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Abstract. We study invariant random subgroups (IRSs) of semidirect products G = A o 0.
In particular, we characterize all IRSs of parabolic subgroups of SLd(R), and show that all
ergodic IRSs of Rd o SLd(R) are either of the form Rd o K for some IRS of SLd(R), or
are induced from IRSs of 3o SL(3), where 3< Rd is a lattice.

1. Introduction
Let G be a locally compact, second countable group and let SubG be the space of closed
subgroups of G, considered with the Chabauty topology [10].

Definition 1. An invariant random subgroup (IRS) of G is a random element of SubG
whose law is a conjugation invariant Borel probability measure.

IRSs were introduced by Abért, Glasner and Virág in [2], and independently by
Vershik [22] (under a different name) and the second author [7]. Examples of IRSs include
normal subgroups, as well as random conjugates g0g−1 of a lattice 0 < G, where the
conjugate is chosen by selecting 0g randomly against the given finite measure on 0\G.
More generally, any IRS of a lattice 3< G induces an IRS of G: if µ0 is the law of the
original IRS and η is a G-invariant probability measure on 0\G, the new law µG is given
by the integral

µG =

∫
0g∈0\G

g∗µ0 dη,

where µ0 is regarded as a measure on Sub0 ⊂ SubG , and g acts on SubG by conjugation.
Informally, we conjugate the IRS of 0 by an ‘η-random’ element of G. Since SubG is
compact [5, Lemma E.1.1], the space of (conjugation invariant) Borel probability measures
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on SubG is weak* compact, by Riesz’s representation theorem and Alaoglu’s theorem.
Hence, IRSs compactify the set of lattices in G. There is a growing literature on IRSs (see,
e.g., [3, 6, 8, 9, 19]) and their applications, see especially [1, 7, 13, 21].

Our goal in this paper is to develop an understanding of IRSs of semidirect products
G = A o 0. There are few general constructions of such IRSs: there is the trivial IRS {e},
and IRSs of the form A o K , where K is an IRS of 0. When the kernel 0triv of the action
0 � A is non-trivial, one can also construct IRSs of the form H o K , where H is an IRS
of A and K is an IRS of 0 that lies in 0triv, but additional examples are hard to find.

The kernel of our work are Theorems 2.6 and 2.7, in which we study ‘transverse’ IRSs
of G = A o 0 when A is torsion-free abelian or simply connected nilpotent. Here, an IRS
H < G is transverse if H ∩ A = {0}. This theorem has two parts: when A is torsion-free
abelian, we prove that the projection of H to 0 acts trivially on A almost surely, and if
A is a simply connected nilpotent Lie group, we show that an (often large) subgroup of
0 acts precompactly on the Zariski closure of the set of all first coordinates of elements
(v, M) ∈ H , as H ranges through the support of the IRS.

As applications of Theorems 2.6 and 2.7, we study IRSs of two familiar semidirect
products: the special affine groups Rd o SLd(R) and the parabolic subgroups of SLd(R).

1.1. IRSs of special affine groups. We are particularly interested in IRSs of Rd o
SLd(R). In addition to the examples {e} and Rd o K mentioned above, one can construct
an IRS from a lattice 3⊂ Rd . Namely, the subgroup SL(3) < SLd(R) stabilizing 3 is
also a lattice, see [17], so the semidirect product 3o SL(3) is a lattice in Rd o SLd(R),
and hence a random conjugate of it is an IRS.

THEOREM 1.1. Let H be a non-trivial ergodic IRS of Rd o SLd(R). Then either:
(1) H = Rd o K for some IRS K < SLd(R); or
(2) H is induced from an IRS of 3o SL(3) for some lattice 3< Rd .

Here, an IRS is ergodic if its law is an ergodic measure for the conjugation action of G
on SubG . By Choquet’s theorem [16], every IRS can be written as an integral of ergodic
IRSs. Note that by transitivity of the action of SLd(R) on the space of lattices of a fixed
covolume, we can actually choose 3 in item (2) to be a scalar multiple of Zd .

As a corollary, any normal subgroup of Rd o SLd(R) is of the form Rd o K where K is
a normal subgroup of SLd(R). (Here, K = {e}, SLd(R) or {±I }, where the last option is
only available when d is even.) Similarly, it follows that every lattice of Rd o SLd(R)
is a finite index subgroup of some 3o SL(3). We expect that these results are not
entirely surprising, although we note that [11, Theorem 4.8] states that Rd o SLd(R) has
no uniform lattices, which follows trivially from this classification.

Stuck and Zimmer [18] show that for d > 2, every ergodic IRS of SLd(R) is either a
lattice or a normal subgroup. This result, together with Theorem 1.1, implies that for d > 2
every ergodic IRS of Rd o SLd(R) is likewise either a lattice or a normal subgroup.

