®

Check for
updates

Shoal: Query Optimization and Operator
Placement for Access Controlled Stream
Processing Systems

Cory Thoma™, Alexandros Labrinidis, and Adam J. Lee

Department of Computer Science, University of Pittsburgh, Pittsburgh, USA
{corythoma,labrinid,adamlee}@cs.pitt.edu

Abstract. Distributed Data Stream Processing Systems (DDSPS) exe-
cute on transient data flowing through long-running, continuous, stream-
ing queries, grouped together in query networks. Often, these continuous
queries are outsourced by the querier to third-party computing plat-
forms to help control the cost and maintenance associated with owning
and operating such systems. Such outsourcing, however, may be con-
tradictory to a data provider’s access controls as they may not permit
their data to be viewed or accessed by an unintended third party. A
data provider’s access controls may, therefore, prevent a querier from
fully outsourcing their query. Current research in this space has provided
alternative access control techniques that involve computation-enabling
encryption techniques, specialized hardware, or specialized query opera-
tors that allow for a data provider to enforce access controls while still
allowing a querier to employ a third-party system. However, no system
considers access controls and their enforcement as part of the query opti-
mization step. In this paper, we present Shoal, an optimizer that consid-
ers access controls as first class citizens when optimizing and distributing
a network of query operators. We show that Shoal can generate more effi-
cient queries versus the state-of-the-art, as well as detail how changes in
access controls can generate new query plans at runtime.

1 Introduction

The ever-increasing and ever-changing size, speed, and availability of accessible
data has led to the rise of new outsourced data processing paradigms. One
such paradigm is Data Stream Processing handled by Distributed Data Stream
Processing Systems (DDSPSs). A DDSPS handles data on-the-fly by executing
on transient data with long-running continuous computations (queries), such
as streaming operations, map-reduce functions, or user-defined functions, etc.
These computations are often outsourced to third-party systems that handle
data processing and execution.

Outsourcing computation is desirable for the querier as it provides them with
cost savings. For instance, the querier need not maintain expensive hardware

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019

S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 261-280, 2019.
https://doi.org/10.1007/978-3-030-22479-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22479-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-22479-0_14

262 C. Thoma et al.

and software platforms. Further, the cloud provider offers guarantees on uptime
and service availability that a querier can rely on. Finally, the querier can take
advantage of a cloud provider’s ability to scale to meet demand, by allocating
new resources or freeing up underused ones. When a querier contracts a third-
party cloud service provider, they are often able to optimize their query to take
advantage of different third-party offerings and pricing models. In doing so, they
are able to improve the efficiency of their query for some measurable metric (e.g.,
latency, throughput, monetary cost) by taking advantage of location, current
pricing, current load, and other factors at runtime by changing the placement
of certain components (i.e., operators) of their queries. This allows queriers to
freely move queries around to improve some aspect of the query’s performance.

When a data provider dictates access controls over their streaming data,
however, a querier may lose some of these freedoms. For instance, if a data
provider authors an access control policy that removes a third-party altogether,
the querier would lose the ability to execute any part of their streaming query
on that provider. Similarly, if access controls are enforced using some crypto-
graphic method (e.g., Polystream [31] or Streamforce [3]), the querier may expe-
rience degraded performance as different permissions require different encryption
schemes, each incurring different overheads. In both cases, a querier stands to
lose some of the benefits of hosting their queries on a third-party system, and
may even be required to host the query themselves.

Queriers must consider access controls when trying to generate and optimize
their queries. For instance, when a query is broken down into different operators,
some operators may be able to execute directly on plaintext, but may have to
execute on a querier-maintained machine, whereas others may be more costly
(monetarily, in terms of latency, or otherwise) but can be executed on a third-
party system. A querier must now be able to reason about and decide which
implementation of an operation to choose given the accesses they have been pro-
vided. This implies that a querier must be able to enumerate potential operators
and consider them at query optimization time to ensure that the most efficient
query plan is derived given each data providers’ access controls. Further, when
a data provider changes their access controls, query networks may need to be
updated.

Currently, DDSPS optimizers and related work have explored DDSPSs opti-
mization in a limited scope. Some have simply focused on better utilization
of the underlying computation hardware alone [17], while others have focused
on the underlying network alone [7,13,27,29]. Several optimizers and systems
have focused on the impact of data variability on the system in the presence
of access controls [3,31] and in the impact of data stream rates and selectivi-
ties [2,6]. Currently, there is no system that focuses on optimizing queries based
on the underlying access controls from different data-providers. Further, the
closest related work focuses on the use of an optimize-then-place approach in
which a user’s query is first optimized for non-distributed execution and then
post-processed for placement on distributed resources. Finally, related work with
enforcing access controls in a DDSPS focuses on a single query, which may not
suit a querier as they may query many data providers.

Shoal: Query Optimization and Operator Placement 263

We present an optimizer that considers a querier’s access privileges at opti-
mization time to produce a high-quality placement and ordering of individual
streaming operators. Our proposal, Shoal,' uses a dynamic programming algo-
rithm to guarantee optimal placement and orderings for moderate-sized sets of
streaming queries on a DDSPS; and includes a heuristic approach for larger query
networks. Shoal combines the ordering and placement steps to take advantage of
the underlying system by considering multiple orderings on various distributed
computation infrastructures, and avoids the pitfalls of the optimize-then-place
approach. To this end, we make the following contributions:

e We show the optimize-then-place approach to be a sub-optimal approach for
computing operator placement in a DDSPS.

e We introduce the first cost model for distributed streaming queries that lever-
ages parallelism inherent to the DDSPS and accounts for key sources of het-
erogeneity such as fluctuations and changes in the underlying data streams
and the underlying system and network.

e We detail an optimization algorithm that can execute both at query initial-
ization as well as when a change in the system is detected. This algorithm
only optimizes the parts of any queries that are potentially affected by a
change in access controls. By only considering parts that are affected by sys-
tem changes, this online algorithm is able to quickly re-optimize and recover
while maintaining an optimal solution.

e We run an extensive evaluation of our algorithms and compare to several
baseline, state-of-the-art, and optimize-then-place algorithms. We show that
our proposed framework can produce higher quality optimization and place-
ment plans (up to 2.2x better) with reasonably low overheads, and further
show these plans are of a higher quality when compared to related work.

