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ABSTRACT can be enforced by either trusting the DSPS (and its underlying

Data Stream Processing Systems (DSPSs) execute long-running,
continuous queries over transient streaming data, often making use
of outsourced, third-party computational platforms. However, third-
party outsourcing can lead to unwanted violations of data providers’
access controls or privacy policies, as data potentially flows through
untrusted infrastructure. To address these types of violations, data
providers can elect to use stream processing techniques based upon
computation-enabling encryption. Unfortunately, this class of so-
lutions can leak information about underlying plaintext values,
reduce the possible set of queries that can be executed, and come
with detrimental performance overheads.

To alleviate the concerns with cryptographically-enforced access
controls in DSPSs, we have developed Sanctuary, a DSPS that makes
use of Intel’s Software Guard Extensions (SGX) to protect data being
processed on untrusted infrastructure. We show that Sanctuary can
execute arbitrary queries while leaking no more information than
an idealized Trusted Infrastructure system. At the same time, an
extensive evaluation shows that the overheads associated with
stream processing in Sanctuary are comparable to its computation-
enabling encryption counterparts for many queries.
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1 INTRODUCTION

Data Stream Processing Systems (DSPS) have been proposed to
execute long-running continuous queries (CQs) over large volumes
of fast moving, transient data. DSPSs have applications in a variety
of domains such as medical device monitoring, social media, and
wearable/mobile devices. Often, DSPSs make use of outsourced
third-party computational platforms, such as Microsoft Azure or
Amazon EC2, to reduce the overall monetary cost of maintaining
the DSPS and to allow for hardware flexibility and service scala-
bility. Such use of a third-party system, however, may violate the
confidentiality constraints and access controls of data providers by
permitting an unauthorized third-party to view their data.

To address this issue, data providers often specify access controls
to limit the disclosure of their sensitive data. These access controls
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infrastructure) to abide by the specified policies, or through crypto-
graphic mechanisms. The use of a DSPS for enforcement requires
that the data provider have some level of established trust with
not only the DSPS, but also with the platform on which the DSPS
is executing (e.g., Amazon EC2), which may often not be the case.
Naive use of cryptography requires the decryption of information
prior to query processing, and thus eliminates the possibility of
in-network processing on untrusted infrastructure. Fortunately, re-
cent work such as PolyStream [35] and Streamforce [3] makes use
of computation-enabling cryptographic techniques. Computation-
enabling cryptographic schemes allow some level of query exe-
cution to be processed directly on encrypted data (e.g., an order-
preserving cryptographic scheme will allow a user to execute an
arbitrary range query on a protected data stream). Such solutions
can allow for third-party systems to be utilized for processing since
data is again protected, and the underlying DSPS framework can
remain unchanged.

Unfortunately, these systems are limited in the scope of what
types of query operators can be supported. For instance, without
prior collaboration between data providers, data consumers cannot
execute an arbitrary join query over streams emitted by two or
more data providers, as each provider will be encrypting their
streams using a different key. Moreover, the operations available
to consumers are dictated by how data providers encrypt their
data. For example, if a data provider does not encrypt using an
order-preserving encryption scheme, consumers will not be able to
execute range queries over encrypted data. As a result, supporting
a rich—albeit still limited—collection of operations requires a data
provider to encrypt its data in multiple ways (once for each type of
operations to be enabled), resulting in increased data transmission
overheads.

The use of computation-enabling encryption further has the side
effect of leaking peripheral information about a data stream. For
instance, a deterministic encryption scheme retains the equality
property of the underlying data, which permits a querier to test the
equality of two values. This, however, also allows outside observers
to learn a distribution of the underlying values. Similarly, the use
order-preserving encryption allows outside observers to learn the
distribution and relative ordering of underlying values. A data
provider can opt out of any given computation-enabling encryption
scheme if they deem that the information leaked is too excessive,
but this limits the scope of queries that can be executed.

To help alleviate these types of concerns, we explore the use of
Intel’s Software Guard Extensions (SGX) for securely executing
arbitrary data stream queries on third-party systems while mini-
mizing peripheral leakage of information. Our prototype system,
Sanctuary, handles only encrypted data and makes use of SGX en-
claves to process arbitrary operations over this data in a manner
that prevents the exposure of underlying plaintext characteristics.
In developing Sanctuary, we make the following contributions:
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Figure 1: Sliding window with a length of 4 tuples and a slide of 2
tuples.

e We develop Sanctuary, a Data Stream Processing System that
utilizes SGX enclaves to support the execution of arbitrary
streaming relational operations over sensitive data on untrusted
third-party infrastructure.

e SGX enclaves have access to a limited memory (128 MB). Often,
stateful operators will require more memory than what an en-
clave can provide. To this end, we present algorithms for stateful
relational operators used by Sanctuary that are designed for the
memory-limited enclave environment.

e We provide a detailed analysis of the information that can be
gathered by an adversary when using Sanctuary. We show that
Sanctuary can achieve a greater level of data protection when
compared to state-of-the-art cryptographically-enforced access
controls, and further show Sanctuary to be near ideal in terms
of information leakage when compared to a baseline system.

e Finally, we carry out an in-depth evaluation of each relational
streaming operation in Sanctuary and compare it to similar
relational streaming operations for both unprotected (i.e., plain-
text) data, and different computation-enabling encryption tech-
niques [3, 35]. We further include enclave-enabled operators
as part of larger query networks and evaluate the overheads
associated with their use.

The remainder of this paper is organized as follows. We overview
SGX and related work in Section 2. We describe the Sanctuary ar-
chitecture and threat model in Section 3. We detail the challenges in
enclave-enabled relational streaming operators and the overheads
associated with them in Section 4. We present enclave-enabled lim-
ited memory streaming operators used by Sanctuary in Section 5.
We provide a detailed discussion on information leakage in Sec-
tion 6 and evaluate operations and queries that use SGX enclaves
in Section 7. Finally, we conclude in Section 8.

2 BACKGROUND AND RELATED WORK

Here, we overview related work and describe Intel’s SGX at a level
that is sufficient to fully understand the remainder of the paper.

2.1 Data Streaming Systems

Data Stream Processing Systems (DSPSs) either operate on a sin-
gle machine [1, 4], or are distributed over a cluster or wide-area-
network of machines [2, 10, 21, 34]. In a distributed environment
(DDSPSs), continuous queries can place individual streaming op-
erations on different, sometimes geographically distant, compute
nodes to reduce the network overheads [7, 15, 27, 30], total mone-
tary cost [27], or computational cost of the query [19, 33]. Given
the nature of a DSPS, outsourcing computation is desirable to help
allocate or re-allocate appropriate resources for each streaming
query. However, this may lead to a potential violation of a data
provider’s access controls.

In this paper, we assume a common streaming model (as assumed
in [23, 24, 35]) where data providers distribute data through third-
party cloud computing systems. Data consumers place streaming
operators onto the cloud system for data processing.

Data streaming operators can broadly be classified into two
types: stateless and stateful. Stateless operators execute on one
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tuple of a data stream at a time, without any knowledge of prior
tuples, to produce a result (e.g., filter out all values over a certain
threshold). Stateful operators require some knowledge of prior or
concurrent tuples in order to produce a result. Typically, these
operators keep this information in a window that defines a length
of time or a number of tuples that are used to compute a result.
For instance, a querier may wish to know the average stock price
over the last five minutes, which requires the streaming operator to
keep a window for the last five minutes worth of tuples. In addition
to this window, a querier can elect to use a slide to form a sliding
window. A slide simply defines how often the querier desires to
receive a window’s result. For instance, consider Figure 1. A querier
requests the average stock price for the last four tuples but wants
the latest average reported every two tuples (i.e., a window of 4 with
a slide of 2 tuples) (the moving brackets labeled w1, w2, and w3) to
yield a finer granularity for their application.