In light of Theorem 1.1, to understand IRSs in special affine groups it suffices to study
those of G = Zd o SLd(Z). There are the usual examples {e} and Zd o K , where K is an
IRS of SLd(Z), but in general, some subtle finite group theory appears. For instance, let

πn : G→ (Z/nZ)d o SLd(Z/nZ)
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be the reduction map and setting d = 2, consider the subgroup

H = {((t, 0),
(

1 1
0 1
)t
) | t ∈ Z/nZ}< (Z/nZ)d o SLd(Z/nZ).

The preimage π−1
n (H) is a finite index subgroup of G, and therefore can be considered

as an IRS, but it does not have the form 3o K for any 3< Zd , K < SLd(Z). However,
we will show that all IRSs of G are semidirect products up to some ‘finite index noise’.
Namely, let

Gn = Ker πn = nZd o 0(n),

where 0(n) is the kernel of the reduction map SLd(Z)→ SLd(Z/nZ). We prove the
following.

THEOREM 1.2. Let H be a non-trivial ergodic IRS of Zd o SLd(Z). Then there is some
n ∈ N such that Hn = H ∩ Gn is of the form nZd o K , where K is an IRS of SLd(Z).

Remark 1. In the case of G = SLn(Z), the Nevo–Stuck–Zimmer theorem says that any
ergodic IRS of G is either a finite index almost surely, or is central in G, see [15, 18].
Bekka [4] later generalized this to a rigidity statement about the characters of G.
Here, an IRS with law µ gives the character φ : G→ [0, 1],where φ(g)= µ({H ∈ SubG |

g ∈ H}).
Specializing Bekka’s proof to the case of IRSs, Theorem 1.2 can be used in place of his

§§4 and 5 (and a bit of 6) in a fairly elementary proof of the Nevo–Stuck–Zimmer theorem
for G = SLn(Z). Namely, suppose that H ≤ G is an ergodic infinite index IRS. Writing

Zn
= 〈x1〉 ⊕ · · · ⊕ 〈xn〉,

we can let Pi ∼= Zn−1 o SLn−1(Z) be the parabolic subgroup of G that is the stabilizer of
xi , and let Vi ∼= Zn−1 be the corresponding unipotent subgroup of Pi . Theorem 1.2 says
that, for each i , either H ∩ Pi is almost surely trivial or H almost surely contains a lattice
in Vi . If, for every i , we have that H ∩ Vi is a lattice in Vi almost surely, then there is some
m such that almost surely H contains the mth powers of all elementary matrices, which
implies H is finite index, e.g. by Tits [20]. So, we can assume that for some i , H ∩ Pi

is trivial. Similarly, we can assume that H ∩ P t
j is trivial for some j , where P t

j is the
parabolic subgroup one gets by taking the transposes of all the matrices in Pj . Moreover,
we can assume that i 6= j , since if Pi and P t

i were the only parabolics intersecting H
trivially, one would still get all possible mth powers of elementary matrices in H as above.
Switching indices so that (i, j)= (n, 1) puts us at the beginning of Bekka’s §6—and in
fact, we already know Lemma 15.

This gives a proof of the Nevo–Stuck–Zimmer theorem for SLn(Z) in which the only
ingredients are our Theorem 1.2 (which is actually easier to prove than much of the content
of this paper), the fact that the mth powers of all the elementary matrices generate a finite
index subgroup of SLn(Z), and the elementary arguments in [4, §6].

1.2. IRSs of parabolic subgroups of SLd(R). Suppose that W = Rd is a finite-
dimensional real vector space, written as a direct sum

W = S1 ⊕ · · · ⊕ Sn
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of subspaces, and that F is the associated flag

0=W0 < W1 < · · ·< Wn =W, Wk =

k⊕
i=1

Si .

Let P < SL(W ) be the corresponding parabolic subgroup, i.e. the stabilizer of the flag
F, and let V < P be the associated unipotent subgroup, consisting of all A ∈ P that act
trivially on each of the factors Wi/Wi−1. We then have

P = V o R, R =
{
(A1, . . . , An) ∈

n∏
i=1

GL(Si )

∣∣∣∣ ∏
i

det Ai = 1
}
.

Elements of P can be considered as upper triangular n × n-matrices, where the i j th entry
is an element of L(S j , Si ), the vector space of linear maps S j → Si . Elements of R are
diagonal matrices, and elements of V are upper unitriangular.

Take a subset E⊂ {1, . . . , n}2 consisting of pairs (i, j) with i < j and such that
if (i, j) ∈ E, then (i ′, j), (i, j ′) ∈ E for i ′ < i and j ′ > j . So, imagining elements of
E as corresponding to matrix entries, we are considering subsets of entries above the
diagonal, that are closed under ‘going up’ and ‘going to the right’. Let VE < P be the
normal subgroup consisting of all matrices that are equal to the identity matrix except at
entries corresponding to elements of E, and let KE < R be the kernel of the R-action (by
conjugation) on V/VE.

