IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018 533

An Opportunistic MAC Protocol for
Energy-Efficient Wireless Communication
in a Dynamic, Cyclical Channel

Mathew L. Wymore

Abstract—As wind energy continues to expand to new frontiers
in terms of the location, number, and size of wind turbines,
the industry has begun to seek smarter operations and man-
agement solutions. Low-cost wireless sensing nodes could be
used to support data-driven techniques for optimizing produc-
tion and reducing maintenance costs, among other benefits.
Wireless instrumentation makes particular sense for wind turbine
blades; however, traditional wireless sensor network deploy-
ment approaches are not suitable for blades, due to physical
constraints and the resulting extremely limited energy sup-
ply. Alternatively, a sensor node attached to a rotating blade
could opportunistically and efficiently offload its data to a
sink node, attached to the turbine tower, as the blade passes
the tower. This approach results in a channel with a cycli-
cal signal strength pattern that existing medium access control
(MAC) protocols are not designed to handle. We thus present
BladeMAC, a MAC-layer protocol that efficiently handles the
cyclical channel problem by dynamically identifying duty-cycling
opportunities based on received signal strength. In this paper, we
describe the details of BladeMAC’s design and our implemen-
tation and evaluation in Contiki OS and the Cooja simulation
tool. We also discuss practical considerations for our deployment
scenario.

Index Terms—Radio communication, wind energy, networks,
communication channels, energy conservation.

I. INTRODUCTION

ENEWABLE energy, and particularly wind energy, has
Rseen massive growth in the past few decades [1] due to
factors such as decreasing costs, new government policies and
incentives, and increased concern about fossil fuels and their
effects on our planet. Wind turbines are continually growing
in size, and they are being deployed in larger numbers and in
increasingly remote locations, such as offshore. The challenge
of operating and maintaining large fleets of wind turbines is

Manuscript received July 11, 2017; revised November 10, 2017 and January
17, 2018; accepted January 24, 2018. Date of publication February 2, 2018;
date of current version May 17, 2018. This work was supported by the
U.S. National Science Foundation under Grant 1730275, and also Grant
1069283, which supports the activities of the Integrative Graduate Education
and Research Traineeship in Wind Energy Science, Engineering and Policy
at Towa State University. Financial support for the meteorological tower con-
struction was provided from the National Science Foundation Iowa EPSCoR
Grant 1101284. The associate editor coordinating the review of this paper
and approving it for publication was E. Ayanoglu. (Corresponding author:
Mathew L. Wymore.)

The authors are with the Department of Electrical
Engineering, Iowa State University, Ames, IA 50011
mlwymore @iastate.edu; daji @iastate.edu).

Digital Object Identifier 10.1109/TGCN.2018.2801723

and Computer
USA (e-mail:

, Student Member, IEEE, and Daji Qiao ~, Senior Member, IEEE

being met more and more by digital, data-driven methods
(e.g., [2]). These methods rely in part on sensors deployed on
the wind turbine. Wind turbine blades are particularly difficult
to instrument, and current methods are costly [3]. For example,
fiber optic sensors can be embedded into the composite mate-
rial of the blades, but this requires expensive hardware and
integration into the blade manufacturing process. Non-contact
optical sensors can also be used [4], but these methods are too
expensive for continuous online monitoring of an entire wind
farm.

Alternatively, small-size wireless sensor nodes attached
directly to blades could provide a low-cost, flexible data col-
lection platform. Current applications for such a platform
include structural health monitoring with an acoustic emis-
sions wireless sensor network (WSN) [5] or a smart sensing
skin [6] for wind turbine blades. Section VII-A contains dis-
cussion on more potential applications. However, for these
applications to become reality, the challenge of powering WSN
nodes deployed on wind turbine blades over the multi-decade
lifespan of a wind turbine must first be overcome.

Our research addresses this challenge by reducing energy
consumption of the nodes. The wireless radio hardware of a
node typically dominates the power consumption, so we seek
to reduce the amount of time the radio is on, or to decrease
the radio duty cycle of the nodes. This is a hallmark task
of WSN research, which we note is even more critical in
a wind turbine blade deployment, because nodes attached to
a wind turbine blade must be small, lightweight, and self-
sustaining. These nodes cannot have large batteries or energy
harvesting devices, and they cannot be regularly accessed for
maintenance.

In a data collection WSN, the nodes that produce data are
called sources, and the node that receives the data is called
the sink. One possible approach to our scenario would be to
place the sink in the hub at the center of the blades, as in
Figs. 1a and 1b. A source deployed at the end of a blade
could attempt to communicate with the sink in a single hop,
as shown in Fig. 1a. However, the single-hop distance could be
50 m or more on modern wind turbines [7], which is not within
the communication range of typical radio hardware that meets
our size and power constraints [8]. Therefore, the single-hop
approach is not practical for our scenario.

Another option is to use relay nodes arranged in a multi-
hop configuration along the blade, as shown in Fig. 1b. The
source then only needs to transmit data over a short distance
to the next relay node. However, since the relay nodes are also

2473-2400 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http:/fwww.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0001-5149-5689
https://orcid.org/0000-0002-3662-6481

534 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

e e

|
= Sourcenode| |\ = Source mdcl I'.I “"

Tome N ] o] )
| |1\
| MAN
| Ty
Ld L

(a) Single=hop. (b) Multi=hop. (c) Opportunistic.

Fig. 1. Three approaches to WSN deployment on wind turbine blades.
BladeMAC uses the approach shown in (c).

(a) Lab-scale wind tur- (b) RSS trace.

bine.

Fig. 2. A SpectraQuest [10] laboratory-scale wind turbine with 1.4 m blades,
shown in (a), was used to observe the cyclical channel phenomenon. The
sensor nodes shown in insets are TI CC2650-based SensorTags [9]. The node
attached to the blade is encased in a rubber enclosure. An RSS trace gathered
using this setup is shown in (b). Each point is an RSS sample taken from
a packet sent at a transmission power of —21 dBm while the turbine blades
were rotating.

attached to the wind turbine blade, they have the same energy
constraints as the source node. While the source node can
save energy by reducing the frequency at which it collects and
transmits data, the relay nodes must be regularly available to
forward data. This communication overhead of relaying makes
a multi-hop configuration unsustainable in our scenario.

We therefore propose an alternative approach. Instead of
placing the sink at the hub, we attach it to the tower, relaxing
its size and energy constraints. A source attached to a blade
can then offload its data in an opportunistic single hop as the
blade rotates past the tower, as shown in Fig. 1c. The short
distance between the nodes at this time allows for reliable,
low-power transmission. Moreover, this approach is promising
in terms of meeting the practical deployment constraints of
the system. However, this approach faces a cyclical channel
problem, in which the received signal strength (RSS) of the
link between the nodes varies continually in a periodic pattern
as the blades rotate. We observed this cyclical channel using
a laboratory-scale wind turbine and Texas Instruments (TI)
2650-based SensorTags [9], as shown in Fig. 2.

On our lab turbine, the nodes stay within range of each other
throughout the rotation. But on a large utility-scale turbine, the
source will be out of the communication range of the sink for
much of the rotation. This uncertainty in the medium creates
the need for a specialized medium access control (MAC) pro-
tocol. In traditional networking, MAC protocols allow multiple
users to access the same channel. Duty-cycled MAC protocols
must also arrange a rendezvous, a time when both the sender
and receiver’s radios are on and communication can happen.
Normally, a rendezvous is two-way, meaning it involves only

the sender and receiver. However, our cyclical channel sce-
nario introduces a new constraint: the rendezvous must occur
while the nodes are in communication range, i.e., during a part
of the channel cycle when communication is possible. We call
this a three-way rendezvous, between the sender, receiver, and
channel cycle.

Existing duty-cycled MAC protocols are not designed to
handle this three-way rendezvous efficiently. For example,
when the source attempts to connect with the sink in our sce-
nario, the connection may fail either because the sink’s radio is
not on, or because the nodes are not in communication range;
in the latter case, existing duty-cycled MAC protocols will
waste energy while continuing to attempt the connection. An
additional challenge in our scenario is that the rotation speed,
and thus the channel cycle’s period, will change continually as
the wind speed varies. These observations motivate the pro-
posal of our application-specific duty-cycled MAC protocol,
which we call BladeMAC [11].

