2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

RIVER-MAC: A Receiver-Initiated Asynchronously Duty-Cycled MAC Protocol
for the Internet of Things

Mathew L. Wymore and Daji Qiao
Department of Electrical and Computer Engineering
lowa State University, Ames, IA, USA
{mlwymore, daji} @iastate.edu

Abstract—This paper presents RIVER-MAC, a very efficient
receiver-initiated asynchronously-duty-cycled medium access
control (MAC) protocol for IoT devices. The key innovations
of RIVER-MAC include (1) a CCA-based rendezvous to reduce
idle listening for the sender node by an order of magnitude, and
(2) a beacon train-based collision resolution scheme to reduce
contention between receiver nodes, a previously-overlooked
issue in receiver-initiated MAC protocol design. We have imple-
mented RIVER-MAC in Contiki OS, and used extensive Cooja
simulations to demonstrate its high performance compared
to RI-MAC (a classic receiver-initiated protocol), as well as
ContikiMAC (a state-of-the-art sender-initiated duty-cycled
MAC protocol) in our tested scenarios. We also have used
analytic studies to show that RIVER-MAC yields a comparable
performance with a wakeup radio-based scheme, an emerging
alternative to duty-cycled MAC protocols for IoT devices.

Keywords-Internet of Things; Wireless Sensor Networks;
MAC Protocols; Low-power Communications

I. INTRODUCTION

The Internet of Things (IoT) has widely been envisioned
as a transformative computing paradigm, seeking to connect
everything from everyday objects to industrial machines.
One possible use of the IoT is to create large networks of tiny
wireless sensors and actuators for advanced, high-fidelity
monitoring, feedback, and control of natural and human-
made environments. However, this application suffers from
the classic drawback of wireless sensor networks (WSNs):
computing devices require energy to operate.

Such devices are typically powered by batteries or su-
percapacitors, which may (or may not) be recharged, slowly
and intermittently, by energy-harvesting systems. In order to
operate for extended lengths of time—ideally, years—these
devices must minimize their energy consumption. Because
wireless radios consume a significant amount of power on
these embedded platforms, one of the ways this minimiza-
tion is achieved is through low-energy networking, such as
duty-cycled medium access control (MAC) protocols.

Duty-cycled MAC protocols have long been a subject
of research in WSN and IoT applications. However, we
argue that state-of-the-art duty-cycled MAC protocols do not
satisfactorily meet the demands of the IoT. In particular, IoT
MAC protocols should have the following characteristics.

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00126

860

o High performing: 10T MAC protocols should achieve
low delay and high reliability while minimizing energy
consumption, even under moderately-high traffic loads.

e Resilient to interference: 10T MAC protocols should be
robust in dynamic and noisy environments, including
scenarios with hidden nodes (senders that are not within
range of each other but interfere at a receiver).

e Polite: 1oT MAC protocols should have a small channel
footprint in order to cause as little external interference
as possible. They should occupy as few channels as
possible, as little as possible.

o Device-independent: 10T MAC protocols should be
easily ported to new devices, and devices should be
easily interoperable using these protocols.

With these characteristics in mind, we have examined
ContikiMAC [1], a state-of-the-art sender initiated asyn-
chronously duty-cycled MAC protocol, and RI-MAC [2],
a classic receiver-initiated protocol. Inspired by these pro-
tocols’ successes, and learning from their shortcomings, we
here propose RIVER-MAC, an asynchronously-duty-cycled
MAC protocol with a Receiver-Initiated, (Very) Efficient
Rendezvous. RIVER-MAC’s rendezvous is clear channel
assessment-based (CCA-based) and can reduce idle listening
for senders by an order of magnitude. Additionally, RIVER-
MAC uses a beacon train-based collision resolution scheme
to reduce contention between receiver nodes, a scenario that
has generally been overlooked in receiver-initiated protocol
design. With these features, we believe RIVER-MAC is
better able to meet the demands of the IoT.

II. RELATED WORK

Energy efficiency through duty-cycling has been a popular
research topic for WSNs for well over a decade, as summa-
rized in surveys such as [3]. At the link layer, protocols
such as B-MAC [4], X-MAC [5], and ContikiMAC [1]
have achieved a progressively more efficient asynchronous
rendezvous between sender and receiver, without the need
for synchronization or explicit scheduling between nodes,
using a technique called low-power listening (LPL). In
LPL, nodes periodically wake and listen to or sample the
channel for a short interval. A sender continually transmits
a jamming signal or a packet train until its receiver responds

IEEE
computer
® psoaety

or acknowledges the packet. We discuss the shortcomings of
these sender-initiated protocols in Section III.

Receiver-initiated protocols [2], [6]-[10] use low-power
probing (LPP) to achieve similar results. In LPP, nodes
periodically broadcast a probe packet, or beacon, to advertise
their availability as a receiver. Senders simply listen for
a beacon from their intended receiver. Example protocols
include RI-MAC [2], a classic receiver-initiated protocol,
and A-MAC [10], which uses hardware acknowledgements
of broadcast packets, and also multiple channels, to in-
crease efficiency. Receiver-initiated protocols in general suf-
fer from excessive idle listening, as we discuss in Section III.
Some work, such as [8], has explored the use of pseudo-
synchronous mechanisms to reduce this idle listening; in
contrast, we propose a purely asynchronous mechanism.

Synchronously duty-cycled MAC protocols, in which
nodes are synchronized so that transmissions can be sched-
uled, have also been studied. Early synchronous protocols
include S-MAC [11], [12] and T-MAC [13]. More recently,
the use of IEEE 802.15.4e’s Time Slotted Channel Hopping
(TSCH) protocol has become more practical for WSNs and
the IoT through autonomous schedulers such as Orches-
tra [14]. We acknowledge these developments as promising,
but focus on flexible, single-channel protocols that forego the
overhead and complexity of synchronization and scheduling.