The remainder of this paper is organized as follows. We present the system
model in Sect. 2 and formalize our problem statement in Sect. 3. We describe our
proposed approach in Sect.4 and present results form our experimental evalua-
tion in Sect. 5. Section 6 summarizes related work. We conclude in Sect. 7.

2 Background and System Model

This section overview the features Shoal considers when optimizing. We further
detail our system model and overview access control frameworks and their affect
on a DDSPS.

2.1 Background on DDSPSs

Shoal uses a common Distributed Data Stream Processing System (DDSPS)
model. DDSPSs separate the data provider from the data consumer, and often

1 A shoal is a heterogeneous group of fish that is organized to function towards a
common purpose, typically of a safety or social nature.

264 C. Thoma et al.

separate the data processing machines as well. DDSPSs rely on long running,
continuous computations that execute on transient data. Once a DDSPS has
processed the transient data, results can be stored or forgotten depending on
the computation being done.

DDSPSs can implement many different stream-processing paradigms such
as relational data stream processing [2,4,5], MapReduce [19], and user-defined
tasks. Relational data stream processing systems use continuous SQL-like queries
that are comprised of streaming operations that execute a single task. Simi-
lar to traditional database management systems, some operations require large
amounts of information to produce their result (e.g., a join or aggregation). Since
data is transient in a DDSPS, data is grouped by windows and slides: a window
represents how much data to keep (e.g., 100 tuples, 10 min, etc.) and a slide
represents how often to update the querier (e.g., every 10s, every 500 tuples,
etc.).

The system components of a typical DDSPS are listed below.

e Data Providers provide streaming data (subject to access controls) to the
system.

e Sites are third-party computational and storage platforms (such as Amazon
EC2 or Microsoft Azure). They are tasked with the execution of streaming
operations as well as forwarding data.

e Data Consumers author and submit streaming queries to the system. These
queries can be of a variety of paradigms such as relational streaming contin-
uous queries, map-reduce computations, or user-defined functions.

2.2 Access Controls

In a DDSPS, access control enforcement becomes difficult since the data
providers can not control the propagation of their data after it is transmitted.
The current literature on enforcing access controls in a DSMS can be grouped
into two categories: trusted third-party enforcement and untrusted enforcement.
Trusted third-party enforcement techniques work by trusting that a computa-
tional site will enforce access to their data on their behalf. Such systems either
work with special operators [9-11] or by re-writing queries [20,23] so that access
can be limited.

Systems that do not trust third-party enforcement will rely on cryptographi-
cally enforced access controls. Rather than forcing a querier to process data only
after it has been decrypted, systems like PolyStream [31] and Streamforce [3]
allow the data provider to use specialized computation-enabling encryption tech-
niques to enable third-party computation for a querier directly on encrypted data.
These systems, however, limit the expressiveness and accessibility of a queriers’
potential query. In Streamforce, a querier may only access integer data via a
view-like format, (i.e., only allowing filtering and aggregations on numeric data).
PolyStream supports a richer set of query operations than Streamforce, but can-
not support join or complex user-defined functions over streams from multiple

Shoal: Query Optimization and Operator Placement 265

providers. Furthermore, these systems also leak information about the under-
lying plaintext values, such as equality, relative partial ordering, or relation-
ships between groups of tuples (e.g., the encrypted aggregate of some encrypted
data). In either the fully-trusted third-party or the untrusted third-party sce-
nario, access control enforcement comes with computational overheads that must
be properly accounted for when optimizing and placing a query.

3 Problem Description

In this section, we detail the exact optimization problem addressed by our frame-
work and define the different components of a Distributed Data Stream Process-
ing System (DDSPS). We offer a description of our optimization approach and
show the optimize-then-place approach to be suboptimal.

3.1 Problem Description

In order to properly define the problem being addressed here, we must first for-
malize the required components. There are three main components to optimizing
and placing a data consumer’s computation: sites, operations, queries, and query
networks.

Definition 1. Site: As introduced in Sect. 2, a site s executes operators. Inter-
connections between sites have bandwidth (in bits/s, where tuples can be of
varying size) and latency (in ms) characteristics that we represent as b(s, $2)
and l(s1, s2) respectively. Sites are associated with the following properties:

e s.cap is the site’s processing capacity (in cycles, translated to tuples/s).
e s.name is the site’s name used for unique identification purposes.
e s.per is a set of permissions {<o, f>| site s can execute a physical operator

o on field f}.

Definition 2. Operation: An operation op is a set of operators that execute
the same task via different physical implementations.

e op.type represents the action to be performed on a data stream (e.g., filter,
projection, summation, top-k, etc.).

e op.args includes metadata about the operations such as the join condition or
selection criteria.

e op.input represents the set of fields required for this operation to execute.

e op.output represents the set of fields in the output of this operation.

e op.id is a unique identifier for the operation.