In the following section, we examine related work. In
Section III, we present possible baseline solutions for
our problem scenario. The shortcomings of these baseline
solutions motivate the design of BladeMAC, presented in
Section IV. In Section V, we describe BladeMAC’s method
for estimating the length of time available for communication
in each channel cycle. In Section VI, we detail our imple-
mentation of BladeMAC in Contiki OS [12], our experimental
methods, and our evaluation results. We discuss possible appli-
cations and a variety of practical considerations for BladeMAC
in Section VII. Finally, we conclude the paper in Section VIIIL.

II. RELATED WORK

Duty-cycled MAC protocols have been a popular research
topic among researchers attempting to minimize the energy
consumption of WSN nodes [13]. These protocols can
be either synchronous/scheduled or asynchronous. In syn-
chronous/scheduled protocols such as T-MAC [14] or the
time-slotted channel hopping (TSCH) protocol of IEEE
802.15.4e [15], nodes track the wakeup schedules of their
neighbors and thus know when to wake to listen for packets.
These protocols are not suited for our cyclical channel problem
because scheduled wakeups would need to consider the chan-
nel’s “schedule,” which, due to rotation speed fluctuations,
would be constantly changing.

In asynchronous protocols, rendezvous are not scheduled
and occur only as needed. These protocols are generally
characterized as either sender-initiated or receiver-initiated. In
sender-initiated protocols, such as B-MAC [16], X-MAC [17]
and ContikiMAC [18], the sender indicates its desire to
send by jamming or strobing the channel until the receiver
wakes and responds. In receiver-initiated protocols such as RI-
MAC [19], the sender idly listens until the receiver announces
its availability with a beacon packet, resulting in less chan-
nel occupation. Asynchronous protocols exhibit the flexible,
dynamic behavior required for our cyclical channel problem;
however, existing protocols are not designed to efficiently
arrange a three-way rendezvous between the sender, receiver,
and channel. For example, if we directly apply RI-MAC to
our scenario, the receiver may not always send a beacon dur-
ing the part of the channel cycle when the link is available,



WYMORE AND QIAO: OPPORTUNISTIC MAC PROTOCOL FOR ENERGY-EFFICIENT WIRELESS COMMUNICATION 535

resulting in excessive idle listening or dropped packets for the
sender. We have designed BladeMAC to solve problems such
as this.

As part of our solution, BladeMAC uses the RSS and
RSS trend to predict future RSS. This takes advantage of the
cyber-physical characteristics of the system. Cyber-physical
systems [20] have been a popular research topic in recent
years. To the best of our knowledge, BladeMAC is the first
research to consider the physical rotation of a wind turbine’s
rotating blades in designing a monitoring system for those
blades. Problems similar to our cyclical channel problem have
received limited attention in the past, such as for energy-saving
in body area sensor networks [21]. Wireless communications
in a rotating environment have also been studied in the con-
text of tire pressure monitoring systems [22], which, due to
the relaxed deployment constraints, can use standard pro-
tocols [23]. Researchers have also explored saving energy
through planning (re)transmissions based on channel state and
statistics [24], [25]. Our problem is distinct from these prob-
lems because our channel is cyclical and the nodes are out of
communication range for much of the cycle.

III. EVvOLUTION OF BLADEMAC

In this section, we first present our formal problem state-
ment. Then we invent two baseline solutions for this problem.
These solutions represent naive adaptations of existing duty-
cycled MAC protocols to the cyclical channel problem.
The shortcomings of these solutions motivate the design
of BladeMAC and further illustrate our problem and why
BladeMAC is needed.

A. Problem Statement

Given a source node deployed on a rotating wind turbine
blade and a sink node deployed on the wind turbine tower,
our problem is to minimize the energy consumption of the
source node (Espurck), subject to the constraints of the energy
budget of the sink and a one-rotation delay bound (that is, the
source should transmit data the next time it passes the tower).
Formally, assuming the energy consumption of the node is
dominated by the radio hardware, our problem is:

min Esource = PrxTtx + PrxTrx + PipLeTiDLE,
s.t. Psvg < PMAX D < Tq, (1)

where Prx/Prx/PipLE is the source’s transmit/receive/idle lis-
tening power, and T7x/Trx/TipLE is the source’s time spent
transmitting/receiving/idle listening. Psjyk is the sink’s total
power consumption, P¥AX is the sink’s maximum sustain-
able power consumption based on its energy budget, D is
communication delay, and Tg is the rotation period.

We satisfy the constraints of (1) through protocol design.
Assuming Pry, Ppx, and Pjprg are equal (essentially true
for WSN hardware such as [9]), the minimization in (1) is
equivalent to minimizing the radio on-time percentage (duty
cycle) of the source node. Because of this, we design to min-
imize duty cycle and use duty cycle as our evaluation metric
in Section VI. An ideal protocol will be able to effectively
perform this minimization regardless of factors external to the

Data arriva

e . I

?}Aﬂbﬁﬂnbﬂﬂnbﬁﬂnbﬁﬂnb

& Bracos @ Data

[

(a) Diagram of the source’s state ma- (b) Example trace of CC-MAC, taken
chine in CC-MAC. from Cooja simulation.

© Adk]

Fig. 3. Overview of CC-MAC. In (b), an RSS plot is shown with an ideal
RSS curve, drawn using a log-distance path loss model. WSEN s the sensi-
tivity threshold. Dots show the source’s RSS samples gathered from received
packets. Event timelines are shown for the source and sink, and the shaded
areas represent radio on-time.

protocol stack, such as data arrival interval and blade rotation
speed.

B. CC-MAC

Our first baseline solution is a receiver-initiated scheme,
inspired by RI-MAC [19], that we call Cyclical Channel MAC
(CC-MAC). A receiver-initiated MAC is chosen because it
prevents nodes from occupying the channel when a link is
not even available, allowing other nodes to communicate. We
note that, for a receiver-initiated MAC, the minimization in (1)
can loosely be reduced to the minimization of Tjprg, since
Trx and Tgy will be similar across protocols. Therefore, the
minimization of idle listening serves as the key design goal.

In CC-MAC, the sink sends beacon packets at a fixed
interval Tg, which is chosen to be small enough to guaran-
tee that at least one beacon per cycle is sent when the RSS of
the link is above the receive sensitivity threshold WSEN, This
fixed beaconing interval must also be chosen large enough to
satisfy the sink energy budget constraint in (1).

A state machine for the source in CC-MAC is shown in
Fig. 3a, with a sample trace of CC-MAC’s operation shown
in Fig. 3b. The source sleeps, meaning it keeps its radio off,
until it has data to send (data arrival). It then wakes and
listens until it hears a beacon, at which point it engages in an
exchange of data and acknowledgement (Ack) packets with the
sink. Since the source hears and responds to the first beacon
possible, and the beacon interval is chosen to be small enough
that a beacon can be heard every rotation, CC-MAC satisfies
the delay constraint of (1).

We emphasize that, in CC-MAC, the source and sink have
separate behaviors. The source does not periodically wake
and beacon, meaning that it does not expend energy on com-
munications unless it has data to send. If the sink needs to
communicate with the source, it can piggyback command and
control information on beacon or Ack packets.

CC-MAC works well enough for infrequent data arrival,
but more frequent data leads to a high amount of energy
wasted idly listening. Additionally, since CC-MAC transmits
data when any beacon is received, an excessive number of
retries may be required, as the link may be in a weak state.
The pros and cons of CC-MAC are summarized as follows.



536 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

Predicsed heacon serival time

LSS =

| fr Data arrival & Bescon @ Data € Retry © Ack

Diavn arvivenl

(a) Diagram of the source’s state ma- (b) Example trace of CPCC-MAC,
chine in CPCC-MAC. taken from Cooja simulation.

Fig. 4. Overview of CPCC-MAC.

s Pros: (a) CC-MAC is simple; (b) CC-MAC is sufficient
if the interval between data arrivals is very long.

e Cons: (a) CC-MAC is sensitive to the data arrival interval;
(b) CC-MAC may transmit data while the channel is still
in poor condition, requiring excessive retries.

C. CPCC-MAC

To improve on CC-MAC when data arrival is frequent,
we now outline a version of CC-MAC with cycle prediction,
which we call CPCC-MAC (Fig. 4). In CPCC-MAC, the
source tracks the cycle period and phase, allowing it to predict
when the channel will be present. The source then wakes at
this predicted time, as shown in Fig. 4a, and idly listens until
a beacon is heard. If the cycle prediction is accurate, the idle
listening time is very short. If the prediction is not accurate
(the beacon arrives more than Ty after the predicted time), this
results in CPCC-MAC redoing the period estimate, as shown
in the state diagram.