2.2 Access Controls in DDSPSs

To address the privacy and access control concerns of a data provider,
several systems and algorithms have been proposed. These systems
can be broadly characterized into two groups: trusted third-party
and untrusted third-party access control enforcement. In a trusted
third-party access control enforcement environment, data providers
specify access controls and allow an outsourced third-party to en-
force these access controls. Systems such as FENCE [23, 24] enforce
access controls by adding special streaming operators that enforce
access controls by filtering tuples that are not permitted to be ac-
cessed by a querier. Other systems rewrite queries or alter streaming
operators [11-13, 25], while others focus on protecting a single sys-
tem, such as Borealis [22]. This class of solutions exposes provider
data to the infrastructure itself, and must trust the infrastructure
to correctly enforce provider access control policies.

Systems that do not trust third-party access control enforcement
will rely on cryptographically-enforced access controls. Rather than
forcing a querier to process data only after it has been decrypted,
systems like PolyStream [35] and Streamforce [3] allow the data
provider to use specialized computation-enabling encryption tech-
niques to enable third-party computation for a querier directly on
encrypted data. These systems, however, limit the expressiveness
and accessibility of a queriers’ potential query. In Streamforce, a
querier may only access integer data via a view-like format, (i.e., only
allowing filtering and aggregations on numeric data). PolyStream
supports a richer set of query operations than Streamforce, but can-
not support join or complex user-defined functions over streams
from multiple providers. Furthermore, these systems also leak in-
formation about the underlying plaintext values, such as equality,
relative partial ordering, or relationships between groups of tuples
(i.e., the encrypted aggregate of some encrypted data).

To help overcome these limitations and provide an alternate
avenue for untrusted third-party computation, in this paper, we
enable a querier to employ remote SGX enclaves to ensure private
computation and to restore expressiveness by allowing for any
streaming operation to execute on the third-party system.

2.3 SGX

Overview:Intel’s Software Guard Extensions (SGX) [16] are a set
of architectural enhancements to recent Intel processors that pro-
vide developers with the ability to create a trusted environment
within an untrusted machine. An enclave is given exclusive use of
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a core of the CPU while it is executing, meaning that no other pro-
cesses can access on-chip storage, as enforced by the CPU. Further,
when the enclave is either finished processing or the CPU has an
interrupt, all data is encrypted and written to memory so that no
other process can access the plaintext data. An enclave, therefore,
offers a developer the opportunity to trust the computation of a
third party device in terms of confidentiality (sensitive data values
cannot be observed outside of the enclave) and integrity (attempted
modifications to protected data or instructions will be detected).
SGX also supports the use of remote attestation processes to ensure
the integrity of an enclave being staged onto a remote machine.

There are certain aspects of SGX enclave use that a developer
must consider. Each interrupt to the SGX-enabled core causes the
CPU to encrypt and write data out to unprotected memory, and each
further startup causes that data to be brought back into the CPU
and decrypted. These context switches can cause the overall enclave
execution to slow down and can negatively impact performance.
Developers need to be cognizant of these types of overheads when
making use of enclave technology. Further, enclave memory is
limited to at most 128 MB at any given time. Any large-scale, in-
memory processes will be severely hindered by this cap and will
require the developer to manage swapping to (encrypted) non-
enclave memory on-the-fly. The remainder of this paper is devoted
to exploring the use SGX enclaves for streaming application, with a
focus on exploring algorithms that work with the above issues with
SGX enclaves to allow data consumers to make use of third-party
computation platforms that provide SGX-enabled CPUs.

SGX for Data Protection: Current work in SGX-enabled computa-
tion has focused on many different areas, from securing ZooKeeper
data [9]; to managing transactions, or enterprise rights manage-
ment privately [18]; to segregating linux containers [6]. Secure-
Stream [17] is a system that explores the use of Intel’s SGX as a way
to execute Map-Reduce streaming applications. Further, VC3 [31]
builds a Map-Reduce engine on top of SGX hardware that allows for
attestation of code and data on a powerful adversary. In Sanctuary
we focus on streaming relational data operators and the challenges
associated with windowed operators and memory limitations.

Opaque [37] augments SQL operators so that their memory ac-
cesses are hidden and operate within an SGX enclave. Similarly,
EnclaveDB [29] provides SQL operators that execute with an SGX
enclave. Finally, SGX-BigMatrix [32] provides a high level language
that can be used to provide secure, enclave-enabled computations.
Sanctuary is complementary to these previous works, as it is de-
signed to enable enclave-protected, real-time relational stream pro-
cessing with the goal of overcoming the limitations of state-of-the-
art cryptographic stream processing systems while also providing
enhanced security (cf. Section 6).

3 ARCHITECTURE AND THREAT MODEL

This section overviews the architecture, system model, and threat
model assumed by Sanctuary.

3.1 Architecture and System Model

The architecture and system model assumed by Sanctuary are pre-
sented in Figure 2. We assume queries are specified in a declarative
language like the Continuous Query Language (CQL) [5]. The Sanc-
tuary optimizer (which is/can be run locally on the querier’s trusted
machine) transforms the query into a set of streaming operators
that will need to be ordered and placed in the query network. The
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Figure 2: Architecture of an SGX-enabled stream processing system
(with a single SGX-enabled core on a single node).
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optimizer in Sanctuary may decide to place an operation in an SGX
enclave and will use the initializer (which can either operate as part
of the streaming operator’s code base or even within an enclave)
to do so. The work of the initializer is detailed in Section 3.3. We
assume that all encryption keys between the data provider and the
consumer are transmitted off-line (as described in Section 3.3).

Once the initializer and optimizer have finished executing, all
operations are placed and the query may execute. As encrypted
data arrives, it is placed into a non-enclave memory Input Buffer.
Once the enclave occupies the CPU-core, data will be read from this
buffer, decrypted (with the key provided to the initializer during
the enclave provisioning step), processed, and encrypted results
are stored in the non-enclave memory Output Buffer to be further
propagated through the query network. If state must be kept when
the enclave does not occupy the CPU, it is encrypted and stored in
the State Storage non-enclave memory buffer.

In this paper, we assume that all relevant data arrives encrypted.
Individual data packets are represented as tuples with fields for each
piece of information within a data tuple. Tuples can be represented
by a schema that describes each field (e.g., {ID(int), name(string),
heartrate(int), date(dateTime)} or something similar). A schema can
also be described using a key-value approach.

3.2 Threat Model

Sanctuary is designed to execute operators on an untrusted com-
putational platform. We assume that the untrusted party is honest-
but-curious (an assumption also made in [35], [3], and [28]). An
honest-but-curious adversary is one that will not maliciously alter,
drop, or add data but will rather try to learn information about the
victim by reading and understanding their data. This follows from
our system model: it is expected that third-party service providers
are attempting to earn money and be successful by providing a
cloud computing service. Maliciously altering, dropping, or adding
data will result in lost customers and a negative reputation, ulti-
mately causing them to lose money. We further assume that the SGX
hardware itself remains uncompromised; i.e., it is patched against
side-channel attacks such as Spectre [20] and Foreshadow [36].
As we later detail, Sanctuary is data oblivious with respect to its
use of cryptographic keys, which are unlikely to be leaked via
side-channel attacks. We further detail how Sanctuary is not data
oblivious in terms of the data being processed in Section 6.