A typical operation can be a filter over someone’s age, a join to match two
streams, or an aggregation to find the maximum profit in a given window of
time. Operations can be implemented using different techniques, represented as
operators.

266 C. Thoma et al.

Definition 3. Operator: The basic computational unit used in Shoal is an
operator o, which has the following properties:

e 0.5 represents the expected or actual selectivity of the operation. Selectivities
can be derived either by estimation, measurements during a warm-up period,
or historical selectivity data.

e o.c represents the cost of the operation in terms of the latency for computing
on one tuple. It can be calculated in a manner similar to the selectivities.

e o.site represents the site an operator has been assigned to.

e o.0pld represents the ID of the operation (that is to say, the logical operator
that this physical operator represents) that this operator implements.

e o.window represents the window size for a stateful operator either in tuples
or ms, with a default of 0.

Operators allow flexibility when implementing an operation. Consider the
potential difference between a hash-join implementation of a join operation ver-
sus a merge-join implementation. Given the input rate and selectivity of each
stream, it is highly likely that one join would outperform the other in terms of
overall latency. An operation would have the merge-join and hash-join as poten-
tial operators, and each operator would have a cost that can be used to better
optimize the query network.

Definition 4. Query: A query is represented as a set q of operations that
describe the query or task that a data consumer wishes to execute over a set
of data streams.

e leaves(q) returns the set of operations that operate on a raw data stream (i.e.,
do not require the output of another operation to execute).

Definition 5. Query Network: A query network is represented as a set qn of
queries that will execute within the DSMS.

o sinks(qn) returns the set of operations that return a result to a querier (i.e.,
the last part of any one query).

Using a query, permissions, and a set of available sites as input, Shoal pro-
duces a plan as output:

Definition 6. Plan: A plan p = (V,, E,) where V, is a set of physical operators
and E, C V,xV, is the edge set linking the outputs of one operator to the inputs
of adjacent operators.

Definition 7. Satisfiability: A plan p satisfies a query network gqn if:

e Yop € gn,3 o€V, s.t. o.opld = op.id
e Yo eV, 3l op € qgn s.t. op.id = o0.0pIdN < o,0.metadata >€ o.site.per
e Yo € p,o.input C U o .output

o'|<o’,0>€E,

Shoal: Query Optimization and Operator Placement 267

That is, each operation in each query that comprises the query network
has a unique operator in the plan and that each operator in the plan is the
implementation of one operation in the query, and that each operation in the
query is represented in the resulting network. Additionally, each operator’s input
must be part of the output of its immediate predecessor, and each operator must
be permitted to execute on its assigned site.

To determine the relative quality of a given plan p, we use the following cost
model.

Definition 8. Cost: For a plan p of a Query Network qn, the cost of p, starting
at the leaf node(s), is determined by:

max athCost(path 1
path€Paths(p) P (p) ()
where Paths is the set of paths from leaf nodes to sink nodes. The expected input
rate for each operator (starting from the initial input rate of the leaf node from
the source stream) is:

ir(o;) = IRy * H op;.$ (2)

op; €pathUpTo(op;)

The function pathUpdTo(o) for an operator o is the ordered subset of opera-
tors that precede o in the plan (as part of the same query). IR, is the maximum
input rate of any leaf operator on the current path. The cost of a path is:

pathCost(path) =

Z max(op;.c, op;.window) + Latency(op;, path) * Penalty(o;) (3)
op; Epath

The penalty is defined as:

if pr(o, 0.site) > ir(o;)

(4)

otherwise

1,
Penalty(o) = { ir(0)

pr(o,o0.stte)?

The function pr(operator, site) determines what the processing rate of a site
would be with the operator o assigned to it. If this processing rate is greater than
the input rate, then there is no penalty. If the processing rate is insufficient to
handle the input rate, the plan is penalized by the input rate over the processing
rate. Latency is computed as:

0, for o € leaves(gn)
1(op, opi—1), for opi>1

Latency(o, path) = { (5)

Constrained by s.cap and bandwidth(op;, op;—1).

268 C. Thoma et al.

| Selectivity

_ 1
f‘=.25‘f2=.96‘f3=.96 j,=.05 | 2

e
1

\ _ Cost: 43 ‘ / Cost: 56
_______ ~ -
; 0 \ S

Fig. 1. Simple continuous query.

Definition 9. Problem: Given a query network gn of queries, a set of Sites s,
and a set of access control permissions per, produce a plan p that satisfies qn
such that Eq. 1 is minimized.

3.2 Optimize-then-place Approach

A reasonable first step solution to this optimization problem would be to separate
optimization from operator placement. This would allow a placement algorithm
to simply use an existing off-the-shelf optimizer and post-process the result for
placement. This approach, however, can lead to a sub-optimal plan even if the
query itself is fully optimized. Consider the following scenario for a continuous
query optimizer, which we will use throughout the remainder of the paper to
illustrate Shoal:

A simple query contains three filters (f1, f2, f3), a join (j1), and a projection
(s1) as depicted in the top of Fig.1 as the result of an optimization step. Next
consider the three sites available for placement, and assume the network cost is
uniform. Each site has a capacity of 10 (unit-less for simplicity). The cost of each
filter is 4, of the join 6, and of the project 2; each have selectivities shown in Fig. 1.
Given these costs, either the join must be co-located with f; (the top of Fig.1)
or separated from all of fi, fo and f3, (the middle of Fig.1). However, notice
that the selectivity of f; combined with fy is .92, meaning that a tremendous
amount of data is being sent over the network to the join. The selectivity of the
join, however, is far lower at .05, meaning that a smaller amount of data is being
produced. If the query was instead optimized so that f3 were to follow the join,
the overall network cost would be substantially reduced, resulting in a higher
quality plan (78.8ms vs. 67.8 ms with Eq.1). This illustrates the need for the
optimization and placement steps to be considered simultaneously.

