
RIVER-MAC: A Receiver-Initiated Asynchronously Duty-Cycled MAC Protocol
for the Internet of Things

Mathew L. Wymore and Daji Qiao

Department of Electrical and Computer Engineering
Iowa State University, Ames, IA, USA

{mlwymore, daji}@iastate.edu

Abstract—This paper presents RIVER-MAC, a very efficient
receiver-initiated asynchronously-duty-cycled medium access
control (MAC) protocol for IoT devices. The key innovations
of RIVER-MAC include (1) a CCA-based rendezvous to reduce
idle listening for the sender node by an order of magnitude, and
(2) a beacon train-based collision resolution scheme to reduce
contention between receiver nodes, a previously-overlooked
issue in receiver-initiated MAC protocol design. We have imple-
mented RIVER-MAC in Contiki OS, and used extensive Cooja
simulations to demonstrate its high performance compared
to RI-MAC (a classic receiver-initiated protocol), as well as
ContikiMAC (a state-of-the-art sender-initiated duty-cycled
MAC protocol) in our tested scenarios. We also have used
analytic studies to show that RIVER-MAC yields a comparable
performance with a wakeup radio-based scheme, an emerging
alternative to duty-cycled MAC protocols for IoT devices.

Keywords-Internet of Things; Wireless Sensor Networks;
MAC Protocols; Low-power Communications

I. INTRODUCTION

The Internet of Things (IoT) has widely been envisioned

as a transformative computing paradigm, seeking to connect

everything from everyday objects to industrial machines.

One possible use of the IoT is to create large networks of tiny

wireless sensors and actuators for advanced, high-fidelity

monitoring, feedback, and control of natural and human-

made environments. However, this application suffers from

the classic drawback of wireless sensor networks (WSNs):

computing devices require energy to operate.

Such devices are typically powered by batteries or su-

percapacitors, which may (or may not) be recharged, slowly

and intermittently, by energy-harvesting systems. In order to

operate for extended lengths of time—ideally, years—these

devices must minimize their energy consumption. Because

wireless radios consume a significant amount of power on

these embedded platforms, one of the ways this minimiza-

tion is achieved is through low-energy networking, such as

duty-cycled medium access control (MAC) protocols.

Duty-cycled MAC protocols have long been a subject

of research in WSN and IoT applications. However, we

argue that state-of-the-art duty-cycled MAC protocols do not

satisfactorily meet the demands of the IoT. In particular, IoT

MAC protocols should have the following characteristics.

• High performing: IoT MAC protocols should achieve

low delay and high reliability while minimizing energy

consumption, even under moderately-high traffic loads.

• Resilient to interference: IoT MAC protocols should be

robust in dynamic and noisy environments, including

scenarios with hidden nodes (senders that are not within

range of each other but interfere at a receiver).

• Polite: IoT MAC protocols should have a small channel

footprint in order to cause as little external interference

as possible. They should occupy as few channels as

possible, as little as possible.

• Device-independent: IoT MAC protocols should be

easily ported to new devices, and devices should be

easily interoperable using these protocols.

With these characteristics in mind, we have examined

ContikiMAC [1], a state-of-the-art sender initiated asyn-

chronously duty-cycled MAC protocol, and RI-MAC [2],

a classic receiver-initiated protocol. Inspired by these pro-

tocols’ successes, and learning from their shortcomings, we

here propose RIVER-MAC, an asynchronously-duty-cycled

MAC protocol with a Receiver-Initiated, (Very) Efficient

Rendezvous. RIVER-MAC’s rendezvous is clear channel

assessment-based (CCA-based) and can reduce idle listening

for senders by an order of magnitude. Additionally, RIVER-

MAC uses a beacon train-based collision resolution scheme

to reduce contention between receiver nodes, a scenario that

has generally been overlooked in receiver-initiated protocol

design. With these features, we believe RIVER-MAC is

better able to meet the demands of the IoT.

II. RELATED WORK

Energy efficiency through duty-cycling has been a popular

research topic for WSNs for well over a decade, as summa-

rized in surveys such as [3]. At the link layer, protocols

such as B-MAC [4], X-MAC [5], and ContikiMAC [1]

have achieved a progressively more efficient asynchronous
rendezvous between sender and receiver, without the need

for synchronization or explicit scheduling between nodes,

using a technique called low-power listening (LPL). In

LPL, nodes periodically wake and listen to or sample the

channel for a short interval. A sender continually transmits

a jamming signal or a packet train until its receiver responds

860

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00126

or acknowledges the packet. We discuss the shortcomings of

these sender-initiated protocols in Section III.

Receiver-initiated protocols [2], [6]–[10] use low-power
probing (LPP) to achieve similar results. In LPP, nodes

periodically broadcast a probe packet, or beacon, to advertise

their availability as a receiver. Senders simply listen for

a beacon from their intended receiver. Example protocols

include RI-MAC [2], a classic receiver-initiated protocol,

and A-MAC [10], which uses hardware acknowledgements

of broadcast packets, and also multiple channels, to in-

crease efficiency. Receiver-initiated protocols in general suf-

fer from excessive idle listening, as we discuss in Section III.

Some work, such as [8], has explored the use of pseudo-

synchronous mechanisms to reduce this idle listening; in

contrast, we propose a purely asynchronous mechanism.

Synchronously duty-cycled MAC protocols, in which

nodes are synchronized so that transmissions can be sched-

uled, have also been studied. Early synchronous protocols

include S-MAC [11], [12] and T-MAC [13]. More recently,

the use of IEEE 802.15.4e’s Time Slotted Channel Hopping

(TSCH) protocol has become more practical for WSNs and

the IoT through autonomous schedulers such as Orches-

tra [14]. We acknowledge these developments as promising,

but focus on flexible, single-channel protocols that forego the

overhead and complexity of synchronization and scheduling.