However, estimating the period is non-trivial. For exam-
ple, if a data transaction occurs at t = 0 and t = 20, the
period could be any integer division of 20 s, depending on how
many cycles elapsed between transactions. The period range
may be known, but since the period may be changing even
during the estimation process, the problem of period estima-
tion remains difficult. CPCC-MAC therefore performs period
estimation by time-stamping consecutive cycles. To do this,
CPCC-MAC performs an initial data exchange as in CC-MAC.
After the exchange, the source wakes up and listens at the
known interval Tg until it has heard a beacon in the next
cycle. The time elapsed between this beacon and the previous
data exchange is used as the period estimate.

An example trace is shown in Fig. 4b. Data arrives around
129 s. The predicted wakeup time is 129.5 s, but this prediction
is inaccurate, and the source idly listens for about four sec-
onds (represented by the shaded area on the source’s timeline)
before a beacon finally arrives. The period estimation process
is reinitiated after the Data/Ack exchange, at around 134 s.
During this process, the source repeatedly wakes to listen for
beacons, until it hears a beacon close to 139 s. This produces
a period estimate of around 139 — 133.5 = 5.5 s. To predict
a future wakeup time, CPCC-MAC would use the period esti-
mate to extrapolate out from 133.5 s, the timestamp of the
most recent data exchange.

CPCC-MAC is effective if the period is stable and the period
estimation is accurate. However, the period estimation will

always be slightly inaccurate if the sink’s beacon interval is not
a divisor of the channel’s period. Dropped beacons can cause
more severe inaccuracies in the estimation. Additionally, in an
application such as a wind turbine, the period is expected to
change over time, because the blade rotation speed is related
to the wind speed. An inaccurate or outdated period estimate
leads to increased idle listening from poorly predicted wake-
ups and increased overhead from redoing the period estimate.
Additionally, poor wakeup predictions can lead to increased
delay, if the source wakes too late and misses a communication
opportunity, violating the delay constraint in (1). Therefore,
CPCC-MAC becomes less efficient as period changes become
more frequent and larger in magnitude. The pros and cons of
CPCC-MAC are summarized below.
s Pros: CPCC-MAC is efficient for frequent data arrival if
the period estimation is accurate and the period is stable.
e« Cons: (a) CPCC-MAC becomes less efficient as the
period changes more rapidly and more frequently;
(b) CPCC-MAC requires accurate period estimation,
which is non-trivial; (c) CPCC-MAC may introduce
additional delay due to incorrect period estimation.

IV. BLADEMAC

From consideration of our baseline schemes CC-MAC and
CPCC-MAC, and their shortcomings, we propose BladeMAC.
Built on the foundations of our CC-MAC baseline scheme,
BladeMAC defines a set of opportunities for either sleeping or
transmitting. On each wakeup, BladeMAC uses RSS to iden-
tify which opportunity is applicable. Using this framework,
BladeMAC makes intelligent decisions about when to sleep
and when to transmit while waiting for the channel to become
favorable. BladeMAC boasts the following features:

« BladeMAC is efficient at both low and high data arrival

rates, alleviating the main drawback of CC-MAC.

« BladeMAC is robust to changes in the cycle period,

alleviating the main drawback of CPCC-MAC.

« BladeMAC adapts to channel variation, making it robust

to real-world conditions.

This section presents the details of BladeMAC’s design. We
first present an overview of BladeMAC’s operation, then we
separately detail the behaviors of the sink and source.

A. Overview

Fig. 5(a) illustrates our cyclical channel problem. As the
wind turbine rotates, the distance between the source deployed
on the blade and the sink deployed on the tower periodically
increases and decreases. Mapping this distance to a theoret-
ical RSS curve produces a cyclical channel. In each cycle,
we define two intervals, based on RSS thresholds. The first
interval is when RSS values are above a threshold WFAY that
is empirically determined to correspond to a favorable chan-
nel. This interval is called the favorable interval and is of
length Tray. A packet sent by the source during the favor-
able interval has a high probability to be received by the sink.
Therefore, to minimize retransmissions and wasted energy, the
source node should attempt to always send data during this
interval.

The second interval of interest is when RSS values are
above the receive sensitivity level of the radio hardware, WSEN,



WYMORE AND QIAO: OPPORTUNISTIC MAC PROTOCOL FOR ENERGY-EFFICIENT WIRELESS COMMUNICATION 537

R85 [dEm)
=
.

10 -
" " Nap spportanity :
¥ Transmjt

] / ><t/‘ '{ I!ihlq“!:wwﬂunil.f

106 (g
gL TR

am ET] W6 ET E W
Time [s)
& Beoscon O Deta o Ak

Fig. 5. Overview of BladeMAC. (a) Illustration of the cyclic channel caused
by the rotation of the blades. We define the intervals Tpay and Tgpy based
on '-IJF"W, l{-‘SEN, and the rotation speed. (b) Sample trace of BladeMAC’s
operation, from a Cooja simulation. The opportunities used by BladeMAC
are labeled.

We call this interval the sensitivity window and denote its
length Tsgn. The sensitivity window encompasses the favor-
able interval, and the two may vary in relative size with the
conditions of the channel and the rotation speed.

In BladeMAC, the source uses RSS values from the beacon
and Ack packets it receives to identify the appropriate oppor-
tunity for different possible actions. In some cases, the appro-
priate opportunity depends on the RSS frend, obtained from
the RSS of consecutive packets. With these tools, BladeMAC
dynamically makes decisions about when to transmit and when
to sleep, allowing it to minimize the idle listening in (1) and
also ensure that data is sent when the channel is favorable.

The following sections describe the opportunities and
behavior of BladeMAC in detail, but for a high-level intro-
duction, Fig. 5(b) shows an example trace of BladeMAC’s
operation. As in CC-MAC, the sink beacons at a fixed interval.
In this example, the MAC layer of the source is given data to
be sent (an event called data arrival and marked ‘f;?) while the
RSS is below lIJSEN, at around 303.5 s. The source listens for
a period of time but does not hear a beacon packet, resulting in
a sleep opportunity. At around 304.25 s, the source wakes and
listens again. This time it receives a beacon packet (marked
A) from the sink, but the packet’s RSS is below lIJFAV, result-
ing in a nap opportunity. The source wakes for the next two
beacons, but does not receive them due to packet loss in the
still-weak channel. The first missed beacon is a nap opportu-
nity, and the second is a sleep opportunity. Finally, the source
receives a beacon with RSS above WFAV at around 305.5 s.
In BladeMAC, this is called a fransmit opportunity, and the
source immediately engages in a Data/Ack exchange with the
sink until all data is sent. Then, the source listens for addi-
tional beacons in order to estimate the sensitivity window size;
details of this estimation process are provided in Section V.
‘When the beacon at around 306.5 s is not heard, the source
has a hibernate opportunity, allowing it to sleep until the next
data arrival.

B. Sink Behavior

1) Overview: Due to the asymmetric nature of the source
and sink in terms of purpose, physical constraints, and energy
supply, the behavior of BladeMAC is different for the two
nodes. The behavior of the sink node is straightforward. The
sink spends most of its time inactive, with its radio off. Every

interval Tg, the sink turns its radio on and broadcasts a bea-
con packet. The sink populates the beacon with the value of
Tg to inform the source of the beacon interval length. After
broadcasting a beacon, the sink listens for up to the TX/RX
turnaround time plus the time required to send a beacon. This
gives the source time to respond with a data packet. If the
sink does not receive a data packet during this time, it sleeps
until the beginning of the next beacon interval. If the sink does
receive a data packet, it responds with an Ack packet and then
listens for any additional data packets.

2) Beacon Interval: The choice of Tg is key for ensuring
that both constraints in (1) are satisfied. Tg determines how
often the sink must broadcast packets, and is thus the main
factor in the sink’s power consumption. Therefore, Tg must be
large enough to satisfy the sink’s energy budget. But to satisfy
the delay constraint, the beacon interval must be small enough
that a beacon can be received by the source in every rotation.
Therefore, to strike a balance between energy efficiency for
the source and duty cycling for the sink, we choose an upper
bound of Tg < 0.5Tray, and we design the source’s behavior
such that the source cannot sleep through more than half of
the favorable interval. With this design, the source is able to
hear at least one beacon in each favorable interval, satisfying
the delay constraint in (1). If the source cannot sustain a small
enough beacon interval, its energy budget must be increased
for BladeMAC to be effective.

