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2 M. Abert et al.
Introduction

This is the 2nd half of our paper On the growth of L?-invariants of locally symmetric
spaces, which was posted on the arXiv in 2012 as [2] and which we have split in two for
publication (the 1st part appeared as [1]). With the exception of this added introduction,
all the sections of this paper appeared in the earlier preprint, and we have preserved

the original section numbers so as to not break existing citations.

Invariant random subgroups. Let G be a locally compact 2nd countable group, and
Subg the set of closed subgroups of G. We consider Subs with the Chabauty topology,
see [21].

Definition. An invariant random subgroup (IRS) of G is a random element of Subg
whose law p is a Borel probability measure on Subg invariant under the conjugation

action of G O Subg. Often, we will abusively call u an IRS as well.

The term IRS was introduced by Abért-Glasner—Virag in [4] for discrete groups,
although they were also studied by Vershik [56] under a different name, and we
introduced IRSs to Lie groups in our earlier paper [1]. If G acts by measure preserving
transformations on a standard probability space X, then almost every stabilizer Gy,
where x € X, is a closed subgroup of G, see [55, Theorem 3.2]. Hence, the stabilizer of
a random x € X is an IRS of G. In fact, by [1, Theorem 2.6], all IRSs can be obtained as
random stabilizers from probability measure preserving (p.m.p) actions.

Concrete examples of IRSs include normal subgroups of G, as well as random
conjugates gI'g~! of a lattice I' < G, where the conjugate is chosen by selecting I'g
randomly against the given finite measure on I'\G. More generally, any IRS H of a lattice
A < G induces an IRS of G, obtained by conjugating H by a random element of I'\G. We
describe this in more detail in Section 11.1 below.

Though the definition of an IRS may seem rather unassuming, even in a very
general context there are restrictions on which groups can actually appear in the
support of one. For example, an invariant random subgroup supported on amenable
subgroups almost surely lies in the amenable radical [9], and in the context of nonposi-
tive curvature there is the stronger statement that an IRS is almost surely “geometrically
dense” [23], which is a generalization of the “Borel density theorem” proven in [1]. There
is a growing literature on IRSs on more specific groups, in particular construction of
examples (see, e.g., [13, 17, 26, 51]) and their applications, see especially [15, 27, 32,
54]. A still open question is whether there exists a simple, non-discrete locally compact

group that does not have any IRSs beyond itself and the trivial subgroup; candidates
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Exotic Invariant Random Subgroups in Rank One 3

are the “Neretin groups”, which are known not to contain any lattice [8].

Invariant random subgroups in semisimple Lie groups. Suppose now that G is a sim-
ple, noncompact center-free Lie group. In [1], we proved the following strong rigidity
result for higher-rank IRSs using the Nevo-Stiick-Zimmer Theorem [46, 50] and Kazh-
dan's property (T).

Theorem. If rankrG > 2, the ergodic IRSs of G are exactly {e}, G, and IRSs constructed
as random conjugates of a lattice I' < G. Moreover, if the laws of these IRSs are denoted
Wid, ne, and ur, then for any sequence of pairwise non-conjugate lattices I', < G, the

measures ur, weakly converge to uiq.

This completely describes the topological spaces of IRSs in simple higher-rank
Lie groups. On the other hand, if G is a group of real rank one then there are always more
IRSs than those described in this theorem. For example, every cocompact lattice in G is
a Gromov-hyperbolic group and hence contains plenty of normal infinite subgroups of
infinite index, see Theorem 17.2.1 of [45]. Taking a random conjugate of one of the latter
we obtain an IRS, which violates the conclusion of the theorem above. More generally
we can induce from IRSs in lattices that yields further examples as many lattices in
S0(n, 1) (and a few in SU(2, 1)) surject onto nonabelian free groups, which have plenty
of IRSs by [14]. It turns out that in the case where G = SO(n, 1) the wealth of available
IRSs goes well beyond these examples, as hyperbolic geometry yields constructions of
ergodic IRSs, which are not induced from a lattice. These constructions are the main
object of this paper and we will describe them in some detail in the next section.

First, though, let us say a few words about further restrictions on the groups
appearing in IRSs of rank one Lie groups. Making the Borel and geometric density

theorems referenced above more precise, we will prove the following in Section 11:

Theorem 1. (See Proposition 11.3 for a more general statement) Suppose that u is
an IRS of SO(n, 1) that does not have an atom at {id} € Subg. Then u-a.e. H € Subg
has full limit set, that is, A(H) = oH".

In particular, the probability that an IRS is geometrically finite and infinite co-
volume is zero. In the later work [3], Abért and Biringer prove a much more precise result
in dimension 3; any ergodic torsion-free IRS of SO(3, 1) that is almost surely finitely
generated must be either a lattice IRS or be supported on doubly degenerate subgroup
(one of our constructions shows that the latter case contains a wealth of interesting
examples). In dimension 2 any non-lattice ergodic torsion-free IRS must be supported

on infinite-rank-free subgroups; the topology of the corresponding infinite-type surfaces
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4 M. Abert et al.

is very restricted, as described in [12].

Our main motivation in [1] to study IRSs was their applications to the “limit
multiplicity problem”. As an example, a corollary of our classification of IRSs in higher
rank is that for any sequence of cocompact lattices in an irreducible higher-rank Lie
group G with property (T), which are in addition “uniformly discrete” (not intersecting a
fixed identity neighbourhood in G—conjecturally this is always true if assuming torsion-
freeness), the Betti numbers are always sublinear in the covolume except in the middle
dimension if G has discrete series.

This result is proven through the notion of Benjamini-Schramm convergence,
which gives a geometric meaning to the convergence of IRSs in the weak topology, and
the generalization of the Liick Approximation Theorem to this setting. Since the space
of IRSs is compact there are always limit points; thus, understanding the space of
IRSs might in principle give information about the geometry and topology of locally

symmetric spaces of large volume.

Constructions of IRSs in real hyperbolic spaces. To describe these examples, it will be
more useful to interpret discrete (by a corollary of Borel’s density theorem [2, Theorem
2.9], any IRS of a simple Lie group G that does not have an atom at G € Subg is discrete
almost surely) IRSs of SO(n, 1) as random framed hyperbolic n-orbifolds.

Whenever I' is a discrete subgroup of SO(n, 1), the quotient Mr = '\H" is a
hyperbolic n-orbifold. If a baseframe is fixed in H", its projection gives a canonical
baseframe for My, and the map I' — Mr is a bijection from the set of discrete subgroups
of G to the set of isometry classes of framed hyperbolic n-orbifolds. A random I" then
gives a random framed orbifold. Intuitively, a random framed hyperbolic n-orbifold
represents an IRS if whenever a particular (unframed) orbifold is chosen, the base
frames for that orbifold are distributed according to the natural Riemannian volume
on the frame bundle. This is made precise in Abert-Biringer [3], but here we will always
just work with the IRS directly.

Example 2. (IRSs from shift spaces, see Section 13) Let Ny, N1 be two hyperbolic n-
manifolds with totally geodesic boundary, such that each boundary is the disjoint union
of two isometric copies of some fixed hyperbolic (n — 1)-manifold X. Given a sequence
o = (a;)iez € {0,1}%, construct a hyperbolic n-manifold N, by gluing copies of Ny, Ny
according to the pattern prescribed by «.

If v is a shift invariant measure on {0, 1}, construct a random framed hyperbolic
n-manifold by picking ¢ randomly with respect to v, and then picking a vol-random

base frame from the frame bundle of the “center” block, that is, the copy of Ny or N
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Exotic Invariant Random Subgroups in Rank One 5

corresponding to O € Z. This defines an IRS of SO(n, 1). Moreover, we show that if Ny, \N;
embedded in non-commensurable compact arithmetic n-manifolds My, M;, and « is not
supported on a periodic orbit, then the IRS is not induced by a lattice.

In some sense, these shift examples are still quite “finite”, in that the manifolds
involved are constructed as gluings of compact pieces. So for instance, there is a
universal upper bound for the injectivity radius at every point of every manifold in
the support of such an IRS. Here is an example that is more truly “infinite type”, and
where the injectivity radius is not bounded above. Note: one could also construct IRSs
with unbounded injectivity radius by summing an appropriate sequence of lattice IRSs

against a geometric series, but the following examples are ergodic:

Example 3. (Random trees of pants, see Section 12.1) Let S be a topological surface
constructed by gluing together pairs of pants glued together in the pattern dictated
by an infinite 3-regular tree. If the set of simple closed curves on S along which two
pairs of pants are glued is written C, then one can produce a hyperbolic metric on S by
specifying Fenchel-Nielsen coordinates, which consist of a choice of length and twist
parameter (I., tc) € (0,00) x S! for each curve c € C.

Fix a probability measure on (0, 00), consider S! with the Lebesgue probability
measure and fix a “center” pair of pants on S. Construct a random framed hyperbolic
surface by choosing (I, t;) independently and randomly from (0,00) x S!, equipped
with the product measure, and choosing a base frame vol-randomly from the frame
bundle of the center pair of pants. The result is a random framed hyperbolic surface
corresponding to an ergodic IRS of SO(2, 1). When v is chosen appropriately, this IRS is
not induced from an IRS of a lattice, and when v has unbounded support, the injectivity
radius at the base frame is not bounded above.

In three dimensions, there is a canonical example of a nontrivial finitely
generated IRS with infinite covolume; the IRS induced by the infinite cyclic cover M of
a hyperbolic 3-manifold fibering M over the circle. Namely, Thurston’s Hyperbolization
Theorem [53] gives many examples of closed hyperbolic 3-manifolds M equipped with a

fibration
Y —> M — Sl,

where X is a closed surface. On the level of fundamental groups, this becomes

1l—m— M — Z.
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6 M. Abert et al.

Identify 71 M with a lattice in SO(3, 1). Then m; X is a normal subgroup of n;M, and
hence can be induced to an IRS of SO(3, 1), as explained above and in Section 11.1. The
resulting IRS is a.e. isomorphic to 7; ¥, and the quotient manifolds are all isometric to
the corresponding Z-cover of 71 M, which has infinite volume.