Sanctuary aims to prevent third-party service providers and
adversaries observing the network from being able to obtain or
infer the underlying plaintext data produced and transmitted by
a data provider. Moreover, Sanctuary allows for data to be fully
encrypted during transit to prevent inference of the underlying
plaintext values. Finally, Sanctuary aims at limiting the leakage of
ancillary data (e.g., tuple value distributions, orderings, etc.) to the
service provider and third-parties observing the system.
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Figure 3: An example scenario of Sanctuary query deployment.

3.3 Deployment Model

Processing a query in Sanctuary involves three main steps: ensuring
that the data consumer has the necessary cryptographic keys to
decrypt all relevant streams; generating and deploying standard or
enclave-based data stream operators; and executing the running
query. We will describe each of these phases using Figure 3 as a
simple example. This query involves two streams: an unencrypted
stream originated by DP1, and an encrypted stream originated by
DP2. In this query, a standard selection operator is first applied to
the unencrypted data stream. The resulting stream is then joined
to the encrypted stream using SGX-enabled operator.

Key acquisition. In order for a data consumer to access an en-
crypted data stream, they must have access to the cryptographic
key (or keys) used to encrypt the stream. For simplicity, in Figure 3,
we assume that a single key, kp, is used to encrypt the stream origi-
nated by DP2. In Sanctuary, key management is handled either in
an offline manner, or online using a mechanism such as Fence [24]
or Polystream [35]. Once a data consumer is able to decrypt stream-
ing data, they are in a position to leverage the ability of Sanctuary
to deploy SGX-enabled query operators.

Query deployment. Sanctuary is developed on top of the Apache
Storm [34] infrastructure (cf. Section 7 for details). Plaintext rela-
tional operators are deployed as Storm bolts in the typical manner.
The deployment of SGX-enabled operators is a multi-step process,
as shown in Figure 3. First, Sanctuary will create an SGX enclave
capable of executing the desired streaming operator (cf. Sections 4
and 5 for details). Next, this enclave is deployed to the Storm infras-
tructure (arrow 1). SGX remote attestation is then used to ensure
the integrity of this operator as it is instantiated within Storm
(bidirectional arrow 2). This process results in the derivation of a
session key kg that can be used to communicate securely between
the data consumer and the enclave. Finally, ks is used to encrypt
and transmit the data stream key k, to the operator enclave (arrow
3). At this point, the query network is ready to receive input tuples.

Query execution. In steady state, unencrypted tuples from DP1
and processed by the selection operator as in a standard DSMS.
Encrypted tuples flowing from DP2 into the enclave-based join
operator are decrypted using k, and joined with the output of
the selection operator. All result tuples are encrypted with kg and
forwarded to the data consumer.

4 STATELESS OPERATORS

In this section we briefly describe common DSPS stateless operators
supported by Sanctuary and discuss how these operators must be
altered to execute within an SGX enclave.

4.1 Stateless Operator Overview

Stateless operators interact with the enclave in a manner depicted
in Figure 4. Operators are sent to the untrusted third-party by
the data consumer. As data arrives from the data providers, it is
decrypted, processed, re-encrypted, and finally sent to the data
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Figure 4: Stateless operator interaction with the enclave.

consumer. This decryption key is provided at the initialization of
the enclave as part of the operation itself. There are three common
stateless operators used in DSPSs: Filter, Projection, and Map. Given
the straightforward nature of these operators, the only changes
needed for execution within an enclave are the decryption of input
tuples and the (potential) re-encryption of output tuples with a
constant overhead (explored further in Section 7).

Filter: The filter operation simply verifies that a particular field
matches a desired expression for range or equality (e.g., x = y,
x > y, etc.). A filter must store the predicate (i.e., the constant
comparator as described by the data consumer’s query), the field to
compare the predicate too (i.e., the “name” field, or a field identified
by its placement in the tuple), and the operator code itself within
the enclave, which reduces the overall enclave capacity. Processing
a tuple will likely require a decryption (of at least the required
field) and may require a re-encryption, depending upon whether
the result must be transmitted in ciphertext or plaintext.

Projection: The projection operation reduces the size of a tuple
by filtering out a specific set of fields to be passed along. The only
information required to be saved in the enclave for a filter operation
is the set of field identifiers (e.g., field name or placement within
the tuple) to be preserved in the resulting tuple. It is likely that the
tuple will not need to be decrypted, as no value is being checked.
However, if fields are identified by a key-value type of system (i.e.,
fields may appear in any order in a given tuple), then a decryption
of the entire tuple is required.

Map: Similar to the projection operation, a mapping operation
reduces the size of a tuple by performing a function on several fields.
For instance, a mapping operation may take fields for revenue and
expenses and produce one field called profit. A mapping operator
will have to decrypt the desired fields required to preform its func-
tion, and may need to encrypt the resulting field if the result needs
to passed further down the operator network.

4.2 Enclave vs. Non-Enclave CPU Contention

Recall from Section 2 that when a program requests enclave opera-
tions, the CPU will halt all other processes and load the enclave-
enabled program, as well as any data that is associated with the
program itself. Similarly, whenever the enclave-enabled program
completes its task within the enclave, it must write back any in-
stance data, its code, CPU memory, and its metadata back to en-
crypted memory so that the CPU can preform other tasks and
maintain the proper separation between enclave and non-enclave
processes. This context-switching adds a processing overhead to
the overall operator execution for every switch that is required.
Specifically, entering an enclave will have a cost cenrer and exiting
has a cost of cexis. Each cost is dependent on the machine, work-
load, and other processes on the CPU and can vary with every entry
and exit. The best way to mitigate this context-switching cost is to
reduce the number of entries into and exits from the enclave.
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Some context switching is unavoidable, but a streaming oper-
ation can mitigate the negative impact of context switching by
simply reducing the number of calls into the enclave by batching
data tuples. Rather than calling the enclave and paying center and
Cexir for every data tuple received, data tuples can be batched so
that a single cenrer and cexir is incurred and amortized over all n
tuples in a batch. In a data stream, batching may add considerable
latency to a query since results are delayed until a batch has been
filled. In Section 7 we explore the benefits of batching.

5 STATEFUL OPERATIONS

When an operation is required to consider multiple tuples in order
to execute a query, it is considered to be stateful. In this section, we
overview the common stateful operators used by Sanctuary, and
detail the challenges associated with implementing this class of
operations within an enclave. We further propose three algorithms
for executing stateful operations inside an SGX enclave.

5.1 Operators

There are two main types of stateful operations in a DSPS: joins an
aggregations. This section overviews those operations and classifies
the different types of each.

Joins: In a streaming system, a join operation compares two or
more different streams in a given window and returns a set of data
tuples comprised of data from each stream based upon some join
condition. The specified period for comparing each stream is called
the window which can be expressed either in time or in number of
data tuples. A join must keep state on all data tuples that are within
the current window for all streams in the join. For example, if a data
consumer requests “all tuples where streamA.id = streamB.id
for the last 10 minutes”, all tuples in streamA and streamB that
were timestamped within the last 10 minutes must be stored to
compare with new tuples within the window.

Streaming join algorithms can be designed to either 1.) consider
all possible pairs of join tuples, or 2.) consider a smaller set of tuples
in each stream by using some auxiliary data structure. The nested
loop join (NL]) is a join algorithm that must consider all of the tu-
ples in each stream’s state by attempting to join every data tuple
in one stream with every data tuple in the other. In practice, such
a join algorithm is undesirable because of the overheads incurred.
However, looping over all tuples avoids the leakage of positional in-
formation regarding the specific tuples being joined. Hash joins use
an auxiliary hashing structure to reduce the number of tuples that
need to be compared, reducing the overhead for the join algorithm,
but potentially leak information about underlying data.