3) Favorable Interval: The above choice of upper bound
for Tg means that Tgay must be known. A lower bound for
Tray can be estimated for a particular deployment using the
size of the turbine, a distance-based path loss model, and an
empirical measure of the favorable threshold WFAY in the target
environment. Tgay is equal to the amount of time in each cycle
for which the RSS is above WAV (see Fig. 5(a)).

The favorable interval is also affected by sink height. In
this work, we assume that the sink is attached to the tower
at the same height as the lowest point of rotation of the
source. In theory, positioning the sink higher than this point
can result in a longer favorable interval; however, our analysis
found that the difference is small (tens of milliseconds) for our
scenario parameters. Therefore, we leave further examination
of optimal sink height to future work.

C. Source Behavior

The source node’s behavior is more complex than the sink.
At a high level, the source’s behavior is divided into three
states: the hibernation state, the wait state, and the send state,
as shown in Fig. 6. In the hibernation state, the MAC layer
has no data to send, so the source remains inactive. When data
arrives, the source enters the wait state. During the wait state,
the source attempts to minimize idle listening while waiting
for suitable channel conditions that will ensure reliable data
transmission. When these conditions are detected, the source
enters the send state and attempts to transmit all data packets
before the channel degrades. If all data packets are sent, the
source ftransitions to the hibernation state. But if the channel
degrades before all the data can be sent, the source must revert
to the wait state and wait for the next transmit opportunity. The
states are described in detail below.



538 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

Dt arrival

Hibernation
State

Fig. 6. Diagram of the source’s state machine in BladeMAC.

Transmil Opportunity

Iransmit or
Retrunsmit
Opportumity

Hibemate
Oppounity

TABLE 1
SOURCE’S BEHAVIOR IN THE WAIT STATE

Opportunity | RSS (7}) Trend (W vs. ¥p_; ) | Action
Tr it ¥, = PFAV | Any Enter send

¥y, < Y™V | Descent (¥, < ¥_;) | state

¥, < ¥ | Ascent (¥ > ¥poy)

Nap fo

Nap ¥y < pFAV Y1 =0 T p lor

Y, =0 Yp1 #@ B

_ _ Sleep for

Sleep Y, =2 Yp1=@ 0.5Tsgx

1) Hibernation State: In the hibernation state, the source
keeps its radio off as long as its data queue is empty. Thus, the
source remains completely inactive in the network until it has
data to send. When data packets are added to the queue, the
source enters the wait state. During the wait state, additional
packets may be added to the queue.

2) Wait State: In the wait state, the source makes decisions
about when to sleep and when to send based on the RSS of
the packets it receives (or does not receive) from the sink.
Specifically, when entering the wait state, the source wakes
and listens for up to Tg for a beacon from the sink. If Tp is
unknown, such as when the source is first turned on, it is set
to co. When a beacon packet is received, Tg is extracted from
it and stored for future use.

After either receiving a beacon b (with RSS W) or listening
for Tg and not receiving a beacon (¥, £ @), the source applies
the rules summarized in Table 1. W}, and the current RSS trend
(determined by comparing W, to Wj,_1) are used to match one
of a number of cases. In the wait state, each case results in
one of three opportunities: transmit, nap, or sleep.

a) Transmit opportunity: The source transitions into the
send state. This opportunity occurs when the channel is favor-
able, meaning W, > WFAY or when the channel is degrading,
meaning W, < W;_1. In the latter case, this opportunity allows
the source to transmit data, even though the channel is not
favorable, in order to avoid having to wait for the next transmit
opportunity, which would increase delay and energy use.

b) Nap opportunity: The source naps (turns its radio off
for a short time) for Tg and remains in the wait state. This
opportunity occurs when the link is present and the chan-
nel is not favorable but getting better, meaning ¥, < wFAV
and either W), > W;_; or W,_; = ©&. Also, a nap oppor-
tunity occurs if no beacon is received this wakeup, but the
previous beacon was received. This last case accounts for
packet loss, acting as a “second chance” mechanism by allow-
ing the source to listen for one more beacon when a beacon
is missed unexpectedly.

¢) Sleep opportunity: The source sleeps for an extended
length of time and remains in the wait state. This opportu-
nity occurs when the source listens for 7g but does not hear

a beacon, and furthermore did not hear the previous beacon
(Vp = Wp_1 = @). This opportunity arises when the channel
is too weak for communication. The length of time to sleep
is chosen to be half of the sensitivity window (0.57sgn). This
length guarantees that, even in the worst case where the source
goes to sleep just before the first beacon transmission during
the sensitivity window, it will still be able to hear the second
beacon during the sensitivity window after it wakes up again.

The sleep opportunity requires the source to estimate Tsgn,
a quantity that may change over time due to external condi-
tions such as changing rotation speed. We present the details of
this estimation process in Section V. We specifically design
our estimation process to avoid overestimation of Tsgn, as
overestimation can lead to missed transmit opportunities. Our
simulations have shown that, as long as Tsgn is not overesti-
mated, performance of BladeMAC remains robust to rotation
speed changes. This contrasts sharply with the full period esti-
mation of CPCC-MAC, which is highly sensitive to rotation
speed changes.

3) Send State: In the send state, the source engages in a
Data/Ack exchange with the sink until either the data queue
is empty, or the channel degrades and the link disappears, sig-
nified by R consecutive transmission failures of a data packet.
In our implementation of BladeMAC, we set R = 3.

V. SENSITIVITY WINDOW ESTIMATION

As previously discussed, BladeMAC must estimate Tsgn,
the size of the sensitivity window. BladeMAC uses this esti-
mate to determine how long it can sleep when a sleep oppor-
tunity occurs. Therefore, accurately estimating Tspn is key
to minimizing BladeMAC’s duty cycle. However, BladeMAC
should not overestimate Tsgn, as this may cause the source to
sleep through the sensitivity window, violating the delay con-
straint in (1). Therefore, we desire an estimate that approaches
but does not exceed the actual size of the sensitivity window.
To perform Tsgn estimation, the source records RSS readings
for each packet it receives from the sink. After sending data,
the source uses the RSS samples obtained during the sensi-
tivity window to estimate Tsgn. However, window estimation
is a non-trivial task. The number of acquired RSS samples
varies, as does their distribution, and parametric methods such
as linear or polynomial regression are unreliable. Instead, our
approach is to find a tight lower bound for Tsgn, based on
characteristics of the RSS samples collected.

A. Extra Beacons

To provide consistency in the RSS samples, BladeMAC
allows the source to listen for extra beacons after a transmit
opportunity. This behavior is shown in Fig. 5b. After the data
is sent at around 305.5 s, the source wakes up every bea-
con interval to gather another RSS sample from a beacon. At
around 306.5 s, the source does not hear an expected beacon,
and has no data to send, so it enters the hibernation state. As
shown in the figure, this behavior provides an RSS sample
close to the edge of the sensitivity window. We denote the
timestamp of this sample, the last received in this sensitiv-
ity window, as fjs;. The consistency of this sample results in
better Tspn estimation. The wakeups required to gather this



WYMORE AND QIAO: OPPORTUNISTIC MAC PROTOCOL FOR ENERGY-EFFICIENT WIRELESS COMMUNICATION 539

|
=

Trirst = Dlast

gFAv ~ | yFAV
- PEEN _Jsl --- HEN
Ideal RSS g% —  Ideal RSS
BEACON Z -8 &4  BEACON
ACK B _g
95

rag. =

—70 —70
Lo ,{_,F.‘Il- o
. - w.‘:ﬁ.’\' .
& —80 :I —  ldeal RSS & —80
= -8 g A BEACON = -8
¥ st ext ACK o
o | | TR A TR e S T o = =90
ST eeR——— 95
1.5 2.0 25 3.0 ] 3.5 4.0 1.5 2.0 2.5
Time (5) st
(a) An example “peak” case,
with  a data group as the peak use Tsen = 2(fast — Hirst)-

Tsen = max (2% (flast = fnext)s (fast = fhrst))-

Fig. 7.
some packets has been exaggerated for clarity.

sample are very short, so the cost is only slightly increased
energy consumption, resulting in an overall system gain.