In Section 12.5 we generalize this example by showing that the basic idea behind
the shift IRS construction can be performed in three dimensions without producing

infinitely generated fundamental group. Namely,

Example 4. (IRSs supported on surface groups, see Section 12.5) Let ¥ be a closed,
orientable surface and ¢,...,¢n : ¥ —> ¥ be pseudo-Anosov homeomorphisms that
freely generate a Schottky subgroup of Mod(X). Choose a sequence (w;) of words in
the letters ¢1,..., ¢, with |[w;| — oo and let M; be the hyperbolic mapping torus with
monodromy w;. After passing to a subsequence, the measures (uar;) weakly converge
to an IRS p of SO(3, 1) that is supported on uniformly thick, doubly degenerate
hyperbolic 3-manifolds homeomorphic to ¥ x R. Moreover, if the words (w;) are chosen
appropriately, no manifold in the support of u covers a finite volume manifold, and in
particular u is not induced from an IRS of any lattice.

The homeomorphisms ¢, ..., ¢, play the role of the building blocks Ny, N; in the
shift examples, in the sense that the geometry of the mapping torus of each ¢y roughly
appears as a “block” in the manifold M,, whenever ¢ is a letter in wy,, and these blocks
will persist in the limit IRS. Making this intuition precise requires us to use Minsky'’s
model manifold machinery for understanding ends of hyperbolic 3-manifolds up to
bilipschitz equivalence [40, 44], although in our setting we only need his earliest version
for thick manifolds. Although it seems plausible that one could use his machinery to
construct the limit IRS directly, it is much easier to proceed as we do above through a

limiting argument.

Further questions. The topology of the space of IRSs of SO(n, 1) is quite rich—indeed,
it is built on the already rich structure of the Chabauty topology. While a complete
understanding of it (as in the higher-rank case) is certainly intractable, we are interested

in the following question, which we phrase more generally:

Question 5. Is every ergodic IRS of a simple Lie group G other than g a weak limit of

IRSs corresponding to lattices of G?

It is easy to see that all the examples in SO(n, 1) that we have described are

weak limits of lattice IRSs, and this is trivially true for higher-rank G. Question 5 is a
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Exotic Invariant Random Subgroups in Rank One 7

continuous analog of a question of Aldous-Lyons [5, Question 10.1] that asks whether
every unimodular random graph is a weak limit of finite graphs and that is in turn a
generalization of the question of whether all groups are sofic.

While the doubly degerenate examples in dimension 3 are finitely generated, and

there are no such examples in dimension 2, the following question is open:

Question 6. Are there non-lattice IRSs in SO(n, 1), n > 4 that are finitely generated with
positive probability?

Note that it is already unknown whether lattices in SO(n, 1) may have infinite,
infinite index finitely generated normal subgroups.
For some groups there are no constructions of IRSs known beyond lattices and

their normal subgroups. We may ask the following questions:

e Are there non-lattice, almost surely irreducible ergodic IRSs in product
groups such as PSLy(R) x PSL2(R)?
e Are there examples of ergodic IRSs in SU(n, 1), n > 1, which are not induced

from lattices?

11 Limit Sets and Induced IRSs
11.1. Induction

To begin with, let I' be a lattice in a Lie group G and suppose that I' contains a normal
subgroup A; we construct an IRS supported on the conjugacy class of A as follows. The

map G 3 g+ g ! Ag e Subg factors as
G — I'\G — Subg,

and the 2nd arrow pushes forward Haar measure on I'\G to an IRS u, of G. Geomet-
rically, if D C G is a fundamental domain for I' and D is its image in G/A, then a pux-
random subgroup is the stabilizer in G of a random point in D. If A is a sublattice of T
this is coherent with the previous definition.

This construction produces new examples of invariant random subgroups of
rank one Lie groups. Namely, lattices in R-rank one simple Lie groups are Gromov
hyperbolic and it follows from [29, Theorem 5.5.A] that they contain infinite, infinite
index normal subgroups. In other words, the Margulis normal subgroup theorem fails

for these groups. Note that if G = SO(1, n) or SU(1, n), this can be seen for example
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8 M. Abert et al.

because in any dimension there are compact real or complex hyperbolic manifolds with
positive 1st Betti number. Now any such infinite, infinite index normal subgroup A of a
lattice in one of these groups G gives an IRS supported on the conjugacy class of A. In
particular, Theorem fails for these G.

The above is a special case of induction of an IRS of a lattice I" to an IRSs of G. To
define this more carefully, note that if I' is a finitely generated group, then an invariant
random subgroup of I is just a probability measure u € P(Subr) that is invariant under
conjugation. Examples include the Dirac mass at a normal subgroup, and the mean over
the (finitely many) conjugates of a finite index subgroup of a normal subgroup. Less
trivially, Bowen [16] has shown that there is a wealth of invariant random subgroups of
free groups.

So, let i be an IRS of a lattice I" in a Lie group G. Define the IRS of G induced
from u to be the random subgroup obtained by taking a random conjugate of I and then
a u-random subgroup in this conjugate (which is well defined because of the invariance

of ). Formally, the natural map
G x Subr 3 (g, A) — gAg~! € Subg

factors through the quotient of G x Subr by the I'-action (g, A)y = (9y,y 'Ay). This
quotient has a natural G-invariant probability measure, and we define our IRS to be the

push forward of this measure by the factored map (G x Subr)/I" — Subg.

11.2. Limit sets of rank one IRSs

We show in this section that IRSs in rank one groups have either full or empty limit
set. This is a trivial application of Poincaré recurrence that works whenever one has a
reasonable definition of limit set.

Let G be a simple Lie group with rankr(G) = 1. The symmetric space G/K is
a Riemannian manifold with pinched negative curvature and therefore has a natural
Gromov boundary 0.,X. The limit set A(H) of a subgroup H < G is the set of
accumulation points on 0,,X of some (any) orbit Hx, where x € X. We say that H is

nonelementary if A(H) contains at least three points.

11.3. Proposition Suppose that G is a simple Lie group with rankr(G) = 1 and that H
< G is a closed, nonelementary subgroup. Let A < H be the compact, normal subgroup
consisting of all elements that fix pointwise the union of all axes of hyperbolic elements
of H. Then if 4 is an IRS of H, either
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Exotic Invariant Random Subgroups in Rank One 9

(1) the limit set of a u-random I' < H is equal to A(H), or
(2) @ (Suby) > 0.

In particular, any IRS of G without an atom at id has limit set 9,,X. As a further
example explaining condition (2), note that H = SO(2, 1) x SO(3) embeds in SO(5, 1) and
any IRS of A = SO(3) induces an IRS of H with empty limit set.

Proof. Assume that with positive u-probability, the limit set of a subgroup I' < H is
smaller than A(H). As A(H) is 2nd countable, there exists an open set U C A(H) such that
A(l') NU = ¥ with p-probability € > 0. Since H is nonelementary, there is a hyperbolic
element h € H with repelling fixed point A_ € U (see [31, Theorem 1.1]). The element h
acts on 9,X with North-South dynamics [31, Lemma 4.4], and we let 11 € 9,,X be its
attracting fixed point. Then for each i, the u-probability that A(I') N hY(U) = @ is also ¢,
by H-invariance of u.

Passing to a subsequence, we may assume that the sets h*(U) form a nested
increasing chain with union 9,,X \ 1. Therefore, passing to the limit we have that the
u-probability that A(I") C {A4} is €. But the u-probability that A(I") = {1} is zero, since
as I' is nonelementary, the H-orbit of A, is infinite [31, Theorem 1.1] and there is equal
probability of having limit set any translate of A,. Therefore, A(I') = @ with positive
u-probability.

Suppose now that (2) does not hold; then with positive u-probability we have
A(T) =@ and I' ¢ A. Pick some I' < H that satisfies these two conditions such that in
every neighborhood of I' the pu-probability of satisfying the two conditions is positive.
Since I' has empty limit set, I’ must be finite, and therefore has a nonempty fixed set
Fr c X, which is a totally geodesic hyperplane in X. Since I'" is not contained in A, there

is some hyperbolic element i € H whose axis is not contained in Fr. Then fixing x € X,
marx dist (y o hi(x), hi(X)> — 0
yE

as i increases. Moreover, this is true uniformly over some neighborhood ¢/ of I' € Subg.

Namely, for sufficiently small 2/, we have that as i increases,

inf max dist (y o hi(x),hi(x)> — o00.
finite IV'eld yel”
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10 M. Abert et al.

We can rephrase this by saying that as i increases,

inf max dist(y(x),x) — oo.
finite Ve h—iUR yel’

Thus, for an infinite collection of indices i, the subsets h~it/h’ are pairwise disjoint in

Subyg. This is a contradiction, since they all have the same positive u-measure. |

If ' < G is a subgroup whose limit set is not the full boundary 9. G, then there
is no upper bound for the local injectivity radius injr\x(x) at points x € I'\X. Suppose

that u is an ergodic IRS of G. One can ask whether the function

Subg — R, T+ injr\x([id])

necessarily have finite p-expected value. Here, [id] is the projection of the identity
element under G — I'\X = I'\G/K. Dropping the ergodicity condition one can easily
construct convex combinations of lattice IRSs with infinite expected injectivity radius.

Also, in Section 12.1 we construct ergodic IRSs that have unbounded injectivity radius.

12 Exotic IRSs in Dimensions 2 and 3
12.1. Random trees of pants—examples in G = SO(2, 1)

The idea for this construction was suggested by Lewis Bowen.

Suppose that S is a topological surface obtained by gluing together pairs of pants
in the pattern dictated by a 3-valent graph X, that is, properly embed X in R® and let S
be the boundary of some regular neighborhood of it. Let C be the set of simple closed

curves on S corresponding to the boundary components of these pants. Given a function

C— (0,00) x SY, ¢+ (L te),

called Fenchel-Nielsen coordinates, we can construct a hyperbolic structure on S by
gluing together hyperbolic pairs of pants whose boundary curves have lengths [;, and
where the two pairs of pants adjacent to a boundary curve are glued with twisting
parameter t.. The resulting structure is well defined up to an isometry that fixes the
homotopy class of every curve in C. See [39] for finite-type surfaces, and [6] for a

discussion of issues in the infinite-type case.
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Exotic Invariant Random Subgroups in Rank One 11

Pick a Borel probability measure v on (0,oc0) and consider S' with Lebesgue
probability measure A. We then have a probability measure (v x )¢ on the moduli space
M(S). Fix some pair of pants P C S bounded by curves in C. We create an IRS u of G
as follows. Randomly select an element [d] € M(S), represented by a hyperbolic metric
d on S. Let Py C S be the totally d-geodesic pair of pants in the homotopy class of P
and pick a base frame f on P; randomly with respect to its Haar probability measure
mg. The stabilizer Stab(d, f) of f under the G-action on the frame bundle of (S, d) is a
u-random subgroup of G.