An emerging alternative for traditionally duty-cycled
MAC protocols is wakeup radios (WuR) [15], [16]. A
WuR is a secondary, ultra-low-power radio that continually
listens for a wakeup call from a wakeup transmitter. When
the wakeup call is received, the main radio is awakened
to transmit data. WuRs allow for on-demand transmission
without a rendezvous, and they excel in low-traffic scenarios.
However, they require additional hardware. In Section VI,
we analytically compare RIVER-MAC with a WuR platform
to better understand which approach is more appropriate in
different scenarios.

III. MOTIVATION AND OBSERVATIONS

Our work is motivated in two parts. First, we identify
shortcomings of sender-initiated protocols, such as Contiki-
MAC, that motivate us to seek receiver-initiated solutions.
Second, we observe the shortcomings of receiver-initiated
protocols, such as RI-MAC, that motivate us to propose a
new protocol, RIVER-MAC.

A. Shortcomings of Sender-Initiated Protocols

The ContikiMAC protocol [1] is a state-of-the-art sender-
initiated protocol and, due to its inclusion in Contiki OS
[17], is a de facto standard for asynchronously duty-cycled
MAC protocols. However, as in other sender-initiated pro-
tocols, ContikiMAC’s rendezvous mechanism requires the
sender to occupy the channel with a repeated packet train.
This makes ContikiMAC impolite, because no other nodes

861

can transmit while the sender occupies the channel. Con-
tikiMAC does have a phase optimization mechanism that
can mitigate this issue, but this is a general and pseudo-
synchronous approach that can also be applied to receiver-
initiated protocols, e.g. [8], [9].

The channel occupancy of sender-initiated protocols
causes performance of these protocols to suffer, particularly
in relatively high-traffic scenarios. If one sender occupies
the channel while waiting for its receiver, all other senders
within transmission range must wait until the sender has
finished before they can send. To make matters worse, if
two senders are hidden from each other, they may constantly
interfere with one another without realizing it. In short,
sender-initiated protocols are not suitable for high-density
IoT applications because they are impolite and they are not
resilient to interference, especially hidden nodes.

B. Shortcomings of Receiver-Initiated Protocols

In receiver-initiated protocols, senders do not occupy the
channel while waiting for a receiver, but instead politely
listen for the receiver to initiate the data transaction. This
alleviates the main shortcoming of sender-initiated protocols
by reducing channel occupancy and allowing the receiver
to control collision resolution, improving performance in
hidden-node scenarios. In this section, we first describe
RI-MAC [2], a classic receiver-initiated protocol. We then
explore its shortcomings, which motivate our design for an
improved receiver-initiated protocol.

1) Description of RI-MAC: RI-MAC [2] is a receiver-
initiated, asynchronously duty-cycled MAC protocol. In RI-
MAC (Fig. 1), nodes sleep (turn their radios off) when not
engaged in communication. Periodically, nodes wake (turn
their radios on) and advertise their presence as receivers by
broadcasting a beacon packet and listening for a response. If
no response arrives, the node goes back to sleep. Wakeups
occur on average every Ty (the wakeup interval), with some
amount of randomness to distribute the beacons in time.

Packet arrival Idle listening
1

[[oata][]

Sender

Receiver

v

Figure 1. Overview of RI-MAC, with a timeline for a sender and a receiver.
Both nodes broadcast beacon packets (B) at an interval Ty;,. Data packets
(DATA) are acknowledged with acknowledgement beacons (A). Shaded
areas indicate radio on-time, and hatched boxes indicate received packets.

As shown in Fig. 1, when a node has a packet to send, it
wakes and idly listens for its receiver to send a beacon. When
this occurs, the sender unicasts the data packet in response to
the beacon. The receiver responds with an acknowledgement
beacon that also advertises the receiver’s availability to
receive additional packets. In case of a collision at the

receiver, this beacon may also include a backoff window
value to prevent competing senders from colliding again.

2) Idle Listening: Our work is motivated by two practical
problems with RI-MAC. First, in RI-MAC, senders must idly
listen for up to Ty, or longer in order to receive a beacon
from the intended receiver. This idle listening (indicated in
Fig. 1 as the shaded gray area between packet arrival and the
beacon from the receiver) dominates the energy consumption
of the wireless radio. For example, 7y may be on the
order of hundreds or thousands of milliseconds (ms), while
a data transaction may take less than 10 ms. The energy
consumption from this much idle listening makes RI-MAC’s
energy performance unsuitable for the demands of the IoT,
particularly in moderate-to-high traffic scenarios.

3) Contention Between Receivers: The second problem
we identify is that in RI-MAC, excess collisions can occur
when there is contention between receivers. While RI-MAC
has a backoff process to handle collisions between senders,
it does not account for contention between receivers. Partic-
ularly, while senders are backing off for collision resolution,
additional receivers may attempt to use the channel. This can
cause more collisions that cannot be resolved by the normal
process. As an example, see the topology and timeline in
Fig. 2. In this figure, receiver R1 must resolve a collision
between senders S1 and S2. While waiting for backoffs
to expire, the channel is empty. This allows receiver R2
to beacon, effectively stealing the channel from R1. When
S3 responds to R2’s beacon, it can cause collisions at R1,
because S3 is hidden from S1 and S2. Even if nodes are
not hidden, collisions could still occur if S1 or S2 times
out and transmits data at the same time as R2’s beacon
transmission. This scenario is often overlooked. To the
best of our knowledge, RIVER-MAC is the first receiver-
initiated protocol to address contention between receivers
(as described in Section IV), making it more suitable for
high-density IoT applications.

(s0y--(s2) s 1] s
o [oata][] [oara]
@ &y L8] 6] (0]
SN R B,
, N
(a) Topology. (b) Timeline.

Figure 2. Example of excess collisions from contending receivers. In (a),
arrows indicate communication flows, while a dashed line indicates nodes
are within communication range of each other. In (b), darkly shaded boxes
indicate collisions. S1 and S2 send a packet that collides at R1. While S1
and S2 back off, R2 beacons, effectively stealing the channel from R1 and
resulting in another collision at R1, between S3 (responding to R2) and S2
(which has finished backing off).