An emerging alternative for traditionally duty-cycled

MAC protocols is wakeup radios (WuR) [15], [16]. A

WuR is a secondary, ultra-low-power radio that continually

listens for a wakeup call from a wakeup transmitter. When

the wakeup call is received, the main radio is awakened

to transmit data. WuRs allow for on-demand transmission

without a rendezvous, and they excel in low-traffic scenarios.

However, they require additional hardware. In Section VI,

we analytically compare RIVER-MAC with a WuR platform

to better understand which approach is more appropriate in

different scenarios.

III. MOTIVATION AND OBSERVATIONS

Our work is motivated in two parts. First, we identify

shortcomings of sender-initiated protocols, such as Contiki-

MAC, that motivate us to seek receiver-initiated solutions.

Second, we observe the shortcomings of receiver-initiated

protocols, such as RI-MAC, that motivate us to propose a

new protocol, RIVER-MAC.

A. Shortcomings of Sender-Initiated Protocols

The ContikiMAC protocol [1] is a state-of-the-art sender-

initiated protocol and, due to its inclusion in Contiki OS

[17], is a de facto standard for asynchronously duty-cycled

MAC protocols. However, as in other sender-initiated pro-

tocols, ContikiMAC’s rendezvous mechanism requires the

sender to occupy the channel with a repeated packet train.

This makes ContikiMAC impolite, because no other nodes

can transmit while the sender occupies the channel. Con-

tikiMAC does have a phase optimization mechanism that

can mitigate this issue, but this is a general and pseudo-

synchronous approach that can also be applied to receiver-

initiated protocols, e.g. [8], [9].

The channel occupancy of sender-initiated protocols

causes performance of these protocols to suffer, particularly

in relatively high-traffic scenarios. If one sender occupies

the channel while waiting for its receiver, all other senders

within transmission range must wait until the sender has

finished before they can send. To make matters worse, if

two senders are hidden from each other, they may constantly

interfere with one another without realizing it. In short,

sender-initiated protocols are not suitable for high-density

IoT applications because they are impolite and they are not

resilient to interference, especially hidden nodes.

B. Shortcomings of Receiver-Initiated Protocols

In receiver-initiated protocols, senders do not occupy the

channel while waiting for a receiver, but instead politely
listen for the receiver to initiate the data transaction. This

alleviates the main shortcoming of sender-initiated protocols

by reducing channel occupancy and allowing the receiver

to control collision resolution, improving performance in

hidden-node scenarios. In this section, we first describe

RI-MAC [2], a classic receiver-initiated protocol. We then

explore its shortcomings, which motivate our design for an

improved receiver-initiated protocol.

1) Description of RI-MAC: RI-MAC [2] is a receiver-

initiated, asynchronously duty-cycled MAC protocol. In RI-

MAC (Fig. 1), nodes sleep (turn their radios off) when not

engaged in communication. Periodically, nodes wake (turn

their radios on) and advertise their presence as receivers by

broadcasting a beacon packet and listening for a response. If

no response arrives, the node goes back to sleep. Wakeups

occur on average every TW (the wakeup interval), with some

amount of randomness to distribute the beacons in time.

BB

BSender

Receiver

DATA

A
TW

Packet arrival Idle listening

Figure 1. Overview of RI-MAC, with a timeline for a sender and a receiver.
Both nodes broadcast beacon packets (B) at an interval TW . Data packets
(DATA) are acknowledged with acknowledgement beacons (A). Shaded
areas indicate radio on-time, and hatched boxes indicate received packets.

As shown in Fig. 1, when a node has a packet to send, it

wakes and idly listens for its receiver to send a beacon. When

this occurs, the sender unicasts the data packet in response to

the beacon. The receiver responds with an acknowledgement

beacon that also advertises the receiver’s availability to

receive additional packets. In case of a collision at the

861

receiver, this beacon may also include a backoff window

value to prevent competing senders from colliding again.

2) Idle Listening: Our work is motivated by two practical

problems with RI-MAC. First, in RI-MAC, senders must idly
listen for up to TW or longer in order to receive a beacon
from the intended receiver. This idle listening (indicated in

Fig. 1 as the shaded gray area between packet arrival and the

beacon from the receiver) dominates the energy consumption

of the wireless radio. For example, TW may be on the

order of hundreds or thousands of milliseconds (ms), while

a data transaction may take less than 10 ms. The energy

consumption from this much idle listening makes RI-MAC’s

energy performance unsuitable for the demands of the IoT,

particularly in moderate-to-high traffic scenarios.

3) Contention Between Receivers: The second problem

we identify is that in RI-MAC, excess collisions can occur
when there is contention between receivers. While RI-MAC

has a backoff process to handle collisions between senders,

it does not account for contention between receivers. Partic-

ularly, while senders are backing off for collision resolution,

additional receivers may attempt to use the channel. This can

cause more collisions that cannot be resolved by the normal

process. As an example, see the topology and timeline in

Fig. 2. In this figure, receiver R1 must resolve a collision

between senders S1 and S2. While waiting for backoffs

to expire, the channel is empty. This allows receiver R2

to beacon, effectively stealing the channel from R1. When

S3 responds to R2’s beacon, it can cause collisions at R1,

because S3 is hidden from S1 and S2. Even if nodes are

not hidden, collisions could still occur if S1 or S2 times

out and transmits data at the same time as R2’s beacon

transmission. This scenario is often overlooked. To the

best of our knowledge, RIVER-MAC is the first receiver-

initiated protocol to address contention between receivers

(as described in Section IV), making it more suitable for

high-density IoT applications.

