
hard forks. Disagreements between maintainers and contributors
can lead to hard forks and fragment communities.

Literature: As discussed in Section 2, reasons for hard forks have
been well studied (before the rise of social coding and distributed
version control), and conflicts between the project leader’s vision
and the needs of community members were a common cause [8, 56].

Hypotheses: We hypothesize that a low rate of accepted external
contributions, modularity restrictions, and centralized management
all can trigger community fragmentation:

Hg. Projects with a lower pull request merge ratio have higher likeli-
hood of having at least one hard fork.

H;. Projects with a more modular design have higher likelihood of
having at least one hard fork.

Hg. Projects pursuing a centralized management strategy have higher
likelihood of having at least one hard fork.

Note that Hg uses the PR merge ratio (the predicted outcome in
H; and Hy) as a factor. That is, we expect potential tradeoffs, in that
factors that improve efficiency regarding merged PRs could at the
same time reduce efficiency regarding community fragmentation.

Summary and importance. Modularity and coordination are
established theories in software engineering. After reviewing the
literature and interviewing open source contributors, we derived
eight hypotheses about context factors informed by the two theo-
ries, that are expected to associate with inefficient outcomes in a
domain where the theories have not been tested before fork-based
development. To test these hypotheses, we operationalize our con-
text factors in GITHUB trace data and model their effects at scale
across many open source projects (details in Section 4.2). This way,
we not only test the limits of the two theories and expand them in

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

10
Fork
Point 12 2 4 16
Upstream —»@——— .Q 9 -‘ master
11

/ \
/3 6 14

o -0 —*f »@ Fork_branch_1
~
Fork { 1 P - 15

'7. Fork_branch_2

(a) Commit history of fork and upstream

Fork Upstream

Only_F
7,15

(b) Only_F: only exist in fork; Only_U: only exist in upstream; F2U: merged from fork
to upstream; U2F: pulled from upstream to fork.

Figure 2: Determining the origin of commits.

the new domain of fork-based development, but also provide quan-
titative empirical evidence on the effects of the different context
factors on relevant outcomes, where previously there were only
beliefs. This step of providing data-driven empirical evidence to
popular theories is particularly important, as beliefs and evidence
often misalign in software engineering practice [11, 26].

4.2 Operationalizations

We iteratively developed outcome measures for inefficiencies, mea-
sures for context factors, and measures for control variables. Specif-
ically, we first developed an initial measure and subsequently vali-
dated construct validity by manually checking samples and outliers,
repeating the process with a refined measure as needed. Several
measures are nontrivial and are built on top of significant prior
research, as we will discuss. We share implementations for all mea-
surements as part of our replication package [6].

Outcome: Ratio of contributing forks. To assess inefficien-
cies regarding lost contributions, we measure the fraction of active
forks in which developers have submitted PRs or otherwise inte-
grated their code changes into the upstream project (higher values
indicate higher efficiency). Specifically, we query the GiTHuB API
to identify whether PRs have been issued for any commits from
a fork. We also analyze the commit histories to identify whether
commits have been merged without publicly visible PRs.

Unfortunately, reliably detecting active forks and merged changes
is not trivial. Forks may pull changes from upstream, upstream
repositories can merge changes also without PRs, commits are of-
ten merged across various branches, and commit timestamps are
not generally reliable. Hence, we developed a new approach to
identify from which fork a commit originates and how it has been
merged across branches and forks.

To this end, we analyze the joint commit graph of the fork and
the upstream repository (nodes are commits, edges are parent rela-
tionships, merge commits have multiple parents). Since commits
may be merged multiple times and in different directions across
branches and forks, we analyze the number of merge commits and
assign a commit as originating in the fork from which it was merged

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

the fewest times, as follows:

o Each branch in the fork and the upstream repository corresponds
to a commit node in the graph (usually a node without children).
For merge commits, we distinguish between the direct parent
(first parent) and the merged parents (other parents) of a commit.

e We assign a weight of 1 to an edge between a merge commit and
its merge parents and a weight of 0 to all other edges.

e For every commit node, the shortest path from that node to a
commit node mapped to a branch indicates the branch and thus
the repository the commit originates from.

o If there is no path from a commit to any branch of a repository,
it has not been merged into that repository yet.

We illustrate an example in Figure 2(a): Commit node 5 has been
merged from a branch into another branch and from the fork into
the upstream master; by counting the merge edges, we can identify
that it originates from the fork because more merge edges need to be
traversed to reach a branch from the upstream repository; similarly,
we can identify that commit node 2 originates from upstream;
there is no path from commit node 7 to the upstream repository,
indicating that the commit originates from the fork and has not been
merged yet. Note, a similar mechanism to recognize the origin of
commits was suggested in prior work [13], but without a description
of how to perform it and without releasing an implementation.

To measure the ratio of contributing forks, we determine which
forks are active (i.e., have commits originating from the fork), then
identify successful and attempted contributions from merged com-
mits in the commit graph and from PRs originating from the fork.

Outcome: Ratio of merged PRs. To assess inefficiencies re-
garding rejected PRs, we measure the fraction of closed PRs that
have been accepted (higher values indicate more efficient outcomes).
The resolution status reported by GITHUB is often not reliable [38],
as many developers integrate PRs through other mechanisms than
GrTHUB’s user interface, thus closing them without marking them
as accepted. We follow Gousios” heuristics [38] to identify accepted
contributions, but refine them to account for frequent practices we
observed:

o Ifthe PR is marked as merged on GiTHUB, we mark it as accepted.
(83.2% of all merged PRs).

o If a commit closes the PR (using certain phrase conventions ad-
vocated by GITHUB, e.g., fixes #1234) and that commit appears
in the target project’s branch, we consider the PR as accepted.
Different from Gousios’ work, we use GITHUB’s issue events
timeline API, rather than analyzing textual comments, to detect
links to PRs in commit messages. (8.8% of all merged PRs).

o Ifany of the last 3 discussion comments of the PR refers to a com-
mit SHA, we consider the PR as accepted. Specifically, we follow
Gousios’ criteria: (1) the comment contains a reference to a spe-
cific commit identifier (SHA), (2) this commit SHA appears in the
project’s master branch, and (3) the comment can be matched by
the regular expression (merg|apply|appl|pull|push|integrat|land|
cherry(-|\s+)pick|squash) (ing|i?ed). We extended this by making
sure that no second linked PR appears in the comment, indicating
a competing or superseding PR. (0.15% of all merged PRs).

o If the last comment before closing the PR matches both rules (1)
and (2) above, or matches only rule (3), we consider the PR as
accepted, unless a link to another PR appears in the comment.