862

IV. RIVER-MAC DESIGN

In this section we introduce the design of RIVER-MAC,
our receiver-initiated asynchronously duty-cycled MAC pro-
tocol motivated by the shortcomings discussed in the previ-
ous section. Our design is based on RI-MAC as described
in Section III-B1. Specifically, we propose two major mod-
ifications to RI-MAC: a CCA-based rendezvous to reduce
idle listening, and a beacon train-based collision resolution
scheme to reduce contention between receivers.

A. CCA-based Rendezvous

Our first major improvement is a CCA-based rendezvous.
As shown in Fig. 3, instead of idly listening for a beacon
from its intended receiver, a sender strobes CCAs until it
detects activity. CCA here refers to a short physical-layer
check used to detect energy on the channel; any similar, short
physical-layer channel check could be used. When activity
is detected, the sender puts its radio in receive mode in
order to receive the next packet. This approach is inspired by
ContikiMAC’s CCA-based receive check. We have adapted
this mechanism into the CCA strobe, and then applied it to
the sender side in order to reduce idle listening.

TST@ROBE
51 B0 oata][] >
e Lol

Th

Figure 3. The CCA-based rendezvous of RIVER-MAC. Periodic wakeups
now begin with an initial beacon (N).

Indeed, as the sender’s radio remains off between CCAs,
this approach can reduce idle listening by an order of
magnitude. The tradeoff is that the receiver must send two
beacons: one for the sender to sense with a CCA (the initial
beacon, marked “N”), and a second for the sender to actually
receive (the regular beacon, marked “B”). Thus, the CCA-
based rendezvous decreases the sender’s load and increases
the receiver’s load.

In order to ensure that the sender’s CCAs can detect the
first beacon packet, the period of the CCA strobe (IstroBE)
must be no greater than the transmit time of the initial
beacon packet (T). We note that T is a controllable
parameter, to some extent, because the transmit time of the
initial beacon can be increased by padding the packet with
dummy data. In this way, T serves as a parameter that
controls the tradeoff between sender energy reduction and
receiver overhead during the CCA-based rendezvous. The
choice of Ty is discussed in more detail in Section IV-C1.

Finally, the sender cannot be sure that energy detected by
its CCA is from an initial beacon, much less one from its
intended receiver. Therefore, after the channel has cleared, if
the sender does not hear a regular beacon from its intended

receiver within the inter-packet interval (77) plus processing
time, the sender times out and returns to its CCA strobe.

B. Beacon Train-based Collision Resolution

Our second major improvement is the use of beacon
train-based collision resolution. This improvement addresses
the problem with contention between receivers discussed in
Section III. Our goal is for an active receiver to reserve
the channel resource so that additional receivers cannot use
it. As shown in Fig. 4, this reservation is accomplished by
having the active receiver transmit a train of regular beacons,
instead of remaining silent, during the backoff portion of the
sender collision resolution process. If a contending receiver
wakes to beacon during this time, it will detect one of the
beacon packets in the train from the active receiver and
reschedule its own beacon transmission.

SO i e e s
0 NI oata][1] pata][] >
I iy = 1 Y i D
R2 I >
S3 I D I I >
Figure 4. Illustration of the beacon train-based collision resolution. After

R1 detects a collision (between S1 and S2), it repeatedly transmits beacons
until the senders respond. This prevents R2 from accessing the channel
while S1 and S2 are backing off.

The use of a beacon train also affects how the backoff
process works: instead of backing off for a random amount
of time, a sender backs off for a random number of beacons
in the train. The beacon train is composed of k beacons
(initially set to a minimum k,,;,), and the receiver populates
a field in each beacon with the number of beacons remaining
in the train. When the sender receives the first backoff
beacon, it chooses a random beacon in the range [1 : k].
When the sender receives that beacon, it responds with
its data packet. If another collision happens, the receiver
increases k (e.g. by doubling it), up to a maximum K. The
sender then randomly chooses another beacon to respond to.
If the sender misses its chosen beacon, such as due to packet
loss, it responds to the next beacon it hears.

In order to respect the reservation of the channel via the
beacon train, we require a node to detect a clear channel
for at least 77 + T'g, plus the CCA and processing time,
before it can send an initial beacon. Waiting for 77 ensures
that the node will detect a beacon train from a receiver
within communication range. Waiting for an additional T’z
(the transmit time of a regular beacon) also prevents the
node from interrupting a data exchange between a hidden
receiver and a sender within communication range. The clear
channel detection can be efficiently accomplished using a
CCA strobe, with at least one CCA occurring every 1.

863

C. Practical Considerations

1) Choice of Initial Beacon Size: The size of the initial
beacon packet (and the data rate of the radio) determines
the transmit time 7. As discussed above, this parameter
constrains Tstrogg and effectively controls the tradeoff
between the energy saved by the sender via reduced idle
listening, and the additional energy overhead of the receiver
due to having to transmit the initial beacon.

The choice of the initial beacon packet size is constrained
by the hardware standards. For example, IEEE 802.15.4
specifies a maximum frame size of 127 bytes. At 250 kbps,
this yields a maximum 7 of around 4 ms. The minimum
T'n depends on the size of the packet header.

The optimal T (i.e. the value that minimizes energy
consumption) depends on the traffic load of the node, and
on Ty . A larger T’y leads to less energy spent idle listening
when sending, but more energy spent on periodically trans-
mitting the initial beacon. If the amount of idle listening is
already small, either because Ty is small or because the
node does not send very often, then the increased periodic
overhead may outweigh the decreased idle listening.

Since the traffic load may vary over time or with different
applications, we do not expect to be able to use the optimal
Tn at all times. While we could design a scheme to
dynamically optimize Ty, this would require coordination
between neighbors about the current value of 7T, which
would add overhead and complexity that we wish to avoid.
Instead, we wish to choose a default initial beacon size that
works well for a variety of scenarios. In Section V-B, we
simulate a data collection tree with moderately high traffic
and different values of Ty, and we find that a larger initial
beacon size (e.g. 100 bytes) generally provides the best
energy performance.

2) Effects of Packet Loss: Here we describe the potential
effects of packet loss on RIVER-MAC, based on the type
of packet that is lost.