Distributive and Algebraic Aggregation: An aggregation is
distributive if the input can be distributed to many partitions where
a partial aggregation is processed, followed by a final aggregation of
the partials (e.g., a sum can be broken down into smaller sums, with
a final sum of the partials generating the overall result). Algebraic
aggregations are those that can be represented as an algebraic
function of two or more distributive aggregations (e.g., average
can be calculated by a summation and a count). Distributive and
algebraic aggregates have a constant memory overhead.

Holistic Aggregation: An aggregation is holistic if there is
no constant bound on the memory required for partial or final
aggregation. For instance, the median operation is holistic because
there is no way to determine the size of the resulting set of median
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values. A window in a holistic aggregate is treated in the same
manner as in the distributive or algebraic aggregations.

5.2 Issues with Stateful operators and Enclaves

Stateful operators cannot be directly implemented in an enclave
environment without alteration. Specifically, there are two main
concerns when implementing a stateful operation on an enclave:
memory limitations of the enclave and update costs associated with
auxiliary data structures that may be required.

Memory Limitations: Recall from Section 2 that an enclave
is limited to just 128 MB of memory, which is further reduced
by the need to store operator code o0 and meta-data m within the
enclave. Stateful operations must make use of this limited memory
to store each operation’s windows of tuples. Windows can be of a
nondeterministic size w (e.g., the last 10 minutes saw 10k tuples, but
the next 10 minutes may see 13k tuples) and may not fit into enclave
memory. Any stateful algorithm will therefore have to consider
swapping between (encrypted) non-enclave memory and enclave
memory.

In addition to the window itself, some operations (e.g., hash
joins) maintain auxiliary structures. Such structures will vary in
size s across operators and will likely need to be kept (at least in
part) in enclave memory, further reducing the available memory.
Therefore, the total capacity for storing data tuples in an enclave
with enclaveSize = 128 MB and n operators each with wg windows
(that can vary in size, 0 for stateless operations) is fixed at:

capacity = enclaveSize — (m + (S{ (0 + s + Z?;’s w))).

1)
Update Cost Overhead: In a traditional DSPS, removing tuples
from or adding tuples to a window in relatively straightforward: one
simply checks the timestamp for each tuple as new tuples are added,
and removes or dereferences those that have expired. The use of
an SGX enclave presents a new challenge with regards to updating
the state of a stateful operator. Specifically, when the state of an
operator is encrypted in non-enclave memory, the timestamp and
most recent tuple information may not be available without either
trusting the third-party service to remove expired tuples or leaking
some temporal information about the tuples. We can calculate the
cost ¢yp of an update by simply multiplying the number of tuples
being updated n,,, by the time it takes to execute that update [,,p.
This cost is added to the overall latency for stateful operators.

5.3 Enclave-Enabled Stateful Operators

We now introduce three algorithms for stateful streaming opera-
tions that can execute within an SGX enclave: Nested Loop Join
(NLJ), Hash Join (H]J), and generic aggregation (AGG). All algorithms
follow the structure depicted in Figure 5. Data consumers use SGX’s
remote attestation capabilities to ensure that their stateful operator
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Algorithm 1 enclaveNestedLoopJoin(Array{tuple}batch)

Algorithm 2 hashJoin(Array{tuple}batch)

: Array[tuple] batchSide
: Array[tuple] otherBuffer
: int maxJoinSetSize

: Object metadata

1 > Stored tuples from the same stream as the tuples in batch
2

3

4

5: for t € batch do

6

7

8:

> Stored tuples from the other stream
> Available in-enclave memory.
> Storage describing the operator.

batchSide.add(t)
enclave.decrypt(t)
: fori = 0;i < [otherBuffer/ maxjoinSetSize];i + + do
9: if i! = [otherBuffer|i]/ maxJoinSetSize] then

10: segment . = memGet(i * maxJoinSetSize, (i * maxJoinSetSize) + maxJoinSetSize)
11:  else

12: segment = memGet(i * maxJoinSetSize, other Buf fer.size)

13:  for | € segment do

14: if [.timeStamp < currentTime — window then

15: evict(otherBuffer.getiAllMatchingValues(l.value))

16: enclave.decrypt(l)

17: for s € batch do

18: if /[ metadata.joinField] » s|metadata.joinField| then

19: emit(enclave.encrypt(join(l, s)))

enclaves have been appropriately provisioned to the remote infras-
tructure. As (encrypted) data is received by the enclave from a data
provider, it is decrypted and processed. Once processed, it is either
discarded (aggregation) or stored in untrusted, encrypted memory.
Tuples can be brought back into enclave memory as needed (e.g.,
to be joined with new tuples) or the partial aggregate to which
it contributed can be brought into memory (e.g., the sum for the
slides affected by the tuple is brought in to sum new tuples to).
This process of fetching and storing continues until all new data is
processed. Note that these alrorithms are deisgned to work in any
memory limited environment, but are more well suited for the SGX
use-case as they aim at avoiding costs associated with CPU context
switching.

5.3.1 Join Algorithms. Nested Loop Join: We first overview our
Nested Loop Join (NLJ) in Algorithm 1. The enclave sets up two
spaces in non-enclave memory to represent the windows for each
stream. When new data for a stream enters the enclave, the window
for the other stream is loaded into enclave memory. If the entire
window does not fit, it is segmented (lines 8-12). The memGet func-
tion simply takes two indices, maps them to registers in memory,
and fetches the values. Each segment is then compared and joined
to the new tuples being processed (lines 13-19), any joined results
are emitted to the next operation or data consumer. In addition
to being compared to new tuples, a tuple being brought in from
non-enclave memory is also evicted if its timestamp no longer fits
within the window (line 14). Finally, all new tuples are added to the
end of their window without bringing that state into memory. To
implement such an operator, Sanctuary need only the field names
from each stream, as well as the slide and window. Sanctuary sim-
ply submits the operator with this metadata to a remote system
as a function and then verifies it via remote attestation. Whenever
the query is ready to be executed, Sanctuary simply executes the
function.

A Nested Loop Join is not generally desirable, given that it must
compare every tuple in one window with every tuple in the other
(or at the very least compare new tuples from each window with the
other one). This does, however, offer a nice confidentiality guarantee
in an enclave setting, as it does not reveal the relationship between
any specific tuples in non-enclave memory with new tuples being
processed (discussed further in the next section), since every tuple
is compared against all buffered tuples.
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: Map[String, Array[tuple]] batchSideHash
: Map[String, Array[tuple]] otherHash
: Array([tuple] batchSideBuffer

: Array][tuple] otherBuffer

1

2

3 > Stored tuples from batch’s corresponding stream.
4

5: int maxJoinSetSize

6:

7

8:

> Stored tuples from the other stream.
> Available in-enclave memory.
: Object metadata > Storage describing the operator.
: for ¢ € batchy,pj, do
. enclave.decrypt(t)
9:  if otherHash.get(t.value)! = null then

10: int jSize = otherBuffer(otherHash.get(t.value)).size

11: for i = 0;i < [jSize/ maxJoinSetSize]; i + + do

12: if i! = [jSize/ maxJoinSetSize] then

13: matchSet = memGet(otherBuffer, i *+ maxJoinSetSize, (i * maxjoinSetSize) +
maxJoinSetSize)

14: else

15: matchSet = memGet(otherBuffer, i * maxJoinSetSize, otherBuffer.size)

16: for r € matchSet do

17: enclave.decrypt(r)

18: if r.timeStamp < currentTime — window then

19: evict(otherHash.get(r.value).get(r))

20: else if t{[metadata.joinField] » r[metadata.joinField] then

21: emit(enclave.encrypt(join(t, r)))

22:  if t.value € batchSideHash then

23: batchSideBuffer| batchSideHash. get(t.value)].add(t)

24: else

25: batchSideHash.put(t)

26: batchSideBuffer.extend ByOne()

27: batchSideHash.get(t) = batchSideBuffer.size — 1

28: batchSideBuffer|batchSideBuffer.size — 1] = newArray()

29: batchSideBuffer| batchSideBuffer.size — 1].add(t)

h
Enclave

Non-Enclave Memory

Figure 6: Use hashing to split a window in non-enclave memory.