Zhou, Vasilescu and Kistner, et al.

(7.9% of all merged PRs).
If no heuristic identifies a PR as accepted, we mark it as rejected.

Outcome: Ratio of duplicate PRs. To assess inefficiencies re-
garding duplicate development, we measure the fraction of closed
PRs rejected due to redundant work (lower values indicate higher
efficiency). To identify duplicate PRs, we refined heuristics, summa-
rized and validated by Yu et al. [83], based on regular expressions
to identify duplicate-related keywords in PR comments and links to
other PRs. We also found many cases in which a PR is redundant to
a commit so we extend the link detection to include commit SHAs.
After several rounds of refinement, we arrived at six patterns for
detecting PRs rejected due to redundant development that can be
found in the implementation [6].

Outcome: Presence of hard forks. To assess inefficiencies re-
garding community fragmentation, we measure whether projects
have at least one hard fork. We consider a fork as a hard fork if
(a) it has attracted its own external contributions (at least two PRs
submitted by other contributors) or (b) it has substantial unmerged
changes (at least 100 commits, as identified from our commit graph,
see Figure 2) and the project’s name has been changed (with Lev-
enshtein distance > 2). In our sample, 28 % of the projects have at
least one hard fork, as per our operationalization.

Predictor for modularity: Logic coupling index. Researchers
have proposed different metrics to measure the modularity of
a project, taking different perspectives. For example, many ap-
proaches use program analysis to detect dependencies among pro-
gram structures [14, 29]; others measure logic coupling from co-
change patterns observed in the project’s revision history [10, 18,
85]. To measure modularity uniformly across projects in different
programming languages, we adopt a light-weight previously vali-
dated measurement of logic coupling, ROSE [85]: We define the logic
coupling index of a commit as the fraction of file pairs that have been
changed together in that commit out of all file pairs in the project.
We aggregate this measure at the project level by computing the me-
dian of recent commits. To focus on modularity relevant to external
contributors and avoid bias from past but now changed practices, for
each project, we analyze the last 50 commits whose authors are ex-
ternal contributors (the results are robust for different operational-
izations with the last 100 or 500 commits). A lower logic coupling in-
dex indicates better modularity, as fewer files are changed together.

Predictor for modularity: Additive contribution index. In
addition to logic coupling, we also measure the modularity of contri-
butions in terms of whether they add or modify code. This measure
is motivated by observations, discussed above, that some GiTHUB
projects have an extreme form of modularity in that they primarily
collect extensions or plug-ins and are extended by contributing
additional files rather than editing existing ones. Thus, we define
a second modularity measure, the additive contribution index, that
measures to what degree external contributions are additive: We
measure the fraction of new files added out of all files touched per
commits. We compute the median over results of all commits from
external contributors in a project. A higher additive contribution in-
dex indicates that more changes were additive in nature, indicating
better modularity from a contributors perspective.

Predictor for coordination: Centralized management in-
dex. We measure the degree developers use the issue tracker to

A Study of Inefficient and Efficient Forking Practices in Social Coding

coordinate what to work on before submitting a pull request: We
observe which new pull requests are linked to existing issues (typi-
cally by referring to the issue number in the text of the pull request)
by parsing the event timeline of the pull request provided by the
GrtHuB APL We define the centralized management index of a
project as the fraction of pull requests that link to issues out of
all closed pull requests from external contributors. A higher cen-
tralized management index indicates that upfront coordination on
what to work on through issues is more common in a project.

Predictor for coordination: Pre-communication index. We
additionally measure to what degree developers coordinate who
will work on an issue before submitting a pull request by observing
whether developers ‘claim’ an issue before completing the work.
Specifically, we look for two commonly recommended practices
of pre-communication before submitting a final PR: (1) Developers
might leave a comment on the issue to which they later respond,
indicating their plan to work on the issue and possibly linking to
their fork. (2) Following explicit recommendations from GrtHus,?
developers might submit an incomplete PR clearly marked as ‘work
in progress’ (e.g., using labels) and later update that PR once they
finish their work. Both practices publicly announce that a developer
is working on an issue. We define the pre-communcation index of a
project as the fraction of PRs for which the author has commented
under the linked issue before submitting the PR or in which the
PR was marked as work in progress in its history out of all closed
PRs by external contributors that are linked to issues. A higher
pre-communcation index indicates that the practice of coordinating
who will work on an issue is more common in a project.

Control variables. Finally, we measure a number of controls
that might co-vary with our efficiency outcomes. Specifically, we
collect form the GiTHUB API the project age, size (in bytes), and
number of forks — older, bigger, or more heavily forked projects are
likely to adopt different practices. We additionally collect project-
level aggregate statistics about all closed PRs by external (non-
core) contributors, modeled closely after factors that prior research
found to correlate with the chance of accepting individual PRs [38,
77]: (1) SubmitterPriorExperience — a dummy encoding whether
at least half of the PRs in the project are submitted by people
with prior experience submitting and having merged PRs in the
same project in the past; PRs from people with prior experience
are more likely to be accepted [38]. (2) RatioPRsWithTests — the
ratio of PRs containing test cases; PRs containing test cases are
more likely to be accepted [38]. We reused our measure to identify
tests [76] based on file name patterns maintained by the package
search service npms.io, such as matching file paths containing test
or spec. (3) PRHotness — the median over PRs of the number of
commits on files touched by each PR during the previous three
months prior to the PR creation; PRs touching “hot” files, changed
frequently in the recent past, are more likely to be accepted [38].
and (4) SubmitterSocialConnections — a dummy encoding whether
at least half of the PRs in the project are submitted by people who
followed (already at PR creation time) the maintainer who closed
each respective PR; PRs by more socially connected submitters,
who follow the maintainers, are more likely to be accepted [77].