More formally, if A C Subg is a Borel subset, let
(A) = / md( f.rﬁmesggnpdA) d(v x »)C.
deM(S) with Stab(d,f)e

12.2. Proposition If the 3-valent graph X is vertex transitive, then p is G-invariant.

Moreover, if X is also infinite then u is ergodic.

Proof. Fix g € G and some Borel subset A C Subg. Subdividing A if necessary, we may
assume that there is some pair of pants P'C S bounded by curves in C such that if d is a

hyperbolic metric on X as above and f is a frame on Pg, then
Stab(d,f) e A = gf € P,

where P;; is the totally d-geodesic pair of pants homotopic to P'. Then we have

= frames f on p(/i ) c
n(A) /de./vl(S) mq (With Stab(d,f)egA d(v x 1)
_ frames f on Py ) c
= mgq ( ; ; dv x 1)
/d’eM(S) with Stab(d’,f)egA
= 1(gGA).

Here, the 1st equality follows from our assumption on A and the fact that g acts as a
measure preserving homeomorphism on the frame bundle of (S, d). For the 2nd, let v~ v/
be a graph isomorphism of X taking the vertex corresponding to P to that corresponding
to P. Then there is an induced map d — d’ on M(S); this map preserves the measure
(v x )¢, so the 2nd inequality follows.

Now suppose that X is infinite and A C Subg is a G-invariant set. Define

A ={d e M(S)|3aframe f on P; with Stab(d,f) € A}.
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12 M. Abert et al.

The set A is invariant under the action on M(S) corresponding under Fenchel-Nielsen
coordinates to the subgroup of C-permutations arising from graph automorphisms of
X. As X is infinite and vertex transitive, for every finite subset F of C there is such a
permutation such that F is disjoint from its image. It follows from a standard argument
that the (vx1)°-measure of 4 is either 0 or 1. As A is G-invariant, it can be recovered from
A as the set of stabilizers of all frames on (S, d) where d ranges through A. Therefore,
(A) is either 0 or 1. [ |

If X is infinite and vertex transitive, and v is nonatomic and supported within
(0, €), where € is less than the Margulis constant, the measure u cannot be induced from
a lattice. For then with full (v x A)°-probability, the length parameters of the Fenchel—
Nielsen coordinates of a point in M(S) cannot be partitioned into finitely many rational
commensurability classes. In a finite volume hyperbolic surface, there are only finitely
many closed geodesics with length less than e. If a hyperbolic surface isometrically
covers a finite volume hyperbolic surface, then the lengths of its closed geodesics that
are shorter than ¢ can be partitioned into finitely many rational commensurability
classes. Therefore, at most a measure zero set of Fenchel-Nielsen coordinates give
hyperbolic structures on S that isometrically cover finite volume hyperbolic surfaces.
This shows that ¢ cannot be induced from a lattice.

There is one additional feature of this example that is of interest.

12.3. Proposition If X is an infinite 3-valent tree and v has unbounded support, then
the injectivity radius at the base frame of a framed hyperbolic surface has infinite u-

essential supremum.
To prove the proposition, we need the following lemma.

12.4. Lemma Suppose!l > 0 and P is a hyperbolic pair of pants with geodesic boundary
all of whose boundary components have length in [/,l + 1]. Let y be a geodesic segment

in P that has endpoints on dP but is not contained in dP. Then

1
1 h inh .
ength(y) > sin (sinh(l))

Also, if the endpoints of y lie on the same component of dP then length(y) > Z_Tl
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Proof. It suffices to prove the lemma when y is a simple closed curve. For the 1st part,
double P to obtain a closed hyperbolic surface of genus 2. There is a closed geodesic y
on this surface homotopic to the double of y; this has length at most twice that of y.
The Collar Lemma [24, Lemma 12.6] states that the radius sinh™! (1/sinh (%lengthﬁ))—
neighborhood of y is an annulus; as some boundary curve of P intersects y, this radius
is at most I. This gives the 1st inequality.

If the endpoints of y lie on the same component of 9P, they part that component
into two arcs « and 8. Without loss of generality, length(«¢) < ”Tl But the concatenation
y -« is homotopic to one of the other two boundary components of P, so it must have

length at least I. The lemma follows. |

Proof of Proposition 12.3. Recall that to pick a u-random framed hyperbolic surface,
we choose length and twist parameters for each edge of X, produce from these a
hyperbolic metric d on the surface S and then choose a base frame randomly from a
totally geodesic pair of pants Pz on S corresponding to some root of X. Fix some large
I, R > 0 such that v([[,I + 1]) > 0. Then with positive probability the length parameters
for every edge in an R-ball around the root in X are within [I,l + 1]. It follows that the

injectivity radius at any point p € P4 is at least

= min -1 R sinh !
*= 2 S G ) [

To see this, note that the injectivity radius is realized as the length of a geodesic

segment that starts and terminates at p. Either this geodesic enters and leaves the same
boundary component of some pair of pants with boundary lengths in [I,] + 1], in which
case the 1st estimate applies, or it passes through at least R such pants and the 2nd

applies. As x can be made arbitrarily large, the proposition follows.
|

12.5. IRSs of SO(3,1) = PSL,C supported on thick surface groups

Suppose that X is a closed, orientable surface of genus g. In this section we construct
a large family of IRSs of PSL,C that are supported on subgroups I' with H3/I’
homeomorphic to ¥ x R. These examples are similar in spirit to those constructed—
in any dimensions—by gluings in the following section, but have the added feature that

they are supported on finitely generated subgroups of PSL,C.b
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14 M. Abert et al.

12.6.

The construction makes use of the action of the mapping class group Mod(X) on the
Teichmuller space T(X); we refer to [24], [33], [39] for the general theory. We identify T(X)
as the space of equivalence classes of hyperbolic metrics on ¥, where two metrics dy, d;
are equivalent if there is an isometry (2, dg) — (X, d;) homotopic to the identity map.
We will sometimes denote elements of Teichmuller space as (X, d) and sometimes as X,
depending on context. The group Mod(X) acts properly discontinuously on T(X) and the
quotient is the moduli space of all hyperbolic metrics on . Teichmuller space admits a
natural Teichmuller metric (see [33]), with respect to which Mod(X) acts by isometries.
Thurston has shown [52] how to give the union of T(X) with the space of projective
measured lamination space PML(X) a natural topology so that the resulting space is
homeomorphic to a ball of dimension 6g — 6, with T(X) as the interior and PML(Z) as
the boundary. This topology is natural, in the sense that the action of Mod(X) on T(X)
extends continuously to the natural action of Mod(X) on PML(Z).

Our construction of IRSs of PSL,C relies on the following definition.

Definition 12.7. (Farb—-Mosher) A finitely generated, free subgroup F C Mod(X) is
Schottky if any orbit of the action of F on T(X) is quasi-convex, that is, after fixing
X € T(X), there are some C > 0 such that any Teichmuller geodesic segment that joins
two points from the orbit F(X) lies in a C-neighborhood of F(X).

Remark. Farb and Mosher [25] have shown that if ¢;,...,¢, are pseudo-Anosov
elements of Mod(X) with pairwise distinct attracting and repelling laminations, then
for all choices of sufficiently large exponents the elements ¢;', ..., ¢n" freely generate a

purely pseudo-Anosov Schottky subgroup of Mod(X).

Suppose from now on that ¢i1,...,¢n, € Mod(X) freely generate a Schottky
subgroup F C Mod(X). Choose a sequence of finite strings

1 1 1 2 2 2
e =(el,...,enl), e :(el,...,enz),

with entries in {0, ..., n} and let C be the sub-shift of {0, ..., n}? consisting of strings all

of whose finite substrings are contained in e' for some i. Set

ﬁ:E—)Z, fi:(]be%'o~~o¢eil.
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A celebrated theorem of Thurston [53] then implies that each mapping torus

My, =¥ x [0,11/(x,0) ~ (i), 1)

admits a (unique) hyperbolic metric. We let w; be the corresponding IRS of PSL,C.

Theorem 12.8. Any weak limit of a subsequence of (u;) is an IRS u of PSL,C that is
supported on subgroups I' < PSL,C with H3/TI' homeomorphic to ¥ x R. Moreover, if
the shift space C does not contain periodic sequences, no subgroup I' < PSL,C in the

support of i is contained in a lattice of PSLyC.

Before beginning the proof in earnest, we give a motivational outline. The idea
is to use the Schottky group F := (¢1, ..., ¢n) to associate to every element y € {0,...,n}%

of the shift space a pair consisting of the following elements:

(1) a hyperbolic 3-manifold N, homeomorphic to ¥ x R;
(2) a “coarse base point” P,, that is, a subset of N, with universally bounded

diameter.

Shifting a string y corresponds to shifting the base point of N, and convergence of
y;i € {0,..., n}Z corresponds to based Gromov-Hausdorff convergence of the associated
pairs (N,,, P,,). A periodic string with period (e, ..., ex) corresponds to the infinite cyclic

cover of the mapping torus My, ... . Where the placement of the base point depends

on the particular shift of the periodic string; moreover, no aperiodic string produces a
hyperbolic 3-manifold that covers a finite volume manifold. If the IRSs u; limit to u as
in the statement of the theorem, then the support of x consists of subgroups I' < PSL,C
with H3/T' a based Gromov-Hausdorff limit of the mapping tori My, (in fact, of their
infinite cyclic covers) under some choice of base points. Using the correspondence above,
we see that such H®/T" arise from elements of {0,...,n}? that are limits of periodic
sequences used in producing the mapping tori My,. Varying the base points chosen on
My, gives Gromov-Hausdorff limits corresponding exactly to the elements of the sub-
shift C c {0,.. .,n}Z. Therefore, as long as C does not contain periodic sequences, no
such Gromov-Hausdorff limit can cover a finite volume hyperbolic 3-manifold.

The correspondence between elements of {0, ...,n}” and coarsely based hyper-
bolic 3-manifolds occupies most of the exposition to follow. It will be convenient to

embed the shift space inside of an auxiliary space, consisting of geodesics in the
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16 M. Abert et al.

Schottky group F = (¢1, ..., ¢n). Namely, we consider F with its word metric
dist(g,h) = min{k |k 'g = ¢y, ... ;. ),
and define the space of geodesics in F as the set
G(F) :={y : Z — F | y word-isometric embedding} ,

which we consider with the compact-open topology. The space of geodesics G(F) has a

natural shift operator defined by the formula
S:G(F) — GF), S(y)@®) =y@a-1).