Initial Beacon: If an initial beacon is lost due to weak
signal, the sender may not wake to hear the subsequent
beacon. This results in the sender waiting for the beacon
from the receiver in the next wakeup interval, as in RI-MAC.
Since the sender is using a CCA strobe, the energy waste is
much less than in RI-MAC.

Regular Beacon: If a regular beacon is lost, the sender
(assuming it detected the initial beacon) is left hanging.
However, according to the timeout previously described, the
sender will shortly return to its CCA strobe and wait for the
next beacon from its receiver.

Data Packet: If a data packet is lost due to weak signal,
the receiver assumes no senders are active and goes back to
sleep. Therefore, the sender must use another short timeout
(T7) to decide if an acknowledgement beacon is incoming. If
not, the sender returns to the CCA strobe. If a data packet is
lost due to collision, the receiver will send a backoff beacon,
as in RI-MAC.

Acknowledgement Beacon: If an acknowledgement bea-
con is lost, the effect on the sender is the same as a lost data
packet, and the same rules apply. The receiver does not know
the acknowledgement was lost, and it continues normally.
This results in the sender re-sending the same packet in the
next wakeup interval, which can be resolved with MAC-
layer duplicate detection on the receiver side.

Backoff Beacon: If the first backoff beacon is lost, the
effect on the sender is the same as a lost acknowledgement
beacon. If a later backoff beacon in the beacon train is lost,
the sender can re-adjust itself to the backoff process simply
by receiving any subsequent backoff beacon.

3) Tradeoffs: As with most any protocol, RIVER-MAC
has a variety of tradeoffs to consider. As discussed earlier in
this section, the choice of the initial beacon size allows for
a tradeoff between increased receiver overhead and reduced
energy for sending packets. More generally, RIVER-MAC
itself is a protocol that spends additional energy on periodic
overhead (the dual-beacon scheme) in exchange for better
efficiency in sending packets (the CCA-based rendezvous).
Therefore, while RIVER-MAC is designed to be efficient
in many scenarios, it is particularly applicable for IoT
applications in which nodes send packets at intervals on
the order of seconds. When nodes send packets much less
often, i.e. on the order of minutes or hours, RIVER-MAC’s
tradeoff becomes less advantageous. This can be seen in the
evaluation results presented later, such as Fig. 11.

An additional tradeoff inherent to the dual-beacon scheme
of RIVER-MAC is that, since a wakeup is more costly, using
a smaller Ty to decrease delay will be more expensive in
terms of energy. Thus, RIVER-MAC may not be appropriate
for applications that require delays of a few milliseconds
or faster—such applications should likely use a scheduled,
synchronous protocol instead. Otherwise, RIVER-MAC’s
delay (and energy) performance could be improved through
an opportunistic cross-layer approach, as in [18], [19].

V. SIMULATION STUDY
A. Implementation and Setup

We have implemented RIVER-MAC in Contiki OS [17]
version 3.0. We implemented RIVER-MAC as a drop-in
replacement for ContikiMAC, along with a radio driver
update based on code originally written for ORPL [18]
to improve software acknowledgement (softack) support.
RIVER-MAC’s software architecture is shown in Fig. 5.
We have also implemented RI-MAC in a similar manner.
Packet queuing and transmission scheduling is performed at
the CSMA (carrier sense multiple-access) layer. Collision
resolution is performed by the beaconing module. The sof-
tack_callback() function is called by the hardware interrupt
handler when any packet (beacon or data) is received. This is
used to quickly notify the CCA-based rendezvous/beaconing
modules of a response to a sent data packet/beacon, reducing
software delays and improving the code structure.

864

a sent_callback() input ()
& Test Application send_list() BT
[.
2 Rime Stack Upper Layers Sgiﬁli'f Duplicate detection
2 v
s CSMA
CCA-based .
) dezvous Beaconing
a RIVER-MAC ren
. 9 !

Softack Driver softack_callback()] input()
> ! ' v
E Wireless Radio send() send()

= Data —> Control and Info

Figure 5. Software architecture of RIVER-MAC’s Contiki implementation.

We evaluate our implementation through Cooja [20] sim-
ulations, using the Z1 platform, which is based on the
MSP430 microcontroller and the Texas Instruments CC2420
802.15.4-compliant radio [21]. Cooja is a WSN simulator
that is packaged with Contiki OS and emulates motes by
running compiled code written for Contiki. We use Cooja’s
Unit Disk Graph Radio Medium (UDGM) as our channel
model. This model creates a transmission range for each
node and simulates interference from collisions. We use
Contiki’s Rime network stack and data packets with a
payload of 28 bytes.

In our simulations, we compare RIVER-MAC to RI-MAC
and ContikiMAC. All results, except CDFs, are averaged
over at least 20 simulation trials, each composed of five
simulated minutes. Our performance metrics are duty cycle
(DC), packet delivery ratio (PDR), and delay.

Duty cycle is the percentage of radio on-time and is a
hardware-independent proxy for the energy consumption of
the radio. We use the duty cycle calculated by Cooja, starting
after the network has reached a steady state. Reported duty
cycles are averaged first over the nodes in a simulation, then
over all simulation trials. PDR is calculated as the number of
packets received at the end point divided by the number of
packets generated by sources. Simulations time out shortly
after the final packet sent by all sources is expected to be
received; in other words, all packets are given a chance to
be delivered. The reported delay is application-level end-to-
end delay. For all averaged metrics, we also plot the 0.05
to 0.95 quantile range as error bars. Due to their small size,
many of these error bars are hidden by the plot markers.

B. RIVER-MAC Parameter Selection

We first need to choose an appropriate default initial
beacon size, as described in Section IV-C1. To do this, we
simulate a 5x5 grid of nodes that form a data collection tree,
with the sink in the center. This setup is described in more
detail in the Tree Network section below. All non-sink nodes
are sources and generate data packets every 10 seconds, with

a small amount of randomness.

Fig. 6 shows results for average source node duty cycle
and PDR versus initial beacon size, with RIVER-MAC at
a variety of beaconing rates, where the beaconing rate is
defined as 1/Ty . The best duty cycle performance for this
traffic load is achieved at a beaconing rate of 2 Hz and an
initial beacon size of 100 bytes. Initial beacon size does
not affect PDR significantly, especially at beaconing rates
of 2 Hz or above.