Zhttps://blog.github.com/2015-01-21-how- to-write-the-perfect-pull-request/

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 1: How we stratified our sample.

Group Num. forks Num. projects on GiTHuB ~ Num. projects in sample

A (3,000, +] 231 200
B (1,000, 3,000) 847 300
¢ [20 , 1,000) 116,532 1300

4.3 Data Collection

We assembled a multidimensional dataset of actively-developed
GrTHUB open-source projects with at least a moderate number of
forks. Starting from a list of 137,424 projects with at least 20 forks
in the March 2018 GHTorrent [37] dump, we filtered projects based
on the following criteria:

e Projects should be developing software applications or frameworks.
Interested in understanding software-development practices, we
remove projects using GITHUB for document storage or course
project submission. We search for keywords like ‘homework’,
‘assignments’, ‘course’ to find online courses, remove projects
starting with ‘awesome-’ (usually document collections), and
remove projects with no programming-language-specific files.

o Projects should have at least 10 commits, 10 active forks, and 1

closed pull request. We are interested in active projects with

some development history and some collaboration, so we set a

minimum threshold of 10 commits, 10 active forks (i.e., those

with at least one own commit after forking), and at least one pull
request by an external contributor.

Projects should have at least one closed issue. Finally, we exclude

projects that do not use the issue tracker, because we cannot

establish coordination practices for those.

To not bias our analysis by practices applied by the largest or

by many small projects, we stratify across projects with different

numbers of forks, sampling 200 very frequently forked projects, 300

frequently forked, and 1300 moderately forked, as shown in Table 1;

in each stratum we select a random sample. Finally, we exclude all

projects from which we have previously interviewed developers
and duplicate projects, resulting in 1131 projects for our analysis.

For each project, we need to analyze forks, external commits,
external PRs, and issues. We only consider external PRs and external
commits by developers who are not project owners and have not
closed PRs of others in the project.

Since computing the flow graph in Fig. 2 requires locally cloning
all forks in a project and is computationally expensive, we sample
100 active forks per project, that were forked more than 30 days
before our analysis, to allow for time for developers to attempt
to contribute changes back. We use the GITHUB API to fetch the
history of each issue and links among issues and PRs.

In Figure 3, we show the ranges and distributions of the four
operationalized measures of modularity and coordination in our
dataset. Note the large variance across projects for all variables.

4.4 Statistical Analysis

We use multiple regression modeling to test, for each outcome,
whether it is significantly associated with the different hypoth-
esized context factors, while controling for known confounding
variables, cf. prior work. The multivariate nature of our analysis
is especially relevant when modeling the PR merge ratio, which
is known to be impacted by the presence of tests and the prior
experience of the PR submitters [38, 77].

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

2 g
k2 StDev =0.21 2 StDev = 0.086
() [}
kel hel

0.00 0.25 0.50 0.75 1.00 0.00 25 0. 0.75 1.00

Modularity Index Additive Contribution Index
(@) (b)

2z k z
2 StDev=0.13 K] StDev =0.24
() [}
o o

0.00 100 0.00 0.25 0.5 1.00

0.25 0.50 0.75 .50 0.75
Centralized Mngmt Index Ratio Precommunicated PRs
_ © @

Figure 3: Density plots for our main predictors. The dashed line
denotes the median.

Note that we perform our analysis at project level (each row of
data aggregates information about one project), i.e., we compare
how projects with different characteristics and practices tend to
differ regarding forking inefficiencies, on average.

For the binary outcome variable (presence of hard forks), we
build a standard logistic regression model. Notably, we also build lo-
gistic regression models for the other three ratio outcome variables.
Logistic regression is more appropriate when trying to estimate
probabilities of frequencies (ratios) than linear regression, because
in the latter case the binomial probabilities would become increas-
ingly spiked as the number of observations increases; e.g., the case
with 50 pull requests merged out of 100 submitted gives more infor-
mation than the case with 1 merged out of 2 submitted. In a GLM,
the denominator from the ratio (e.g., 100 for the former example and
2 for the latter) can be specified explicitly as the weights parameter
when using the glm function in R.

When building the regression models, we take several steps to
ensure robustness and validity. First, we conservatively remove the
top up to 1 % of the data for variables with exponential distributions;
these outliers tend to have high leverage, decreasing the models’
robustness. We also test for high-leverage points using Cook’s dis-
tance measure, and exclude additional projects from each model as
needed; below each regression model summary table in Section 5
we show the exact number of data points modeled. Second, we test
and correct for multicollinearity using the variance inflation factor
(VIF). Third, we evaluate the goodness-of-fit of our models using
McFadden’s pseudo-R? measure. Finally, we report, for each model
variable, its exponentiated coefficient (i.e., its odds ratio — the factor
by which a one unit increase in a predictor increases — if greater
than 1 - or decreases — if less than 1 - the odds of the outcome
occurring), standard error, significance level (p-value), and effect
size (i.e., n? — the fraction of deviance explained by the model that
can be attributed to that predictor, as per an ANOVA type-II anal-
ysis; see columns “LR Chisq” in the model tables for the absolute
amounts of deviance explained).

4.5 Threats to Validity

As usual, our operationalized measures can only capture some
aspect of the underlying quality. For example, logic coupling at
the file level may miss some more granular dependencies that may
make changes challenging and our centralized-management index
may miss rare practices such as coordinating in a separate channel.