The group F acts on G(F) via (g - y)(x) = gy (x) and the quotient G(F)/F can be identified
with the space of geodesics y : Z — F with y(0) = 1. Note that the shift operator S
descends to another “shift operator”, also called S, on G(F)/F. Finally, there is then a

natural shift invariant embedding
{0,....,n}2 — GF)/F, eyl

determined by the constraint ye(i) 'ye(i + 1) = de;.

It now remains to relate elements of G(F)/F to hyperbolic 3-manifolds. The key
to this is Minsky's theorem [41] that e-thick doubly degenerate hyperbolic 3-manifolds
homeomorphic to £ x R are modeled on geodesics in the Teichmuller space T(X). The
plan for the rest of the section is as follows. In Section 12.9, we show how to go from
elements of G(F)/F to Teichmuller geodesics. Section 12.13 describes Minsky’s theorem
above, and the following section completes the relationship between elements of G(F)/F
and hyperbolic 3-manifolds. Section 12.20 shows that convergence in G(F)/F translates
to based Gromov-Hausdorff convergence of hyperbolic 3-manifolds. We then indicate
how shift-periodic elements of G(F)/F correspond to infinite cyclic covers of mapping

tori and end with a section devoted to the proof of Theorem 12.8.

12.9. Geodesics in F and thick Teichmuller geodesics

Let O : F — T(X) be some orbit of the action F © T(X). By [25, Theorem 1.1], the
map O is a quasi-isometric embedding that extends continuously to an F-equivariant
embedding O : 0,cF —> PML(X). The following lemma is implicit in [25].
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Lemma 12.10. For sufficiently large C > 0, if y : Z — F is any geodesic then there is a
Teichmuller geodesic «, : R — T(X) such that the Hausdorff distance between O o y(Z)

and oy, (R) is at most C. If we require
lim ay, (t) = lim O o y (i), lim «,() = lim Ooy(D),
t— 00 i— 00 t——00 I——00

then «, is unique up to orientation preserving reparameterization.

Proof. By quasi-convexity of O(F) C T(X), each of the geodesic segments
a;j =[0oy(=1),00y®)] C T(X)
is contained in the e-thick part
Te(2) ={(£,d) € T(2) | inj(X,d) > €}

of T(X) for some universal ¢ = ¢(F, 0). Therefore, Theorem 4.2 from [43] implies that
there exists some C = C(F, O) > 0 such that {O o y(—i),...,0 o y(i)} is contained in a
C-neighborhood of «; for all i. This means that all «; pass within a bounded distance
of O o y(0), so Arzela—Ascoli’s theorem guarantees that after passing to a subsequence
(o;) converges to a geodesic a, : R — T(X). Then O o y(Z) lies in a C-neighborhood of
ay (R), and thus also «, (R) lies in a C’-neighborhood of O o y(Z) for some C’ depending
on C and the distortion constants of the quasi-isometric embedding O. The uniqueness
is [25, Lemma 2.4]. |

Note in particular that «,, has image contained in the e-thick part T. (%) for some

universal € = ¢(F, 0).

Remark 12.11. Here one word of caution about Thurston’s boundary of Teichmuller
space is in order; if y : [0,00) — T(X) is a geodesic ray, then it is not always true that
y converges to a single point in the boundary PML(X) [35]. It is, however, true if y is
contained in T, (X), the e-thick part of Teichmuller space, as follows from three theorems
of Masur [36], [37], [38, Theorem 1.1]. We state these as a lemma.

12.12, Lemma (Masur) Fixe > 0 and let y : [0,00) — T.(X) be a geodesic ray. Then y

converges to a point A € PML(X), and the lamination A is filling and uniquely ergodic.
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18 M. Abert et al.

Furthermore, if two geodesic rays y,y’ : [0,00) — T.(Z) converge to the same point of
PML(Y), then they are asymptotic.

12.13. Doubly degenerate hyperbolic structures on ¥ x R

In this section we review some well-known facts about the geometry of hyperbolic
structures on ¥ x R and present Minsky's theorem that thick doubly degenerate
hyperbolic structures are modeled on Teichmuller geodesics. To begin, consider the

deformation space
AH(Z) ={p:m X — PSLyC | p discrete, faithful}/PSL,C,

where the quotient is with respect to the conjugation action of PSL,C. We consider
AH(X) with the topology induced from the compact-open topology on the representation
variety Hom(m; X, PSL2C). The space AH(X) has a geometric interpretation as the set of

“marked isometry types” of hyperbolic structures on ¥ x R:

homeomorphic to xR ’ homotopy equivalence

AH(Z) = {(N, 0 | N is a hyperbolic 3-manifold wEx—Nisa } / ~,

where (N1, u1) ~ (N2, u2) when there is an isometry ¢ : N; — Ny with ¢ o u; homotopic
to uo. Here, the correspondence assigns to a representation p the quotient manifold
N = H3/p(71X) and a marking u : ¥ — N such that composing u, : 11X — 71N with
the holonomy map gives p up to conjugacy. We will use these two descriptions of AH(XZ)
interchangeably.

Suppose now that N is a complete hyperbolic 3-manifold with no cusps that is
homeomorphic to X xR. The two ends of N admit a geometric classification; very loosely,
an end of N is convex cocompact if level surfaces increase in the area as they exit the
end, while an end is degenerate if the areas of level surfaces stay bounded. We refer the
reader to [39] for actual definitions and further exposition.

One says N is doubly degenerate if both its ends are degenerate. We write
DD(X) ={(N,n) € AH(X) | N doubly degenerate}

for the space of all doubly degenerate elements of the deformation space AH(XZ).
If (W, ) is doubly degenerate, each of its ends has an ending lamination, a
geodesic lamination on ¥ that captures the geometric degeneration of level surfaces

exiting that end (see [39]). Ending laminations are always filling and they always admit
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a transverse measure of full support [42, Lemmas 2.3 and 2.4]. It is therefore convenient
to define the space ££(X) as the set of supports of filling measured laminations on %; in
particular, the weak-* topology on (filling) measured laminations descends to a natural

topology on ££(X). We then have a function

E:DD(X) — ELEZ) x EL(X)

that takes a doubly degenerate hyperbolic 3-manifold to its two ending laminations.
The following theorem is well known; the injectivity is Thurston's Ending
Lamination Conjecture, recently resolved by Brock-Canary-Minsky [18], and the topo-
logical content follows from standard arguments and Brock's proof of the continuity of
Thurston’s length function [19]. However, a nicely written proof of the full statement

was recorded by Leininger and Schleimer in [34].

12.14. Theorem (Theorem 6.5, [34]) The map above gives a homeomorphism

E:DD(X) — ELE) X ELE) — A

onto the space of distinct pairs of elements of ££L(X).

A fundamental result of Minsky [42] states that doubly degenerate hyperbolic
3-manifolds with injectivity radius bounded away from zero are “modeled” on universal
curves over bi-infinite geodesics in Teichmuller space. This was an early part of
Minsky’s program to prove Thurston’'s Ending Lamination Conjecture, which as noted
above was established by Brock-Canary-Minsky in [18]. The following theorem is a

major step in this work.

12.15. Theorem (Minsky [41]) If (V,u) € DD(X) is a doubly degenerate hyperbolic 3-
manifold and inj(lN) > € > 0, there is some C = C(¢, ¥) and a bi-infinite Teichmuller
geodesic @ : R — T(X) with the following properties:
(1) If (¥,d) is a point on the geodesic a(R) C T(X), there is a point (L, d’) € T(X)
at distance at most C from (X, d) and a pleated surface f; : (¥,d) — N in
the homotopy class of u.
(2) If f:(X,d’) — N is a pleated surface in the homotopy class of u, then the
distance in T(X) between (T, d’) and the image «(R) is at most C.
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Moreover, « limits to exactly two points on PML(X) = 9T(XE), the two projective

measured laminations supported on the two ending laminations E(IV, ). If
EWN,n) = <lim a(t), lim ot(t)) ,
t— o0 t——00

then « is unique up to orientation preserving reparameterization. In this case, we say

that (IV, u) is modeled on the geodesic @ C T(X).

Here, a pleated surface f : (¥,d’) — N is a map that is an isometric embedding on the
complement of some geodesic lamination on (X, d’). Note that in particular any pleated

surface is 1-lipschitz. We refer the reader to [39] for more details.

Remark. We should mention that the statement of Theorem 12.15 given here is slightly
different than that of [41]. First of all, his theorem is more general since it deals with
arbitrary hyperbolic 3-manifolds rather than doubly degenerate structures on X x R.
Also, his (1) states that (¥,d) can be mapped into N by a map with bounded energy,
rather than giving a pleated map from a nearby point in T(X). The version of (1) above
can be deduced from his (1) and Proposition 6.2 from his paper. Next, Minsky's statement
does not reference uniqueness of « or its endpoints in PML(X). However, if a geodesic
o satisfies (1) then it follows from Corollary 9.3 of [42] all accumulation points of «
in PML(X) are supported on one of the ending laminations of (IV, u). Furthermore, (1)
implies immediately that « is contained in some ¢’-thick part of Teichmuller space, so
Theorem 12.12 shows that the ending laminations of (IV, x) support unique projective
measured laminations and that these are the endpoints of « in PML(Z). Theorem 12.12
shows that any two such « lie at bounded Hausdorff distance, so as any such « is
contained in the thick part of Teichmuller space the uniqueness follows from [25, Lemma
2.4].

12.16. Proposition Supposethato : R — T(X) is a geodesic in the e-thick part of T(X).
Then there is a unique (V, ) € DD(X) that is modeled on «, in the sense of Theorem

12.15. Moreover, inj(N) > ¢ for some ¢ > 0 depending only on ¢.

Proof. Let A4, A_ € PML(X) be the endpoints of « given by Theorem 12.12. Then by
Theorem 12.14, there is a doubly degenerate hyperbolic 3-manifold (V, u) € DD(X) with
ending laminations {|1+[, |A—|}. Combining theorems of Minsky [44] and Rafi [47], we see

that as o lies in the e-thick part of T(X) there is a lower bound inj(N) > ¢ > 0 for
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the injectivity radius of N. Then Theorem 12.15 shows that there is some Teichmuller
geodesic o’ C T(X) on which (IV, 1) is modeled. But the uniqueness statement in Theorem
12.12 then implies that o’ = «. |

12.17. Geodesics in F and hyperbolic 3-manifolds

Now suppose that y € G(F) and let o, : R — T(X) represent the oriented Teichmuller
geodesic at bounded Hausdorff distance from O o y(Z) given by Lemma 12.10. Let

Ny, n) € DD(X)

be the unique doubly degenerate hyperbolic 3-manifold modeled on the geodesic «,, as

given by Proposition 12.16. Then recalling that y (0) € Mod(X), we define
Hy =pmoy(@):¥ — N,.
This gives a map G(F) — DD(X) defined by y = IV, i1)).