Shoal: Query Optimization and Operator Placement 269

Algorithm 1. DynamicProgramming

1: DynamicProgramming(sc, perms, sites)

2: optPlace= new Array(ArrayList(plan))

3: for leaf € leaves(sc) do

4: optPlace[0] = 0 > Initialize Empty list at level 0
5: for s € sites do

6: for | € operators(leaf) do

7 if s.cap > l.c && (< l,l.metadata.field >€ s.perms) then

8: l.site = s

9: optPlace[0].add(new plan(l)) > Capacity kept per plan

10: prunePlans(optPlace[0])
11: for lv = 1...|sc| do

12: optPlace[lv] = 0 > Initialize Empty list at level lv

13: for operation € sc | operation.type = join do

14: for planl, plan2 € optPlace[lv — 1] | (operation.input C (planl.output N plan2.output)) A
operation.opld & planl.opIlds A operation.opld & plan2.oplds do

15: for s € sites do

16: for join € allowableOps(operation) do

17: if (updateCapacity(planl, plan2,s) > join.c) A (< join, join.metadata.field >€
s.perms) then

18: join.site = s

19: optPlace[lv].add(joinPlans(planl, plan2, join))

20: for plan € optPlace[lv — 1] do

21: for operation € sc | (operation.type # join)A(operation.opld ¢ plan.oplds) A (operation.
input C plan.output) do

22: for s € sites do

23: for o € allowableOps(operation) do

24: if plan.s.cap > o.cA < o,0.metadata.field >€ s.perms then

25: o.site = s

26: optPlace[lv].add(combine(plan, o))

27: prunePlans(optPlace[lv])

4 The Shoal Optimizer

In this section, we introduce our optimization and placement algorithms.

4.1 Online Optimization Approach

Given the long-running nature of continuous queries, there is a high chance
(essentially a certainty) that a data provider’s access controls will change over
time, requiring re-optimization of the network of streaming queries currently
deployed. When access controls change for any one data streaming operator,
it could possibly have a ripple effect for other downstream operators as they
may need to be moved to reallocate resources. To accommodate these changes,
there are two possible approaches: stop-the-world and on-the-fly. The stop-the-
world approach simply halts query execution and uses Algorithm 1 to re-optimize
the query from the root nodes. This approach, however, can lead to large re-
optimization times for larger query networks, and can end up doing repetitive
work when a relatively small set of operations are affected by the change.

We introduce an on-the-fly approach to mitigate these overheads. The prin-
ciple behind our on-the-fly approach is to execute Algorithm 1 from the operator
that is first affected by the access control update relative to the data providers of
the overall query network, which we will call the first-impacted. This requires the

270 C. Thoma et al.

Algorithm 2. Access Control first-impacted identifier.

1: ACUpdate(Update u, Plan p)

2: cld = sc.leaf > Operations not processed
3: for o € cld do

4 if o.input | u.protectedFields then

5: return p.levelO f(o)
6

7

8

else
cld.add(p.childrenO f(o)

cld.remove(o)

ability to determine the first-impacted, which depends upon the type of access
control update that occurred.

Access Control. Algorithm 2 determines which operators are first-impacted by a
change in access controls. It starts by adding operations that directly access raw
data streams on Line 2 to the current query network, cld. These operators are
then looped through on Line 3, and Line 4 determines if that operator accesses
the data being protected by the new access control update. If so, this operation
is the first-impacted and the algorithm determines its level by asking the plan
for the level. If the operation does not access the protected data, its children
are added to the cld set, and it removes itself from this set. This continues
until the first-impacted is found. At this point, Algorithm 1 will execute on the
descendant children of the first-impacted, as well as all operations at the same
level and their descendants. Note that on Lines 16 and 23, we check for all
allowable operations. Recall that one physical operation can be implemented by
many physical operations (e.g., the querier may have sufficient access to query in
plaintext local to their machine and further have access to use a computation-
enabling encryption scheme such as an order preserving scheme on encrypted
data in the cloud. This function enumerates the possible operators based on the
current permissions of the querier. This leaves the already optimized operations
and their ancestor operations intact from the previous plan, and re-optimizes
the operations at and after the first-impacted’s level, leading to less optimization
time. The only alteration required for Algorithm 1 is the inclusion of the current
plan from which to start, which is simply placed in the optimalPlans set and
the Algorithm starts from Line 11 where the level is determined by traversing
back to the leaf nodes.

4.2 Greedy and Hybrid Approaches

As with traditional dynamic programming optimizers, our algorithm could suffer
from prohibitively large execution times for large or complicated query networks
(explored further in Sect. 5). When query networks become too large or complex,
we defer to a greedy approach. This approach simply considers one operator at
a time and optimally places it. In the base case where each operator needs to
be placed, the user defines a time threshold ¢, ¢ine for their optimization step.
If the dynamic programming approach is expected to exceed %, fine, then the
greedy approach is used. The online approach poses a different problem because

Shoal: Query Optimization and Operator Placement 271

there may be uncertainty in how costly an update may be to the system (i.e.,
the number of operators that need to be re-optimized).

The larger the number of operators that need to be considered, the greater
the number of operators requiring re-optimization, and therefore the greater the
cost of the update. In a system operating at or near capacity, online updates may
end up hindering the quality of the result as some information may be lost during
optimization, especially for costly updates on large overall query networks. To
combat this problem, we use the greedy approach when updates are too costly
relative to the system load. The greedy approach simply re-optimizes, placing
each operator in the most optimal location, in a quick but likely non-optimal
fashion.