As discussed, we manually validated construct validity of each

Zhou, Vasilescu and Kistner, et al.

Table 2: Contributing forks model (R? = 17%).

Ratio contributing forks

Coeffs (Errors) LR Chisq
(Intercept) 0.94 (0.05)
NumForks 0.78 (0.01)™* 2631.77***
Size 1.14 (0.00)™* 1109.29%**
ProjectAge 1.00 (0.00)*** 147.27***
CentralizedMngmtIndex 6.03 (0.06)*** 868.03***
ModularityIndex 1.23 (0.03)*** 35.72%**
AdditiveContributionIndex 0.97 (0.11) 0.09
*p < 0.001,**p < 0.01,*p < 0.05 N=1131

measure on a sample of projects to avoid systematic errors and
explored different operationalizations to ensure robustness. While
we cannot exclude some noise, regression across over one thou-
sand projects will likely pick up on signals despite some noise
in measurements. Nonetheless, our results must be interpreted in
the context of our operationalization. To this end, we share an R
notebook detailing our analysis [6].

Finally, one must be careful to generalize our results beyond the
context of our analysis of social coding in open-source projects on
GrtHuB. Although many companies increasingly adopt practices
from open-source development [46], they likely do not share the
same context of loosely-coordinated distributed contributions from
developers outside a core team.

5 RESULTS

In the following, we discuss results from hypothesis testing orga-
nized by forking inefficiency (outcomes).

When do forks attempt to contribute back? (H;, H3) To test
our hypotheses that modularity (H;) and coordination practices
(H3) associate with higher rates of attempted contributions, we
modeled a project’s ratio of contributing forks as a function of the
two modularity indices and the centralized management index,
while controlling for the overall number of forks, the project size,
and the project age.

In Table 2, we show a summary of the regression model. Inter-
preting the coefficients, we first note a strong positive effect for
the centralized management index, explaining approximately 18 %
of the deviance explained by the model: projects with stronger co-
ordination practices, as evidenced by advanced planning of what
work needs to be done through issue linking, tend to have a higher
fraction of contributing forks that submit patches upstream. Mod-
ularity in terms of logic coupling also has a positive effect, albeit
weaker, accounting for about 1 % of the deviance explained by the
model: projects with more modular architecture, in which changes
can be made in relative isolation, without touching many files, tend
to have a higher fraction of contributing forks. Therefore, we find
evidence in support of both H; and Hs.

When are more contributions integrated? (Hs, H4) To test
our hypotheses whether modularity (Hz) and coordination mecha-
nisms (H4) may also facilitate the integration of changes originating
in forks back into the upstream project, we modeled the ratio of
merged pull requests submitted by external contributors, as a func-
tion of the modularity and centralized management indices. In the
regression we control for known confounding factors, as per prior
work: the total number of forks, the project size and age, the prior

A Study of Inefficient and Efficient Forking Practices in Social Coding

Table 3: External PR merge ratio model (R? = 27%).

Ratio merged PRs
Coeffs (Errors) LR Chisq

(Intercept) 2.82(0.04)"
NumForks 0.82 (0.00)™* 3001.50™**
Size 1.08 (0.00)*** 862.77"*
ProjectAge 1.00 (0.00)™* 355.78"**
SubmitterPriorExperienceTRUE 1.33(0.01)" 1084.06***
SubmitterSocialConnectionsTRUE 1.10 (0.01)™* 124.74*
PRHotness 1.01 (0.01)" 5.99*
RatioPRsWithTests 1.35 (0.06)"** 23.07**
CentralizedMngmtIndex 1.67 (0.03)"™* 226.64***
ModularityIndex 1.50 (0.02)"" 308.46***
AdditiveContributionIndex 1.47 (0.07)"* 30.28***
p < 0.001, % p < 0.01, *p < 0.05 N =1125
Table 4: Duplicate PR ratio model (R? = 4%).
Ratio duplicate PRs
Coeffs (Errors) LR Chisq

(Intercept) 0.01 (0.09)***

NumForks 1.16 (0.01)"* 245.03***

Size 0.97 (0.01)** 19.03**

ProjectAge 1.00 (0.00)*** 29.45**

RatioPrecommunicatedPRs 0.84 (0.06)** 7.81%*

p < 0.001, " p < 0.01, *p < 0.05 N =1127

experience of the pull request submitters, the ratio of pull requests
containing test cases, and the median PR hotness.

In Table 3, we summarize the regression results. As expected,
most (90 %) of the deviance explained by the model is attributed to
the control variables. Still, even after controlling for confounds, all
three main predictors have sizeable, positive effects on the average
pull request merge ratio. Modularity, operationalized as low logical
coupling and high ratio of added files to modified files, has the
strongest effect (6 % of the deviance explained for the two variables
together): the more modular the architecture, the higher the frac-
tion of merged pull requests. Coordination also has a positive and
comparably large effect (4 % of the deviance explained): the more
planned the pull requests are, i.e., in response to open issues, the
higher the average acceptance rate, other variables held constant.
Together, these results provide strong support for both Hy and Hy.

When is duplicate work more common? (Hs) To test whether
discussing or claiming an issue before submitting a PR correlates
with less redundant development (Hs), we modeled the average rate
of duplicate pull requests per project, as a function of the rate of pre-
communicated pull requests, controlling for project age, project size,
and number of forks (older projects and bigger projects, with more
forks, can be expected to experience more duplication, on average).

The regression summary in Table 4 suggests that the higher the
rate at which pull requests are pre-communicated, the lower the
overall rate of duplication among pull requests. However, we model
rare events (both duplicates and pre-communication are relatively
rare in our dataset), the model fit is rather poor (R? = 4 %), and
our pre-communication index explains only 3 % of the deviance
explained by the model. We conclude cautiously that: there is only
weak evidence that claiming pull requests before working on them
associates with lower risk of duplicate work.