B. Estimation Cases and Methods

The estimation of Tsgy is performed during the hibernation
state following the sensitivity window in which RSS samples
were gathered. The estimation only uses RSS samples since
the prior hibernation state or sleep opportunity, guaranteeing
that all samples were taken during the same sensitivity win-
dow. In addition to fzs, We define fg.5 as the timestamp of the
first RSS sample in this sensitivity window, fmax as the times-
tamp of the RSS sample with the largest RSS value, and fyex;
as the timestamp of the beacon sample immediately following
the fmax sample. We do not consider Acks for f,cx; because
Ack packets are too closely spaced in time to reliably indicate
trends in RSS. We use Tsgn to denote our estimation of the
sensitivity window, and we define three different cases for our
estimation method, detailed below.

1) Peak: This case, shown in Fig. 7a, occurs when the
maximum RSS sample is greater than WFAY. In this case, we
conservatively reason that the peak of the RSS curve must
have occurred before fhext. We assume that the left side of the
ideal RSS curve is the same as the right. Therefore, we choose
2 % (flast — Inext) @S our estimate for the sensitivity window in
this case. Additionally, as a safeguard against extreme amounts
of RSS variability, we check the estimate against (flast — ffirst)-
a known lower bound for the sensitivity window. This lower
bound is used if it is larger than the estimate from above,
producing a final estimate as follows:

1?-'SEI'“I = max (2 * (Nast — Tnext)s (flast — first))- (2)

2) No Peak: This case, shown in Fig. 7b, occurs when no
RSS samples are greater than WFAY In this case, based on
the defined behavior of the source and the fact that all RSS
samples are from the same sensitivity window, we reason that
all samples are on one side of the RSS peak. We therefore
choose Tsen = 2 * (flast — Iirst)-

3) Single Packet: This case, shown in Fig. 7c, occurs when
the source has only one RSS sample. In this case, flast = ffirst
and no window estimation is possible, so the current estimate
for Tsgn remains unchanged.

In BladeMAC, to estimate Tsgn, the source first identifies
the case using the RSS samples collected, and then it calculates
the estimate using the corresponding equation for TSEN.

Time (8}

(b) An example “no peak” case. In this case, we

2.0 25 30 35 40
Time (s)

a5 4.0

w

Bast

(c) An example “single packet” case. In this case,
we make no estimate and continue to use our
previous TSEN-

Mlustrations of the sensitivity window estimation cases and methods. Each figure shows a set of typical RSS samples for that case. The time between

C. Performance Evaluation

We used Python simulations to evaluate BladeMAC’s Tsgn
estimation method and the effectiveness of using extra beacons
to obtain more RSS samples. We compare to a method we call
MinMaxLine, which attempts to extrapolate the RSS trend, an
approach that seems intuitive but which we have found to be
unreliable. MinMaxLine draws a line (in the time-RSS plane)
between fmax and the sample point with minimum RSS. The
method then calculates the intersection of this line with lIJSEN,
which we label £;EN. The window estimate for MinMaxLine
is then Tsen = 2 % (15N — fmax)-

We simulated BladeMAC’s method with extra bea-
cons (BladeMAC), MinMaxLine with extra beacons
(MinMaxLine), and BladeMAC’s method without extra
beacons (WithoutExtra). In WithoutExtra, the estima-
tion method is similar to BladeMAC’s method outlined
above, but the rule for the peak case is adapted to
Tsen = max (2= (rprev — Ifirst)» (Rast — fhirst)), Where rpnev
is the beacon sample preceding the fya, sample. In the
simulations, RSS values are generated based on a log-normal
shadowing model [26] with a standard deviation of o.
The distances between the nodes are calculated to simulate a
node rotating at 12 RPM at radius r = 50 m, with a clearance
of 8 m at the bottom of the rotation. These numbers are
intended to represent a node attached to the end of a blade
of a large wind turbine rotating at rated speed [7]. In each
trial, we choose a random time for data arrival and apply
BladeMAC’s rules to collect RSS samples, which are used to
calculate TsgN.

Fig. 8 plots CDFs (from 30,000 trials) of the percent error,
which is calculated as 100 % (TSEN — Tsen)/Tsen- A vertical
dividing line is drawn at zero percent error. This represents
the ideal curve; negative percent error (to the left of the zero
line) indicates an underestimate, and positive percent error (to
the right of the zero line) indicates an overestimate. Since
underestimating is better than overestimating, we prefer curves
that approach the zero line from the left, but do not cross it.

Results are shown for channel parameters 0 = 0 dB and
o = 3 dB. BladeMAC performs well with o = 0 dB, with
most estimates being relatively close to the actual value, and
no overestimates. MinMaxLine performs worse, underestimat-
ing to a much larger extent. The effect of extra beacons is also
noticeable, with BladeMAC generally coming much closer to
the actual value than WithoutExtra.

The amount of channel variation clearly affects the results
of all methods, but the effect is less noticeable for BladeMAC



540 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

(a) CDF with oo =0 dB. (b) CDF with o = 3 dB.
Fig. 8. Performance evaluation of the proposed sensitivity window estimation
method. CDFs of the percent error are shown, with negative percent error
indicating an underestimate and positive indicating an overestimate.

and WithoutExtra. At ¢ = 3 dB, the curves of all methods
have reduced slopes, increasing the range of estimation errors
and causing some amount of overestimation. BladeMAC over-
estimates more than WithoutExtra, since packets outside the
theoretical sensitivity window are more likely to be heard with
the extra beacons mechanism due to its deliberate attempt to
collect a sample at the end of the window.

D. Summary

Overall, BladeMAC’s estimation method generally pro-
vides a reasonable estimate of Tsgn. To smooth variatAions,
BladeMAC uses a simple moving average to update Tsgn.
‘We note that, in addition to the variations in each estimation
attempt, Tsgn itself may change over time because of fluctu-
ating channel conditions due to external forces. Weather could
effectively shift the ideal RSS curve up or down. A change in
the channel cycle period would cause Tsgn to stretch or con-
tract. However, any change in TsgN is small compared to the
change in the period, and unlikely to cause BladeMAC to miss
a sensitivity window. BladeMAC is thus essentially agnostic
to the cycle period, as we will demonstrate in Section VI using
evaluation results.

VI. EVALUATION

In this section, we present our evaluation methods and
results for BladeMAC. We use simulations in Cooja [27],
Contiki OS’s [12] simulation tool, for our evaluation. We first
discuss our implementation of BladeMAC and our simulation
methods. Then, we evaluate BladeMAC against our CC-
MAC and CPCC-MAC baseline protocols, at different rotation
speeds, different data arrival intervals with a static rotation
speed, and different amounts of rotation speed variation. We
also present a day-long trace of BladeMAC’s performance
based on real wind speed data, and a trace of BladeMAC’s
window estimation process.

A. Method

We implemented BladeMAC by inserting it into Contiki’s
Rime network stack [28], as shown in Fig. 9. BladeMAC was
implemented at the radio duty-cycling (RDC) layer, which
interfaces with the radio hardware. BladeMAC uses Contiki’s
802.15.4 packet framer to build 802.15.4-compliant packets.
We implemented a packet queuing mechanism at the MAC
layer, which interfaces the RDC layer with the upper layers.
Using this framework, BladeMAC enters the wait state when

sent_callback() input(}
send_List (8]

APP

Test Application

Rime Stack Upper Layers B02.15.4

Framer

BladeM AC Packet Queue

BladeMAC

Wireless Radio

PHY RDC MAC NET

send( ) input()

— Dala > Control and Info

Fig. 9. BladeMAC as it fits into the Contiki network stack.

the first packet arrives. If additional packets arrive while wait-
ing for a transmit opportunity, these packets are added to the
queue, and all queued packets are sent during the Data/Ack
exchange. As comparison points for BladeMAC, we imple-
mented our CC-MAC and CPCC-MAC baseline schemes,
described in Section III, under the same framework.