The greedy approach lends itself nicely to distributed systems with heavy
load where re-optimization needs to be quick to avoid losing data, but it will not
produce plans of the same quality as the dynamic programming approach. To
help a data consumer determine which to use, we propose a hybrid solution which
automatically determines which approach to use given the current system state.
The determination is based on three factors relative to the overall streaming
query network submitted by the data provider: (a) buffer capacity, (b) processing
time of a single streaming tuple (end-to-end), and (c) the input rate. When an
update is deemed necessary, its cost ¢ in seconds is determined by multiplying
the number of operations needing to be re-optimized by the average amount
of time to optimize one operator (based on the execution time of optimizing
the entire query, or a running average). Then, the following equation is used to
determine which algorithm to use:

oEp

uc = (Z(bi*ti))Jriro*c (6)

K2

where o is the operator in the plan p, b; is the utilized buffer size of o, t; is the
processing time of o, ¢r is the input rate. If ¢ < uc then the dynamic programming
approach is used, otherwise the greedy approach is used to minimize data loss.

4.3 Example

To help illustrate how Shoal optimizes a set of streaming queries, consider the fol-
lowing continuous query on a data stream that contains tuples with a timestamp,
companyName, companyld, and the company profit, as illustrated in Fig. 2:

SELECT max(avg_profit), companyName
FROM (SELECT companyName, AVG(profit) as avg_profit

FROM profitStream GROUP BY companyName EVERY 1m UPDATE 15s;)
GROUP BY companyName EVERY 1m UPDATE 15s;

This query requires five operations; a max (m), a projection (p), an average
(a), and two group-by operations (¢g; and g2) represented by circles in Fig. 2.
Assume that the profit field is protected by a homomorphic encryption and the

272 C. Thoma et al.

@ ofo

10 10

Fig. 2. Given a the set of operations and the sites A and B, Shoal optimizes and places
the operations so that the first aggregation is placed on A with the projection reducing
network load to the second aggregation operation placed on B.

others are plaintext. Further assume (for simplicity) that there are two sites 4
and B with capacities 10 and 10 respectfully, and a latency of 10ms between
them (squares in Fig. 2).

Shoal starts with the operation a as it is the operation that accesses raw data.
Since a homomorphic option exists for the aggregation, an operator executing
a homomorphic scheme is put onto each site and the next round of dynamic
programming is initiated. Further, plans are also added for random encryption
and trusted machine processing. This aggregation requires a group-by operation,
which can execute on the plaintext column for “company name”. This operation
is placed with the aggregation on each site, making each site’s best plan having
a cost of 8 which, along with other plans with varying physical operators, are
kept for each site. Shoal then tests the remaining operations and determines that
the projection p can be added to each site’s best plan for a cost of 9. Plans are
now kept for each site and for each physical operator, but the minimum plan
score is 9. Note that this choice reduces the overall network load by eliminating
all columns except the company name and the average. Shoal continues and
determines that the maximum operation along with its group-by can not fit on
either site and chooses them to operate on site B with site A keeping its previous
plan. With all operators placed, the new plan resembles the one in the right half
of Fig. 2.

5 Evaluation

To evaluate our optimizers, we decided to use relational continuous queries for
the bulk of our experimentation.

Setup: For our evaluation, we limit Shoal to be used in a simple streaming
system with data providers, data consumers, and data processing components.
For our simulation, data is streamed from a laptop into Amazon AWS EC2
instances. Once data is processed, it is passed back to the laptop to act as the
data consumer. We implement the streaming layer on the Apache Storm [30]
framework. To keep the streaming layer simple, we use the most basic function-
ality of Storm where our data provider implements a spout and our data pro-
cessing nodes implement bolts with no multi-threating or replication (i.e., a bolt

Shoal: Query Optimization and Operator Placement 273

just mimics a machine for our purposes). We use Storm only for the transport
layer as it guarantees delivery and provides acking and nacking functionality. To
simulate real-world streams, each stream is imposed with an artificial latency of
0-30 ms to emulate them being geographically separated.

Datasets: We use queries from the TPC-H [25] workload and modify them for
use in a streaming system (e.g., aggregations use windows). We will explicitly
call out any changes to the query we made, or if we use more than one query as
part of the query network. We further segment data based upon a timestamp so
that it is streamed into the system (in a pre-processing step) so that days are
equivalent to minutes. All queries are referenced using the query number (e.g.,
ql for TPC-H query 1) and the number of operators it translates to (e.g., q1(4)
is TPC-H query 1, which has four operations).

Baseline Algorithms: In addition to our original and hybrid dynamic pro-
graming algorithms, we chose three additional baselines for comparison: (1) all-
on-client, where all of the operations run on one machine, (2) first site, where
each operation is placed on the first site available, and switched to the next when
either the site is at capacity or there is a conflict with access controls, and (3)
greedy, where a plan is generated by greedily assigning each operation based on
the best score.

5.1 Online Optimizer

This section evaluates our dynamic programing optimizer as compared to other
baseline approaches. The cost of an update is based on how many operations
in the query network are affected by the update, so we omit cases where the
entire network was updated since it would degenerate to the basic case where
each operator must be optimized.

Optimization Time. Given the cost of an update, this experiment determines the
average optimizer execution time for the our dynamic programming approach as
well as the baseline approaches.