Remark. It follows from Proposition 12.16 that the manifolds N, above all have

injectivity radius inj(V,) > € for some ¢ > 0 depending only on F and O.

12.18.

The map : G(F) — DD(X) factors as

G(F) DD(%)

~N 7

G(F)/F

To see this, suppose that y € G(F) and g € F. Then O(g - y) = gO(y), so the nearby
Teichmuller geodesics satisfy ag, = ga,. However, if (V,, ) is modeled on «, then it

follows immediately from the conditions in Theorem 12.15 that (V,,, i 0 g~') is modeled

on ag,. So, N, = Ny, and pg, =pog to(g-y(0) =poy0) =pu,.
12.19. Proposition The map G(F)/F — DD(%), [yl — (N,, u,) is an embedding.

Proof. As mentioned above, the quotient map G(F) —> G(F)/F restricts to a homeo-

morphism on the subset Go(F) consisting of geodesic y € G(F) with y(0) = 1. Using the
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notation of Section 12.17, for y € Go(F) we have . = u,,. Therefore,

Y= (N i)

\X& /

commutes, where E takes a geodesic y : Z — F to the pair of supports of

(o <t1i%£ y(t)) ,0 <tl)ir_nooy(t))) € PML(Z) x PML(Z) — A

and £ is the map that takes a doubly degenerate hyperbolic 3-manifold to its pair
of ending laminations (see Theorem 12.14). The maps E and £~ ! are continuous and
injective by Lemma 12.10 and Theorem 12.14, respectively. As the domain Go(F) is

compact and the co-domain DD(X) is Hausdorff, our map is an embedding. |

12.20. The topologies of G(F)/F and DD(X)

Let (¥,dp) = O(1) be the point in Teichmuller space that is the image of the identity
1 € F. We then have the following:

12.21. Lemma For all sufficiently large C = C(F, O) > 0, there is some D > 0 as follows.
If y € G(F) then the map u, : ¥ — N, is homotopic to a C-lipschitz map

m:(X,do) — N,.

Moreover, after fixing y, the union PC U, m(%) of the images of all such maps is a

subset of N, with diameter at most D.

Proof. With the notation of Section 12.17, the point O(y(0)) lies at a bounded distance
from the geodesic «,. By Theorem 12.15 (1), there is a pleated surface f' : (£,d’) — N,
in the homotopy class of u such that

dist((2,d’), O(y(0))) < C, for some C' = C'(F, 0).

But then there is a pleated surface f : (Z,y(0);'d) — N, given by f = "oy (0) homotopic
to i, . Since the Teichmuller distance between (2, ¥ (0);'d) and (2, do) is bounded by C,
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there is a C-lipschitz map (¥,dg) — (E,y(O);ld) homotopic to the identity map [22].
Composing this with f yields the map m desired.

For the diameter bound on P,, fix an essential closed curve a on X. Then if
m: (X,do) — N,

is a C-lipschitz map homotopic to u,, the image m(a) is a closed curve in N, with
length at most Clengthdo(a). As the geodesic representative of 1, (a) has length at least
inj(N,) > € = €(F) > 0, its distance to m(a) is at most some D' = D'(F). Therefore,
D = 2D’ + Cdiam(X, do) is a bound for the diameter of the union P,. [ |

One way to interpret Lemma 12.21 is that one can regard the image of G(F) as a
space of hyperbolic 3-manifolds with preferred coarsely defined base points. The base
point for (NV,,u,) is just any point contained in P,; these base points are then well
defined up to a universally bounded error. This viewpoint motivates the following lemma
that should be interpreted as saying that G(F) maps continuously when the co-domain

is given the topology of based Gromov-Hausdorff convergence.

12.22. Lemma Suppose that y; — y in G(F) and let C be as in Lemma 12.21. If p; €
P)f; and (V,,, p;) converges in the Gromov-Hausdorff topology to a based hyperbolic 3-

manifold (N, p), then N is isometric to N,,.

Proof. By Proposition 12.19, the pairs (IV,,, u,,) converge to (V,, u,) in DD(X). Let
p; : m1X —> PSLyC be representations with N, = H3/p;(r1£) in such a way that the
composition of u, : m1X — mN,, with the holonomy map gives p;, and assume by
conjugation that p; converges to some p,, similarly associated with (V,, i1,,). As thereis a
universal lower bound for the injectivity radii inj(lV,,) by Lemma 12.10 and Proposition
12.16, the image p, (71 £) does not contain parabolic elements. So, [7, Theorem F] implies
that p;(m1X) converges to p, (71X) in the Chabauty topology.

Fix some point p € H® and denote its projection to quotients by p. By [10,
Theorem E.1.13] the manifolds (IV,,, p) converge in the Gromov-Hausdorff topology to
a based hyperbolic 3-manifold isometric to N, . As noted in the proof of the lemma
above, the points p; lie at bounded distance from the geodesic representatives in N,,
of the loops u,,(a), where a C X is any essential closed curve. However, the same is true
of the points p since these geodesic representatives are the projections of the axes of

elements p;(lal) € PSL,C, which converge as i — oo. Therefore, the distances dist(p, p;)
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are universally bounded above, which implies immediately that the Gromov-Hausdorff

limit N is isometric to N,,. u

It is clear from the definitions that shifting a geodesic y € G(F) does not
change the isometry type of the manifold N,. Adopting the viewpoint suggested by
Lemma 12.21, shifting y just changes the coarsely defined base point P, for N,. The

following lemma shows that the base points Psn(, of shifts of y coarsely cover IV,,.

12.23. Lemma There exists some C = C(F, O) > 0 such that if y € G(F) and p € N,,, then

there exists some shift S”(y) and an isometry

i: Ny e Nsn(y)

such that the distance between i(p) and P%,,., is at most C.

S™(y)

Proof. Asin Section 12.17, assume that (IV,,, 1) is the element of DD(X) modeled on the
Teichmuller geodesic at bounded Hausdorff distance from y (Z). To prove the lemma, we
need to show that for large C and some i € Z, there is a C-lipschitz map (X¥,do) — N,
in the homotopy class of o y (i) whose image is within C of p.

As N, is doubly degenerate, it follows from work of Thurston [52] that through
the point p € N, there is some essential closed curve with length at most some C(X).
Again by [52], this closed curve is geodesically realized by a pleated surface f : (X,d) —
N, in the homotopy class of u. Since inj(lV,) > € = €(F, O0), the distance from p to f(X) is
at most some C(C',¢) = C(F, 0).

By Theorem 12.15 and Lemma 12.10, there is a point y (i) € T(Z) at Teichmuller
distance at most some C(F, O) from (X, d). Therefore, there is a C(F, 0)-lipschitz map
g:O0(y(i)) - (X,d) homotopic to the identity map [22]. Then

y (@) _ g~id fn
(¥,do) =0(y(0)) ——— O(y())) ——— (£,d) ——— N,
composes to a C-lipschitz map homotopic to u o y (i) as desired. |

We use this lemma to prove the following proposition, which loosely states that

Gromov-Hausdorff limits can always be realized as limits in G(F)/F up to shifts.
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12.24. Proposition Suppose y; is a sequence in G(F), p; € N,, and that (IV,,, p;) converges
in the Gromov-Hausdorff topology to (V, p). Then after passing to a subsequence, there

is a sequence (n;) in Z and some y € G(F) such that
[S" ()] — lyl € GF)/F

and N, is isometric to N.

Proof. By Lemma 12.23, we may assume after shifting each y; that the base points p;
lie in P)fi. Without changing their images in G(F)/F, we may translate the geodesics y;
so that y;(0) = 1 for all i. Then after passing to a subsequence, (y;) converges to some

y € G(F), and the proposition follows from Lemma 12.22. |

12.25. Shift periodicity and cyclic covers of mapping tori

Ifg: ¥ — X is a pseudo-Anosov homeomorphism, we define 1\7[g to be the infinite cyclic

cover of
Mg =X x [0,11/(x,0) ~ (g(x), 1)

corresponding to the fundamental group of any of the level surfaces X x {t}. Note
that the map g is necessary to determine ZVIg—it is not sufficient to know only the

homeomorphism class of My. The main result here is the following:

12.26. Proposition Suppose that y € G(F). If [y] € G(F)/F is shift-periodic, then N, is
isometric to 1|7[g for some g : ¥ — X. On the other hand, if [y] is not shift-periodic then

N,, does not cover a finite volume hyperbolic 3-orbifold.

Proof. Since y is shift-periodic in G(F)/F, one can easily check that it is the axis of
some element g € F, that is, y (Z) is invariant under the action of g on F by left translation
and the restriction of g to y(Z) is a nontrivial translation.

Let (V,,u) be the doubly degenerate hyperbolic 3-manifold modeled on the
Teichmuller geodesic at bounded Hausdorff distance from O o y(Z), as in Definition
12.17. Then pu, = o y(0) and ug, = u o gy(0). Since (N, u,) and (Nyy, jig,) TepTEsent
the same point of DD(X), this means that there is an isometry i : N, — N, with
ioum = og. As g has infinite order, the isometry i cannot have fixed points. Therefore,

the quotient is a hyperbolic 3-manifold M. But 71 M is isomorphic to 71 My, so a theorem
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of Waldhausen [57] implies that they are homeomorphic, in which case N, is isometric
to Mg. This finishes the 1st part of the proposition.

For the 2nd statement, suppose that N, = N covers a finite volume hyperbolic
3-orbifold. Thurston’s Covering Theorem (as Thurston's proof is not readily available,
we refer the reader to [20] for a proof by Canary of a more general result. Note that
although Canary’s statement does not deal with orbifold covers, the proof works just
as well) implies that N, is isometric to the fiber subgroup of a mapping torus of X.
Therefore, there is some isometry i : N, — N, with iou = p o f for some pseudo-
Anosov homeomorphism f : ¥ — X. Here, 4 : ¥ — N, is the map given in Section
12.17. Then it follows from Theorem 12.15 that the action of f on Teichmuller space
leaves the geodesic ¢ € T(X) on which (IV,, 1) is modeled invariant.