S1 S2

R1

R2 S3
(a) Topology.

B

S1

S2

DATA

B

B

R1

R2

DATA

A

S3 DATA

DATA

(b) Timeline.

Figure 2. Example of excess collisions from contending receivers. In (a),
arrows indicate communication flows, while a dashed line indicates nodes
are within communication range of each other. In (b), darkly shaded boxes
indicate collisions. S1 and S2 send a packet that collides at R1. While S1
and S2 back off, R2 beacons, effectively stealing the channel from R1 and
resulting in another collision at R1, between S3 (responding to R2) and S2
(which has finished backing off).

IV. RIVER-MAC DESIGN

In this section we introduce the design of RIVER-MAC,

our receiver-initiated asynchronously duty-cycled MAC pro-

tocol motivated by the shortcomings discussed in the previ-

ous section. Our design is based on RI-MAC as described

in Section III-B1. Specifically, we propose two major mod-

ifications to RI-MAC: a CCA-based rendezvous to reduce

idle listening, and a beacon train-based collision resolution
scheme to reduce contention between receivers.

A. CCA-based Rendezvous

Our first major improvement is a CCA-based rendezvous.

As shown in Fig. 3, instead of idly listening for a beacon

from its intended receiver, a sender strobes CCAs until it

detects activity. CCA here refers to a short physical-layer

check used to detect energy on the channel; any similar, short

physical-layer channel check could be used. When activity

is detected, the sender puts its radio in receive mode in

order to receive the next packet. This approach is inspired by

ContikiMAC’s CCA-based receive check. We have adapted

this mechanism into the CCA strobe, and then applied it to

the sender side in order to reduce idle listening.

S1

R1 N B A

DATA

TN

TSTROBE

Figure 3. The CCA-based rendezvous of RIVER-MAC. Periodic wakeups
now begin with an initial beacon (N).

Indeed, as the sender’s radio remains off between CCAs,

this approach can reduce idle listening by an order of

magnitude. The tradeoff is that the receiver must send two

beacons: one for the sender to sense with a CCA (the initial
beacon, marked “N”), and a second for the sender to actually

receive (the regular beacon, marked “B”). Thus, the CCA-

based rendezvous decreases the sender’s load and increases

the receiver’s load.

In order to ensure that the sender’s CCAs can detect the

first beacon packet, the period of the CCA strobe (TSTROBE)

must be no greater than the transmit time of the initial

beacon packet (TN). We note that TN is a controllable

parameter, to some extent, because the transmit time of the

initial beacon can be increased by padding the packet with

dummy data. In this way, TN serves as a parameter that

controls the tradeoff between sender energy reduction and

receiver overhead during the CCA-based rendezvous. The

choice of TN is discussed in more detail in Section IV-C1.

Finally, the sender cannot be sure that energy detected by

its CCA is from an initial beacon, much less one from its

intended receiver. Therefore, after the channel has cleared, if

the sender does not hear a regular beacon from its intended

862

receiver within the inter-packet interval (TI) plus processing

time, the sender times out and returns to its CCA strobe.

B. Beacon Train-based Collision Resolution

Our second major improvement is the use of beacon
train-based collision resolution. This improvement addresses

the problem with contention between receivers discussed in

Section III. Our goal is for an active receiver to reserve

the channel resource so that additional receivers cannot use

it. As shown in Fig. 4, this reservation is accomplished by

having the active receiver transmit a train of regular beacons,

instead of remaining silent, during the backoff portion of the

sender collision resolution process. If a contending receiver

wakes to beacon during this time, it will detect one of the

beacon packets in the train from the active receiver and

reschedule its own beacon transmission.

B

S1

S2

BR1

R2

S3

DATA

B B A

DATA

AN

DATA

DATA

Figure 4. Illustration of the beacon train-based collision resolution. After
R1 detects a collision (between S1 and S2), it repeatedly transmits beacons
until the senders respond. This prevents R2 from accessing the channel
while S1 and S2 are backing off.

The use of a beacon train also affects how the backoff

process works: instead of backing off for a random amount

of time, a sender backs off for a random number of beacons

in the train. The beacon train is composed of k beacons

(initially set to a minimum kmin), and the receiver populates

a field in each beacon with the number of beacons remaining

in the train. When the sender receives the first backoff

beacon, it chooses a random beacon in the range [1 : k].
When the sender receives that beacon, it responds with

its data packet. If another collision happens, the receiver

increases k (e.g. by doubling it), up to a maximum kmax. The

sender then randomly chooses another beacon to respond to.

If the sender misses its chosen beacon, such as due to packet

loss, it responds to the next beacon it hears.

In order to respect the reservation of the channel via the

beacon train, we require a node to detect a clear channel

for at least TI + TB , plus the CCA and processing time,

before it can send an initial beacon. Waiting for TI ensures

that the node will detect a beacon train from a receiver

within communication range. Waiting for an additional TB

(the transmit time of a regular beacon) also prevents the

node from interrupting a data exchange between a hidden

receiver and a sender within communication range. The clear

channel detection can be efficiently accomplished using a

CCA strobe, with at least one CCA occurring every TB .