Configuration: We combine queries in increasing size order (i.e., 1 query, 2
queries, 3 queries, up to 4 queries, or 8, 14, 28, and 45 operators). This provides
four data points with an increasing size and number of sinks. All aggregation
and join operations are given windows of 5min (to directly use the date field
in each relevant tuple). We trigger updates so that only a certain number of
operators in each query are affected by the update. Each optimizer is then used
to order and place the subsequent operations.

274 C. Thoma et al.

70 S 50 =
Greedy —¥— 30 —H—
Hyon —o— -

60| Firstsite —l—

IS
S

a
3

&

5
Lgtency (ms)
8

&
S

Qptimization Time (ms)
3
8

N
S

I—E% "

s

10 - . =

0, 0.

q4(1) 96(3) cportons ac@(?r)ﬂ_mm 93(8) a7(12) 10 20 80 40 50 T‘mg?ms) 70 80 90 100 110
Fig. 3. Optimizer execution time for Fig.4. Recovery time caused by an
the online algorithm approaches. access control update for different costs.

Results (Fig.3): Here we can see the dynamic programming approach is the
slowest. This optimizer execution time included the time to determine the first-
impacted for each approach, for each query.

Takeaway: Although Shoal has the highest optimization time, it is still rela-
tively low, especially when executing on a long-running continuous query in a
network where the resulting plan quality is much more important.

Plan Quality. This experiment evaluates the overall plan quality of each app-
roach in terms of latency (ms) for each updated plans. Again, we present both
the expected latency, as well as the actual latency. Here, we include the hybrid
approach to show when it may switch optimizers to reduce the overall impact of
an update.

Configuration: Queries are executed for 10 min in total. There is a two-minute
window for the initial query, after which an access control update is presented.
The query is then updated and the remainder of the time is spent monitoring
the updated query. The results presented below are the quality (latency in ms)
of the updated query network, as presented by the number of operators updated
in the largest network.

Results (Figs.5a and b): Our dynamic programming optimizer produces the
best overall latencies for both expected and actual evaluations for the query
network. The difference between the expected and the actual is roughly 10.2%,
which indicates that Shoal can produce results that are close to the actual values.
Notice that the hybrid approach chose to switch to the Greedy optimizer in the
last update to the query network. This is due to the system being near capacity
when the update occurred (roughly 2,500 tuples/s with a processing rate of
roughly 2,615 tuples/s), and in the time to process a new query, the system
could have lost data, so the hybrid algorithm chose to use the greedy optimizer.

Takeaway: Shoal produces higher quality plans when compared to the baseline.

Shoal: Query Optimization and Operator Placement 275

DP —X— DP —X—
Greedy —¥— Greedy —¥—
80 All-on-1 —H— 70 All-on-1 —H— h
First Site —li— First Site —li—
70 Hybrid —6— Hybrid —©— h
1)
_60 :
3
£
50
g
240
5
30
20
108
&) a4(2) q3(4) PG} a4(2) q3(4) q7(8)
Operators after f rst-mpacted Operators after f rst-impacted
(a) Expected latency. (b) Actual latency.

Fig. 5. Expected and Actual latency for Shoal on random data.

Recovery Time. When an update occurs, the system must determine how to
re-optimize from first-impacted operation. This process takes time, and while it
is processing, the query will still need to be executing. The time between the
start of an update optimization and the normal execution of the resulting plan
is the time it takes the system to recover from an update. In this experiment,
we evaluate this recovery time for access control updates.

Configuration: For this experiment, we generated a 128-operator query net-
work. Operations were selected from a random distribution of operations which
included two-way joins, filters, summations, averages, projections, and decrypt-
process-encrypt operations. Access control updates occur by specifying a specific
change in access controls that target a specific operator such that the update cost
remains consistent across the evaluation, and each update causes an increase in
latency and a decrease in throughput (i.e., switch from plaintext to encrypted).
A query is considered recovered once the latency has normalized back to a steady
value.

Results (Fig. 4): When an update occurs to an access control policy (Fig. 4), the
data consumer may lose access as indicated by the unreported latency values.
Once the query has been resumed, the larger updates cause a large spike in
latency that takes more time to recover from, as expected. Note the processing
time of each update also increases, but the recovery time is more-or-less the same
(20-30 ms). This shows that the new queries can handle the increased workload
to make-up for the lost work and then maintain a new latency rather quickly.

5.2 Comparison to the State-of-the-Art

We now evaluate the quality of the plans produced by Shoal versus other operator
placement approaches, namely Pietzuch et al. [24] and Srivastava et al. [29].

Algorithms: Pietzuch et al. [24] propose a solution that focuses on placing
operators in a large-scale distributed network using a latency metric. Their opti-
mizer takes a query plan and places it using a two-step algorithm: first a Virtual

276 C. Thoma et al.

Operator Placement step and then a Physical Operator Placement step. The vir-
tual operator placement step considers all operators in a query and places them
based on a cost space. This cost space consists of a decentralized view of the
network from a single node’s perspective and focuses on the latencies between
potential sites. There is also a load dimension that can ensure that a single site
does not become overwhelmed. Their approach allows for access control updates
by allowing operators to migrate between sites. To compare to our work, we fix
the cost space by artificially creating latencies and data rates between potential
sites (i.e., the assumed information gathered by the DDSMS in their work) and
then allow it to adjust over time. The main optimization function used in their
work is to minimize the following formula:

> DR(1) « LAT(I) (7)

leL

Where [is the link between two nodes, DR(l) is the data rate of that link, and
LAT(I) is the latency of that link.