Fix some point X on ¢ C T(Z). As O o y(Z) lies at bounded Hausdorff distance

from «, for each i € Z there is some j; € Z with
s?p dist (fi(X), Oo J/(fi)) < 0.
Therefore, by the equivariance of O we have that
sgpdmt(yu»”f%XLOoy«»)<oa

Since the action of Mod(X) on T(X) is properly discontinuous, this means that the set

{yGi)~'ft|i € Z} is finite. In other words, we have some i # k with
 fk—1 _ . + y—1
g =r""=yGovGr)  €F.

This means that there is some element g € F that acts as a nontrivial translation along
the Teichmuller geodesic «. But recall from Lemma 12.10 that the extension O : 9 oF —
PML(X) is an embedding. Therefore, as O o y(Z) and O(Axis(g)) accumulate to the same
points of PML(X) we must have y(Z) = Axis(g). Now if y(Z) is the axis of g € F, then

for some k we have

gy () =y +k) =S¥y 3).

Then y and S~%(y) have the same projection in G(F)/F, so [y] is periodic. |
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12.27. The proof of Theorem 12.8

For easy reading, we briefly recall the relevant notation. We have pseudo-Anosov maps
@0, --.,6n € Mod(X) that generate a Schottky subgroup F < Mod(X). The group F acts

on the space G(F) of its geodesics and there is a shift-invariant embedding
0,....n}" — GEV/F,  er lyl

determined by the constraints ye(i) lye(i + 1) = ¢e; and y.(0) = 1. Note that any ye
satisfying the 1st property has the same projection in G(F)/F, so the condition that
v¢(0) = 1 is necessary only to uniquely specify y. within its equivalence class.

As in the beginning of the section, choose a sequence of finite strings

1 1 1 2 2 2
e =(el,...,enl>, e :(el,...,enz),

with entries in {0, ..., n} and let C be the sub-shift of {0, ..., n}Z consisting of strings all

of whose finite substrings are contained in €' for some i.

12.28. Lemma Let & € {0,...,n}” be a bi-infinite string obtained by concatenating
copies of €. Then the sub-shift C consists of all the accumulation points of sequences

S™i (&%), where n; € Z and ij € N is increasing. Consequently, if
& lyle GF)F and Cr ¢ C GF)/F

then I'¢ consists of all accumulation points in G(F)/F of sequences S (yi].), where n; € Z

and i; € \V is increasing.

Write N; for the manifolds N,, modeled on the geodesics in F corresponding to
the string e!, where y; is from the lemma above and N,, is defined in Section 12.17. The

mapping classes f; = Pei OO ¢e§ € Mod(X) all pseudo-Anosov, so each
M; =% x [0,11/(x,0) ~ (fi(x),1) (12.28.1)

has a hyperbolic metric, unique up to isometry. By Proposition 12.26, we identify N;

with the infinite cyclic cover 1\719 corresponding to m1 (X x {t}). We prove the following:
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12.29. Theorem Assume p; € M; and that some subsequence of (If;, p;) converges in
the Gromov-Hausdorff topology to a hyperbolic 3-manifold (I, p). If N covers a finite

volume hyperbolic 3-orbifold, then C contains a shift-periodic point.

Proof. Pick lifts p; of p; in the cyclic covers N; — M;. We claim that a subsequence
of (N, p;) converges in the Gromov-Hausdorff topology to (N, p). To see this, note that
the projection onto the 2nd factor in Equation 12.28.1 gives a map M; — S!; define the
circumference of M; to be the length of the shortest loop that projects to a nontrivial
element of m;(S!). In [11, Proposition 5.1], it is shown that there are only finitely many
e-thick mapping tori with circumference less than a given constant. The proof only uses
that the covers N; are e-thick, though, which we know to be the case by Lemma 12.10
and Proposition 12.16. So, it follows that the circumferences of M; go to infinity. In other
words, there is an increasing sequence r; € R such that the ball By (p;, ;) is isometric
to By, (p;, ;) for all i. It follows immediately that a subsequence of (IV;, p;) converges to
(N, p).

Recall that N; = N, the manifold associated to y; € G(F). By Proposition 12.24,

there is a sequence (n;) in Z and some geodesic y € G(F) with

[S™(y)] — [yl € G(F)/F

and N, isometric to N. Since N covers a finite volume hyperbolic 3-orbifold, [y] is shift-
periodic in G(F)/F by Proposition 12.26. Lemma 12.28 implies that y € I'¢, but then as
}Z

the map {0,...,n}* — G(F)/F is a shift-invariant embedding, y must be the image of

some shift-periodic point of C. This finishes the proof. |

To conclude this section, we derive the statement of Theorem 12.8 given at the
beginning of the section. Suppose that u; is the IRS of PSL,C corresponding to the
hyperbolic 3-manifold M;. If we write M; = H®/T};, then yu; is supported on the set of
conjugates of I'; < PSL,C. Suppose that i is the weak limit of some subsequence of
w;. Then p is supported within the set of accumulation points in Subpgr,c of sequences

gil“iglfl, where g; € PSL,C. But if

gilig;' — I' < PSL,C
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then there are base points p; € M; and p € H3®/I' such that (M;, p;) converges in
the Gromov-Hausdorff topology to (H®/T',p). Therefore, Theorem 12.8 follows from
Theorem 12.29.

13 A General Gluing Construction in SO(n, 1)

The analysis of this section has been an inspiration for some later works regarding

counting manifolds, which have already been published [28, 48].

13.1. Notation Let N, N; be two real hyperbolic n-manifolds such that each have
totally geodesic boundary and each boundary is the disjoint union of two copies of
some fixed hyperbolic (n — 1)-manifold . Label for each N, a component £} of dNg,
and denote the other one by X_; we call iZ the corresponding embeddings of ¥ in dN,.
Given a sequence « = («;);cz € {0, 1}% we let N, denote the manifold obtained by gluing

copies of Ny, N; according to the pattern prescribed by «:

N, = (l_lNai x {i}) / (i5x0) ~ (iz, xi+1) GeZxewn).

i€Z

For i € Z, we shall denote by N, ; the image of N, x {i} in N,. More generally, for an
interval I C Z set Ny 1 = UjerNy, ;.

13.2. Construction of the IRS

Let v be a Borel probability measure on the Cantor set {0, 1}2. We define a measure u,
on the set of framed hyperbolic n-manifolds, and the IRS will be the corresponding
measure on the set of discrete subgroups of SO(1, n) discussed in the introduction.

Let v/ be the measure on {0, 1}, defined for Borel sets A C {0, 1}~ by

[ vOl(Ny,) dv(a)
f{0,1}Z VOl(Ny,) dv(er)”

V(A) =

By definition, we obtain a w,-random framed hyperbolic n-manifold by first choosing «

randomly against v/, and then choosing a random base frame from N, o.

13.3. Example Let o be the shift map on {0,1}? and suppose that v is a o-invariant
probability measure on {0, 1}? that is supported on a periodic orbit, that is, there is

some « € {0,1}” and k € Z with o¥(@) = « and v = %Zé:ol Ssi()- We can construct a
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closed manifold M from «:

M= || Nex@ /(i;ix,i) ~(axi+l) Gez/kn.

i€Z/KZ

Then each Ng, with g in the support of v, is an infinite cyclic cover of M and the random
subgroup u, is the ergodic IRS obtained—as in Section 11 above—from the normal

subgroup 1 (N,) of the lattice 7y (M).
More generally, we have the following result.

13.4. Lemma Let v be a shift-invariant ergodic measure on {0, 1}%. Then the random

subgroup u, constructed above is an ergodic IRS.

Proof. Fix g € G = SO(1, n). Translated through the correspondence between framed
manifolds and discrete subgroups of G, the conjugation action of g © Subg restricts
to the right action of g on the frame bundle FM = I'\G of any hyperbolic n-manifold
M = I'\H". Note that this action preserves the Haar measure.

Let o € {0,1}% and let U be an open-bounded set of frames on N,. Then U and
gU are contained in some submanifold N, ;, where I C Z is an interval. Because v is
shift-invariant, we get the same random framed manifold by selecting a random frame
from Ng ; for a v'-random 8.

Let V be some neighborhood of « containing all g € {0,1}% such that for all
i =k,....,k+1wehave g; = «aj; for B € V let Ug be the image of U in Ng. Since g
preserves the Haar measure on FN,, when taking a random frame in Ng; we have the

same probability to land in Ug or gUy, that is, if we set
W=W®U,V)={ye FUs, B €V}

then we get

(W) = p,y({y € gUp, B € V}) = u,(gW).

The G-invariance follows since the sets {y € Ug, p € V} form a basis for Borel sets in the
support of w,.

To show ergodicity, note that the group G acts transitively on the frame bundle
of any connected hyperbolic n-manifold. So if a G-invariant set S of frames contains

a frame on some N, it contains all frames on N,. It follows that {« : A, € S} is a
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shift-invariant set. Since v is ergodic, it follows that this set has full or zero measure.

Therefore, S has full or zero measure for u,. -

Remarks.

1) The IRSs we have constructed above are always limits of lattice IRSs since
shift-invariant measures are limits of measures supported on finite orbits.

2) We could have made the construction with more general graphs. If a group
Q acts freely on a locally finite graph T, D is a connected fundamental
domain for 2 and Ny, N; are manifolds with totally geodesic boundary whose
boundary components are all isometric and indexed by 3D then for any
a € {0,1} we can glue them along T in the manner prescribed by « to get a
hyperbolic manifold. We can then construct ergodic IRSs in the same manner

as above from Q-ergodic probability measures on {0, 1}

13.2. Exoticity

We now show that after choosing suitable Ny and N, the construction above yields IRSs

that are not induced from a lattice.

13.6. Theorem Suppose that n > 3 and that Ny (resp. N;) is isometrically embedded in
a compact arithmetic manifold My (resp. M;). If My, M; are non-commensurable then for
}Z

any sequence « € {0,1}” that is not periodic the manifold N, does not cover any finite

volume hyperbolic manifold.

13.7. Corollary Under the same hypotheses as in the above theorem, if the ergodic
shift-invariant measure v is not supported on a periodic orbit then the support of the
IRS u, is disjoint from the set of all subgroups of all lattices of G (in particular it follows

that u, cannot be induced from a lattice).

The proof of this theorem occupies the rest of this section. In Section 13.8, we
recall how to construct (non-commensurable pairs of) arithmetic manifolds with totally
geodesic hypersurfaces. These will be the manifolds My, M; above, and cutting along the
hypersurfaces will give the desired Ny, N;. The reason we use arithmetic manifolds here
is the very strong disjointness criterion in Proposition 13.10, which says that isometric

immersions of Np, N; into a common manifold cannot have overlapping images. Using
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this, we then show that if there is a covering map from N, to a finite volume manifold,

then « is periodic.