THEOREM 1.3. (IRSs of parabolic subgroups) The ergodic IRSs of P are exactly the
random subgroups of the form VE o K , where K is an ergodic IRS of KE.

The subgroups VE above are exactly the normal subgroups of P that lie in V . So, a
special case of the theorem is that an ergodic IRS of P that is contained in V is a normal
subgroup of P . In fact, when proving Theorem 1.3, one first proves this special case,
and then applies it to H ∩ V when H is a general ergodic IRS of P . Once one knows
H ∩ V = VE, the statement of Theorem 1.3 is not a surprise, since the only obvious way
to construct an IRS H with H ∩ V = VE is to take a semidirect product with an IRS of KE.

The group KE can be described explicitly via matrices. Let I be the set of all
i ∈ {1, . . . , n} such that if i < n, then (i, i + 1) ∈ E, and if i > 1, then (i − 1, i) ∈ E.
Then (A1, . . . , An) acts trivially on V/VE exactly when, for each maximal interval
{i, . . . , j} ⊂ {1, . . . , n}r I, there is some λ ∈ Rr {0} such that Ai = · · · = A j = λI.
In a picture, if E consists of the starred entries below, then (A1, . . . , An) ∈KE can be
any diagonal matrix with the diagonal entries below, subject to the additional condition∏

i det Ai = 1: 

λI 0 ? ? ? ? ? ?

0 λI ? ? ? ? ? ?

0 0 A3 ? ? ? ? ?

0 0 0 µI 0 0 ? ?

0 0 0 0 µI 0 ? ?

0 0 0 0 0 µI ? ?

0 0 0 0 0 0 A7 ?

0 0 0 0 0 0 0 A8


. (1)
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This means that KE is isomorphic to the determinant 1 subgroup of a direct product of
general linear groups. Note that the conjugation action of every element of R on KE is
equal to a conjugation by an element of KE, since R is generated by KE and its centralizer.
So, every IRS of KE is an IRS of R.

1.3. Plan of the paper. The paper is organized as follows. In §2, we establish some
preliminary results: we introduce in §2.1 a useful co-cycle associated to an IRS in A o 0,
prove two facts about finite measure preserving linear actions in §2.2, and prove the result
about transverse IRSs in §2.3. Section 3 concerns IRSs of parabolic subgroups, and in §4
we prove Theorems 1.1 and 1.2.

2. IRSs in general semidirect products
In this section we study semidirect products G = A o 0, where 0 acts on A by
automorphisms. As above, pr is the natural projection G→ 0.

2.1. The cocycle SH . Let H be a subgroup of G. For each M ∈ pr H let

SH (M)= {v ∈ A : (v, M) ∈ H}.

Then SH (I )= H ∩ A is a subgroup of A where I ∈ 0 denotes the identity element.
Let (v, M), (w, N ) ∈ H . Then (v, M) · (w, N )= (v · Mw, M N ) ∈ H . It follows that

SH (M N )= SH (M) · M SH (N ), (2)

where multiplication here denotes that of sets: B · C = {b · c : b ∈ B, c ∈ C}.

CLAIM 2.1. If M ∈ pr H, then SH (M) is a left coset of SH (I ).

Here, Claim 2.1 and Equation (2) say that SH is a cocycle SH : pr H → SH (I )\A.

Proof. Suppose that (v, M) and (w, M) are elements of H . Then

H 3 (v, M) · (w, M)−1
= (v, M) · (M−1w−1, M−1)= (v · M M−1w−1, I )= (vw−1, I ).

And if (v, M) and (x, I ) are elements of H , we have

H 3 (x, I ) · (v, M)= (x · Iv, M)= (xv, M). �

We end this section with a useful observation. As we will apply it only when A is
abelian, we use additive notation here. Let (w, N ) be an arbitrary element of G, and
let (v, M) ∈ H . Then (v, M)(w,N ) = (N−1v + N−1(M − I )w, M N ) ∈ H (w,N ). (Here,
ab
= b−1ab.) Hence

SH (w,N )(M N )= N−1SH (M)+ N−1(M − I )w. (3)

2.2. Group actions preserving finite measures. Here are four useful lemmas.

LEMMA 2.2. Suppose that G is a locally compact second countable group, and the
induced action of Z ≤ Aut(G) on the space SubG preserves a finite measure µ that is
supported on lattices. Then Z preserves the Haar measure of G.
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Proof. For some n, the set S of lattices with covolume in [1/n, n] has positive measure.
If Z does not preserve Haar measure ν, then there exists some A ∈ Z with A∗ν = cν with
c > n2. The sets AiS, where i ∈ Z, are then all disjoint and have the same positive measure.
This is a contradiction. �

The three following lemmas are inspired by an argument Furstenberg used in his proof
of the Borel density theorem [12, Lemma 3].

LEMMA 2.3. Suppose that a group Z acts linearly on Rd preserving a finite measure m,
and V = Span(supp m). Then the image of the map Z→ GL(V ) is precompact.