-3 RIVER-MAC (1Hz)
—8— RIVER-MAC (2Hz)
RIVER-MAC (4Hz)
RIVER-MAC (8Hz)

-
N
o

(

=
v
)

-
N
o

-J- RIVER-MAC (1Hz)
—8— RIVER-MAC (2Hz)
RIVER-MAC (4Hz)
RIVER-MAC (8Hz)

Avg. source DC (%)
=
1)
)

~
o

o
=)

50 75 100
Size of initial beacon (bytes)

25 50 75 100

Size of initial beacon (bytes)

125

(a) Average source duty cycle. (b) Packet delivery ratio.

Figure 6. Results vs. initial beacon size.

Given these results, we choose 100 bytes as the default
initial beacon size and 2 Hz as the beaconing rate. We also
use 2 Hz as the beaconing rate for RI-MAC and the channel
check rate for ContikiMAC in the remaining evaluations.

C. Clique Networks

We next evaluate in a clique network, in order to see
performance under separate, contending traffic flows. In the
clique network, all nodes are within communication range
of each other. Each flow is composed of one sender sending
to one receiver, resulting in a total number of nodes in the
network equal to twice the number of flows. Each sender
generates one packet every second, with a small amount of
randomness. The results are shown in Figs. 7 and 8.

In Fig. 7a, which shows the average duty cycle for
senders, we immediately see the significant improvement
in duty cycle that comes from RIVER-MAC’s CCA-based
rendezvous. At one flow, the average sender’s duty cycle is
less than 20% of RI-MAC’s or ContikiMAC’s. If we assume
a platform with energy consumption dominated by the radio
hardware, this translates to up to five times longer battery
life for a sender with RIVER-MAC in this scenario.

The sender duty cycles of RI-MAC and ContikiMAC are
just above 25%. This is expected, because a 2 Hz wakeup
rate corresponds to 0.5 s between wakeups, and a sender
waits for half of that on average. Since a packet is sent
every second, this results in an average of 0.25 s of idle
listening per second. Both RI-MAC and ContikiMAC have
their radios on for this entire duration, resulting in a 25%
duty cycle, whereas RIVER-MAC’s CCA-based rendezvous
breaks up this idle listening into short, efficient CCA pulses.

The tradeoff in using RIVER-MAC can be seen in Fig. 7b,
which shows the average duty cycle for receivers. RIVER-

865

102 102

—&— RIVER-MAC

— e —— e mm o — == —— HES -k RI-MAC
B B A —ii- ContikiMAC
g 10! Q 10!
a k/*—*/* a
% g
i E ol ;
H
, 100 [ULy S—— P A—
o —&— RIVER-MAC 9 i,,-";’*—- il
< -k RI-MAC <
-l ContikiMAC

107t

1 2 3 4 1 2 3 4
Number of flows Number of flows

(a) Sender duty cycle. (b) Receiver duty cycle.

Figure 7. Duty cycle results for the clique networks, with the y-axes
plotted in log scale. Each network contains twice as many nodes as flows.

101 m =3 10) _§— RIVER-MAC i
-k RI-MAC o
0.8 __ 8] - contikiMAC ,
o .
§0.6 36 4
T /
s 3 A
<0.4 o 4 Rd
8- RIVER-MAC < e
02| =& RI-MAC 2 _.
—ll- ContikiMAC .~ - - a
[- - 2
0.0 0
1 2 3 3 1 B 3 3
Number of flows Number of flows
(a) Packet delivery ratio. (b) Delay.
Figure 8. Reliability and delay results for the clique networks.

MAC has the highest receiver duty cycle; however, in
this scenario, RIVER-MAC’s improvement for the sender
outweighs the receiver’s higher overhead. The balance of
this tradeoff depends on the traffic rate, and we explore this
balance more in the Tree Network section below.

Fig. 7a also shows that, as the number of flows increases,
ContikiMAC’s average sender duty cycle decreases. How-
ever, this is not an indicator of better performance. Instead,
this is due to dropped packets, as can be seen in Fig. 8a.
In our simulations, packets are dropped after eight retries.
Because of ContikiMAC’s high channel occupancy, with
more flows, senders are more likely to be unable to access
the channel. This results in some packets being dropped
without any radio activity from the sender, lowering the
average duty cycle.

Finally, Fig. 8b shows average packet delay versus the
number of flows. The polite rendezvous schemes of RIVER-
MAC and RI-MAC allow them to both maintain low delay,
regardless of the number of flows. But ContikiMAC expe-
riences rising delay with more traffic, as the transmission
scheduler (the CSMA layer in Contiki) increasingly backs
off to try to find a time when the channel is free. For
example, the average delay at four flows is over nine times
greater for ContikiMAC than RIVER-MAC and RI-MAC.

D. Hidden-node Networks

We next evaluate in a small network with hidden nodes.
The topology is a single-hop star, with a varying number of
senders and a single receiver in the center. All senders are
hidden from each other, potentially resulting in collisions at

the receiver. Other settings remain the same as the clique
networks. The results are shown in Figs. 9 and 10.

—8— RIVER-MAC
-k RI-MAC
—ll- ContikiMAC

10t 10t

-

Avg. sender DC (%)
Avg. receiver DC (%)

100 100 4 o= ——- -
&~ RIVER-MAC :,/-’
-k RI-MAC
-l ContikiMAC

-1 -1

107 3 107 3

2 3
Number of senders

(b) Receiver duty cycle.

2 3
Number of senders

(a) Sender duty cycle.

Figure 9. Duty cycle results for the star network, with the y-axes plotted
in log scale. All senders are hidden from each other.

Lo g———————a————2 80
\

0.8 \ 60 .,E\,
« " > / .
Z 06 \ > K ~
g0 . 3 /)

: \ 4o ; ~.o
204 \ g /& RIVER-MAC ~.

\ & RIVER-MAC 200/ F Remac
0.2 3 —& RI-MAC / - ContikiMAC
\ - ContikiMAC i .
00 . - - o

1 2 3 4 1 2 3 4
Number of senders Number of senders

(a) Packet delivery ratio. (b) Delay.
Figure 10. Reliability and delay results for the hidden-node network.