13.8. Constructing arithmetic manifolds

The standard way to construct arithmetic hyperbolic manifolds that contain totally
geodesic hypersurfaces is as follows. Let F be a totally real number field and g a
quadratic form in n + 1 variables over F such that g is definite positive at all real
places of F but one, where it has signature (1, n). Then the group of integer points I'g =
S0(q, OF) is a lattice in SO(1, n). If q is written as ale + ...+ an+1X,21+1 where a1, ..., an
are totally positive and a,y; is negative at exactly one real place, then I'; contains
the subgroup associated to the quadratic form in n variables a2X§ + ...+ an+1x,21+1
that gives rise to an imbedded totally geodesic hypersurface. It follows from work of
Millson that there exists an ideal p such that this hypersurface is actually embedded
in the manifold associated to the principal congruence subgroup of level p, that is,
I' N ker(SL(n + 1,0r) — SL(n + 1,0r/p)). Moreover, we can choose p so that this
hypersurface S is non-separating. In this case, M — S is the interior of a compact
manifold N that has two boundary components, both isometric to S. Note also that the
isometry type of S depends only on ay,...,an4+1 and p.

The simplest example of the previous procedure is when F = Q and a;,...,an, >
0, an+1 < O but then the manifolds obtained are noncompact for n > 4. However, if
F = Q(+/d) for a square-free rational integer d > 0, a1,...,a, € Q7% and any1/vd € Q*
then g is anisotropic over F so that I'(\H? is compact.

Now we want to find ay, ..., an4+1 and a such that

e bothay,...,ans1 and al, ..., any1 satisfy the conditions above;
e the lattices obtained from g = a1x? + ... + ap11x%, | and ¢’ = a\x} + ... +

2
An+1X;, | are non-commensurable.

By [30, 2.6] it suffices to show that ¢’ and Aq are not isometric for any A € F*. For n odd,
since the discriminants of q' and Aq are equal for all A it suffices that a;/a) ¢ F? since
then the discriminants of Aq and g’ are never the same (as noted in [30]). For example,
we can take F = Q(+/2) and

q=x+... +x2-3vV2x2,,, ¢ =7x +...+x2 - 3vV2x2 ;.

For n even we need to consider another invariant. Let k be any field; for u, v € k*
the Hilbert symbol (u, v) is defined in [49, III, 1.1] as 1 if 1 = uv? + vy? for some x, y € k

and —1 otherwise. Then it is shown in [49, IV, Théoréme 2] that
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e(@) = [(ai ap

i<j

is an isometry invariant of g over k. Now suppose that k = Q, for a prime p > 2. Then

for a,b € Zp, we have (a, b) = —1 if and only if either

(1) p divides a (resp. b) and b (resp. a) is a nonsquare unit (modulo squares), or
(2) a, b have the same p-valuation mod 2 and —a~!b is a square unit (see [49, III,

Théoréeme 2]).

Now let g and g’ be as above and 1 € Q3. Since 7 = 3 (mod 4), — 1 is not a square mod 7
and it follows that (1, 1) = 1, so that e(Aq) = (A, —A+/2)" = 1 since n is even. On the other
hand, we have —3v/2 = 5 (mod 7), which is not a square, so that e(q") = (7, —3v2) = —1.
It follows that ¢’ and Aq are not isometric over Q7 for any A € Q.

In conclusion, this shows that we can find non-commensurable compact arith-
metic n-manifolds My, M; that both contain a totally geodesic hypersurface isometric to
some fixed S, and then we can cut My, M; along to produce manifolds Ny, N; as required

in the statement of Theorem 13.6.

13.9. The proof of Theorem 13.6

Suppose that n > 3 and Ny C My, Ny C M; are hyperbolic n-manifolds as in the
statement of the theorem. The reason we require My, M; to be non-commensurable

arithmetic manifolds is the following.

13.10. Proposition Suppose that M is another hyperbolic n-manifold and ip : No — M
and i; : N; — M are isometric immersions. Then the images of ip, i; are disjoint, except

possibly along their boundaries.

To prove this, recall the following commensurability criterion (see [30, 1.6]).

13.11. Lemma If I, are two arithmetic subgroups in SO(1, n) such that the intersec-
tion I' N IV is Zariski-dense in SO(1, n), then this intersection has finite index in both of

them (so that in particular I', I'" are commensurable).

Proof of Proposition 13.10. Hoping for a contradiction, assume that the images of the
interiors intersect. To begin with, assume also that there are components g C 9Ny
and ¥; C dN; such that ig(Zg) Ni;(int(Ny)) # @ and i;(21) Nig(int(Np)) # @. Then the
preimages ¥/, = ifl(io(Eo)) and X/ = ial(il(El)) are properly immersed totally geodesic

hypersurface in Ny, Ny, respectively.
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Fixing a monodromy map, identify w; (M) with a discrete subgroup of SO(1, n).
By choosing a base point within Ny N N, we can also select subgroups in 7; (M) that
represent the fundamental groups of all the other manifolds and hypersurfaces above,
such that both 71X and 71 %] are contained in w1N; N w1 No.

By Corollary 1.7.B of [30], for instance, the Zariski closure of 71 % in SO(1, n) is
isomorphic to SO(1, n — 1). Similarly, the Zariski closure of 71 %] is also isomorphic to
SO(1, n — 1). These two copies of SO(1, n — 1) embedded in SO(1, n) are different, since
they stabilize the preimages in H® of distinct closed, immersed hypersurfaces in M. So,

the group (71X, 71 X)) is Zariski dense in SO(1, n). But
(7[126,7‘[121) Cc miNoNm Ny,

so w1 My, 1M can be represented by lattices in SO(1, n) with Zariski dense intersection.
By Lemma 13.11, this contradicts that My, M; are not commensurable.

The only remaining case is that, say, ip(0Ng) does not intersect i} (int(N1)), so
that i3 (Ny) C ig(int(Np)). In this case, though, ial(il(Nl)) is a compact, immersed
submanifold of N;. So, some finite index subgroup of 7;N; injects into 7Ny, and as

m1 N, is Zariski dense in SO(1, n), we get a contradiction just as before.

The appeal to Corollary 1.7.B of [30] is the part of the argument above that
uses n > 3. If n = 2, then X could be a geodesic segment, in which case its (trivial)
fundamental group is certainly not Zariski dense in SO(1, 1).

We are now ready to finish the proof of Theorem 13.6, which we encapsulate in

the following proposition.

13.12. Proposition Suppose that @ = (ax) € {0,1}Z and that f : N, — M is a covering

map, where M has finite volume. Then « is periodic.

Proof. For convenience, assume throughout the following that « is not a constant
sequence. Recall that N, ; = Ny, is the i" block in the gluing representing N,. Let %; be
the hypersurface that is the common boundary of N, ; and N, ;1. All the ¥; are isometric
to a fixed hyperbolic (n — 1)-manifold X.

By Proposition 13.10, we have that if ¢; = 0 and aj =1, then

int(f(Ny,i) N f(Ne,) = 9. (13.12.1)

Hence, M = Ip U I, where Iy = f(U;q,—oN,,;) and I; is defined similarly. It follows
that Iy N I; is a set of totally geodesic hypersurfaces in M, each of which is covered
by ¥. A priori, you might imagine that the common boundary of Iy and I; has corners,

remembering that the surfaces f(%;) are only immersed in M. However, if ¢; = 0 and
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ajy1 = 1, say, then any transverse self intersection of the image of f(X;) would create
interior in the intersection f(Ny,) N f(Ny,,,), contradicting (13.12.1).

Let's call a connected submanifold of N, that is a maximal union of consecutive
blocks isometric to Ny a 0-chunk, and define a I-chunk similarly. The restriction of f
to any O-chunk is a covering map onto some component C C Iy, and the degree of this
covering is 2vol(X)/vol(dC). By volume considerations, the number of blocks in any 0-

chunk that covers C must then be

2vol(Z) - vol(C)

vol(IVp) - vol(dC)” (13.12.2)

Of course, all the same statements hold for 1-chunks covering components of I;.
From the covering property, every component C C Iy has either one or two

boundary components. It follows that either

(1) the (finitely many) components of Iy and I; all have two boundary compo-
nents, and are arranged in M end-to-end in a circle, or
(2) the components of Iy and I; are arranged in a line segment, with one-

boundary-component C's at the extremities.

When a component C has two boundary components, the two boundary components
of a chunk covering C cover distinct components of dC. From this, it follows that « is
periodic. Namely, a cyclic word representing « can be obtained from the circle in case (1)
by using (13.12.2) to determine the number of 0's and 1's to associate to each component
of In and I;. Case (2) is similar, except that the cyclic word is produced by traversing the
line segment twice, first forward and then backward, but only counting the endpoints

once each. [ |

Funding

This research was supported by the Magyar Tudomanyos Akadémia Renyi “Lendulet” Groups and
Graphs Research Group, the National Science Foundation, the Institut Universitaire de France,
the European Research Council Consolidator [grant 648017]; the Israel Science Foundation; the

Binational Science Foundation; and the Engineering and Physical Sciences Research Council.

Acknowledgments

The authors would like to thank the referee for a careful reading of the paper, and for the helpful
comments. The authors would like to thank Yair Minsky for an invaluable conversation that led
to Example 4.

6102 1snBny 9| uo Jasn Aieiqi] meT - 8Bs||00 uolsog Aq G S661/080AUL/UIWIEE0 | 0| /I0P/10BISqB-0[01IB-80UBAPE/UIWI/WOD dNO™oIWapeoe//:sdjy WoJj papeojumoq



36 M. Abert et al.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[l

[10]

[11]

[12]

[13]

(14]
[15]

[16]

[17]

[18]

[19]

Abert, M., N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet. “On
the growth of L2-invariants for sequences of lattices in Lie groups.” Ann. Math. (2) 185,
no. 3 (2017): 711-90.

Abert, M., N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet.
“On the growth of [2-invariants for sequences of lattices in lie groups.” (2012): preprint
arxiv.org/abs/1210.2961.

Abert, M. and I. Biringer. “Unimodular measures on the space of all Riemannian manifolds.”
https://arxiv.org/abs/1606.03360.

Abért, M., Y. Glasner, and B. Virag. “Kesten's theorem for invariant random subgroups.”
Duke Math. J. 163, no. 3 (2014): 465-88.

Aldous, D. and R. Lyons. “Processes on unimodular random networks.” Electron. J. Probab.
12, no. 54 (2007): 1454-508.