Proof. Restricting, it suffices to prove the lemma when Span(supp m)= Rd . Let (zn)

be a sequence in Z . After passing to a subsequence, we can assume that there is some
subspace W ⊂ Rd such that the maps zn|W converge to some linear map z :W → Rd ,
while zn(x)→∞ if x ∈ Rd r W . For instance, one can take W to be any subspace that
is maximal among those for which there exists a subsequence (znk ) with the property that
znk (x) is bounded for all x ∈W , and then pass to a subsequence of such a subsequence.

If in the above we always have W = Rd , we are done. So, assume that W 6= Rd .
Pick a metric inducing the one-point compactification topology on Rd

∪∞ and let D :
Rd
∪∞→ R be the distance to the closed set z(W ) ∪∞. By the dominated convergence

theorem, ∫
D(x) dm(x)=

∫
D(zn(x)) dm(x)→ 0,

so m is supported on z(W ). But as W is a proper subspace, so is z(W ). This contradicts
our assumption that Span(supp m)= Rd . �

LEMMA 2.4. Suppose that Rd
=
⊕

i Li , a direct sum of subspaces, and that µ is a finite
Borel measure on the Grassmannian of k-dimensional subspaces of Rd . Suppose that,
for each j , there is a linear map A j : Rd

→ Rd that acts as a scalar map v 7→ λiv on
each subspace Li , satisfies λ j > λi for i 6= j , and induces a map on the Grassmannian
that preserves µ. Then µ is concentrated on subspaces W ⊂ Rd that are direct sums of
subspaces of the Li :

W =
⊕

i

Si , Si ⊂ Li .

Proof. The argument is similar to that of Lemma 2.3. Denote the Grassmannian of
k-subspaces of Rd by Gr(k, d), fix j and let Z j be the closed subset of Gr(k, d)
consisting of all subspaces of the form S j ⊕ P ′, where S j ⊂ L j and P ′ ⊂

⊕
i 6= j Li .

Given an element P ∈ Gr(k, d), let D j (P) be the distance from P to Z j , with respect
to some metric inducing the natural topology. Then, for each P ∈ Gr(k, d), we have
D((A j )

n(P))→ 0 as n→∞. Hence, the dominated convergence theorem says that∫
D(P) dµ(P)=

∫
D((A j )

n(P)) dµ(P)→ 0.

So, µ is supported on Z j . This works for all j , so the lemma follows. �
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LEMMA 2.5. Let V, W be two vector spaces and let L(V, W ) be the space of all linear
maps from V to W . Suppose that X ⊂ L(V, W ) is a random subspace whose law is
invariant under the action of SL(V )× SL(W ). Then almost surely, X is either {0} or
L(V, W ).

Here, (A, B) ∈ SL(V )× SL(W ) acts by sending T ∈ L(V, W ) to AT B−1.

Proof. SL(V )× SL(W ) is semisimple, and hence is a m.a.p. group, in the sense of
Furstenberg’s paper [12]. By [12, Lemma 3] and the exterior power trick in the subsequent
‘Theorem’, any finite SL(V )× SL(W )-invariant measure on the set of subspaces of
L(V, W ) is supported on subspaces that are invariant under the SL(V )× SL(W ) action.
But it is easy to check that the only such subspaces are the two trivial ones. �

Remark 2. The proof of Lemma 2.5 above is a bit silly since it relies on certain well-known
facts, e.g. that semisimple groups are m.a.p., that are considerably harder to prove than
Lemma 2.5 itself. Really, one can just prove the lemma by applying the arguments from
Furstenberg’s paper to certain well-chosen sequences of elements in SL(V )× SL(W ). We
encourage the reader to do this, while we lazily give the short proof above.

2.3. Transverse IRSs. Let A and 0 be locally compact, second countable topological
groups, and suppose that 0 acts by continuous automorphisms on A. Let 0triv be the kernel
of the action, and let G = A o 0 be the associated semidirect product.

We call a subgroup H ≤ G transverse if H ∩ A = {0}. For example, in the direct
product A × A, the diagonal subgroup is transverse, as is the second factor.

THEOREM 2.6. (Structure of transverse IRSs in semidirect products, part 1) Suppose that
G = Rd o 0 and H is a transverse IRS of G = Rd o 0. Then pr H ≤ 0triv almost surely.

Remark 3. Theorem 2.6 also applies when G = S o 0 and S is a closed subgroup of Rd .
Indeed, the 0-action on such an S extends to the span of S to which Theorem 2.6 applies,
and any transverse IRS of G = S o 0 induces a transverse IRS of G = span(S)o 0.

Remark 4. If the action 0 	 A is faithful (as it is, for example, in the case of the special
affine groups), then Theorem 2.6 implies there are no non-trivial transverse IRSs of G.
Also, note that the theorem fails when A is not torsion-free abelian. For instance, if A
is finite then a random conjugate of 0 is an IRS of A o 0. And if A is not abelian, the
antidiagonal

{(g, g−1) | g ∈ A} ⊂ A o A,

where a ∈ A acts on x ∈ A by a(x)= a−1xa, is a normal subgroup of A o A that does
not project into Atriv = Z(A). However, we expect that for general A, if H is a transverse
IRS of A o 0, then the action of any element of pr H on A is well approximated by inner
automorphisms of A in some sense.