When does the community risk fragmentation? (H¢-Hzs)

To test whether projects that reject many external contributions
(Hs), have a more modular design (H7), or have higher coordination

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Table 5: Hard forks model (R? = 10%).

Has hard forks (T/F)

Coeffs (Errors) LR Chisq
(Intercept) 0.19 (0.49)™**
NumForks 1.25 (0.05)"** 23.74%**
Size 1.09 (0.04)* 5.76"
CentralizedMngmtIndex 4.92 (0.58)** 7.39**
ModularityIndex 0.66 (0.32) 1.57
AdditiveContributionIndex 4.32(0.93) 2.43
PRMergeRatio 0.14 (0.42)™** 22.24™**
¥ p < 0.001,**p < 0.01, *p < 0.05 N=1131

requirements (Hg), correlate with fragmented communities and
hard forks, we modeled the likelihood of a project having hard
forks as a function of the average external pull request merge ratio
and the modularity and centralized management indices, while
controlling for project size and the overall number of forks.

Our model, summarized in Table 5, confirms a sizeable nega-
tive effect for the pull request merge ratio (35 % of the deviance
explained), strongly supporting He: the lower the pull request ac-
ceptance rate, the higher the chance of a project having hard forks,
on average. The centralized management index also has a statis-
tically significant positive effect (12 % of the deviance explained),
supporting Hg: more coordination requirements are associated with
a higher risk of community members fragmenting into various hard
forks. We do not find a statistically significant effect though for the
modularity associating with hard forks (Hy).

5.1 Discussion

Modularity. Modularity has been widely recognized as an impor-
tant quality that facilitates software evolution and eases division
of labor and collaboration [9, 22, 54, 61]. Our study confirms that
better modularity is associated with higher efficiency of distributed
fork-based development, specifically higher fraction of developers
contributing their changes back (H) and higher rate of integration
of external contributions (Hz). Note that logic coupling was benefi-
cial in general, whereas extreme modularity where contributions
are mostly additive do not seem to encourage a higher percentage of
developers to contribute back but it significantly eases integration.

While there are some concerns about limiting effects of modu-
larity for certain changes, even to the extent we could hypothesize
potential fragmentation of communities through hard forks, we did
not find in our models any direct evidence supporting these con-
cerns (H7). However, there is a noteworthy indirect effect: higher
modularity is associated with higher PR acceptance ratios (H2);
in turn, higher PR acceptance ratios are associated with higher
likelihood of community fragmentation through hard forks (Hp).
More research is needed to disentangle the effects of modularity
more precisely from those of lower PR acceptance rates; we suggest
this as a promising direction for future research.

In short, our results suggest a net-positive impact of modularity
in fork-based collaborative development, a new domain lacking the
empirical evidence.

Coordination. Our study also indicates the importance of active
coordination among developers. Even though fork-based develop-
ment on a transparent platform allows all developers to freely fork

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

projects, make changes without coordination, and suggest pull re-
quests once done [23], coordination is associated with significant
improvements to the efficiency of a community regarding forking
outcomes specifically. Projects with a practice to coordinate work
through issues upfront have a higher rate of developers who at-
tempt to integrate their changes (H3) and have a higher rate of
accepted pull requests (Hy).

However, coordination is known to incur some costs and could
potentially be annoying to some. Our models provide support for
these concerns, suggesting that higher levels of coordination might
actually encourage hard forks (Hg). Again, note a similar tradeoff
as with modularity, albeit this time more clearly visible in our
models: coordination is directly and positively (Hg) associated with
likelihood of hard forking, but also indirectly and negatively (Hy),
through its effect on pull request acceptance rates (hard forks are
associated more with projects that are more selective in accepting
external pull requests; Hg). We suspect that developers have to
make deliberate tradeoff decisions about how inclusive they want
to be in accepting community contributions, potentially at the cost
of discouraging contributors and fragmenting their community if
their standards are too rigid.

Redundant development. Finally, our models of duplicate pull
requests are not sufficiently well fitting to conclude there is strong
evidence supporting different interventions; we found some evi-
dence, but weaker compared to the other hypotheses, that claiming
an issue upfront is associated with a lower chance of redundant
work (Hs). Duplicates are rare in most projects, but may still cause
substantial friction, especially for new developers; also, despite
many recommendations, claiming issues is not a common prac-
tice yet in most projects. Interestingly, anecdotally, we found cases
where developers triggered duplicate work by posting an issue be-
fore addressing the issue themselves without actually claiming the
issue, which encouraged others to work on the same issue in paral-
lel. More research is needed to develop and evaluate interventions.
Recently suggested awareness tools that might detect duplicate
work quickly rather than expecting upfront coordination [49, 67]
might be an interesting alternative strategy.

5.2 Implications

Implications for practitioners. Our results encourage practition-
ers to strive for implementations that are modularly extensible
and to adopt guidelines for contributors that suggest coordinating
planned changes through an issue tracker. Though some open-
source developers might dislike the rigidness and effort of central
coordination, our results show that projects that do so receive a
higher fraction of pull requests from their active forks, end up inte-
grating more changes, and likely frustrate fewer contributors in the
process. Maintainers might want to point newcomers especially to
work on problems which can be completed with modular changes.
All of this can improve sustainability and the perception of having
a strong community for a project. Finally, while hard forks are
rare in practice, they can be expensive for a community and have
gotten much easier on social coding platforms—maintainers should
consider carefully to what degree they can remain open to various
external contributions and how modularity can help to integrate
contributions more easily or to what degree they are willing to

Zhou, Vasilescu and Kistner, et al.

accept some degree of fragmentation.