RIVER-MAC performs well in this scenario, with a
sender duty cycle (Fig. 9a) that is again much lower than
both RI-MAC’s and ContikiMAC’s. Both RIVER-MAC’s
and RI-MAC’s receiver duty cycles (Fig. 9b) increase with
the number of senders, as the contention for the receiver
results in the receiver having to resolve collisions, which
consumes energy. RI-MAC’s receiver duty cycle grows faster
than RIVER-MAC'’s, though, showing that RIVER-MAC’s
beacon train-based collision resolution is more efficient.

In contrast, ContikiMAC’s performance in this scenario
is strikingly poor. ContikiMAC’s average sender duty cycle
(Fig. 9a) grows to nearly 100% when the second sender is
introduced, and the PDR (Fig. 10a) drops just as sharply. The
explanation for this performance is simple: with two or more
hidden nodes generating a packet each second, multiple
nodes are nearly always sending. For ContikiMAC, this
means multiple nodes are always transmitting a packet train,
and these packet trains collide at the receiver. However, un-
like in RIVER-MAC and RI-MAC, the receiver has no way
to control or resolve these collisions. ContikiMAC could
achieve better performance by “brute force,” i.e., by using a
higher channel check rate. Still, this scenario highlights that
the lack of collision resolution is a fundamental problem for
sender-initiated MAC protocols, with potentially disastrous
results in the presence of hidden nodes.

ContikiMAC’s poor performance in this scenario extends
to its delay, as seen in Fig. 10b. The strange delay results for

866

ContikiMAC are a side effect of the poor PDR. With two
senders, a small number of packets are delivered, with high
delay due to multiple backoffs. With three or four senders,
ContikiMAC sometimes can only deliver the first packet
attempted, with very low delay, before the channel becomes
clogged. The end result is that some simulation runs have
a very large average delay, while others have a very small
average delay, creating the peculiar trend and the extremely
large error bars seen for ContikiMAC in Fig. 10b.

Finally, we emphasize that in these scenarios, RIVER-
MAC consistently achieves much better sender duty cy-
cles than RI-MAC. RIVER-MAC does this while achieving
competitive or better receiver duty cycles, and identical
performance in terms of PDR and delay. In short, RIVER-
MAC improves on RI-MAC significantly, with little to no
drawback at this traffic load.

E. Tree Network

Finally, we simulate a 5x5 grid of nodes that form a
multihop collection tree. The sink node is at the center of
the grid. All other nodes are sources with varying data arrival
intervals. The traffic is moderately bursty, meaning that all
sources generate packets within a few seconds of each other,
regardless of the data interval. Packets are routed on the grid
(i.e. not diagonally), though nodes on the diagonal are close
enough to provide interference. Routes are static throughout
a simulation trial and are randomly chosen at the start of
the trial in a way that minimizes the number of hops to the
sink. This means the nodes in the corners are four hops away
from the sink. The results are shown in Figs. 11 to 13.

25
;5 —&— RIVER-MAC
; 20 'i =k RI-MAC
a N, -ll- ContikiMAC
o 15 \
c \ °
3 i ~
210 N
~ ~a
? So - —~.—. -
<> S —— u
==
5 10 15 30 60
Data arrival interval (s)
Figure 11. Average source duty cycle for tree network.
10| pl====—= = i 100 —&- RIVER-MAC
=k RI-MAC
08 _ 8o -# ContikiMAC
%o.e % _________ —E § 60 N
204 P 9 40 \'\
e & RIVERMAC | < N
0.2 -k RI-MAC 20 -—— . -
i’ -#- ContikiMAC 0 '_X _ -
05 TS 30 60 5 10 15 30 60
Data arrival interval (s) Data arrival interval (s)
(a) Packet delivery ratio. (b) Delay.

Figure 12. Reliability and delay results for the tree network.

1.0 e _ ="

—T] I

0.8 - 1.

o L

w 0.6 T 1.

[a) 1 I
O -

0.4 — RIVER-MAC
0.2 - RI-MA(.I

—+ ContikiMAC

0-075 10 20 30 40
Node duty cycle (%)
Figure 13. CDF of source node duty cycle for a single run of the tree

network at a 10 s data interval.

RIVER-MAC performs consistently well in our tested
range of data arrival intervals (5 s to 60 s). Fig. 11 shows
the average duty cycle for all source nodes, which act as
both senders and receivers in the tree topology. At a data
arrival interval of 10 s, RIVER-MAC has less than one half
the average duty cycle (2x the battery life) of RI-MAC and
around one fifth the average duty cycle (5x the battery life)
of ContikiMAC.

RI-MAC does show an advantage over RIVER-MAC in
terms of PDR and delay at the 5 s data arrival interval, likely
because its single-beacon wakeup occupies the channel less
than RIVER-MAC'’s dual-beacon scheme. But RI-MAC pays
for this advantage by consuming twice as much energy with
the radio. As before, ContikiMAC shows an inability to
handle hidden nodes, delivering only half as many packets as
RIVER-MAC, even at low data rates (Fig. 12a), and showing
high delay at small data intervals (Fig. 12b).

Finally, Fig. 13 shows a CDF of duty cycles for one
simulation trial, revealing a much tighter distribution of duty
cycles for RIVER-MAC than for RI-MAC and ContikiMAC.
For example, with RIVER-MAC, all nodes in this simulation
had an average duty cycle at or below 10%. Only around
70% of nodes achieved this mark with RI-MAC, and only
around 20% with ContikiMAC. RIVER-MAC'’s tight dis-
tribution is due to its CCA-based rendezvous—the use of
CCAs instead of continuous idle listening largely reduces
the duty cycle impact of sending when compared to the other
protocols. If a node on the tree has to send more than other
nodes (i.e. a “bottleneck” node), the impact on its energy
consumption is much smaller when using RIVER-MAC.