Proof of Theorem 2.6. Let H be a non-trivial transverse IRS of G. In order to get a
contradiction, suppose that it is not the case that pr H ≤ 0triv almost surely. Then there
is an open subset U ⊂ 0 with compact closure such that U ∩ 0triv = ∅, and pr H ∩U 6= ∅
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with positive probability. In addition we choose U small enough so that for some w ∈ Rd ,
some 0< b1 < b2 ∈ R+ and some linear L : Rd

→ R, we have that

b1 ≤ L((M − I )w)≤ b2 for all M ∈U. (4)

Choose a left Haar measure µH on pr H . By [6, Claim A.2], this can be done so that
the µH vary continuously with H ∈ SubG , when regarded as measures on 0 ≥ pr H .

Because H is transverse, SH (M) is a single element of Rd for any M ∈ pr H . Selecting
first a random H ∈ SubG with pr H ∩U 6= ∅, and then a µH -random M ∈ pr H ∩U ,
we can interpret the cocycle SH (M) as an Rd -valued random variable. Here, note that
µH (pr H ∩U ) is always finite and non-zero, since pr H ∩U is non-empty, pre-compact
and open in H .

Taking w ∈ Rd as in the first paragraph of the proof, let Hw
= (w, I )−1 H(w, I ). Since

pr H = pr Hw, we get a map (H, M) 7→ (Hw, M) defined on the domain

{(H, M) | H ∈ SubG , pr H ∩U 6= ∅, M ∈ pr H ∩U } (5)

of the random variable SH (M). As H is an IRS, this map is measure preserving, so the
distributions of SHw (M) and SH (M) are equal, say to a probability measure mU on Rd .

By (3), we have SHw (M)= SH (M)+ (M − I )w for all M ∈ pr H = pr Hw. Iterating
the conjugation by w and using (4),

L(SH (M))+ nb1 ≤ L(SHnw (M))≤ L(SH (M))+ nb2 for all n ∈ N. (6)

This contradicts the fact that mU is a probability measure. For suppose that [a1, a2] ⊂ R
is an interval with mU (L−1([a1, a2])) > 0. For a sufficiently sparse sequence nk ∈ N, the
intervals [a1 + nkb1, a2 + nkb2] ⊂ R are all disjoint. Hence,

1≥
∑

k

mU (L−1
[a1 + nkb1, a2 + nkb2])≥

∑
k

mU (L−1
[a1, a2])=∞.

This contradiction proves the theorem. �

THEOREM 2.7. (Structure of transverse IRSs in semidirect products, part 2) Suppose
that G = A o 0, A is a simply connected nilpotent Lie group, H is a transverse IRS of
G = A o 0 and λ is the law of H. Let

H =
⋃

H∈supp λ

H.

If V⊆ A is the Zariski closure of the set of first coordinates of all (v, M) ∈H, then V is
0-invariant and the image of the map Z(pr H)→ Aut(V) is precompact.

Here Z(pr H) denotes the centralizer of pr H in 0, and the Zariski closure of a subset
of A is the smallest connected Lie subgroup of A containing that subset.

Remark 5. Theorem 2.7 also applies when G = S o 0 and S is a closed subgroup of some
simply connected nilpotent Lie group A. Indeed, the 0-action on such an S extends to the
Zariski closure S [17, Theorem 2.11], to which Theorem 2.7 applies, and any transverse
IRS of G = S o 0 induces a transverse IRS of G = S o 0. See [17, Ch. II] for more
information about the ‘Zariski closure’ operation in simply connected nilpotent Lie groups,
which behaves very similarly to ‘span’ in Rd .
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Remark 6. To illustrate Theorem 2.7, suppose that A = 0 = R2 and (s, t) ∈ 0 acts by a
rotation on A with angle s. Then if

Hθ = {((t cos θ, t sin θ), (0, t)) | t ∈ R} ≤ A o 0,

we obtain a transverse IRS of G = A o 0 by randomly picking θ ∈ [0, 2π ] against
Lebesgue measure. Here, the centralizer Z(pr H) is all of 0, which acts compactly on A.

Proof of Theorem 2.7. The 0-invariance of V is immediate. For if N ∈ 0 and (v, M) ∈H,
then

(e, N )−1(v, M)(e, N )= (N−1v, N−1 M N ). (7)

Here, we write e for the identity element since A is not necessarily abelian. As supp λ is
conjugation invariant, the set of all v ∈ A such that (v, M) ∈H for some M is 0-invariant.
Hence, its Zariski closure V is also 0-invariant.