Hash Join: Algorithm 2 details our Hash Join (H]J) algorithm.
Within the enclave memory, a hash structure it maintained for each
stream in the join. For every unique key in the join predicate (e.g.,
each name in a “name” field that has been processed), an entry is
made into the hash structure where the key is the predicate, and
the value is a space in non-enclave memory where the actual tuples
are held, as pictured in Figure 6.

The process of operating on a new tuple is simple. It is first
decrypted (Line 8) and then the tuple’s join predicate value is hashed
to see if there exists at least one match in the other stream (Line 9).
If so, the entire set of tuples in the hash entry, or the matching set
(i.e., the segment of all tuples with the same hash key) is brought
into the enclave by enclave-memory sized segments (Lines 10-15).
Once all matching tuples are joined to the new tuple, the new tuple
is added to its originating stream’s hash with its corresponding
entry. If the tuple’s predicate did not exist in the stream’s hash, a
new entry is created and the tuple is added to the endpoint for the
pointer stored in the hash (Lines 22-29). Note that if the internal
hash structures(s) run out of memory, a secondary hash is created
in non-enclave memory that will absorb some hash values (i.e., all
non-matching predicates are sent to a second hash to be checked).
This adds one extra memory operation and one extra hash operation
to fetch the desired hash-value. This is not included in Algorithm 2
for simplicity. Similar to the requirements for Nested Loop Join,
Sanctuary only requires the fields needed to preform the join, as
well as the window and slide. The user may also specify some



Session 6: Hardware Assisted Data Security

memory specifications for how they prefer to handle allocation of
enclave memory.

Updates in the HJ algorithm are a bit more complicated. A tuple
is only removed from a set referred to by a hash entry if that entry
is brought into enclave memory. The benefit of this approach is
rather straightforward in that updates are handled in an ad-hoc,
on-the-fly manner without requiring any extra loads from memory.
The obvious drawback is that some data may linger around for a
while if its predicate is not matched by the other stream. We leave
garbage collecting expired tuples to future work.

5.3.2 Generic Aggregation. Our generic aggregation algorithm
(AGG) can handle distributive, algebraic, and holistic aggregations.
There are two main memory structures for an aggregation: storage
for internal partial aggregations, and the final aggregation step. For
distributive and algebraic operations, the state needed for storing
the partial results during a window is deterministic and can be pro-
visioned accordingly. To accommodate for holistic operations, we
assume that the size of the returned result is non-deterministic for
all aggregations. In a memory limited environment, this means that
results for each window of the aggregation may need to be stored
in non-enclave memory. Further, in a holistic aggregation, these
results may vary in size depending on the data and the window.

To accommodate for all three types of aggregation operations,
we adopt an approach similar to the hash join approach. Each slide
(or window in the case where there is no slide) gets an entry in an
in enclave memory array. This entry (potentially) points to a hash
table kept in non-enclave memory. For distributive and algebraic
aggregation, this hash table may contain only one entry and may
fit in enclave memory. For holistic aggregations, this hash table
may contain many entries that need updating (e.g., the total sales
for each company in a given stream for a given window).

Algorithm 3 details our aggregation algorithm. Each slide is
given an index in an array that is stored in enclave memory. Every
time a new tuple is received (or a batch of tuples), the algorithm
loops through this array. If an entry has expired (based on checking
the time inside a designated hash entry (Line 7) it is brought into
memory (Lines 8-18) where each entry is emitted (Line 15) and
cleared (Line 16) so that the hash may be reused.

For non-expired slides, they are similarly brought into memory,
but instead of being emitted, they are aggregated with each tuple
in the batch (Line 24). If the entry already exists in the hash for the
batched value, it is aggregated to the matching value (Lines 25- 26).
The function genAgMemHelp takes the array that the hash refers to,
the current index, and the maximum size of the buffer, and fills that
buffer with values from the encrypted memory by converting the
index into a starting and ending register. Once all of the hash has
been brought into enclave memory, if any new tuples remain (e.g., a
new company has entered the stream that was not yet encountered
during this window), they are simply added to the hash as the first
entry for that value (Line 28- 30).

Again, to make use of this operator, Sanctuary simply needs
the field to aggregate, the type of aggregation, and the window
and slide information. The user may also specify the allocation of
memory here as well, but Sanctuary handles the bulk of the load
by allowing a user to just specify the most basic of information and
doing the submission, attestation, and execution for them.

State updates in AGG are simple in that they only require that
a slide expire for state to be reset. An adversary can only gain in-
formation on how many entries are in a hash table and how many
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slides are in a window based on what is stored in non-enclave mem-
ory. This is no different than in distributive or algebraic operations
directly on encrypted data, as the length of the slide can be deter-
mined by the rate at which results are produced, and the size of the
result set is equivalent to the size of the hash table in AGG.

Algorithm 3 aggregate(Array{tuple} newBatch,
int window, intslide, int maxBufferSize)

1: Takes: aggregate(Array[tuple]lnewBatch, int window, int maxBufferSize)

2: Array[Array[tuple]] slideArray > Stores current slides in the window
3: Map[String, Array([tuple]] hash

4: int maxBufferSize > Available in-enclave memory.
5: for hash € slideArray do

6: > If the hashed aggregates are now greater than the window length, emit them as results.
7. if earliestTime(newBatch) < (hash.get(startTime)) + slide then

8: for i = 0; i < [hash.size/ maxBufferSize]; i + + do

9: Map(String, Array[tuple]] currentHash
10: if i < [hash.size/ maxBufferSize] then
11: currentHash = genAgMemHelp(slideArray.indexOf (hash), i, maxBufferSize)
12: else
13: currentHash = genAgMemHelp(slideArray.indexOf (hash), i, hash.size)
14: for j = 0;j < currentHash.size; j + + do
15: emit(currentHash.get(j))
16: currentHash.get(j).clear

17: > Otherwise aggregate the new batch into each slide.
18:  else

19: for i = 0;i < [hash.size/maxBufferSizel; i + + do
20: if i < [hash.size/ maxBufferSize] then
21: currentHash = genAgMemHelp(slideArray.indexOf (hash), i, maxBufferSize)
22: else
23: currentHash = genAgMemHelp(slideArray.indexOf (hash), i, hash.size)
24: for t € newBatch do
25: if t.group € keys(currentHash) then
26: aggregate(t.value, currentHash.get(t.group))
27: newBatch.remove(t)
28: if i = [hash.size/maxBufferSize] && newBatch.size > 0 then
29: for t € newBatch do
30: currentHash.put(t.group) = t.value
31: memOut(hashArray.indexOf (hash), i, currentHash)

6 SECURITY ANALYSIS

We now detail the information that an adversary can learn by
observing the execution of queries within Sanctuary. To contextu-
alize this analysis, we compare directly to two alternative DSMS
approaches.