C. Practical Considerations
1) Choice of Initial Beacon Size: The size of the initial

beacon packet (and the data rate of the radio) determines

the transmit time TN . As discussed above, this parameter

constrains TSTROBE and effectively controls the tradeoff

between the energy saved by the sender via reduced idle

listening, and the additional energy overhead of the receiver

due to having to transmit the initial beacon.
The choice of the initial beacon packet size is constrained

by the hardware standards. For example, IEEE 802.15.4

specifies a maximum frame size of 127 bytes. At 250 kbps,

this yields a maximum TN of around 4 ms. The minimum

TN depends on the size of the packet header.
The optimal TN (i.e. the value that minimizes energy

consumption) depends on the traffic load of the node, and

on TW . A larger TN leads to less energy spent idle listening

when sending, but more energy spent on periodically trans-

mitting the initial beacon. If the amount of idle listening is

already small, either because TW is small or because the

node does not send very often, then the increased periodic

overhead may outweigh the decreased idle listening.
Since the traffic load may vary over time or with different

applications, we do not expect to be able to use the optimal

TN at all times. While we could design a scheme to

dynamically optimize TN , this would require coordination

between neighbors about the current value of TN , which

would add overhead and complexity that we wish to avoid.

Instead, we wish to choose a default initial beacon size that

works well for a variety of scenarios. In Section V-B, we

simulate a data collection tree with moderately high traffic

and different values of TW , and we find that a larger initial

beacon size (e.g. 100 bytes) generally provides the best

energy performance.
2) Effects of Packet Loss: Here we describe the potential

effects of packet loss on RIVER-MAC, based on the type

of packet that is lost.
Initial Beacon: If an initial beacon is lost due to weak

signal, the sender may not wake to hear the subsequent

beacon. This results in the sender waiting for the beacon

from the receiver in the next wakeup interval, as in RI-MAC.

Since the sender is using a CCA strobe, the energy waste is

much less than in RI-MAC.
Regular Beacon: If a regular beacon is lost, the sender

(assuming it detected the initial beacon) is left hanging.

However, according to the timeout previously described, the

sender will shortly return to its CCA strobe and wait for the

next beacon from its receiver.
Data Packet: If a data packet is lost due to weak signal,

the receiver assumes no senders are active and goes back to

sleep. Therefore, the sender must use another short timeout

(TI) to decide if an acknowledgement beacon is incoming. If

not, the sender returns to the CCA strobe. If a data packet is

lost due to collision, the receiver will send a backoff beacon,

as in RI-MAC.

863

Acknowledgement Beacon: If an acknowledgement bea-

con is lost, the effect on the sender is the same as a lost data

packet, and the same rules apply. The receiver does not know

the acknowledgement was lost, and it continues normally.

This results in the sender re-sending the same packet in the

next wakeup interval, which can be resolved with MAC-

layer duplicate detection on the receiver side.

Backoff Beacon: If the first backoff beacon is lost, the

effect on the sender is the same as a lost acknowledgement

beacon. If a later backoff beacon in the beacon train is lost,

the sender can re-adjust itself to the backoff process simply

by receiving any subsequent backoff beacon.

3) Tradeoffs: As with most any protocol, RIVER-MAC

has a variety of tradeoffs to consider. As discussed earlier in

this section, the choice of the initial beacon size allows for

a tradeoff between increased receiver overhead and reduced

energy for sending packets. More generally, RIVER-MAC

itself is a protocol that spends additional energy on periodic

overhead (the dual-beacon scheme) in exchange for better

efficiency in sending packets (the CCA-based rendezvous).

Therefore, while RIVER-MAC is designed to be efficient

in many scenarios, it is particularly applicable for IoT

applications in which nodes send packets at intervals on

the order of seconds. When nodes send packets much less

often, i.e. on the order of minutes or hours, RIVER-MAC’s

tradeoff becomes less advantageous. This can be seen in the

evaluation results presented later, such as Fig. 11.

An additional tradeoff inherent to the dual-beacon scheme

of RIVER-MAC is that, since a wakeup is more costly, using

a smaller TW to decrease delay will be more expensive in

terms of energy. Thus, RIVER-MAC may not be appropriate

for applications that require delays of a few milliseconds

or faster—such applications should likely use a scheduled,

synchronous protocol instead. Otherwise, RIVER-MAC’s

delay (and energy) performance could be improved through

an opportunistic cross-layer approach, as in [18], [19].

V. SIMULATION STUDY

A. Implementation and Setup

We have implemented RIVER-MAC in Contiki OS [17]

version 3.0. We implemented RIVER-MAC as a drop-in

replacement for ContikiMAC, along with a radio driver

update based on code originally written for ORPL [18]

to improve software acknowledgement (softack) support.

RIVER-MAC’s software architecture is shown in Fig. 5.

We have also implemented RI-MAC in a similar manner.

Packet queuing and transmission scheduling is performed at

the CSMA (carrier sense multiple-access) layer. Collision

resolution is performed by the beaconing module. The sof-
tack callback() function is called by the hardware interrupt

handler when any packet (beacon or data) is received. This is

used to quickly notify the CCA-based rendezvous/beaconing

modules of a response to a sent data packet/beacon, reducing

software delays and improving the code structure.

RIVER-MACRD
C

CSMA

M
A
C

Rime Stack Upper Layers

N
ET

Test ApplicationA
PP

Wireless RadioPH
Y

802.15.4
Framer

send_list()

CCA-based
rendezvous

Duplicate detection

send()

input()

input()

Data Control and Info

sent_callback()

softack_callback()

Beaconing

Softack Driver

send()

Figure 5. Software architecture of RIVER-MAC’s Contiki implementation.

We evaluate our implementation through Cooja [20] sim-

ulations, using the Z1 platform, which is based on the

MSP430 microcontroller and the Texas Instruments CC2420

802.15.4-compliant radio [21]. Cooja is a WSN simulator

that is packaged with Contiki OS and emulates motes by

running compiled code written for Contiki. We use Cooja’s

Unit Disk Graph Radio Medium (UDGM) as our channel

model. This model creates a transmission range for each

node and simulates interference from collisions. We use

Contiki’s Rime network stack and data packets with a

payload of 28 bytes.