As in the proof of Theorem 2.6, choose U ⊂ 0 with compact closure such that pr H ∩
U 6= ∅ with positive probability. Let N ∈ Z(pr H) and write H N

= (e, N )−1 H(e, N ).
Substituting N−1 M N = M in (7) we see that pr H = pr H N , so as before the distribution
of SH N (M) is the same as mU , the distribution of SH (M). Now, though, (7) implies that

SH N (M)= N−1(SH (M)).

So, the measure mU on A is Z(pr H)-invariant.
Since A is a simply connected nilpotent Lie group, there is a diffeomorphism log :

A→ a to the Lie algebra a that is an inverse for the Lie group exponential map
[14, 1.127]. Then log∗ mU is a probability measure on a that is invariant under the
induced action of Z(pr H) on a. By Lemma 2.3, Z(pr H) acts precompactly on the span
VU = Span(supp log∗ mU ), and therefore it acts precompactly on the sum V of all VU , as
U ranges over all possible choices. But the Zariski closure V= exp(V ), so then Z(pr H)
acts precompactly on V as well. �

We present an easy corollary of Theorem 2.6.

COROLLARY 2.8. The only ergodic IRSs of the affine group Ro R+ are the point masses
on its closed, normal subgroups: {e}, R, Ro R+ and Ro {αn

| n ∈ Z}, where α > 0.

Note that this stands in contrast to other metabelian groups (e.g., lamplighter groups)
that have a rich set of invariant random subgroups [9].

Proof of Corollary 2.8. Let H be a non-trivial ergodic IRS of Ro R+. If H is transverse,
then pr H = {1} ∈ R+, by Theorem 2.6. Hence H = {e}.

Otherwise, the random subgroup H ∩ R⊂ R is non-trivial almost surely, and its law is
invariant under the R+ action (i.e., multiplication by a scalar). So, H ∩ R= R almost
surely, and H = Ro pr H . But pr H is an ergodic IRS of R+, and thus must be a
point mass on either {1}, R+ or Ro {αn

| n ∈ Z}, where α > 0. We have thus proved
the claim. �
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3. IRSs of parabolic subgroups
To recap our notation: W = S1 ⊕ · · · ⊕ Sn is a real vector space, F is the associated flag

0=W0 < W1 < · · ·< Wn =W, Wk =

k⊕
i=1

Si ,

P < SL(W ) is the parabolic subgroup stabilizing F, V < P is the unipotent subgroup of
all A ∈ P that act trivially on each of the factors Wi/Wi−1, and

P = V o R, R =
{
(A1, . . . , An) ∈

n∏
i=1

GL(Si )

∣∣∣∣ ∏
i

det Ai = 1
}
.

Also, E⊂ {1, . . . , n}2 will denote a subset of pairs (i, j) with i < j that is closed
under ‘going up’ and ‘going to the right’, and we will let VE < P be the normal
subgroup consisting of all matrices that are equal to the identity matrix except at entries
corresponding to elements of E. Let KE < R be the kernel of the R-action (by conjugation)
on V/VE.

The goal of this section is to prove Theorem 1.3, i.e. that the ergodic IRSs of P are
exactly the random subgroups of the form VE o K , where K is an ergodic IRS of KE.

We start with the following lemma.

LEMMA 3.1. Suppose that H is an invariant random subgroup of P that lies in V . Then
almost surely, H = VE for some E.

Proof. Regard V as the space of upper unitriangular block matrices, where the i j th entry
is in L(S j , Si ). It suffices to show that almost surely, H is a ‘matrix entry subgroup’, i.e.
a subgroup determined by prescribing that some fixed subset of the matrix entries are all
zero. As there are only finitely many such subgroups, it will follow that almost surely, H
is a matrix entry subgroup of V that is a normal subgroup of P . A quick computation with
elementary matrices shows that the only such subgroups are the VE described above.

Let H0 and H be the identity component and Zariski closure of H , respectively,
recalling that the Zariski closure of a subgroup is the smallest connected Lie subgroup
of V containing it. (See [17, Chapter II].) Then H0 and H are both R-invariant random
subgroups of V . Let h0 and h be the associated Lie algebras, which are R-invariant random
subspaces of the Lie algebra v of V . One can identify v with the set of all strictly upper
triangular block matrices, where the i j th entry is an element of L(S j , Si ). If we identify
L(S j , Si ) with the subspace of v consisting of matrices that are non-zero at most in the
i j th entry, then

v=
⊕
i< j

L(S j , Si ).

The action R � v leaves all the factors L(S j , Si ) invariant. Given k < l, let A be the
matrix that has a 2I in the kkth entry and a 1

2 I in the llth entry, and is otherwise equal
to the identity matrix. Then the matrix (1/det A)A lies in R, and acts by conjugation on
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each L(S j , Si ) as the scalar matrix (λi j/det A)I , where

λi j =


4, (i, j)= (k, l),

2, i = k, j 6= l or j = l, i 6= k,
1
2 , i = l or j = k, and i 6= j,

1 otherwise.