6.1 Comparison Framework

Below are the three system models (including Sanctuary) within
which we will compare information leakage:

e Sanctuary: In this system model (cf. Section 3) we assume that
our adversary is the third-party computational infrastructure
hosting a query comprised of the SGX-enabled streaming opera-
tors described in this paper. As such, the adversary can observe
all (encrypted) traffic flowing between operators, as well the
encrypted traffic flowing between the enclave and non-enclave
portions of an individual operator. To upper-bound information
leakage, we assume one operator per enclave.

e Cryptographic: In this system model, we assume that our
adversary is a third-party computational platform hosting a
query comprised of cryptographic streaming operators. Le.,
data streams are encrypted using computation-enabling en-
cryption as in [3, 28, 35]. As such, the adversary can observe
all (encrypted) traffic flowing in and between operators.

o Trusted Infrastructure: As a baseline for comparison, we con-
sider a trusted third-party computational platform capable of
processing standard streaming operators over plaintext tuples
(e.g., [23, 24]). This is effectively the optimal approach in terms
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Table 1: Level of leakage for the various approaches (S = Selectivity,
TM = tuple matching, VO = tuple ordering, VD = value distribution,
SM = segment matching, W = Window)

Trusted
Operator Sanctuary | Cryptographic Data | Infrastructure
Filter [ Equality S S, T™M, VD S
| Range S S, T™M, VO, VD S
Project 0 0 0
Join S, SM, W Not Supported S
Aggregation W w w

of minimizing leakages with our current threat model. We as-
sume that all streaming tuples are encrypted (e.g., using TLS)
while in the network. Our adversary is not the computational
infrastructure, but rather an entity capable of monitoring all
communications between nodes in the system. To upper-bound
information leakage, we assume one operator per node.
The Sanctuary and cryptographic models are meant to provide
a level playing field for comparing the approach presented in this
paper with the current state-of-the-art by considering streaming
computations that execute on an untrusted infrastructure. The latter
Trusted Infrastructure model serves as a basis of comparison for
considering what information can be learned by an outside observer
who is watching data being processed on a trusted platform. We now
examine the types of leakages exhibited by each type of operator
considered in this paper, within each of the above system models.

6.2 Properties

To understand the leakage of information in various DDSMS de-
ployment models, we first identify types of leakage. In this section,
we use the notation Epgr(k, v;) (resp. Eope(k, vi) or Ecca(k, v;)) to
denote the deterministic (resp. order-preserving or CCA-secure) en-
cryption of a tuple v; using the key k. We use the notation E(k, v;) in
situations where the specific type of encryption used is immaterial.

o Tuple Matching (TM): Given a set of input tuples S =
{tf", cee, tii"} and a set of output tuples SO = {tf“t, cees tj‘.’”t},
compute the matching M = {Vt°4! e Sout . (ti”,taut) [tin =
E(k, Z)in) AtOUt = E(k, vout) Aoilt = 7)out}_

e Value Ordering (VO): Given a set of tuples S = {t1 = E(k, v1),
to = E(k,v2) ..., t; = E(k, v;)}, compute an ordering t{, ¢, ..., t/
such thatv] <vj <... < o]

e Value Distribution (VD): Given a set of tuples S = {t; = E(k,
1), tp = E(k, v2) ..., t; = E(k, v;)}, compute the frequency
distribution ¥; = count(vy,S),d, = count(v2,S),...,0; =
count (v;, S). Note 9; does not necessarily reveal the value v;.

e Segment Match (SM): Given an input tuple ¢ and a segmented
window w = {msy, ..., msy}, identify the matching segments
ms; within which ¢ can complete a join.

In addition, we will explore whether the selectivity (S) of a given
predicate or the window size (W) of an operation can be inferred.

6.3 Leakage Comparison

We now examine the information that can be inferred by an adver-
sary when observing the execution of each of the above systems.
We consider the streaming relational operators described in this
paper, and summarize our results in Table 1.

Select/Filter. Each selection operator takes as input a stream
sin = t{", ces tl?”, applies a filter f, and produces as output a
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stream SO%¢ = tf“t,

e t](."”, In each system considered, the adver-
sary can compute the selectivity of f by comparing the cardinality
of §'™ and S°*! over some window. In both the Sanctuary and
Trusted Infrastructure models, all tuples are encrypted using CCA-
secure cryptography (i.e., t; = Ecca(k, v;)). As such, the values v;
comprising the input and output streams are protected.

In the Cryptographic model, equality filtering is enabled by the
use of deterministic encryption (i.e., t; = Epgr(k, v;)). As a result,
Epet(k, vi) = Eper(k, vj) if and only if v; = v;. This enables the
adversary to infer a distribution of values over the encrypted tuples
in '™ irrespective of the filter f. Further, the adversary can infer
exactly which tuples tii" match the predicate f, as these tuples
appear unmodified in S°“?. For range filtering, order-preserving
encryption must be employed (i.e., t; = Eopg(k, v;)) so that Egpg(k,
v;) < Eope(k, vj) if and only v; < v;. This enables the adversary
to determine an ordering over tuples appearing in S'” and S°%¢.

Projection. For all three frameworks, a projection simply re-
moves fields from every tuple and therefore always has a 100%
selectivity. Since input and output values are encrypted, tuple val-
ues, distributions, and orderings remain hidden in all cases.

Join. A join operator takes as input two streams S{” = tin

in
! ) ! 10 b
and S{" =17, ., t]lg applies a join predicate p, and produces an

output stream S°%! = 94!, t;;'” that joins S{" and S;" gsingp
over some (time- or tuple-based) window W. Given that S]" and

Sé" are typically encrypted with different keys, no existing crypto-
graphic DDSMS supports join operations over streaming data.

In both the Sanctuary and Trusted Infrastructure models, in-
put tuples are encrypted using randomized encryption (i.e., tl’J” =
Ecca(kj, vi)), thereby preventing the inference of tuple values,
distributions, and orderings. In both cases, the adversary can eas-
ily compute the selectivity of p by comparing the cardinality of
S{'", Sé”, and S°%! over some time window. In Sanctuary, the ad-
versary has the ability to monitor the enclave’s accesses to non-
enclave memory. Recall that given enclave memory limitations, a
join window w} € S{" is managed as a set of matching segments
w} = {ms}l, -
monitoring the eviction rate from these segments, the adversary
can infer the window size used by the join. Further, as new tuples
arrive, auxiliary data structures are used to retrieve only the seg-
ments that will join with the incoming tuples, thereby leaking the
segments that incoming tuples match to.

Aggregation. During aggregation, a sliding window of tuples
is combined to produce a single output tuple. In the Cryptographic
and Trusted Infrastructure models, the adversary can infer the
window size, W, used for the aggregation operation by counting
the number of tuples E(k, v;) consumed by the operator prior to
emitting each output tuple. Likewise, in Sanctuary, the adversary
can infer the W by watching the transition of encrypted tuples
between enclave and non-enclave memory. In all cases, the use
of randomized encryption prevents the inference of tuple values,
ordering, and distribution.

Summary: Sanctuary leaks the same minimal information as the
Trusted Infrastructure system for all operations excepting the join,
which can be mitigated if the join state fits in enclave memory.
Further, Sanctuary not only leaks the same or less information
as cryptographic DDSMS systems, but also enables arbitrary join

, ms}k} each of which fits into enclave memory. By
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operations, the lack of which is a severe limitation of existing cryp-
tographic systems.

7 EVALUATION

In this section, we explore the efficiency of Sanctuary operations in
a real streaming system. Specifically, we benchmark each operation
in comparison to Trusted Infrastructure approaches under differ-
ent experimental conditions. We then use SGX-enabled operations
within the context of deployed streaming queries to evaluate the
impact of enclave-based operations on query performance.