In our simulations, we compare RIVER-MAC to RI-MAC

and ContikiMAC. All results, except CDFs, are averaged

over at least 20 simulation trials, each composed of five

simulated minutes. Our performance metrics are duty cycle

(DC), packet delivery ratio (PDR), and delay.

Duty cycle is the percentage of radio on-time and is a

hardware-independent proxy for the energy consumption of

the radio. We use the duty cycle calculated by Cooja, starting

after the network has reached a steady state. Reported duty

cycles are averaged first over the nodes in a simulation, then

over all simulation trials. PDR is calculated as the number of

packets received at the end point divided by the number of

packets generated by sources. Simulations time out shortly

after the final packet sent by all sources is expected to be

received; in other words, all packets are given a chance to

be delivered. The reported delay is application-level end-to-

end delay. For all averaged metrics, we also plot the 0.05

to 0.95 quantile range as error bars. Due to their small size,

many of these error bars are hidden by the plot markers.

B. RIVER-MAC Parameter Selection

We first need to choose an appropriate default initial

beacon size, as described in Section IV-C1. To do this, we

simulate a 5x5 grid of nodes that form a data collection tree,

with the sink in the center. This setup is described in more

detail in the Tree Network section below. All non-sink nodes

are sources and generate data packets every 10 seconds, with

864

a small amount of randomness.

Fig. 6 shows results for average source node duty cycle

and PDR versus initial beacon size, with RIVER-MAC at

a variety of beaconing rates, where the beaconing rate is

defined as 1/TW . The best duty cycle performance for this

traffic load is achieved at a beaconing rate of 2 Hz and an

initial beacon size of 100 bytes. Initial beacon size does

not affect PDR significantly, especially at beaconing rates

of 2 Hz or above.

(a) Average source duty cycle. (b) Packet delivery ratio.

Figure 6. Results vs. initial beacon size.

Given these results, we choose 100 bytes as the default

initial beacon size and 2 Hz as the beaconing rate. We also

use 2 Hz as the beaconing rate for RI-MAC and the channel

check rate for ContikiMAC in the remaining evaluations.

C. Clique Networks

We next evaluate in a clique network, in order to see

performance under separate, contending traffic flows. In the

clique network, all nodes are within communication range

of each other. Each flow is composed of one sender sending

to one receiver, resulting in a total number of nodes in the

network equal to twice the number of flows. Each sender

generates one packet every second, with a small amount of

randomness. The results are shown in Figs. 7 and 8.

In Fig. 7a, which shows the average duty cycle for

senders, we immediately see the significant improvement

in duty cycle that comes from RIVER-MAC’s CCA-based

rendezvous. At one flow, the average sender’s duty cycle is

less than 20% of RI-MAC’s or ContikiMAC’s. If we assume

a platform with energy consumption dominated by the radio

hardware, this translates to up to five times longer battery

life for a sender with RIVER-MAC in this scenario.

The sender duty cycles of RI-MAC and ContikiMAC are

just above 25%. This is expected, because a 2 Hz wakeup

rate corresponds to 0.5 s between wakeups, and a sender

waits for half of that on average. Since a packet is sent

every second, this results in an average of 0.25 s of idle

listening per second. Both RI-MAC and ContikiMAC have

their radios on for this entire duration, resulting in a 25%

duty cycle, whereas RIVER-MAC’s CCA-based rendezvous

breaks up this idle listening into short, efficient CCA pulses.

The tradeoff in using RIVER-MAC can be seen in Fig. 7b,

which shows the average duty cycle for receivers. RIVER-

(a) Sender duty cycle. (b) Receiver duty cycle.

Figure 7. Duty cycle results for the clique networks, with the y-axes
plotted in log scale. Each network contains twice as many nodes as flows.

(a) Packet delivery ratio. (b) Delay.

Figure 8. Reliability and delay results for the clique networks.

MAC has the highest receiver duty cycle; however, in

this scenario, RIVER-MAC’s improvement for the sender

outweighs the receiver’s higher overhead. The balance of

this tradeoff depends on the traffic rate, and we explore this

balance more in the Tree Network section below.

Fig. 7a also shows that, as the number of flows increases,

ContikiMAC’s average sender duty cycle decreases. How-

ever, this is not an indicator of better performance. Instead,

this is due to dropped packets, as can be seen in Fig. 8a.

In our simulations, packets are dropped after eight retries.

Because of ContikiMAC’s high channel occupancy, with

more flows, senders are more likely to be unable to access

the channel. This results in some packets being dropped

without any radio activity from the sender, lowering the

average duty cycle.

Finally, Fig. 8b shows average packet delay versus the

number of flows. The polite rendezvous schemes of RIVER-

MAC and RI-MAC allow them to both maintain low delay,

regardless of the number of flows. But ContikiMAC expe-

riences rising delay with more traffic, as the transmission

scheduler (the CSMA layer in Contiki) increasingly backs

off to try to find a time when the channel is free. For

example, the average delay at four flows is over nine times

greater for ContikiMAC than RIVER-MAC and RI-MAC.

D. Hidden-node Networks

We next evaluate in a small network with hidden nodes.

The topology is a single-hop star, with a varying number of

senders and a single receiver in the center. All senders are

hidden from each other, potentially resulting in collisions at

865

the receiver. Other settings remain the same as the clique

networks. The results are shown in Figs. 9 and 10.

(a) Sender duty cycle. (b) Receiver duty cycle.

Figure 9. Duty cycle results for the star network, with the y-axes plotted
in log scale. All senders are hidden from each other.