(8)

Applying Lemma 2.4 to the direct sum v=
⊕

i< j L(S j , Si ), considered together with
the actions of all the matrices A obtained by varying k, l, we see that almost surely,
both h0 and h are direct sums of subspaces of the factors L(S j , Si ). However, the only
R-invariant random subspaces of a fixed factor L(S j , Si ) are the zero subspace and the
entire L(S j , Si ). (This follows immediately from Lemma 2.5, since one can embed
SL(Si )× SL(S j ) ↪→ R by taking (A, B) to the element of R that has A ∈ L(Si , Si )

in the i i th entry and B ∈ L(S j , S j ) in the j j th entry, and is otherwise equal to the
identity matrix.) Hence, h0 and h are almost always direct sums of the factors L(S j , Si )

themselves, rather than subspaces thereof. In other words, H0 and H are matrix entry
subgroups almost surely.

Now H0 ⊂ H ⊂ H , so if H0 = H , then H is a matrix entry subgroup as desired. So,
after restricting the law of H , we may assume that almost surely H0 and H are fixed matrix
entry subgroups and that H0 ( H . As H is an IRS of P , H0 is a normal subgroup of P .
We can then project H to a P-invariant random subgroup H/H0 of the quotient group
H/H0. Since V is a nilpotent Lie group, the sub-quotient group H/H0 is as well. Every
Zariski dense subgroup of a nilpotent Lie group is a lattice (cf. [17, Theorem 2.3]), so the
P-invariant random subgroup H/H0 < H/H0 is a lattice almost surely. Lemma 2.2 then
implies that the P action on H/H0 preserves Haar measure.

But if D is the set of matrix entries that in H are free to take on any value, and in H0

are prescribed to be zero, then there is a diffeomorphism

H/H0→
⊕

(i, j)∈D

L(S j , Si )

that takes a matrix in H to the list of its D-entries. If Lebesgue measures are chosen on the
Euclidean spaces L(S j , Si ), the resulting product measure pulls back to a Haar measure
on H/H0. So, one can witness that the action R � H/H0 does not preserve Haar measure
as follows. Let imin be the minimum i such that there is some (i, j) ∈D, and imax be the
maximum i such that there is some ( j, i) ∈D, and define A ∈ R by letting

Ai i =


21/ dim(Simin ) I, i = imin,

2−1/ dim(Simax ) I, i = imax,

I otherwise.

This A acts diagonally on
⊕

(i, j)∈D L(Si , S j ), and the action is scalar in each factor.
Moreover, there are no entries of D directly above the imin diagonal entry, and no
entries to the right of the imax diagonal entry, so the eigenvalues of the action of A
on
⊕

(i, j)∈D L(Si , S j ) are 1, 21/ dim(Simin ) and 21/ dim(Simax ). Hence, A cannot preserve
Lebesgue measure. �
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Now suppose that H is an ergodic IRS of P = V o R. Lemma 3.1 implies that there is
some E such that H ∩ V = VE almost surely. Applying Theorem 2.6 to the transverse IRS
that is the projection of H to (V/VE)

ab o R, where ( · )ab is abelianization, we see that
pr H ⊂ R almost surely acts trivially on (V/VE)

ab. But if A is the set of super diagonal
entries in our block matrices that do not lie in E, there is an isomorphism

(V/VE)
ab
→

⊕
(i, j)∈A

L(Si , S j )

that comes from taking a matrix in V to its list of A-entries. It follows that a matrix
in R acts trivially on (V/VE)

ab if and only if it acts trivially on V/VE: triviality of the
(V/VE)

ab-action is enough to force the conditions on diagonal entries indicated in the
matrix (1) from the introduction. Hence, pr H almost surely lies in the kernel KE of the
V/VE-action as desired.

We now know that H ∩ V = VE and pr H ⊂KE almost surely. We would like to
conclude that H has the form VE o K for some IRS K < KE. Note that this is not
immediately obvious—the diagonal in R2 is a normal subgroup that intersects the first
factor trivially, but does not split as a product of subgroups of the two factors. By
Theorem 2.7, we know that the centralizer Z(pr H)⊂ R acts precompactly on X⊂ V/VE,
where X is the Zariski closure in V/VE of the projections of all first coordinates of
elements (v, M) ∈ H . If X= {VE}, we are done, since then the first coordinates of all
(v, M) ∈ H lie in VE = H ∩ V and H must have the form VE o K for some IRS K <KE.

So, we may assume that XVE ) VE. Picking a matrix B in the difference, there is some
entry (i, j) 6∈ E in which B is non-zero. The centralizer Z(pr H) contains all elements of
R all of whose diagonal entries are scalars, so in particular it contains the matrix whose
eigenvalues λ are listed in (8) above. The action of this matrix on B scales the (i, j) entry
by 4, so Z(pr H) does not act pre-compactly on X, and we have a contradiction.