Due to the availability of information, we chose to model the
National Renewable Energy Laboratory (NREL) 5 MW refer-
ence wind turbine [7]. We used Cooja, Contiki OS’s simulation
tool, for our evaluations. To produce the cyclical channel phe-
nomenon in Cooja, we used the Mobility Cooja plugin [29] to
simulate blade rotation with a 50 m radius. We implemented
the popular lognormal shadowing propagation model [26] to
obtain distance-based RSS. We used a path loss exponent of
3.0 and a standard deviation of 3.0 dB for the random compo-
nent, values that align with the measurements shown in Fig. 2b.
We use the random component as a simple statistical method
of encapsulating the Doppler effect (which is minimal in this
case [26]), polarization response [22], and other random effects
such as hardware noise. To translate RSS into probability of
reception, we set a static noise floor of —100 dBm and used
an empirically-derived function from TOSSIM [30] to obtain
the packet reception rate (PRR) from the signal-to-noise ratio
(SNR).

From the TOSSIM function, we obtained a favorable thresh-
old of WFAY = —90 dBm, which yields very high (i.e., > 99%)
PRR with the —100 dBm noise floor. Using the lognormal
shadowing propagation model from above, we calculated that
Tray is around 850 ms for our simulated turbine rotating at
12.1 RPM, its rated speed [7]. We chose a beacon interval of
Ts = 250 ms for our evaluation, resulting in Tg =~ 0.3Tray,
which satisfies our requirement that Tg < Tgay/2. We also
used simulations to verify this upper bound requirement for
the beacon interval; as expected, a beacon interval larger than
Trav/2 produces a large drop in performance, and smaller
beacon intervals lead to a lower duty cycle for the source.
Therefore, in practice, the smallest beacon interval that is sus-
tainable by the sink should be chosen; if the sink cannot sustain
Ts < Trav/2, then its energy budget must be increased before
BladeMAC can be effective.

For evaluation metrics, we use duty cycle as a parameter-
independent proxy for energy consumption (see Section III-A
for how energy consumption relates to duty cycle). We also
evaluate communication delay and the number of transmis-
sions per packet. In the simulation’s application layer, the
source queues a small data packet every data arrival interval,
with a small amount of random variation. Each simulation runs
until 250 packets are successfully sent. The aggregate results



WYMORE AND QIAO: OPPORTUNISTIC MAC PROTOCOL FOR ENERGY-EFFICIENT WIRELESS COMMUNICATION 541

(a) Average duty cycle of source.

(b) Average delay per packet.

~ iE =
Rotation spoed (RPA

(c) Transmissions per packet.

Fig. 10. Evaluation for different static rotation speeds, with a 28 s data arrival interval. Error bars in (a) show a 95% confidence interval.

shown here are averaged over at least 50 simulations with dif-
ferent random seeds. Error bars on the plots for duty cycle
show 95% confidence intervals, calculated as £1.96 times the
sample standard deviation. Error bars are not shown for delay
because the delay naturally varies depending on the phase of
the channel cycle when data arrives, so the confidence intervals
are not as meaningful and make the plots difficult to read.

B. Rotation Speed

We evaluated the protocols with static rotation speeds of
10.0-13.1 RPM, a subset of the operating range of the mod-
eled wind turbine [7], with a data arrival interval of 28 s. This
interval was chosen because at 12.1 RPM, the rated speed of
the wind turbine and the default rotation speed for our simula-
tions, BladeMAC and CPCC-MAC have similar performance
in terms of duty cycle. The results are shown in Fig. 10.

For all metrics, CPCC-MAC shows significant sensitiv-
ity to rotation speed, due to an interaction of the rotation
period and the beacon interval that is aggravated by CPCC-
MAC’s reliance on period estimation. If the rotation period
is an even multiple of the beacon interval, CPCC-MAC can
acquire a perfect estimate of the rotation period; otherwise, its
estimate will have some error, which results in varying lev-
els of performance. BladeMAC and CC-MAC are much less
sensitive to rotation speed. BladeMAC’s duty cycle, shown
in Fig. 10a, is nearly constant with rotation speed, and is
generally the best of the three protocols. CC-MAC’s duty
cycle decreases with rotation speed because the quicker rota-
tion means it listens for less time before a beacon is heard.
BladeMAC has the least amount of variation across simula-
tions, showing very tight confidence intervals (mostly hidden
by the plot markers).

Fig. 10b shows delay normalized to the period of rota-
tion. BladeMAC and CC-MAC display a constant trend with
small fluctuations due to the rotation period’s interaction with
the data arrival interval. CC-MAC has the shortest delay
because it always responds to the first possible beacon, while
BladeMAC’s slightly higher delay is the price of its much
lower duty cycle. CPCC-MAC’s normalized delay shows a
slowly increasing trend with rotation speed. This is because
CPCC-MAC's delay depends on the error of its period estima-
tion process, and the same amount of error becomes relatively
larger at a faster rotation speed.

Fig. 10c shows transmissions per packet, which is constant
for BladeMAC, and is very low due to BladeMAC’s deliberate
attempts to send when the channel is strongest. For CC-MAC,
transmissions per packet decreases with rotation speed because

a faster speed means the channel spends less time in a transi-
tional state, so a response to the first beacon is more likely to
be heard. CPCC-MAC’s transmissions per packet shows high
sensitivity to rotation speed.

C. Data Arrival Interval

We evaluated the protocols at different data arrival intervals
with a static rotation speed of 12.1 RPM. The results are
plotted in Fig. 11. In terms of duty cycle, CC-MAC per-
forms poorly at small data arrival intervals, where CPCC-MAC
excels. BladeMAC performs the best for data arrival intervals
larger than 28 s. Above this point, CPCC-MAC’s period
estimation is not accurate enough to be worth the overhead.

CPCC-MAC shows predictable performance at lower data
arrival intervals, but above 56 s, its performance becomes
unpredictable. This is due to an interaction between the rota-
tion period, the period estimation error, and the data arrival
interval. If the data arrival interval is long enough that
the wakeup prediction is off by an entire period, then the
prediction becomes relatively accurate again.

D. Dynamic Rotation Speed

To evaluate BladeMAC’s resilience to changing rotation
speeds, simulations were run with a dynamic rotation speed
that imitates the behavior of the modeled turbine running at
rated speed in a turbulent wind flow. The results are shown
in Fig. 12. To model the dynamic rotation speed, we first
used NREL's FAST wind turbine simulation software [31] to
obtain traces of rotation speed for the 5 MW reference tur-
bine. A sample trace is shown in Fig. 13(a). We observed
that the rotation speed is characterized by random oscillations
around the rated speed. For our Cooja simulations, we gen-
erated rotation speed traces to mimic this behavior. In these
traces, the rotation speed fluctuates between set points that
are chosen uniformly from the range shown on the x-axis,
centered at 12.1 RPM. A new set point is reached every
20 s. The transition between set points is divided into dis-
crete intermediate points with a resolution of 0.01 RPM. We
generated ten random traces for each fluctuation range, and ran
at least ten simulations with different random seeds on each
trace.

As expected, CPCC-MAC and BladeMAC have a similar
duty cycle at zero variation (a constant speed of 12.1 RPM,
which matches the previous figures). However, BladeMAC has
the advantage with any amount of variation, even a range
of +0.2 RPM, which is a variation of less than 2% of the



542

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

(a) Average duty cycle of source.

Fig. 11.
tight to be visible on most points.

B0
o — |

il
Data arrival mterval

(b) Average delay per packet.

(c) Transmissions per packet.

Evaluation for different data arrival intervals, with a static 12.1 RPM rotation speed. Error bars in (a) show a 95% confidence interval, but are too

[
E
o+

3
"

B

= H
s El

= -4

—t

(S

M +

(a) Average duty cycle of source.

Fig. 12.
12.1 RPM. Error bars in (a) show a 95% confidence interval.

n RPM M

(b) Average delay

_

vr

O—

. 10 o n2 04 {LL) 0.8 10
Max -+ in RPM

[
Py

per packet. (c) Transmissions per packet.

Evaluation with a 28 s data arrival interval and dynamic rotation speed. The x-axis is the range of speeds allowed, in an interval centered on

= BladeMAC

b2
g

Wind spead] (m la] frotation speed [RPM)

0z 04 EL3

Max +j- in KM

(X3
Time (z)

Fig. 13. Additional figures for dynamic rotation speed. (a) Sample trace
of rotation speed from NREL’s FAST wind turbine simulation software [31].
(b) Expected source node lifetime, normalized to CC-MAC.

rotational speed. Overall, BladeMAC is shown to be insensi-
tive to rotation speed variation in all metrics, while CPCC-
MAC’s reliance on period estimation causes its performance
to suffer in these dynamic scenarios. Since CC-MAC does
not track the rotational speed in any way, its performance is
consistent.