7.1 Configuration

Our evaluation framework builds upon the Apache Storm infras-
tructure [34] to manage the network topology and deliver tuples.
Our work can be trivially deployed over any DSPS. Storm uses two
main computational components called spouts (provide data) and
bolts (execute on it). For this work, we use bolts to emulate a node.
This implies that a single bolt has access to one SGX-enabled CPU.
We use Storm to emulate the temporal aspect of real-time data
stream processing since it can be configured to guarantee in-order
tuple delivery, and spouts can emit tuples at a given timestamp
(to better control input rate). All experiments were executed on a
machine using the Windows 10 operating system with a dual core
Intel i5-6200 CPU (2.30 GHz) and 4 GB of ram.

Datasets: To better explore the tradeoffs in size, speed, and
selectivity of data, we will use two different types of data-sources.
The first type is synthetically-generated data that is purposefully
created to test the boundaries for each SGX-enabled operation as
well as its alternatives. Each evaluation that alters this data will
describe, in detail, how it is generated and used. The second set of
data is the 2015 DEBS Grand Challenge dataset [14] consisting of
tuples that describe an instance of a taxi ride (i.e., the start time,
taxi driver ID, cab ID, end time, fare, distance, etc.).

Comparison Approaches: For each operator or algorithm
we test, we will compare it to the same operation executed over
plaintext and also in a DSPS using computation-enabled encryption.
We will use three different encryption techniques for comparison:
1.) Deterministic Encryption (DET, which uses AES in CBC mode
with padding, see [35] and [28]) for equality operations, 2.) Order
Preserving Encryption (OPE, which uses the Boldyreva et. al [8]
technique) for range operations, and 3.) Homomorphic Encryption
(HOM, using the Paillier technique [26]) for aggregate operations.

7.2 Micro Benchmark: Stateless Operations

For stateless operators, there is no state to keep track of, tuples are
simply fed directly to the enclave and processed in batches, with
batched results being returned. All results are based on the average
processing time for 10,000 tuples. For batch execution, the results
are based on the average of 10 runs for each batch size.

7.2.1 Filter. Configuration: Given that the time to decrypt a field
depends on the size of the field, we evaluate the processing time
for different sized fields. We further evaluate enclave batching by
including five different batch sizes (1, 1K, 10K, 100K, 1M) and their
overheads. We compare Sanctuary to a plaintext system as well as
one that uses order-preserving encryption.

Results: Sanctuary filters will incur roughly 2x-4x overall exe-
cution time versus plaintext approaches (but leak less information),
and 1.5x-3x overall execution time versus computation-enabling
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encryption. Note that most of the overhead is due to context switch-
ing between trusted and untrusted code in the CPU. To this end,
using larger batch sizes reduces this overhead, and most execution
times are under 10ms overall. Moreover, Sanctuary operations are
similarly impacted by the size of the underlying ciphertext.

7.2.2  In-Memory Aggregation. Here, we evaluate Sanctuary sum-
mation operations against a HOM computation-enabling crypto-
graphic operation. Since a HOM summation is done through multi-
plication, processing on encrypted data requires greater overhead.
Configuration: We use a summation operation to evaluate an
in-memory aggregation within the enclave. For simplicity, we as-
sume no window semantics (meaning the final aggregation is simply
inclusive of all tuples) to better understand the underlying oper-
ation. We will use a windowed query in Section 7.4 to evaluate
performance on an actual streaming query. Again, we include five
batching sizes and compare to a plaintext non-enclave summation,
and we use a HOM computation-enabled encryption scheme.
Results (Figure 8): Batching for an in-memory aggregation
algorithm has a similar impact as the filter operation. However,
when using the Paillier homomorphic encryption scheme, com-
puting a sum requires multiplication which comes at a greater
cost. This is evident from the HOM line in Figure 8 being the most
costly line. Even in the case where there is a batch size of one, the
enclave-enabled in-memory aggregation operation can outperform
its encrypted counterpart. Since both the HOM-encrypted process-
ing and the Sanctuary enabled operation provide an adversary with
the same level of information, Sanctuary becomes a desirable choice
when considered in conjunction with the performance advantages.

7.3 Micro Benchmark: Stateful Operations

This section explores the overheads required for the security ad-
vantages of the memory-limited algorithms presented in Section 5.
Recall from Section 5 that there are five factors that can influence
the overhead of a memory-limited operation; 1.) Batch Size, 2.) En-
clave Memory Structure Size 3.) Operator State Size, 4.) Window
Size, and 5.) Update Cost. We reduce all arbitrary units of size mea-
surement (e.g., tuple, enclave memory) to megabytes for simplicity
when making comparisons. We evaluate each of the four algorithms
presented in Section 5 based on the tradeoffs below:

e Batch Size vs. Enclave Memory Size: Given the limited mem-
ory of an enclave, there exists an inherent tradeoff between the
batch size of incoming tuples and the enclave memory available
for bringing operator state into the enclave for processing.

o Operator State Size vs. Enclave Memory Size: Stateful opera-
tions require a comparison or computation over some amount
of internal state. Given the limitation on the internal enclave
memory available for operator state, there is a tradeoff that can
affect the execution time (or the latency) of the operation.

e Window Size vs. Update Cost: When a tuple expires or is
introduced to the state of the operation, there is an associated
update cost. For larger windows (either by definition or through
high-bandwidth streams), these updates can come with a greater
overhead, affecting the overall performance of an operation.

Each experiment depicts the average of seven runs with the
lowest and highest removed to ensure that background tasks are
weighted similarly as the CPU is shared by other processes.

7.3.1 Symmetric Hash Join. Configuration: Each tuple contains
two fields: a comparator (8 Bytes) and a payload (92 Bytes). Joined
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Figure 8: Execution time for in memory aggregation operation for
non-enclave and enclave-enabled operations.

tuples are combined into 184 Byte payloads. Comparator fields
are uniformly selected from a range of integers from 1-256. After
metadata, the internal enclave memory is roughly 122 MB, of which
all is available for buffers and state comparisons.

Results (Figure 7a) Batch Size vs Enclave Memory Size: For
this experiment, we evaluate the batch size versus the available
enclave memory. Specifically, we hold the window size constant at
100 MB with an input rate of 10 MB/s. We reserve 30% of the enclave
memory to be given to the internal hash for tracking non-enclave
memory. We see the tradeoff between batching and freed enclave
memory maximize at roughly 60%.

Results (Figure 7b) Window Size vs. Update Cost: For this
experiment, we fix the batching to enclave memory ratio at 50%
each. We adjust the window size from 10MB to 100 MB and hold
an input of 10 MB/s. We again allocate 30% of enclave memory to
the internal hash. Recall that an update to the external structure to
expire a tuple will only occur when that value is joined (Lines 18- 19
in Algorithm 2). Note here that each data tuple must be hashed,
brought into memory, compared, then evicted, which all adds to a
higher latency compared to a plaintext system.
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Results (Figure 7c) Operator State Size vs. Enclave Mem-
ory Size: Here, we fix the batch size at 30% of enclave memory. We
then tradeoff internal state size with free memory size. We hold the
input rate at 10 MB/s as usual with a window size of 100 MB. This
tradeoff exhibits similar behavior to all of the others. Giving more
memory to the hash for each stream yields the best results with a
60% ratio. It is important to note, however, that for a join that has a
very low selectivity (i.e., one in which the two streams rarely join),
the enclave memory will not be filled since there is insufficient data
with which it can be filled. This means an enclave will only employ
external memory when the join is highly selective.