Implications for researchers and tool builders. While we
explored how project characteristics and existing practices influ-
ence efficiency outcomes, there are many opportunities to design
and study further interventions. For example, improved tooling
to navigate and understand changes in forks or to oversee large
numbers of pull requests [3-5, 66, 84] can help both maintainers
and contributors to explore not-integrated forks and detect work
in progress, to detect interesting extensions and avoid redundant
development. Explicit GiTHUB mechanisms rather than conven-
tions to claim issues as work in progress have been suggested [2],
as have community tooling for coordination [3], which would be
worth evaluating. There may be research opportunities to detect
redundant pull requests automatically to reduce the maintainers’
effort [49, 67, 83] or even to detect redundant development early
before developers finished their work [67]. Research on mentor-
ing [20, 31] might further establish good and efficient practices.

Furthermore, we suspect that many members of an open-source
community are not aware of their practices and how they relate to
other projects (e.g., some interviewees where surprised that some
projects largely coordinate work in the issue tracker whereas others
were surprised that not all projects do that). We suspect that making
practices transparent, for example, through repository badges [76]
or metric dashboards [16, 19] can help community members to
understand their practices and how it relates to other (possibly
more efficient) projects.

Finally, we argue that researchers should revisit hard forks and
the cost of community fragmentation, given that new ease of fork-
ing on social-coding platforms may have changed dynamics from
the feared hard forks of the past. Many tools to manage distributed
development with forks can also be useful for industrial settings,
where forks are also frequently used for collaboration and for vari-
ant management [27], and recently several researchers have ex-
plored lightweight tooling to support fork-based variant manage-
ment [7, 32, 71].

6 CONCLUSION

Fork-based development in social-coding context has been widely
adopted in open-source communities, as it allows developers to
modify their own fork without affecting others and provides a uni-
form way of contribution their changes back to the original project.
We show that there are significant inefficiencies in the collabo-
rative development process of many communities, including lost
contributions, rejected pull requests, redundant development, and
fragmented communities. Through large-scale statistical modeling
of factors operationalized in GITHUB traces, we found that many of
these inefficiencies associate with common project characteristics
and practices, especially modularity and coordination practices.

Acknowledgements. Many thanks to participants of our inter-
views! Késtner and Zhou have been supported in part by the NSF
(awards 1318808, 1552944, and 1717022) and AFRL and DARPA
(FA8750-16-2-0042). Vasilescu has been supported in part by the
NSF (award 1717415). We thank James D. Herbsleb and Laura Dab-
bish for their comments and advice on this project.

A Study of Inefficient and Efficient Forking Practices in Social Coding

REFERENCES

(1]

[9

=

[10

[11]

2011. Requirement of “Claiming” tickets in Django
https://docs.djangoproject.com/en/dev/internals/contributing/writing-
code/submitting-patches/#claiming-tickets

2016. Dear Github Issue 191: Feature: Work In Progress Pull Requests. https:
//github.com/dear-github/dear- github/issues/191

2016. WIP app for GitHub. https://github.com/apps/wip

2017. GitHub Pull Request Triage. http://prs.mozilla.io/

2017. Lovely Forks Browser Extension: Show notable forks of Github repositories
under their names. https://github.com/musically-ut/lovely-forks

2019. Replication Package. https://doi.org/10.5281/zenodo.3258821

Michat Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Limmel, Stefan Stanciulescu, Andrzej Wasowski, and Ina Schae-
fer. 2014. Flexible Product Line Engineering with a Virtual Platform. In Comp.
Int’l Conf. Software Engineering (ICSE). ACM, 532-535.

Amirhosein Emerson Azarbakht. 2017. Longitudinal Analysis of Collaboration in
Forked Open Source Software Development Projects. Ph.D. Dissertation. Oregon
State University.

Carliss Young Baldwin and Kim B Clark. 2000. Design Rules: The Power of Modu-
larity. Vol. 1. MIT press.

Fabian Beck and Stephan Diehl. 2011. On the Congruence of Modularity and
Code Coupling. In Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM, 354-364.

Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 questions for
data scientists in software engineering. In Proc. Int’l Conf. Software Engineering
(ICSE). ACM, 12-23.

Mary J Benner and Michael L Tushman. 2003. Exploitation, exploration, and pro-
cess management: The productivity dilemma revisited. Academy of management
review 28, 2 (2003), 238-256.

Marco Biazzini and Benoit Baudry. 2014. May the Fork be with You: Novel
Metrics to Analyze Collaboration on GitHub. In Proceedings of the 5th International
Workshop on Emerging Trends in Software Metrics. ACM, 37-43.

project.

[14] James M Bieman and Linda M Ott. 1994. Measuring functional cohesion. IEEE

[15]

[16]

[17]

[18

[19]

[20

[21

[22]

~
&

[24]

[25]

[26]

[27]

[28

[29]

Trans. Softw. Eng. (TSE) 20, 8 (1994), 644-657.

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Software
Ecosystems. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).
ACM, 109-120.

E.Bouwers, A. van Deursen, and J. Visser. 2013. Evaluating usefulness of software
metrics: An industrial experience report. In Proc. Int’l Conf. Software Engineering
(ICSE). 921-930.

Jordi Brandts and David J. Cooper. 2018. Truth Be Told An Experimental Study of
Communication and Centralization. Working Papers 1046. Barcelona Graduate
School of Economics.

Yuangfang Cai and Sunny Huynh. 2007. An evolution model for software mod-
ularity assessment. In Proc. ICSE Workshop on Software Quality (WoSQ). IEEE,
3-3.

G. Ann Campbell and Patroklos P. Papapetrou. 2013. SonarQube in Action (1st
ed.). Manning Publications Co., Greenwich, CT, USA.

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is Going to Mentor Newcomers in Open Source Projects?.
In Proc. Int’l Symposium Foundations of Software Engineering (FSE). ACM, Article
44, 11 pages.

Bee Bee Chua. 2017. A Survey Paper on Open Source Forking Motivation Reasons
and Challenges. In 21st Pacific Asia Conference on Information Systems (PACIS).
75.