Srivastava et al. [29] also reduce data transmission, but do so for localized
networks. Their work focuses on using parts of the query itself, as well as the
machines available for placement, to make a placement decision. Specifically,
they focus on the selectivity of filtering operations, the cost associated with each
operation, and the cost associated with sending a tuple through the network. In
addition to the above costs, a join’s cost is calculated using its selectivity and
the cost per unit time for processing one tuple. The cost of a placement plan is
therefore the sum of all of the nodes where the selectivities of upstream filters
are multiplied by the cost of the current filter. Some filters are correlated and
some are not, so the ordering decision comes from the commutative aspect and
the overall cost comes from minimizing the cost of the filter and join orderings.
To compare with our work, we again assume an artificially created latency and
use the same operators’ costs and latencies across all approaches.

Configuration: For our comparison, we use multiple queries over a fixed num-
ber of sites. We use 5 sites, each connected to each other with an initial latency
randomly selected from a range of 5-500 ms. Each query is comprised of between
4 and 128 operations selected as either filters (selection operations) or joins, with
plaintext data. Since [24] requires an initial query plan, we use Shoal with a sin-
gle site and sufficient capacity to generate a non-distributed query plan. Finally,
each filter is given a selectivity randomly selected from the set {.1,.2,...,.9}. To
gather information on actual latencies, each query was executed for a total of
five minutes for each approach.

Results (Figs.6a & b): As depicted in Figs.6a and b, Shoal produces plans
with better expected and actual latency. As before, the expected and actual are
within an average of 8%, however the Pietzuch et al. approach is more predictable
since its expected is on average only 4% different from the actual value. Shoal is
able to outperform the other approaches because it attempts to find an optimal

Shoal: Query Optimization and Operator Placement 277

solution that takes into account the parallelism inherent to a distributed system
by preferring plans that allow work to be done on multiple devices simultane-
ously. The Pietzuch et al. approach relies on an optimize-then-place approach
and missed better filter orderings, which becomes more apparent as queries grow
larger. The Srivastava et al. approach does consider ordering, but does not con-
sider the parallelism inherent to a distributed system and would often serialize
sets of operations that could have otherwise been done in parallel.

Latency (ms)
Latency (ms)

q4(3) q6(6) q4(8) q3(14) q7(17) q4(3) q6(6) q4(8) q3(14) q7(17)

Query Query
Our Approach Pietzuch et al. m—m Our Approach E25zsa Pietzuch et al. m—m
Srivastava et al. E=ZZ3 Srivastava et al. E=ZZ
(a) Expected latency. (b) Actual latency.

Fig. 6. Expected and Actual latency for Shoal on random data.

Takeaway: By considering ordering and placement at optimization time, as well
as taking advantage of parallelization inherent to the distributed system, Shoal
can out-preform other state-of-the-art optimizers in terms of end-to-end latency.

6 Related Work

Stream processing has been rigorously studied in the literature to include novel
systems such as Aurora [1], Borealis [2], and Twitter Herron [18]. For traditional
database applications, the focus for operator placement in distributed database
systems usually focuses on replication, sharding, or scalability [12,14,15,28]. The
PAQO [16] optimizer focuses on placing operators in a distributed database sys-
tem so that one entity does not learn the underlying intension of the query. For
data steaming systems, operator placement is of a larger concern since queries
are long-running and operators are expected to consume resources for long peri-
ods of time while possibly fluctuating in their required resource utilization. The
contributions in [8] explore the general problem of operator placement on hetero-
geneous computational platforms for DDSMs, and propose a linear programming
model to place operators. Their approach processes placement in a separate step
from optimization, which can lead to suboptimal results (cf. Sect. 3).

Huang et al. [17] fit operators onto sites by calculating the execution time of
an operation and place it based on the capacity of each site, using end-to-end
delay and throughput as the metrics. Thoma et al. [32] place operators in a
DDSMS where queriers have the ability to control where operators are placed
via a set of constraints. These constraints generally cover all aspects of the

278 C. Thoma et al.

placement, but do not consider the access control policies of a data consumer.
Operators placement using heuristics to optimize for end-to-end latency and
network traffic have also been explored [7,13,27].

Finally, some related work has focused on the impact of enforcing access
controls in a DDSPS. Enforcement systems such as FENCE [21,22] include
the enforcement overheads in the optimization step by adding streaming oper-
ations that can be handled like any other operation, but do so without consid-
ering operator placement. Other systems will rewrite queries or alter streaming
operators [9-11,23], while others focus on protecting a single system, such as
Borealis [20]. These systems simply explore the overheads associated with access
control enforcement and do not consider them at optimization time or dur-
ing operator placement. Furthermore, these systems do not explore the tradeoff
between different types of access control enforcement during optimization time,
which is provided in ShoalSystems like PolyStream [31], and Streamforce [3],
CryptDB [26] consider such tradeoffs, but do either do not operate in a dis-
tributed fashion (CryptDB), or do not consider them at optimization time.

Thus far current optimizers and systems have focused on a limited scope of
characteristics within a DDSPS, mostly excluding access controls. Either they
do not consider optimization and placement simultaneously, or they limit their
approach to optimize solely for something like network, hardware, or other tra-
ditional metrics. Shoal provides a general cost model and dynamic programming
algorithm that accounts for data provider’s access control enforcement at query
optimization time.

7 Conclusion

We present Shoal which considers access controls as first-class-citizens during
query optimization. By simultaneously ordering and placing streaming query
networks on a per-operator level, Shoal can guarantee optimal results through a
dynamic programming algorithm. Further, Shoal reduces optimization time for
updates based on changes in access controls by identifying the precise operators
that need to be re-optimized and only optimizing from those points forward in
an online fashion. Finally, we show that Shoal produces higher quality plans
(up to 2.2x) versus the state-of-the-art optimizers, and does so while considering
data provider’s access controls.