(a) Packet delivery ratio. (b) Delay.

Figure 10. Reliability and delay results for the hidden-node network.

RIVER-MAC performs well in this scenario, with a

sender duty cycle (Fig. 9a) that is again much lower than

both RI-MAC’s and ContikiMAC’s. Both RIVER-MAC’s

and RI-MAC’s receiver duty cycles (Fig. 9b) increase with

the number of senders, as the contention for the receiver

results in the receiver having to resolve collisions, which

consumes energy. RI-MAC’s receiver duty cycle grows faster

than RIVER-MAC’s, though, showing that RIVER-MAC’s

beacon train-based collision resolution is more efficient.

In contrast, ContikiMAC’s performance in this scenario

is strikingly poor. ContikiMAC’s average sender duty cycle

(Fig. 9a) grows to nearly 100% when the second sender is

introduced, and the PDR (Fig. 10a) drops just as sharply. The

explanation for this performance is simple: with two or more

hidden nodes generating a packet each second, multiple

nodes are nearly always sending. For ContikiMAC, this

means multiple nodes are always transmitting a packet train,

and these packet trains collide at the receiver. However, un-

like in RIVER-MAC and RI-MAC, the receiver has no way

to control or resolve these collisions. ContikiMAC could

achieve better performance by “brute force,” i.e., by using a

higher channel check rate. Still, this scenario highlights that

the lack of collision resolution is a fundamental problem for

sender-initiated MAC protocols, with potentially disastrous

results in the presence of hidden nodes.

ContikiMAC’s poor performance in this scenario extends

to its delay, as seen in Fig. 10b. The strange delay results for

ContikiMAC are a side effect of the poor PDR. With two

senders, a small number of packets are delivered, with high

delay due to multiple backoffs. With three or four senders,

ContikiMAC sometimes can only deliver the first packet

attempted, with very low delay, before the channel becomes

clogged. The end result is that some simulation runs have

a very large average delay, while others have a very small

average delay, creating the peculiar trend and the extremely

large error bars seen for ContikiMAC in Fig. 10b.

Finally, we emphasize that in these scenarios, RIVER-

MAC consistently achieves much better sender duty cy-

cles than RI-MAC. RIVER-MAC does this while achieving

competitive or better receiver duty cycles, and identical

performance in terms of PDR and delay. In short, RIVER-

MAC improves on RI-MAC significantly, with little to no

drawback at this traffic load.

E. Tree Network

Finally, we simulate a 5×5 grid of nodes that form a

multihop collection tree. The sink node is at the center of

the grid. All other nodes are sources with varying data arrival

intervals. The traffic is moderately bursty, meaning that all

sources generate packets within a few seconds of each other,

regardless of the data interval. Packets are routed on the grid

(i.e. not diagonally), though nodes on the diagonal are close

enough to provide interference. Routes are static throughout

a simulation trial and are randomly chosen at the start of

the trial in a way that minimizes the number of hops to the

sink. This means the nodes in the corners are four hops away

from the sink. The results are shown in Figs. 11 to 13.

Figure 11. Average source duty cycle for tree network.

(a) Packet delivery ratio. (b) Delay.

Figure 12. Reliability and delay results for the tree network.

866

Figure 13. CDF of source node duty cycle for a single run of the tree
network at a 10 s data interval.

RIVER-MAC performs consistently well in our tested

range of data arrival intervals (5 s to 60 s). Fig. 11 shows

the average duty cycle for all source nodes, which act as

both senders and receivers in the tree topology. At a data

arrival interval of 10 s, RIVER-MAC has less than one half

the average duty cycle (2× the battery life) of RI-MAC and

around one fifth the average duty cycle (5× the battery life)

of ContikiMAC.

RI-MAC does show an advantage over RIVER-MAC in

terms of PDR and delay at the 5 s data arrival interval, likely

because its single-beacon wakeup occupies the channel less

than RIVER-MAC’s dual-beacon scheme. But RI-MAC pays

for this advantage by consuming twice as much energy with

the radio. As before, ContikiMAC shows an inability to

handle hidden nodes, delivering only half as many packets as

RIVER-MAC, even at low data rates (Fig. 12a), and showing

high delay at small data intervals (Fig. 12b).

Finally, Fig. 13 shows a CDF of duty cycles for one

simulation trial, revealing a much tighter distribution of duty

cycles for RIVER-MAC than for RI-MAC and ContikiMAC.

For example, with RIVER-MAC, all nodes in this simulation

had an average duty cycle at or below 10%. Only around

70% of nodes achieved this mark with RI-MAC, and only

around 20% with ContikiMAC. RIVER-MAC’s tight dis-

tribution is due to its CCA-based rendezvous—the use of

CCAs instead of continuous idle listening largely reduces

the duty cycle impact of sending when compared to the other

protocols. If a node on the tree has to send more than other

nodes (i.e. a “bottleneck” node), the impact on its energy

consumption is much smaller when using RIVER-MAC.

VI. ANALYTICAL COMPARISON TO WUR

Wakeup radios (WuR) are an alternative to asyn-

chronously duty-cycled MAC protocols. They can be used

in similar applications. However, because of the large per-

transmission overhead and the added cost and complexity

of WuR hardware, they are not without drawbacks. In this

section, we analyze the energy consumption of RIVER-

MAC and present numerical results comparing it with WuRs

at various traffic rates.

A Cooja extension for WuR, called WaCo [16], has re-

cently been implemented. However, WaCo does not provide

a straightforward method for comparing energy consumption

of WuR schemes with that of traditional duty-cycled MACs

such as RIVER-MAC. Therefore, we instead use analytical

models for our comparisons.