VI. ANALYTICAL COMPARISON TO WUR

Wakeup radios (WuR) are an alternative to asyn-
chronously duty-cycled MAC protocols. They can be used
in similar applications. However, because of the large per-
transmission overhead and the added cost and complexity
of WuR hardware, they are not without drawbacks. In this
section, we analyze the energy consumption of RIVER-
MAC and present numerical results comparing it with WuRs
at various traffic rates.

867

A Cooja extension for WuR, called WaCo [16], has re-
cently been implemented. However, WaCo does not provide
a straightforward method for comparing energy consumption
of WuR schemes with that of traditional duty-cycled MACs
such as RIVER-MAC. Therefore, we instead use analytical
models for our comparisons.

A. Model of RIVER-MAC’s Energy Consumption

In this section, we present a high-level model of the
energy consumed by RIVER-MAC in a single forwarding
interval. We define a forwarding interval T as the average
time between consecutive packets sent by a node, plus the
time to send one of the packets. We assume that one packet
is sent in the forwarding interval, and that it is successfully
transmitted on its first attempt. Since current consumption
data is readily available, we specifically model the average
current consumption in a forwarding interval, i{);. To find
the average current, we divide the charge consumption into
three parts: sending the packet, receiving the packet, and
overhead from periodically beaconing.

1) Sending Charge Consumption: The sending charge
consumption Q%! is a function of the wakeup interval Ty
and composed of the following parts:

o QBY,, the charge consumed in CCA checks, which is
the time spent idle (assumed to be Ty /2, the expected
value), times the fraction of the idle time spent doing
one CCA (of length Tca) per initial beacon duration
T'n, times the idle current yy..

Tw Tt

RIV W LCCA .

Ty) = —~ . 1
cca(Tw) 5 Ty L Y]
o QRIY, the charge consumed while receiving beacons.

We assume half of an initial beacon is received with
reception current igx, plus one regular beacon of du-
ration T'5. For brevity, we also include miscellaneous
factors, such as the space between packets, in Tg.

TNt

RIV NURX .

BRX —) + T'pirx- 2
o QRIY, the charge consumed transmitting data of dura-

tion Tp, with transmit current irx, and receiving an
acknowledgement beacon of duration T'y4.

RIV
DTX —

3

The total sending charge consumption is the sum of these
three quantities:

Q¥ (Tw) = (Tw) + Qirx + QFx. @

2) Receiving Charge Consumption: The charge con-
sumed while receiving, I}iw, is the charge consumed from
receiving a data packet and from transmitting an acknowl-

edgement beacon:

Tpitx + Tatrx.

RIV
CCA

RIV

r = Tpirx + Tairx.

&)

3) Beaconing Overhead Charge Consumption: The bea-
coning overhead charge consumption Q" is a function of
Tr and Ty . The charge consumption for a single wakeup,

RIV, consists of the energy for the pre-beaconing CCA
strobe (one Tcca per Tp) of length 77 + Ts (where T;
is the inter-packet interval), the transmission of the initial
beacon and the regular beacon, and the time spent listening

for a response (77,), as follows:

RIV __ TCCA
w T
The number of wakeups in Tr is Tr /Ty, yielding a total
beaconing charge consumption as follows:
Tr
Tw'
Combining all these calculations, the average current in
a forwarding interval, sRLY., is a function of Ty, and the

YAVG»
forwarding interval T. It is calculated as follows:

RIV RIV RIV
(Tr, Tw) = Qs (Tw) + QRTF+ Q5 (Tr, Tw) '(8)

(Tr+TB)in + (In +Tg)itx + Trin. (6)

QY (Tr, Tw) = Q%Y (7)

RIV
LAVG

B. Model of WuR Energy Consumption

For a wakeup radio scheme, we model the transmitter-
initiated WuR scheme from [15]. Except when transmitting
or receiving, the WuR consumes its sleep current, which is
very small. When the node is ready to send its packet, it
must first issue a wakeup call (WuC), which can require
high current. While the node is receiving a wakeup call, it
also consumes more current than when idle. The wakeup call
typically contains a node address and is sent at a low data
rate, meaning it lasts for a relatively long duration. After the
wakeup call, the node uses its main radio to send/receive the
data packet and acknowledgement.

We again model average current consumption. The charge
consumption from sending, Q¥"R, comes from the WuC of
duration Tywyc sent with current iwrx, and the data packet
sent with the main radio, as follows:

€

The charge consumption from receiving, QW'R, comes
from the reception of the WuC with current iwgrx and the
reception of the data packet on the main radio.

W R . .
Q35" = Twuciwrx + Tpitx.

WuR

R (10)

= Twuctiwrx + Tpirx-

The overhead charge consumption comes from listening
on the WuR with sleep current iws. The amount of time
spent listening during T is T minus the durations of the
wakeup call and the data packet.

QY™ (Tr) = (Tr — Twuc — Tp)iws. an

i WuR(Tr), the average current consumption in a

Finally, ¢,y3

868

forwarding interval T, is calculated as follows:

(Tp) = 5"+ Q™ + Q5™ (Tr)
F)= Tr .

-WuR
LAVG

12)

C. Results

We parameterize our model for RIVER-MAC, as well
as similar models for RI-MAC and ContikiMAC, with the
current consumption values from the CC2420 datasheet [21]
and timing values taken from Cooja. These parameters
are shown in Table I. Additionally, for ContikiMAC, we
assume hardware acks of duration 0.3 ms. As before, we use
Tw = 500 ms in our evaluation. We parameterize our WuR
model with values reported for the platform SCM-WuR [15],
summarized in Table II.

Table I
PARAMETER VALUES FOR RIVER-MAC, RI-MAC, AND
CONTIKIMAC.

Parameter Notation | Value
Regular beacon duration | T’ 1.0 ms
Initial beacon duration TN 3.2 ms
Ack beacon duration Ta 1.0 ms
Data packet duration Tp 2.5 ms
Listen time after beacon | T, 0.5 ms
Inter-packet interval Tr 1.5 ms
CCA check duration Teea 0.38 ms
TX current ITX 17.4 mA
RX current IRX 18.8 mA
Idle current e 18.8 mA

Table II

PARAMETER VALUES FOR WUR MODEL, TAKEN FROM [15].