Since this evaluation scenario is the most realistic in prac-
tice, we provide Fig. 13(b) to contextualize the energy results.
The figure shows expected energy lifetime of the source, nor-
malized to the expected lifetime of the source for CC-MAC.
This is a simple manipulation of the duty cycle, intended to
illustrate the difference a few percentage points of duty cycle
can make. We expect BladeMAC to have around twice the
lifetime of CC-MAC, regardless of the variations in rotation
speed. From another perspective, we expect that BladeMAC
can sustain operations with about half the energy harvesting
capabilities needed by CC-MAC.

E. Trace-Based Simulation

Fig. 14(a) shows a sample trace of performance of the pro-
tocols over the course of a day, showing the effect of the
large-scale wind speed changes that happen over long peri-
ods of time. For this figure, we obtained one day’s worth of

L M\Jw ;wm‘_ﬂi & n_: e i e = i g,,.-_b,‘,ﬁ-

Fig. 14. Trace studies. (a) Trace of duty cycle and delay performance over a
full day. Wind speeds are from real measurements at 80 m above the ground.
Rotation speeds are from NREL FAST simulations. Duty cycle and delay are
shown as a moving average with a 60-packet (about half an hour) window.
(b) Trace of the sensitivity window estimation process of BladeMAC, with a
data arrival interval of 28 s and a dynamic rotation speed of 12.1+ 1.0 RPM.

5-minute average wind speeds collected at a height of 80 m
by a meteorological tower in Iowa. These wind speeds were
fed into NREL’s FAST wind turbine simulation software, pro-
ducing the rotation speeds shown. These rotation speeds were
used in the Cooja simulation, with the data arrival interval set
to 28 s.

The figure shows that BladeMAC is the most robust to large-
scale wind speed changes, maintaining the lowest duty cycle
of the protocols. CPCC-MAC does not match BladeMAC even
when the rotation speed is relatively (but not perfectly) steady
between 3:00 and 6:00. Additionally, with CPCC-MAC’s
period estimation, the changes in rotation speed regularly
result in having to wait for the following rotation to send
a packet, which is reflected in CPCC-MAC’s high delay.
BladeMAC’s delay is inversely related to the rotation speed,
because a faster rotation speed means less time to wait for a
favorable interval.

F. Estimation Process

Finally, in Fig. 14(b), we present a sample trace of the sen-
sitivity window estimation process of BladeMAC. This trace
was taken from a simulation with dynamic rotation speed with



WYMORE AND QIAO: OPPORTUNISTIC MAC PROTOCOL FOR ENERGY-EFFICIENT WIRELESS COMMUNICATION 543

+1.0 RPM variation. The figure shows BladeMAC’s sensitiv-
ity window estimation, including the individual estimates, the
moving average that is used in practice, and the actual the-
oretical value of Tsgn, based on the channel model and the
instantaneous rotation speed. As expected, most estimates are
close to the theoretical value, and very few are larger than
the theoretical value. The moving average estimate remains
around 700 ms below the theoretical value. Therefore, to
further improve the energy savings of BladeMAC, a less con-
servative Tsgn estimation process could be developed and used
in practice.

VII. DISCUSSION
A. Potential Applications of BladeMAC

BladeMAC is intended for use with any sensing application
that can tolerate a small amount of communication delay (on
the order of one period of rotation). BladeMAC is designed
to be efficient for a wide range of data arrival intervals. Since
BladeMAC imposes no communication overhead on the source
node until data is ready to transmit, and since BladeMAC is
designed to transmit packets in bursts, an application running
over BladeMAC should aggregate as many data readings as
possible before handing them off to the network stack.

BladeMAC'’s design is purposely decoupled from the type
of sensor hardware on the source node and the type of data
being gathered; however, we here offer some general ideas on
uses for WSN nodes deployed on wind turbine blades.

1) Damage Detection: The source node’s sensors could
measure damage indicators, which could be tracked over time
or compared to indicators from similar turbines in the wind
farm. Example sensors include accelerometers (for vibration-
based damage detection, e.g., [32]), strain sensors, or even a
smart sensing skin [6]. Acoustic emissions monitoring of wind
turbine blades with WSNs have also been proposed [5].

2) Advanced Control: The source node’s sensors could
provide feedback for an advanced control scheme, such as
an independent blade pitching scheme designed to minimize
stresses on the blades [33].

3) Blade Model Validation: The source node’s sensors
could measure quantities of interest to researchers, such as
stress hotspots throughout the blade’s rotation, that could be
used to validate models used in blade design.

4) Ice Detection: The source node’s sensors could provide
early warning of ice buildup on the wind turbine’s blades,
activating control adjustments or a de-icing solution.

B. Practical Considerations for BladeMAC

1) Blade Pitch: Modern utility-scale wind turbines can
adjust the pitch of their blades, which will change the ori-
entation of the source node relative to the sink. This will have
minimal effect on BladeMAC as long as the RSS readings
from the channel still peak above WFAV,

2) Wind Turbine Yaw: Modern utility-scale wind turbines
point themselves (yaw) into the wind during operation, mean-
ing that the sink will not always be on the side of the tower
directly facing the rotor blades. As with pitch, BladeMAC
will still function as long as the RSS readings from the chan-
nel peak above WFAY, However, path loss through the hollow

steel tower may be severe. This problem can be alleviated by
deploying two sinks, on opposite sides of the tower.

3) Parked State: Wind turbines are sometimes “parked,” or
non-operational, due to low wind speeds, maintenance, or cur-
tailment. During these times, the blades either do not rotate or
only rotate idly. If the blades stop while the source and sink
are not within communication range of each other, BladeMAC
will not be able to function, and could waste energy attempting
to communicate. A cyber-physical approach to this problem
could be to allow the source node to use data from outside of
the network stack, such as from an accelerometer, to detect this
condition and suspend BladeMAC. If this approach is not pos-
sible, we propose an optional recovery mode for BladeMAC.
BladeMAC enters recovery mode when it is attempting to
send data but has not heard any beacons from the sink in
kTG™, where TG™ is the turbine’s maximum rotation period
and k is a multiplier (e.g., kK = 3) that represents how quickly
BladeMAC resorts to recovery mode. In recovery mode, the
source node 1) sets the sensitivity window estimate to a min-
imum, fSEN = 2Tg, to ensure that beacons are not being
missed due to poor window estimation, and 2) begins an on/off
cycle in which it first listens for beacons for TgH™, using
BladeMAC’s normal rules, and then suspends BladeMAC’s
rules and sleeps for mT(™, before repeating the cycle.

Here, m is a multiplier that determines how aggressive the
source is in trying to reestablish communication, with the
tradeoff being that a smaller m leads to more energy con-
sAumption. One possible value for m is m = TsgN'/2Tg, where
Tsen' is the sensitivity window estimate the source had before
entering recovery mode. This choice for m gives the source
roughly the same energy consumption in recovery mode as it
had during the wait state prior to entering recovery mode.

4) Channel Contention: Multiple source nodes on the same
blade may need to communicate with the same sink. In this
case, BladeMAC can be extended with a method for resolving
contention. One option is retransmission with a backoff win-
dow, as in RI-MAC [19]. Since the nodes on the blades are
not mobile relative to each other, the sink could also assign a
permanent backoff time to each source.

5) Node Packaging: All nodes must be packaged to with-
stand severe weather, and may need special protection for
lightning strikes. Source nodes must have an aerodynamic pro-
file or be embedded into the composite material of the blade.
Nodes could also be placed inside hollow blades, but this
would limit access and energy harvesting options and increase
path loss. Regardless of placement, source nodes would likely
need to be bonded to the blades or potentially covered with an
extra layer of blade material. The sink poses less of a challenge
due to relaxed size requirements. Solar panels, or even micro
wind turbines, could provide energy harvesting for the sink.
Magnets could be used to attach the sink to a steel wind tur-
bine tower, possibly using a drone for deployment and wireless
battery charging.

VIII. CoNCLUSION

We have presented BladeMAC, a radio duty-cycling
MAC protocol designed specifically for wireless sensor
nodes deployed on rotating wind turbine blades. BladeMAC
addresses the cyclical channel problem created by this



544 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

scenario, and we showed through Cooja simulations that
BladeMAC’s approach is effective regardless of rotation speed,
data arrival interval, and rotation speed variation. We have also
discussed a variety of practical applications and considerations
for BladeMAC.