A. Model of RIVER-MAC’s Energy Consumption

In this section, we present a high-level model of the

energy consumed by RIVER-MAC in a single forwarding
interval. We define a forwarding interval TF as the average

time between consecutive packets sent by a node, plus the

time to send one of the packets. We assume that one packet

is sent in the forwarding interval, and that it is successfully

transmitted on its first attempt. Since current consumption

data is readily available, we specifically model the average

current consumption in a forwarding interval, iRIV
AVG. To find

the average current, we divide the charge consumption into

three parts: sending the packet, receiving the packet, and

overhead from periodically beaconing.

1) Sending Charge Consumption: The sending charge

consumption QRIV
S is a function of the wakeup interval TW

and composed of the following parts:

• QRIV
CCA, the charge consumed in CCA checks, which is

the time spent idle (assumed to be TW /2, the expected

value), times the fraction of the idle time spent doing

one CCA (of length TCCA) per initial beacon duration

TN , times the idle current iIL.

QRIV
CCA(TW) =

TW

2

TCCA

TN
iIL. (1)

• QRIV
BRX, the charge consumed while receiving beacons.

We assume half of an initial beacon is received with

reception current iRX, plus one regular beacon of du-

ration TB . For brevity, we also include miscellaneous

factors, such as the space between packets, in TB .

QRIV
BRX =

TN iRX

2
+ TBiRX. (2)

• QRIV
DTX, the charge consumed transmitting data of dura-

tion TD, with transmit current iTX, and receiving an

acknowledgement beacon of duration TA.

QRIV
DTX = TDiTX + TAiRX. (3)

The total sending charge consumption is the sum of these

three quantities:

QRIV
S (TW) = QRIV

CCA(TW) +QRIV
BRX +QRIV

DTX. (4)

2) Receiving Charge Consumption: The charge con-

sumed while receiving, QRIV
R , is the charge consumed from

receiving a data packet and from transmitting an acknowl-

edgement beacon:

QRIV
R = TDiRX + TAiTX. (5)

867

3) Beaconing Overhead Charge Consumption: The bea-

coning overhead charge consumption QRIV
O is a function of

TF and TW . The charge consumption for a single wakeup,

QRIV
W , consists of the energy for the pre-beaconing CCA

strobe (one TCCA per TB) of length TI + TB (where TI

is the inter-packet interval), the transmission of the initial

beacon and the regular beacon, and the time spent listening

for a response (TL), as follows:

QRIV
W =

TCCA

TB
(TI + TB)iIL + (TN + TB)iTX + TLiIL. (6)

The number of wakeups in TF is TF /TW , yielding a total

beaconing charge consumption as follows:

QRIV
O (TF , TW) = QRIV

W

TF

TW
. (7)

Combining all these calculations, the average current in

a forwarding interval, iRIV
AVG, is a function of TW and the

forwarding interval TF . It is calculated as follows:

iRIV
AVG(TF , TW) =

QRIV
S (TW) +QRIV

R +QRIV
O (TF , TW)

TF
.

(8)

B. Model of WuR Energy Consumption

For a wakeup radio scheme, we model the transmitter-

initiated WuR scheme from [15]. Except when transmitting

or receiving, the WuR consumes its sleep current, which is

very small. When the node is ready to send its packet, it

must first issue a wakeup call (WuC), which can require

high current. While the node is receiving a wakeup call, it

also consumes more current than when idle. The wakeup call

typically contains a node address and is sent at a low data

rate, meaning it lasts for a relatively long duration. After the

wakeup call, the node uses its main radio to send/receive the

data packet and acknowledgement.

We again model average current consumption. The charge

consumption from sending, QWuR
S , comes from the WuC of

duration TWuC sent with current iWTX, and the data packet

sent with the main radio, as follows:

QWuR
S = TWuCiWTX + TDiTX. (9)

The charge consumption from receiving, QWuR
R , comes

from the reception of the WuC with current iWRX and the

reception of the data packet on the main radio.

QWuR
R = TWuCiWRX + TDiRX. (10)

The overhead charge consumption comes from listening

on the WuR with sleep current iWS. The amount of time

spent listening during TF is TF minus the durations of the

wakeup call and the data packet.

QWuR
O (TF) = (TF − TWuC − TD)iWS. (11)

Finally, iWuR
AVG(TF), the average current consumption in a

forwarding interval TF , is calculated as follows:

iWuR
AVG(TF) =

QWuR
S +QWuR

R +QWuR
O (TF)

TF
. (12)

C. Results

We parameterize our model for RIVER-MAC, as well

as similar models for RI-MAC and ContikiMAC, with the

current consumption values from the CC2420 datasheet [21]

and timing values taken from Cooja. These parameters

are shown in Table I. Additionally, for ContikiMAC, we

assume hardware acks of duration 0.3 ms. As before, we use

TW = 500 ms in our evaluation. We parameterize our WuR

model with values reported for the platform SCM-WuR [15],

summarized in Table II.

Table I
PARAMETER VALUES FOR RIVER-MAC, RI-MAC, AND

CONTIKIMAC.

Parameter Notation Value
Regular beacon duration TB 1.0 ms
Initial beacon duration TN 3.2 ms
Ack beacon duration TA 1.0 ms
Data packet duration TD 2.5 ms
Listen time after beacon TL 0.5 ms
Inter-packet interval TI 1.5 ms
CCA check duration TCCA 0.38 ms
TX current iTX 17.4 mA
RX current iRX 18.8 mA
Idle current iIL 18.8 mA

Table II
PARAMETER VALUES FOR WUR MODEL, TAKEN FROM [15].