Parameter | Notation | Value
WuC duration Twuc 12.2 ms
Data packet duration | Tp 2.5 ms
WuR sleep current ws 3.5 nA
WuR RX current TWRX 8.0 uA
WuR TX current TWTX 152 mA
Main TX current iTx 17.4 mA
Main RX current IRX 18.8 mA

In Fig. 14, we plot the average current consumption
from our models versus the forwarding interval 7. For
verification, we can divide by the CC2420 receive current
to roughly translate the average current into equivalent duty
cycle, yielding 4.9% at Tr = 1 s. This is in good agreement
with our Cooja simulation results, i.e. Fig. 7a with one flow.

We find that RIVER-MAC actually performs better than
SCM-WuR at small forwarding intervals (< 6 s) because of
SCM-WuR'’s costly wakeup call. Based on these results, we
suggest that WuR is a more efficient solution at lower traffic
rates, while RIVER-MAC is a better choice at moderate
to high traffic rates. We also believe that RIVER-MAC’s
performance would scale better in more complex scenarios,
such as the tree topology from Section V, where interference
and hidden nodes are factors.

%‘ \ —— RIVER-MAC
S4 \ SCM-WuR
S =+ ContikiMAC
£\ — = RI-MAC
(6)
v 2 \\
o) ,
o ‘.. . W
g &.-_._ e s e v

o e

5 10 15 20

Forwarding interval Tg (s)

Figure 14. Analytical results for average current vs. forwarding interval.

Finally, we reiterate that any energy and cost savings
from WuRs must be weighed against the added cost and
complexity of the WuR hardware. In future work, we plan
to further explore this tradeoff with simulation studies, e.g.
utilizing the WaCo [16] tool.

VII. CONCLUSION

We have presented RIVER-MAC, a receiver-initiated,
asynchronously duty-cycled MAC protocol for the IoT.
RIVER-MAC uses an efficient CCA-based rendezvous, and
beacon train-based collision resolution, to achieve good en-
ergy performance in a variety of scenarios, such as moderate
to high traffic with hidden nodes. We have implemented
RIVER-MAC in Contiki OS and evaluated it with Cooja
and analytical models. Future work includes testing RIVER-
MAC in large-scale testbeds, and exploration of opportunis-
tic routing and dynamic duty-cycling in conjunction with
RIVER-MAC.

ACKNOWLEDGEMENTS

Funded in part by U.S. National Science Foundation Grant
No. 1730275.

REFERENCES

[1] A. Dunkels, “The ContikiMAC radio duty cycling protocol,”
SICS, Tech. Rep. 5128, Jan. 2012.

[2] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a

receiver-initiated asynchronous duty cycle MAC protocol for

dynamic traffic loads in wireless sensor networks,” in Proc.

ACM SenSys, 2008.

[3] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The

evolution of MAC protocols in wireless sensor networks: A

survey,” IEEE Communications Surveys Tutorials, vol. 15,

no. 1, pp. 101-120, 2013.

[4] J. Polastre, J. Hill, and D. Culler, “Versatile low power media

access for wireless sensor networks,” in Proc. ACM SenSys,

2004.

[5

—

M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a
short preamble MAC protocol for duty-cycled wireless sensor
networks,” in Proc. ACM SenSys, 2006.

869

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

E.-Y. Lin, J. M. Rabaey, and A. Wolisz, “Power-efficient
rendez-vous schemes for dense wireless sensor networks,” in
Proc. IEEE ICC. 1EEE, 2004.

X. Fafoutis, A. D. Mauro, M. D. Vithanage, and N. Drag-
oni, “Receiver-initiated medium access control protocols for
wireless sensor networks,” Computer Networks, vol. 76, pp.
55-74, 2015.

Y. Peng, Z. Li, D. Qiao, and W. Zhang, “Delay-bounded MAC
with minimal idle listening for sensor networks,” in Proc.
IEEE INFOCOM, 2011.

L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, “PW-
MAC: An energy-efficient predictive-wakeup MAC protocol
for wireless sensor networks,” in Proc. IEEE INFOCOM,
April 2011.

P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and
A. Terzis, “A-MAC: A versatile and efficient receiver-initiated
link layer for low-power wireless,” ACM Transactions on
Sensor Networks (TOSN), vol. 8, no. 4, p. 30, 2012.

W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient
MAC protocol for wireless sensor networks,” in Proc. IEEE
INFOCOM, 2002.

, “Medium access control with coordinated adaptive
sleeping for wireless sensor networks,” IEEE/ACM Transac-
tions on Networking (ToN), vol. 12, no. 3, pp. 493-506, 2004.

T. van Dam and K. Langendoen, “An adaptive energy-
efficient MAC protocol for wireless sensor networks,” in Proc.
ACM SenSys, 2003.

S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne,
“Orchestra: Robust mesh networks through autonomously
scheduled TSCH,” in Proc. ACM SenSys, 2015.

J. Oller, 1. Demirkol, J. Casademont, J. Paradells, G. U.
Gamm, and L. Reindl, “Has time come to switch from duty-
cycled MAC protocols to wake-up radio for wireless sensor
networks?” IEEE/ACM Transactions on Networking (ToN),
vol. 24, no. 2, pp. 674-687, 2016.

R. Piyare, T. Istomin, and A. L. Murphy, “WaCo: A wake-up
radio Cooja extension for simulating ultra low power radios,”
in Proc. ACM EWSN, 2017.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—a
lightweight and flexible operating system for tiny networked
sensors,” in Proc. IEEE LCN, 2004.

S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree
bloom: scalable opportunistic routing with ORPL,” in Proc.
ACM SenSys, 2013.

M. L. Wymore, Y. Peng, X. Zhang, and D. Qiao, “EDAD:
energy-centric data collection with anycast in duty-cycled
wireless sensor networks,” in Proc. IEEE WCNC, 2015.

F. Osterlind, “A sensor network simulator for the Contiki OS.”
SICS, Tech. Rep. T2006:05, Feb. 2006.

“2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver,”
Texas Instruments, Tech. Rep. SWRS041c, 2017. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc2420.pdf