Melvin E Conway. 1968. How do committees invent. Datamation 14, 4 (1968),
28-31.

Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proc. Conf. Computer Supported Cooperative Work (CSCW). ACM, 1277-1286.
Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb. 2013. Leveraging
transparency. IEEE Software 30, 1 (2013), 37-43.

Carlo Daffara. 2012. Estimating the economic contribution of open source soft-
ware to the European economy. In The First Openforum Academy Conference
Proceedings. 11-14.

Premkumar Devanbu, Thomas Zimmermann, and Christian Bird. 2016. Belief
& evidence in empirical software engineering. In Proc. Int’l Conf. Software Engi-
neering (ICSE). IEEE, 108-119.

Yael Dubinsky, Julia Rubin, Theodore Berger, Slawomir Duszynski, Matthias
Becker, and Krzysztof Czarnecki. 2013. An exploratory study of cloning in
industrial software product lines. In Proc. Europ. Conf. Software Maintenance and
Reengineering (CSMR). IEEE, 25-34.

Nadia Eghbal. 2016. Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure. Ford Foundation. https://www.fordfoundation.org/media/2976/
roads-and-bridges- the-unseen-labor-behind-our-digital-infrastructure.pdf
Thomas] Emerson. 1984. A discriminant metric for module cohesion. In Proc.
Int’l Conf. Software Engineering (ICSE). IEEE Press, 294-303.

[30

[31

®
=

w
&,

W
20,

[40]

[41

[42

[43

[44]

[45

[46

[47

(48

N
X2

[50

[51]

(52]

[53

[54

[55

o
2

[57

[58

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Neil A Ernst, Steve Easterbrook, and John Mylopoulos. 2010. Code forking in
open-source software: a requirements perspective. arXiv preprint arXiv:1004.2889
(2010).

Fabian Fagerholm, Alejandro S Guinea, Jiirgen Miinch, and Jay Borenstein. 2014.
The role of mentoring and project characteristics for onboarding in open source
software projects. In Proc. Int’l Symp. Empirical Software Engineering and Mea-
surement (ESEM). ACM, 55.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In Proc. Int’l Conf. Software Maintenance (ICSM). IEEE, 391-400.
Brian Fitzgerald. 2005. Has open source software a future. Perspectives on free
and open source software 1 (2005), 93-106.

Karl Fogel. 2005. Producing open source software: How to run a successful free
software project. O’Reilly Media, Inc.

Kam Hay Fung, Aybiike Aurum, and David Tang. 2012. Social Forking in Open
Source Software: An Empirical Study. In Proc. Int’l Conf. Advanced Information
Systems Engineering (CAiSE) Forum. Citeseer, 50-57.

Jonas Gamalielsson and Bjorn Lundell. 2014. Sustainability of Open Source
Software Communities beyond a Fork: How and Why has the LibreOffice Project
Evolved? Journal of Systems and Software 89 (2014), 128-145.

Georgios Gousios. 2013. The GHTorent dataset and tool suite. In Proc. Working
Conf. Mining Software Repositories (MSR). IEEE Press, 233-236.

Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proc. Int’l Conf. Software
Engineering (ICSE). ACM, 345-355.

Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work Practices and Challenges in Pull-Based Development: The Integrator’s
Perspective. In Proc. Int’l Conf. Software Engineering (ICSE), Vol. 1. 358-368.
Shane Greenstein and Frank Nagle. 2014. Digital dark matter and the economic
contribution of Apache. Research Policy 43, 4 (2014), 623-631.

Carl Gutwin and Saul Greenberg. 2004. The Importance of Awareness for Team
Cognition in Distributed Collaboration. E. Salas & S. M. Fiore (Eds.), Team cogni-
tion: Understanding the factors that drive process and performance (2004), 177-201.
Carl Gutwin, Reagan Penner, and Kevin Schneider. 2004. Group awareness in
distributed software development. In Proc. Conf. Computer Supported Cooperative
Work (CSCW). ACM, 72-81.

James D Herbsleb and Rebecca E Grinter. 1999. Splitting the organization and inte-
grating the code: Conway’s law revisited. In Proc. Int’l Conf. Software Engineering
(ICSE). ACM, 85-95.

James D. Herbsleb and Audris Mockus. 2003. An empirical study of speed and
communication in globally distributed software development. IEEE Trans. Softw.
Eng. (TSE) 29, 6 (2003), 481-494.

Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
2017. Why and how developers fork what from whom in GitHub. Empirical
Software Engineering 22, 1 (2017), 547-578.

Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M
German. 2015. Open source-style collaborative development practices in com-
mercial projects using GitHub. In Proc. Int’l Conf. Software Engineering (ICSE).
IEEE Press, 574-585.

Bruce Kogut and Anca Metiu. 2001. Open-source software development and
distributed innovation. Oxford review of economic policy 17, 2 (2001), 248-264.
Andrew M St Laurent. 2004. Understanding Open Source and Free Software Licens-
ing: Guide to Navigating Licensing Issues in Existing & New Software. O’Reilly
Media, Inc.

Zhixing Li, Gang Yin, Yue Yu, Tao Wang, and Huaimin Wang. 2017. Detecting Du-
plicate Pull-requests in GitHub. In Proceedings of the 9th Asia-Pacific Symposium
on Internetware. ACM, 20.

Alec Liu. 2014. Who’s Building Bitcoin? An Inside Look at Bitcoin’s Open Source
Development. Motherboard (2014).

Alan MacCormack, John Rusnak, and Carliss Y Baldwin. 2006. Exploring the
structure of complex software designs: An empirical study of open source and
proprietary code. Management Science 52, 7 (2006), 1015-1030.

James G March. 1991. Exploration and exploitation in organizational learning.
Organization science 2, 1 (1991), 71-87.

Ines Mergel. 2015. Open collaboration in the public sector: The case of social
coding on GitHub. Government Information Quarterly 32, 4 (2015), 464-472.
Bertrand Meyer. 1988. Object-Oriented Software Construction. Vol. 2. Prentice hall
New York.