Acknowledgements. This work was supported in part by the National Science Foun-
dation under awards CNS-1253204 and CNS-1704139.

References

1. Abadi, D., et al.: Aurora: a new model and architecture for data stream manage-
ment. VLDB 12(2), 120-139 (2003)

2. Abadi, D., et al.: The design of the borealis stream processing engine. In: CIDR
(2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Shoal: Query Optimization and Operator Placement 279

Anh, D.T.T., Datta, A.: Streamforce: outsourcing access control enforcement for
stream data to the clouds. In: ACM CODASPY, pp. 13-24 (2014)

Arasu, A., et al.: Stream: the Stanford data stream management system. Book
chapter (2004)

Arasu, A.; et al.: The CQL continuous query language: semantic foundations and
query execution. VLDB J. 15(2), 121-142 (2006)

Arasu, A., et al.: Stream: the Stanford data stream management system. In: Garo-
falakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management. Data-Centric
Systems and Applications. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-540-28608-0_16

Backman, N., Fonseca, R., Cetintemel, U.: Managing parallelism for stream pro-
cessing in the cloud. In: HOTCDP Workshop, pp. 1-5. ACM (2012)

Cardellini, V., et al.: Optimal operator placement for distributed stream processing
applications. In: DEBS, pp. 69-80. ACM (2016)

Carminati, B., et al.: Enforcing access control over data streams. In: ACM SAC-
MAT, pp. 21-30 (2007)

Carminati, B., Ferrari, E., Tan, K.L.: Specifying access control policies on data
streams. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E.
(eds.) DASFAA 2007. LNCS, vol. 4443, pp. 410-421. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71703-4_36

Carminati, B., et al.: A framework to enforce access control over data streams.
ACM TISSEC 13(3), 28 (2010)

Cattell, R.: Scalable SQL and NoSQL data stores. ACM SIGMOD Rec. 39(4),
12-27 (2011)

Chatzistergiou, A., Viglas, S.D.: Fast heuristics for near-optimal task allocation in
data stream processing over clusters. In: CIKM, pp. 1579-1588. ACM (2014)
Corbett, J.C., et al.: Spanner: Google’ globally distributed database. ACM Trans.
Comput. Syst. (TOCS) 31(3), 8 (2013)

Curino, C., et al.: Relational cloud: a database-as-a-service for the cloud. In: CIDR
(2011)

Farnan, N., et al.: PAQO: preference-aware query optimization for decentralized
database systems. In: ICDE (2014)

Huang, Y., et al.: Operator placement with QoS constraints for distributed stream
processing. In: CNSM, pp. 1-7. IEEE (2011)

Kulkarni, S., et al.: Twitter heron: stream processing at scale. In: SIGMOD, pp.
239-250. ACM (2015)

Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing
with MapReduce: a survey. ACM SIGMOD Rec. 40(4), 11-20 (2012)

Lindner, W., Meier, J.: Securing the borealis data stream engine. In: IEEE IDEAS,
pp. 137-147 (2006)

Nehme, R., et al.: A security punctuation framework for enforcing access control
on streaming data. In: ICDE, pp. 406415 (2008)

Nehme, R.V., et al.: Fence: continuous access control enforcement in dynamic data
stream environments. In: ACM CODASPY, pp. 243-254 (2013)

Ng, W.S., et al.: Privacy preservation in streaming data collection. In: ICPADS,
pp. 810-815 (2012)

Pietzuch, P., et al.: Network-aware operator placement for stream-processing sys-
tems. In: ICDE, pp. 49-49. IEEE (2006)

Poess, M., Floyd, C.: New TPC benchmarks for decision support and web com-
merce. ACM SIGMOD Rec. 29(4), 64-71 (2000)

https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-71703-4_36

280

26.

27.

28.

29.

30.

31.

32.

C. Thoma et al.

Popa, R., et al.: CryptDB: protecting confidentiality with encrypted query pro-
cessing. In: ACM SOSP, pp. 85-100 (2011)

Rizou, S., et al.: Solving the multi-operator placement problem in large-scale oper-
ator networks. In: ICCCN, pp. 1-6. IEEE (2010)

Shute, J., et al.: F1: a distributed SQL database that scales. VLDB 6(11), 1068—
1079 (2013)

Srivastava, U., Munagala, K., Widom, J.: Operator placement for in-network
stream query processing. In: SIGMOD, pp. 250-258. ACM (2005)

StormProject: Storm: distributed and fault-tolerant realtime computation (2014).
http://storm.incubator.apache.org/documentation/Home.html

Thoma, C., et al.: Polystream: cryptographically enforced access controls for out-
sourced data stream processing. In: SACMAT, vol. 21, p. 12 (2016)

Thoma, C., Labrinidis, A., Lee, A.J.: Automated operator placement in distributed
data stream management systems subject to user constraints. In: ICDEW, pp. 310—
316. IEEE (2014)

http://storm.incubator.apache.org/documentation/Home.html

	Shoal: Query Optimization and Operator Placement for Access Controlled Stream Processing Systems
	1 Introduction
	2 Background and System Model
	2.1 Background on DDSPSs
	2.2 Access Controls

	3 Problem Description
	3.1 Problem Description
	3.2 Optimize-then-place Approach

	4 The Shoal Optimizer
	4.1 Online Optimization Approach
	4.2 Greedy and Hybrid Approaches
	4.3 Example

	5 Evaluation
	5.1 Online Optimizer
	5.2 Comparison to the State-of-the-Art

	6 Related Work
	7 Conclusion
	References