Parameter Notation Value
WuC duration TWuC 12.2 ms
Data packet duration TD 2.5 ms
WuR sleep current iWS 3.5 μA
WuR RX current iWRX 8.0 μA
WuR TX current iWTX 152 mA
Main TX current iTX 17.4 mA
Main RX current iRX 18.8 mA

In Fig. 14, we plot the average current consumption

from our models versus the forwarding interval TF . For

verification, we can divide by the CC2420 receive current

to roughly translate the average current into equivalent duty

cycle, yielding 4.9% at TF = 1 s. This is in good agreement

with our Cooja simulation results, i.e. Fig. 7a with one flow.

We find that RIVER-MAC actually performs better than

SCM-WuR at small forwarding intervals (< 6 s) because of

SCM-WuR’s costly wakeup call. Based on these results, we

suggest that WuR is a more efficient solution at lower traffic

rates, while RIVER-MAC is a better choice at moderate

to high traffic rates. We also believe that RIVER-MAC’s

performance would scale better in more complex scenarios,

such as the tree topology from Section V, where interference

and hidden nodes are factors.

868

Figure 14. Analytical results for average current vs. forwarding interval.

Finally, we reiterate that any energy and cost savings

from WuRs must be weighed against the added cost and

complexity of the WuR hardware. In future work, we plan

to further explore this tradeoff with simulation studies, e.g.

utilizing the WaCo [16] tool.

VII. CONCLUSION

We have presented RIVER-MAC, a receiver-initiated,

asynchronously duty-cycled MAC protocol for the IoT.

RIVER-MAC uses an efficient CCA-based rendezvous, and

beacon train-based collision resolution, to achieve good en-

ergy performance in a variety of scenarios, such as moderate

to high traffic with hidden nodes. We have implemented

RIVER-MAC in Contiki OS and evaluated it with Cooja

and analytical models. Future work includes testing RIVER-

MAC in large-scale testbeds, and exploration of opportunis-

tic routing and dynamic duty-cycling in conjunction with

RIVER-MAC.

ACKNOWLEDGEMENTS

Funded in part by U.S. National Science Foundation Grant

No. 1730275.

REFERENCES

[1] A. Dunkels, “The ContikiMAC radio duty cycling protocol,”
SICS, Tech. Rep. 5128, Jan. 2012.

[2] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a
receiver-initiated asynchronous duty cycle MAC protocol for
dynamic traffic loads in wireless sensor networks,” in Proc.
ACM SenSys, 2008.

[3] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The
evolution of MAC protocols in wireless sensor networks: A
survey,” IEEE Communications Surveys Tutorials, vol. 15,
no. 1, pp. 101–120, 2013.

[4] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in Proc. ACM SenSys,
2004.

[5] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a
short preamble MAC protocol for duty-cycled wireless sensor
networks,” in Proc. ACM SenSys, 2006.

[6] E.-Y. Lin, J. M. Rabaey, and A. Wolisz, “Power-efficient
rendez-vous schemes for dense wireless sensor networks,” in
Proc. IEEE ICC. IEEE, 2004.

[7] X. Fafoutis, A. D. Mauro, M. D. Vithanage, and N. Drag-
oni, “Receiver-initiated medium access control protocols for
wireless sensor networks,” Computer Networks, vol. 76, pp.
55–74, 2015.

[8] Y. Peng, Z. Li, D. Qiao, and W. Zhang, “Delay-bounded MAC
with minimal idle listening for sensor networks,” in Proc.
IEEE INFOCOM, 2011.

[9] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, “PW-
MAC: An energy-efficient predictive-wakeup MAC protocol
for wireless sensor networks,” in Proc. IEEE INFOCOM,
April 2011.

[10] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and
A. Terzis, “A-MAC: A versatile and efficient receiver-initiated
link layer for low-power wireless,” ACM Transactions on
Sensor Networks (TOSN), vol. 8, no. 4, p. 30, 2012.

[11] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient
MAC protocol for wireless sensor networks,” in Proc. IEEE
INFOCOM, 2002.

[12] ——, “Medium access control with coordinated adaptive
sleeping for wireless sensor networks,” IEEE/ACM Transac-
tions on Networking (ToN), vol. 12, no. 3, pp. 493–506, 2004.

[13] T. van Dam and K. Langendoen, “An adaptive energy-
efficient MAC protocol for wireless sensor networks,” in Proc.
ACM SenSys, 2003.

[14] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne,
“Orchestra: Robust mesh networks through autonomously
scheduled TSCH,” in Proc. ACM SenSys, 2015.

[15] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. U.
Gamm, and L. Reindl, “Has time come to switch from duty-
cycled MAC protocols to wake-up radio for wireless sensor
networks?” IEEE/ACM Transactions on Networking (ToN),
vol. 24, no. 2, pp. 674–687, 2016.

[16] R. Piyare, T. Istomin, and A. L. Murphy, “WaCo: A wake-up
radio Cooja extension for simulating ultra low power radios,”
in Proc. ACM EWSN, 2017.

[17] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a
lightweight and flexible operating system for tiny networked
sensors,” in Proc. IEEE LCN, 2004.

[18] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree
bloom: scalable opportunistic routing with ORPL,” in Proc.
ACM SenSys, 2013.

[19] M. L. Wymore, Y. Peng, X. Zhang, and D. Qiao, “EDAD:
energy-centric data collection with anycast in duty-cycled
wireless sensor networks,” in Proc. IEEE WCNC, 2015.

[20] F. Österlind, “A sensor network simulator for the Contiki OS,”
SICS, Tech. Rep. T2006:05, Feb. 2006.

[21] “2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver,”
Texas Instruments, Tech. Rep. SWRS041c, 2017. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc2420.pdf

869