Vishal Midha and Prashant Palvia. 2012. Factors Affecting the Success of Open
Source Software. 7. Syst. Softw. 85, 4 (April 2012), 895-905.

Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution patterns of open-source software systems and
communities. In Proc. Int’l Workshop on Principles of Software Evolution (IWPSE).
ACM, 76-85.

Linus Nyman. 2014. Hackers on forking. In Proc. Int’l Symposium on Open
Collaboration (OpenSym). ACM, 6.

Linus Nyman and Tommi Mikkonen. 2011. To fork or not to fork: Fork motivations
in SourceForge projects. In IFIP International Conference on Open Source Systems.

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

[59]

[60]

[61]

[62]

[64]

[65

[66]

[67]

[68]

[69]

Springer, 259-268.

Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougeére. 2012. Per-
spectives on Code Forking and Sustainability in Open Source Software. Open
Source Systems: Long-Term Sustainability (2012), 274-279.

Klaus Ostermann, Paolo G. Giarrusso, Christian Kistner, and Tillmann Rendel.
2011. Revisiting Information Hiding: Reflections on Classical and Nonclassical
Modularity. In Proc. Europ. Conf. Object-Oriented Programming (ECOOP), Vol. 6813.
Springer, 155-178.

David Lorge Parnas. 1972. On the criteria to be used in decomposing systems
into modules. Commun. ACM 15, 12 (1972), 1053-1058.

Phanish Puranam, Oliver Alexy, and Markus Reitzig. 2014. What’s “new” about
new forms of organizing? Academy of Management Review 39, 2 (2014), 162-180.
Ayushi Rastogi and Nachiappan Nagappan. 2016. Forking and the Sustainabil-
ity of the Developer Community Participation-An Empirical Investigation on
Outcomes and Reasons. In Proc. Int’l Conf. Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. IEEE, 102-111.

Baishakhi Ray, Miryung Kim, Suzette Person, and Neha Rungta. 2013. Detecting
and characterizing semantic inconsistencies in ported code. In Proc. Int’l Conf.
Automated Software Engineering (ASE). IEEE, 367-377.

Eric S Raymond. 2001. The Cathedral & the Bazaar: Musings on linux and open
source by an accidental revolutionary. O’Reilly Media, Inc.

Luyao Ren, Shurui Zhou, and Christian Kastner. 2018. Poster: Forks Insight:
Providing an Overview of GitHub Forks. In Comp. Int’l Conf. Software Engineering
(ICSE). ACM, 179-180. Poster.

Luyao Ren, Shurui Zhou, Christian Késtner, and Andrzej Wasowski. 2019. Iden-
tifying Redundancies in Fork-based Development. In Proc. Int’l Conf. Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 230-241.

Gregorio Robles and Jestis M. Gonzalez-Barahona. 2012. A Comprehensive
Study of Software Forks: Dates, Reasons and Outcomes. In Open Source Systems:
Long-Term Sustainability International Conference, OSS. 1-14.

Maha Shaikh and Ola Henfridsson. 2017. Governing open source software
through coordination processes. Information and Organization 27, 2 (2017), 116~
135.

[70] Jesse Shore, Ethan Bernstein, and David Lazer. 2015. Facts and figuring: An

[71]

experimental investigation of network structure and performance in information
and solution spaces. Organization Science 26, 5 (2015), 1432-1446.

Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wasowski.
2016. Concepts, operations, and feasibility of a projection-based variation control
system. In Proc. Int’l Conf. Software Maintenance and Evolution (ICSME). IEEE,
323-333.

Zhou, Vasilescu and Kistner, et al.

Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa.
2018. Almost there: A study on quasi-contributors in open-source software
projects. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, 256-266.

Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. 2015. Forked and
Integrated Variants in an Open-Source Firmware Project. In Proc. Int’l Conf.
Software Maintenance and Evolution (ICSME). 151-160.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. 1999. N
Degrees of Separation: Multi-Dimensional Separation of Concerns. In Proc. Int’l
Conf. Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA,
107-119.

Linus Torvalds. 1999. The Linux Edge. Commun. ACM 42, 4 (1999), 38-38.
Asher Trockman, Shurui Zhou, Christian Késtner, and Bogdan Vasilescu. 2018.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the
Npm Ecosystem. In Proceedings of the 40th International Conference on Software
Engineering (ICSE ’18). ACM, 511-522.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proc. Int’l Conf. Software
Engineering (ICSE). ACM, 356-366.

Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-Level
Determinants of Sustained Activity in Open-Source Projects: A Case Study of
the PyPI Ecosystem. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). ACM, 644-655.

Robert Viseur. 2012. Forks impacts and motivations in free and open source
projects. International Journal of Advanced Computer Science and Applications 3,
2(2012), 117-122.

Jian Wang. 2016. Knowledge creation in collaboration networks: Effects of tie
configuration. Research Policy 45, 1 (2016), 68—80.

Steve Weber. 2004. The success of open source. Harvard University Press.

Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for it: Determinants of pull request evaluation latency
on GitHub. In Proc. Working Conf. Mining Software Repositories (MSR). IEEE,
367-371.

Yue Yu, Li Zhixing, Yin Gang, Tao Wang, and Wang Huaimin. 2018. A Dataset
of Duplicate Pull-requests in GitHub. In Proc. Working Conf. Mining Software
Repositories (MSR). 12.

Shurui Zhou, Stefan Stanciulescu, Olaf Leflenich, Yingfei Xiong, Andrzej Wa-
sowski, and Christian Késtner. 2018. Identifying Features in Forks. In Proc. Int’l

Conf. Software Engineering (ICSE). ACM Press, 105-116.
Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. 2003. How history

justifies system architecture (or not). In Proc. Int’l Workshop on Principles of
Software Evolution (IWPSE). IEEE, 73-83.