7.3.2  General Windowed Aggregation. We evaluate the general
windowed aggregate operation using the four costs from the previ-
ous section and the update cost. We also evaluate the impact on an
operation’s overhead based on the size and number of slides.

Configuration: We use the same data as in Section 7.3.1, but
focus on a portion of the payload for aggregation operations (16
B integers) that is symmetrically encrypted. The 16 B integers
are uniformly generated from 1-30,000 and used in a summation
aggregation operation across 250 different groups. We use a window
that can be divided into 10 slides for all experiments.

Results (Figure 7d) Batch Size vs Enclave Memory Size:
This experiment is set up exactly like the SHJ Batch Size vs En-
clave Memory Size experiment, with 30% allocated to a possible
internal hash structured. Note that we no longer see a profound
benefit from greater batching (gaining only 10ms), and we see a far
greater increase in latency after about 40% to 60% batch allocation
due to the consistent size of the hash structures storing each slide.
No matter what we batch, every tuple must be aggregated to the
same segmentation size of non-enclave memory, meaning that the
relative effects of batching are reduced, since the cost of bringing
non-enclave memory into the enclave is normalized.
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Figure 9: Example continuous query. The operations in the red dot-
ted circles execute on computation-enabling encrypted tuples (“=”
for deterministic, “+” for homomorphic), the blue dashed circles
represent non memory-limited enclave-enabled operations, and the
green solid circles represent plaintext operations.

Results (Figure 7e) Window Size vs. Update Cost: This ex-
periment is similarly set up the same as SH] Window Size vs. Update
Cost, but with slides dividing the window size by 1 t Larger win-
dows do not cause significant increases in update cost as one might
expect with larger slides due to the consistent slide size for each
hash brought into memory. More specifically, this consistency can
be attributed to the uniform group size of 250. If we remove this
uniformity and increase the number of groups (not included as a
figure), we see that the greater the number of groups, the larger
the update cost, especially with a greatly segmented hash table.

Results (Figure 7f) Operator State Size vs. Enclave Mem-
ory Size: This experiment is configured exactly like the SHJ Op-
erator State Size vs. Enclave Memory Size experiment with the
internal operator structure representing a cache of some hash ta-
bles. Similar to what we saw in the Batch Size vs Enclave Memory
vs. Operator State Size evaluation for this aggregation, giving more
memory to caching is advantageous up to about 60%.

7.4 Macro Benchmark

Here, we chose a query to execute on streaming data with varying
conditions. We break the query evaluation into two different en-
vironments. The first environment illustrates the effectiveness of
an enclave-enabled operation when all of the state fits into enclave
memory. The second uses operations where state does not fit in
memory. For each query, we compare to 1.) a plaintext version
(i.e., no enclave) and 2.) a version where operators are compared
with a computation-enabling encryption version. We further test
by altering the input rate, selectivity, and size of the data tuples.

7.4.1  Non Memory-Limited Query. The query we use to evaluate
the operations that fit entirely in enclave memory is intended to test
each of the operation types (i.e., join, aggregation, and a stateless
operation) on a real system. The query (below) aims to get the total
profit for all companies whose profit margin is more than $500. The
query is presented below in SQL and graphically in Figure 9:
SELECT SUM(t.sales) FROM t JOIN o
WHERE t.id = o.id AND t.state = "PA"

AND o.profitMargin > 500
GROUP BY t.company EVERY 3@s UPDATE 5s
There are two filter operations (the “=” in Figure 9), a join (the
“id=id” in Figure 9), and an aggregate-group by operation (the “+” in
Figure 9). The encrypted versions of the operations are presented
in dotted red circles in Figure 9.

Results: In this experiment, we wish to evaluate the overhead of
introducing Sanctuary and SGX-enabled operators into the normal
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query processing pipeline. When evaluating a streaming query, one
must consider the effects of input rate, selectivity, and tuple size
on the responsiveness of the system. In this section, we explore
changes in input rate and selectivity since tuple size was explored
through micro-benchmarking. For each result, we evaluate a com-
pletely plaintext set of operations, a set of operations using only
computation-enabling encryption, and then queries where each of
the operator types (the summation, the join, and a filter) are all
placed on an enclave using one of the algorithms from Section 5.
Selectivity (Figure 10a): Here, we change the overall selectivity
and inspect the result. To change the selectivity, we simply increase
the selectivities of each of the filters and the join incrementally
to reach the desired selectivity (.1-.9) while maintaining an input
rate of 1,000 tuples/s. As you can see from Figure 10a, a decrease in
selectivity generally causes an increase in individual tuple latency,
regardless of the operator type. Note that latency here includes the
window time for each tuple. An increase in latency signifies that
operators have difficulty processing data within a given window.
Given that all of the operator state fits into memory, the effects of
increasing selectivity was equally beneficial for all operators.
Input Rate (Figure 10b): We evaluate the input rate by increasing
from 500 to 2,500 tuples/s (kept sufficiently slow so that we can
evaluate scenarios wherein the input rate does not cause the mem-
ory capacity to be exceeded) and inspecting the latency. Similarly
to the selectivity result, we notice from Figure 10b no significant
difference between each operator type with increased throughput.
We also notice that latency was within 15% of plaintext, and 7% of
computation-enabling cryptosystems for SGX-enabled operators.

7.4.2  Memory-Limited Query. For our memory-limited query, we
simply re-use the query above, but with a drastically increased
workload to force the utilization of non-enclave memory.

Selectivity (Figure 10c): For this experiment, we increase the
input rate to 20,000 tuples/s (where only roughly 10,000 tuples
can fit into memory. We otherwise keep the same configuration
as the non-memory-limited version above. Notice from Figure 10c
that selectivity has a greater impact on latency in this scenario.
Specifically, when more results are filtered, less state is kept, and
therefore SGX operators benefit (especially the join operation) since
less state is needed to compute the final result, with fewer iterations
to non-enclave memory. Specifically, a join performs up to 2.5x
faster on data with very low selectivity versus very high, and an
aggregation can perform up to 2x faster.

Input Rate (Figure 11): We generate input rates from 10,000 to
50,000 tuples/s to explore the impact on throughput of SGX-enabled
operations. We can immediately see from Figure 11 that higher input
rates negatively affect latency across the board, but more noticeably
for SGX operations. This is expected since it will increase the state
being stored in non-enclave memory, and therefore increase the
overall processing time per tuple. In some instances we see the join
operation increasing latency as much as 78% for large input rates,
and as much as 31% for aggregations versus plaintext, and 58%
for joins and 2% for aggregations versus a computation-enabling
encryption operation. Note that this increase in throughput allows a
user to have near-minimal leakage when compared to the encrypted
version, and also allows for third-party joins to be executed.
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8 CONCLUSION

The current state-of-the-art access control enforcement systems
for Data Stream Management Systems either rely on trusted third-
party systems to enforce controls, or use some form of computation-
enabling encryption that limits query expressiveness, increases data
transmission overheads, and can leak information about underlying
plaintext values. In this paper, we introduce Sanctuary to implement
and evaluate and a method for using Intel’s SGX as a trusted com-
puting base for executing streaming operations on untrusted cloud
providers. In doing so, we are able to overcome the limitations of
the state-of-the-art computation-enabling systems by allowing for
any query to be executed on an untrusted machine while maintain-
ing near-Trusted Infrastructure level information leakage. Moreover,
we discuss and resolve issues related to enclave memory size limita-
tions by introducing memory-aware, stateful streaming operators.
Finally, we demonstrate that the use of enclave-based processing
in a streaming environment incurs only modest overheads when
compared to the state-of-the-art systems.
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