4. IRSs of special affine groups
Using Theorems 2.6 and 2.7, it is now fairly easy to prove the results on IRSs of special
affine groups stated in the introduction.

Proof of Theorem 1.1. Let H be a non-trivial ergodic IRS of Rd o SLd(R). Suppose that
H ∩ Rd

= {0} almost surely. As the action SLd(R)� Rd is faithful, Theorem 2.6 implies
that H is trivial. So, H ∩ Rd is almost surely some non-trivial subgroup of Rd .

In order to prove H ∩ Rd is either a lattice or Rd , it suffices to prove that the Zariski
closure of H ∩ Rd is almost surely Rd . If not, we get for some 1≤ k ≤ d − 1, a SLd(R)-
invariant probability measure on the Grassmannian of k-dimensional subspaces of Rd . In
the terminology of Furstenberg [12], SLd(R) is a m.a.p. group, so this measure must be
concentrated on SLd(R)-invariant points. (Apply [12, Lemma 3] to the kth exterior power
of Rd .) However, no non-trivial subspaces of Rd are SLd(R)-invariant.

Now suppose that H ∩ Rd is a lattice (almost surely). Let µ denote the law of H . By
decomposing µ over the map H 7→ H ∩ Rd , we can write µ=

∫
µ3 dν(3) where ν is

the pushforward of µ under H 7→ H ∩ Rd and µ3 is concentrated on the set of subgroups
H such that H ∩ Rd

=3. By ergodicity ν is supported on the set of lattices of some
fixed covolume c > 0. Moreover ν is SLd(R) invariant since the map H → H ∩ Rd is
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equivariant. Since SLd(R) acts transitively on this set of lattices, it follows that ν must be
the Haar measure.

By equivariance, we must have µg3 = g∗µ3 for g ∈ SLd(R) and ν almost every 3.
Because SLd(R) acts transitively on the set of lattices with fixed covolume, we can assume
without loss of generality that µg3 = g∗µ3 holds for every g ∈ SLd(R) and lattice 3.

We claim that µ3 almost every H is contained in 3o SL(3). First let (v, M) ∈ H .
For any w ∈3 we have that (w, I ) ∈ H , and so

(v, M)(w, I )(v, M)−1
= (Mw, I ) ∈ H ∩ Rd

=3.

Because w ∈3 is arbitrary, M ∈ SL(3). Next observe that the law of H is invariant under
conjugation by 3o SL(3). So if there exists M ∈ SL(3) such that SH (M) 6=3 with
positive probability then M H M−1

∩ Rd
6=3 with positive probability. This contradiction

shows that SH (M)=3 almost surely which implies H ≤3o SL(3). Thus µ3 is the law
of an IRS of 3o SL(3). This IRS must be ergodic because µ is ergodic. �

Proof of Theorem 1.2. Let H be a non-trivial, ergodic IRS of G = Zd o SLd(Z). Then
H ∩ Zd is a random subgroup of Zd whose law is invariant to the SLd(Z) action. Note
that since the action SLd(Z)� Zd is faithful, Theorem 2.6 implies that H ∩ Zd

6= {0}.
Since there are only countably many subgroups of Zd , the distribution of H ∩ Zd must
be concentrated on a single, finite SLd(Z)-orbit. So, H ∩ Zd is almost surely finite index
in Zd .

Let O = {M(H ∩ Zd) : M ∈ SLd(Z)} be the orbit of H ∩ Zd under the SLd(Z) action.
Now, the intersection of the groups in this orbit is also finite index in Zd , and is furthermore
SLd(Z)-invariant, and so must equal nZd for some n ∈ N.

Recall that Gn = (nZd)o 0(n), and let Hn = H ∩ Gn be a finite index subgroup of H .
Using the cocycle notation of §2.1, for any M ∈ pr Hn it holds that SH (M)= SH (I ) :=
H ∩ Zd , since otherwise SH (M) is a non-trivial coset of SH (I ), and its intersection with
nZd , a subgroup of SH (I ), is trivial, thus excluding M from pr Hn . It follows that Hn =

(nZd)o (pr Hn). This completes the proof of Theorem 1.2. �
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[20] J. Tits. Systemes générateurs de groupes de congruence. C. R. Acad. Sci. Paris AB 283(9) (1976),

693–695.
[21] R. D. Tucker-Drob. Weak equivalence and non-classifiability of measure preserving actions. Ergod. Th.

& Dynam. Sys. 35(01) (2015), 293–336.
[22] A. M. Vershik. Totally nonfree actions and the infinite symmetric group. Mosc. Math. J. 12(1) (2012),

193–212, 216.


	Introduction
	IRSs of special affine groups
	IRSs of parabolic subgroups of SLd(R)
	Plan of the paper

	IRSs in general semidirect products
	The cocycle SH
	Group actions preserving finite measures
	Transverse IRSs

	IRSs of parabolic subgroups
	IRSs of special affine groups
	Acknowledgements
	References