BladeMAC represents a practical solution for a wind tur-
bine blade deployment using conventional WSN hardware.
Possible future work is to investigate alternative approaches
using emerging technologies. For example, the source node
could use a secondary, extremely low-power wake-up radio
system [34] to respond to a wake-up call from the sink, instead
of relying on idle listening and RSS samples. Or, the source
node could use information from outside of the network stack,
such as from an accelerometer, to track the rotation of the
blade and time communications accordingly.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] “Global wind report: Annual market update 2015,” Glob. Wind
Energy Council, Brussels, Belgium, Rep., Apr. 2016. [Online].
Available: http:/fwww.gwec.net/wp-content/uploads/vip/GWEC-Global-
Wind-2015-Report_April-2016_22_04.pdf

[2] Digital Wind Farm: The Next Evolution of Wind Energy, GE Renew.
Energy, Fairfield, CT, USA, May 2016, pp. 1-5.

[3] M. L. Wymore, J. E. Van Dam, H. Ceylan, and D. Qiao, “A survey of
health monitoring systems for wind turbines,” Renew. Sustain. Energy
Rev., vol. 52, pp. 976-990, Dec. 2015.

[4] M. Ozbek and D. J. Rixen, “Operational modal analysis of a 2.5 MW
wind turbine using optical measurement techniques and strain gauges,”
Wind Energy, vol. 16, no. 3, pp. 367-381, Apr. 2012.

[5] O.M. Bouzid, G. Y. Tian, K. Cumanan, and D. Moore, “Structural health
monitoring of wind turbine blades: Acoustic source localization using
wireless sensor networks,” J. Sensors, vol. 2015, pp. 1-11, Dec. 2015.

[6] A. Downey, S. Laflamme, and F. Ubertini, “Experimental wind tunnel
study of a smart sensing skin for condition evaluation of a wind turbine
blade,” Smart Mater. Struct., vol. 26, no. 12, pp. 1-11, 2017.

[7] 1. M. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a
5-MW reference wind turbine for offshore system development,” NREL,
Golden, CO, USA, Rep. TP-500-38060, Feb. 2009.

[8] Z. A. Eu, H.-P. Tan, and W. K. G. Seah, “Wireless sensor networks
powered by ambient energy harvesting: An empirical characterization,”
in Proc. IEEE ICC, May 2010, pp. 1-5.

[9] Texas Instruments. (2017). The SensorTag Story. Accessed:

Nov. 3, 2017. [Online]. Available: http://www.ti.com/ww/en/wireless_

connectivity/sensortag/

(2017). SpectraQuest, Inc. Accessed: Nov. 3, 2017. [Online]. Available:

http://spectraquest.com/

[11] M. L. Wymore and D. Qiao, “BladeMAC: Radio duty-cycling in a
dynamic, cyclical channel,” in Proc. IEEE ICC, Paris, France, 2017,
pp. 1-7.

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and

flexible operating system for tiny networked sensors,” in Proc. IEEE

LCN, Tampa, FL, USA, 2004, pp. 455-462.

P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The evolution of

MAC protocols in wireless sensor networks: A survey,” IEEE Commun.

Surveys Tuts., vol. 15, no. 1, pp. 101-120, 1st Quart., 2013.

[14] T. van Dam and K. Langendoen, “An adaptive energy-efficient
MAC protocol for wireless sensor networks,” in Proc. ACM SenSys,
Los Angeles, CA, USA, 2003, pp. 171-180.

[15] T. Watteyne, M. Palattella, and L. Grieco, *“Using IEEE 802.15.4e time-
slotted channel hopping (TSCH) in the Internet of Things (IoT): Problem
statement,” Internet Eng. Task Force, Fremont, CA, USA, RFC 7554,
May 2015, accessed: Nov. 3, 2017. [Online]. Available: https:/fwww.rfc-
editor.org/info/rfc7554

[10]

[13]

[16] . Polastre, J. Hill, and D. Culler, “Versatile low power media access for
wireless sensor networks,” in Proc. ACM SenSys, Baltimore, MD, USA,
2004, pp. 95-107.

[17] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks,” in
FProc. ACM SenSys, Boulder, CO, USA, 2006, pp. 307-320.

[18] A. Dunkels, “The ContikiMAC radio duty cycling protocol,” SICS,

Stockholm, Sweden, Rep. 5128, Jan. 2012.

Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: A receiver-initiated

asynchronous duty cycle MAC protocol for dynamic traffic loads in

wireless sensor networks,” in Proc. ACM SenSys, Raleigh, NC, USA,

2008, pp. 1-14.

R. Rajkumar, 1. Lee, L. Sha, and J. A. Stankovic, “Cyber-physical

systems—The next computing revolution,” in Proc. Design Autom.

Conf., Anaheim, CA, USA, 2010, pp. 731-736.

P. Kindt, H. Jing, N. Peters, and S. Chakraborty, “ExPerio—Exploiting

periodicity for opportunistic energy-efficient data transmission,” in Proc.

IEEE INFOCOM, 2015, pp. 82-90.

Y. Leng et al., “Study on electromagnetic wave propagation charac-

teristics in rotating environments and its application in tire pressure

monitoring,” JEEE Trans. Instrum. Meas., vol. 61, no. 6, pp. 1765-1777,

Jun. 2012.

R. Matsuzaki and A. Todoroki, “Wireless monitoring of automobile tires

for intelligent tires,” Sensors, vol. 8, no. 12, pp. 8123-8138, 2008.

[24] X. Chen, S. Jin, and D. Qiao, “M-PSM: Mobility-aware power save

mode for IEEE 802.11 WLANSs,” in Proc. IEEE ICDCS, Minneapolis,

MN, USA, 2011, pp. 77-86.

P. Mukherjee, D. Mishra, and S. De, “Exploiting temporal correlation

in wireless channel for energy-efficient communication,” IEEE Trans.

Green Commun. Netw., vol. 1, no. 4, pp. 381-394, Dec. 2017.

[26] T. Rappaport, Wireless Communications: Principles and Practice,
End_‘ ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[27] F. Osterlind, “A sensor network simulator for the Contiki OS,” SICS,
Stockholm, Sweden, Rep. T2006:05, Feb. 2006.

[28] A. Dunkels, F. Osterlind, and Z. He, “An adaptive communication archi-

tecture for wireless sensor networks,” in Proc. ACM SenSys, Sydney,

NSW, Australia, 2007, pp. 335-349.

P. Deshpande. (Nov. 2014). Mobility of Nodes in Cooja. Accessed:

Nov. 3, 2017. [Online]. Available: http://anrg.usc.edu/contiki/

index.php/Mobility_of_Nodes_in_Cooja

P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and scal-

able simulation of entire TinyOS applications,” in Proc. ACM SenSys,

Los Angeles, CA, USA, 2003, pp. 126-137.

[31] National Renewable Energy Laboratory. (Jul. 2017). NWTC Information
Portal (FAST v8). Accessed: Nov. 5, 2017. [Online]. Available:
https://nwtc.nrel.gov/FASTS

[32] W. Yang, Z. Lang, and W. Tian, “Condition monitoring and damage
location of wind turbine blades by frequency response transmissibility
analysis,” JEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6558-6564,
Oct. 2015.

[33] E. A. Bossanyi, “Individual blade pitch control for load reduction,” Wind
Energy, vol. 6, no. 2, pp. 119-128, 2003.

[34] 1. Oller et al., “Has time come to switch from duty-cycled MAC proto-
cols to wake-up radio for wireless sensor networks?” IEEE/ACM Trans.
Netw., vol. 24, no. 2, pp. 674687, Apr. 2016.

[19]

[20]

[21]

[22]

[23]

[25]

[29]

[30]

Mathew L. Wymore (S°14) is currently pursuing
the Ph.D. degree in wind energy science, engineering
and policy with a co-major in computer engineering
with Iowa State University. His research explores the
use of wireless sensor networks for monitoring and
management of wind energy infrastructure, with a
focus on wireless communication protocols.

Daji Qiao (M’04-SM’17) received the Ph.D.
degree in electrical engineering: systems from the
University of Michigan, Ann Arbor, in 2004
He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA. His research
interests include cyber security, wireless networking
and mobile computing, sensor networks, and Internet
of Things. He is a member of the ACM.