Alessandrini, D., L. Liu, A. Papadopoulos, W. Su, and Z. Sun. “On Fenchel-Nielsen coordinates
on Teichmiiller spaces of surfaces of infinite type.” Ann. Acad. Sci. Fenn. Math. 36, no. 2
(2011): 621-59.

Anderson, J. W. and R. D. Canary. “Cores of hyperbolic 3-manifolds and limits of Kleinian
groups.” Amer. J. Math. 118, no. 4 (1996): 745-79.

Bader, U., P.-E. Caprace, T. Gelander, and S. Mozes. “Simple groups without lattices.” Bull.
Lond. Math. Soc. 44, no. 1 (2012): 55-67.

Bader, U., B. Duchesne, and J. Lécureux. “Amenable invariant random subgroups.” Israel J.
Math. 213, no. 1 (2016): 399-422. With an appendix by Phillip Wesolek.

Benedetti, R. and C. Petronio. Lectures on Hyperbolic Geometry. Universitext. Berlin:
Springer, 1992.

Biringer, I. “Geometry and rank of fibered hyperbolic 3-manifolds.” Algebr. Geom. Topol. 9,
no. 1 (2009): 277-92.

Biringer, I. and J. Raimbault. “Ends of unimodular random manifolds.” Proc. Amer. Math.
Soc. 145, no. 9 (2017): 4021-29.

Biringer, I. and O. Tamuz. “Unimodularity of invariant random subgroups.” Trans. Amer.
Math. Soc. 369, no. 6 (2017): 4043-61.

Bowen, L. “Invariant random subgroups of the free group.” (2012): preprint arXiv:1204.5939.
Bowen, L. “Random walks on random coset spaces with applications to furstenberg entropy.”
Invent. Math. 196, no. 2 (2014): 485-510.

Bowen, L. “Invariant random subgroups of the free group.” Groups Geom. Dyn. 9, no. 3 (2015):
891-916.

Bowen, L., R. Grigorchuk, and R. Kravchenko. “Invariant random subgroups of lamplighter
groups.” Isr. J. Math. 207, no. 2 (2015): 763-82.

Brock, J., R. Canary, and Y. Minsky. “The classification of Kleinian surface groups 2: the
ending lamination conjecture.” preprint.

Brock, J. F. “Continuity of Thurston’s length function.” Geom. Funct. Anal. 10, no. 4 (2000):
741-97.

6102 1snBny 9| uo Jasn Aieiqi] meT - 8Bs||00 uolsog Aq G S661/080AUL/UIWIEE0 | 0| /I0P/10BISqB-0[01IB-80UBAPE/UIWI/WOD dNO™oIWapeoe//:sdjy WoJj papeojumoq



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]
[38]

Exotic Invariant Random Subgroups in Rank One 37

Canary, R. D. “A covering theorem for hyperbolic 3-manifolds and its applications.” Topology
35, no. 3 (1996): 751-78.

Chabauty, C. “Limite d'ensembles et géométrie des nombres.” Bull. Soc. Math. Fr. 78 (1950):
143-51.

Choi, Y.-E. and K. Rafi. “Comparison between Teichmiiller and Lipschitz metrics.” J. Lond.
Math. Soc. (2) 76, no. 3 (2007): 739-56.

Duchesne, B., Y. Glasner, N. Lazarovich, and J. Lécureux. “Geometric density for invariant
random subgroups of groups acting on CAT(0) spaces.” Geom. Dedicata 175 (2015): 249-56.
Farb, B. and D. Margalit. A Primer on Mapping Class Groups. Princeton Mathematical Series
49. Princeton, NJ: Princeton University Press, 2012.

Farb, B. and L. Mosher. “Convex cocompact subgroups of mapping class groups.” Geom.
Topol. 6 (2002): 91-152 (electronic).

Gelander, T. “Lecture notes on invariant random subgroups and lattices in rank one and
higher rank. ” (2015): arXiv: 1503.08402.

Gelander, T. “Kazhdan-Margulis theorem for invariant random subgroups.” Adv. Math
(2016). arXiv:1510.05423. In press.

Gelander, T. and A. Levit. “Counting commensurability classes of hyperbolic manifolds.”
Geom. Funct. Anal. 24, no. 5 (2014): 1431-47.

Gromov, M. “Hyperbolic groups.” In Essays in Group Theory, 75-263. Mathematical Sciences
Research Institute Publications 8. New York: Springer, 1987.

Gromov, M. and I. Piatetski-Shapiro. “Nonarithmetic groups in Lobachevsky spaces.” Inst.
Hautes Etudes Sci. Publ. Math. 1, no. 66 (1988): 93-103.

Hamenstddt, U. “Rank-one isometries of proper CAT(0)-spaces.” In Discrete Groups and
Geometric Structures, 45-59. Contemporary Mathematics 501. Providence, RI: American
Mathematical Society, 2009.

Hartman, Y. and O. Tamuz. “Furstenberg entropy realizations for virtually free groups and
lamplighter groups.” J. Anal. Math. 126, no. 1 (2015): 227-57.

Hubbard, J. H. “Teichmiiller Theory and Applications to Geometry, Topology, and Dynamics.”
Ithaca, NY: Matrix Editions, 2006. Teichmtiller theory, with contributions by Adrien Douady,
William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska,
and Sudeb Mitra, with forewords by William Thurston and Clifford Earle.

Leininger, C. J. and S. Schleimer. “Connectivity of the space of ending laminations.” Duke
Math. J. 150, no. 3 (2009): 533-75.

Lenzhen, A. “Teichmiiller geodesics that do not have a limit in pmf.” Geom. Topol. 12, no. 1
(2008): 177-97.

Masur, H. “Uniquely ergodic quadratic differentials.” Comment. Math. Helv. 55, no. 2 (1980):
255-66.

Masur, H. “Two boundaries of Teichmiiller space.” Duke Math. J. 49, no. 1 (1982): 183-90.
Masur, H. “Hausdorff dimension of the set of nonergodic foliations of a quadratic differen-
tial.” Duke Math. J. 66, no. 3 (1992): 387—442.

6102 1snBny 9| uo Jasn Aieiqi] meT - 8Bs||00 uolsog Aq G S661/080AUL/UIWIEE0 | 0| /I0P/10BISqB-0[01IB-80UBAPE/UIWI/WOD dNO™oIWapeoe//:sdjy WoJj papeojumoq



38 M. Abert et al.

(391

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[61]

[62]

[63]

(54]

[55]

[56]

(57

Matsuzaki, K. and M. Taniguchi. Hyperbolic Manifolds and Kleinian Groups. Oxford
Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1998.
Oxford Science Publications.

Minsky, Y. “The classification of Kleinian surface groups I: models and bounds.” preprint.
Minsky, Y. N. “Teichmiiller geodesics and ends of hyperbolic 3-manifolds.” Topology 32, no.
3(1993): 625-47.

Minsky, Y. N. “On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds.” J. Amer.
Math. Soc. 7, no. 3 (1994): 539-88.

Minsky, Y. N. “Quasi-projections in Teichmiiller space.” J. Reine Angew. Math. 473 (1996):
121-36.

Minsky, Y. N. “Bounded geometry for Kleinian groups.” Invent. Math. 146, no. 1 (2001):
143-92.

Morris, D. W. “Introduction to arithmetic groups.” Deductive Press, 2015.

Nevo, A. and R. J. Zimmer. “A generalization of the intermediate factors theorem.” J. Anal.
Math. 86 (2002): 93-104.

Rafi, K. “A characterization of short curves of a Teichmiiller geodesic.” Geom. Topol. 9 (2005):
179-202.

Raimbault, J. “A note on maximal lattice growth in so(1,n).” Int. Math. Res. Not. IMRN 186,
no. 16 (2013): 3722-31.

Serre, J.-P. Cours d’arithmétique. Presses Universitairs de France, Paris, 1977. Deuxieme
édition revue et corrigée, Le Mathématicien, no. 2.

Stuck, G. and R. J. Zimmer. “Stabilizers for ergodic actions of higher rank semisimple
groups.” Ann. Math. (2) 139, no. 3 (1994): 723-47.

Thomas, S. and R. Tucker-Drob. “Invariant random subgroups of strictly diagonal limits of
finite symmetric groups.” Bull. Lond. Math. Soc. 46, no. 5 (2014): 1007-20.

Thurston, W. The geometry and topology of 3-manifolds. Lecture notes at Princeton
University, 1980.

Thurston, W. P. “Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds
fibering over the circle.” (1998): preprint.

Tucker-Drob, R. D. “Weak equivalence and non-classifiability of measure preserving actions.”
Ergod. Theor. Dyn. Syst. 35, no. 1 (2015): 293-336.

Varadarajan, V. “Groups of automorphisms of borel spaces.” Trans. Am. Math. Soc. 109, no.
2 (1963): 191-220.

Vershik, A. M. “Totally nonfree actions and the infinite symmetric group.” Mosc. Math. J. 12,
no. 1 (2012): 193-212, 216.

Waldhausen, F. “On irreducible 3-manifolds which are sufficiently large.” Ann. Math. (2) 87
(1968): 56-88.

6102 1snBny 9| uo Jasn Aieiqi] meT - 8Bs||00 uolsog Aq G S661/080AUL/UIWIEE0 | 0| /I0P/10BISqB-0[01IB-80UBAPE/UIWI/WOD dNO™oIWapeoe//:sdjy WoJj papeojumoq



	On the Growth of L^2-Invariants of Locally Symmetric Spaces, II: Exotic Invariant Random Subgroups in Rank One
	11 Limit Sets and Induced IRSs
	11.1. Induction
	11.2. Limit sets of rank one IRSs

	12 Exotic IRSs in Dimensions 2 and 3
	12.1. Random trees of pants---examples in G = SO(2, 1)
	12.5. IRSs of SO(3,1) cong mathrm PSL_2C supported on thick surface groups
	12.9. Geodesics in F and thick Teichmuller geodesics
	12.13. Doubly degenerate hyperbolic structures on Sigma x R 
	12.17. Geodesics in F and hyperbolic 3-manifolds
	12.18. 
	12.20. The topologies of G (F)/F and DD (Sigma )
	12.25. Shift periodicity and cyclic covers of mapping tori
	12.27. The proof of Theorem 12.8

	13 A General Gluing Construction in SO( n, 1)
	13.2. Construction of the IRS
	13.2. Exoticity
	13.8. Constructing arithmetic manifolds
	13.9. The proof of <0:hbox > Theorem 13.6</0:hbox>



