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In the 1st paper of this series we studied the asymptotic behavior of Betti numbers,

twisted torsion, and other spectral invariants for sequences of lattices in Lie groups G.

A key element of our work was the study of invariant random subgroups (IRSs) of G.

Any sequence of lattices has a subsequence converging to an IRS, and when G has higher

rank, the Nevo–Stuck–Zimmer theorem classifies all IRSs of G. Using the classification,

one can deduce asymptotic statements about spectral invariants of lattices. When G

has real rank one, the space of IRSs is more complicated. We construct here several

uncountable families of IRSs in the groups SO(n, 1), n ≥ 2. We give dimension-specific

constructions when n = 2, 3, and also describe a general gluing construction that works

for every n. Part of the latter construction is inspired by Gromov and Piatetski-Shapiro’s

construction of non-arithmetic lattices in SO(n, 1).
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2 M. Abert et al.

Introduction

This is the 2nd half of our paper On the growth of L2-invariants of locally symmetric

spaces, which was posted on the arXiv in 2012 as [2] and which we have split in two for

publication (the 1st part appeared as [1]). With the exception of this added introduction,

all the sections of this paper appeared in the earlier preprint, and we have preserved

the original section numbers so as to not break existing citations.

Invariant random subgroups. Let G be a locally compact 2nd countable group, and

SubG the set of closed subgroups of G. We consider SubG with the Chabauty topology,

see [21].

Definition. An invariant random subgroup (IRS) of G is a random element of SubG

whose law μ is a Borel probability measure on SubG invariant under the conjugation

action of G � SubG. Often, we will abusively call μ an IRS as well.

The term IRS was introduced by Abért–Glasner–Virág in [4] for discrete groups,

although they were also studied by Vershik [56] under a different name, and we

introduced IRSs to Lie groups in our earlier paper [1]. If G acts by measure preserving

transformations on a standard probability space X, then almost every stabilizer Gx,

where x ∈ X, is a closed subgroup of G, see [55, Theorem 3.2]. Hence, the stabilizer of

a random x ∈ X is an IRS of G. In fact, by [1, Theorem 2.6], all IRSs can be obtained as

random stabilizers from probability measure preserving (p.m.p) actions.

Concrete examples of IRSs include normal subgroups of G, as well as random

conjugates g�g−1 of a lattice � < G, where the conjugate is chosen by selecting �g

randomly against the given finite measure on �\G. More generally, any IRS H of a lattice

� < G induces an IRS of G, obtained by conjugating H by a random element of �\G. We

describe this in more detail in Section 11.1 below.

Though the definition of an IRS may seem rather unassuming, even in a very

general context there are restrictions on which groups can actually appear in the

support of one. For example, an invariant random subgroup supported on amenable

subgroups almost surely lies in the amenable radical [9], and in the context of nonposi-

tive curvature there is the stronger statement that an IRS is almost surely “geometrically

dense” [23], which is a generalization of the “Borel density theorem” proven in [1]. There

is a growing literature on IRSs on more specific groups, in particular construction of

examples (see, e.g., [13, 17, 26, 51]) and their applications, see especially [15, 27, 32,

54]. A still open question is whether there exists a simple, non-discrete locally compact

group that does not have any IRSs beyond itself and the trivial subgroup; candidates
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Exotic Invariant Random Subgroups in Rank One 3

are the “Neretin groups”, which are known not to contain any lattice [8].

Invariant random subgroups in semisimple Lie groups. Suppose now that G is a sim-

ple, noncompact center-free Lie group. In [1], we proved the following strong rigidity

result for higher-rank IRSs using the Nevo–Stück–Zimmer Theorem [46, 50] and Kazh-

dan’s property (T).

Theorem. If rankRG ≥ 2, the ergodic IRSs of G are exactly {e}, G, and IRSs constructed

as random conjugates of a lattice � < G. Moreover, if the laws of these IRSs are denoted

μid, μG, and μ�, then for any sequence of pairwise non-conjugate lattices �n < G, the

measures μ�n weakly converge to μid.

This completely describes the topological spaces of IRSs in simple higher-rank

Lie groups. On the other hand, if G is a group of real rank one then there are always more

IRSs than those described in this theorem. For example, every cocompact lattice in G is

a Gromov-hyperbolic group and hence contains plenty of normal infinite subgroups of

infinite index, see Theorem 17.2.1 of [45]. Taking a random conjugate of one of the latter

we obtain an IRS, which violates the conclusion of the theorem above. More generally

we can induce from IRSs in lattices that yields further examples as many lattices in

SO(n, 1) (and a few in SU(2, 1)) surject onto nonabelian free groups, which have plenty

of IRSs by [14]. It turns out that in the case where G = SO(n, 1) the wealth of available

IRSs goes well beyond these examples, as hyperbolic geometry yields constructions of

ergodic IRSs, which are not induced from a lattice. These constructions are the main

object of this paper and we will describe them in some detail in the next section.

First, though, let us say a few words about further restrictions on the groups

appearing in IRSs of rank one Lie groups. Making the Borel and geometric density

theorems referenced above more precise, we will prove the following in Section 11:

Theorem 1. (See Proposition 11.3 for a more general statement) Suppose that μ is

an IRS of SO(n, 1) that does not have an atom at {id} ∈ SubG. Then μ-a.e. H ∈ SubG

has full limit set, that is, �(H) = ∂Hn.

In particular, the probability that an IRS is geometrically finite and infinite co-

volume is zero. In the later work [3], Abért and Biringer prove a much more precise result

in dimension 3; any ergodic torsion-free IRS of SO(3, 1) that is almost surely finitely

generated must be either a lattice IRS or be supported on doubly degenerate subgroup

(one of our constructions shows that the latter case contains a wealth of interesting

examples). In dimension 2 any non-lattice ergodic torsion-free IRS must be supported

on infinite-rank-free subgroups; the topology of the corresponding infinite-type surfaces
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4 M. Abert et al.

is very restricted, as described in [12].

Our main motivation in [1] to study IRSs was their applications to the “limit

multiplicity problem”. As an example, a corollary of our classification of IRSs in higher

rank is that for any sequence of cocompact lattices in an irreducible higher-rank Lie

group G with property (T), which are in addition “uniformly discrete” (not intersecting a

fixed identity neighbourhood in G—conjecturally this is always true if assuming torsion-

freeness), the Betti numbers are always sublinear in the covolume except in the middle

dimension if G has discrete series.

This result is proven through the notion of Benjamini–Schramm convergence,

which gives a geometric meaning to the convergence of IRSs in the weak topology, and

the generalization of the Lück Approximation Theorem to this setting. Since the space

of IRSs is compact there are always limit points; thus, understanding the space of

IRSs might in principle give information about the geometry and topology of locally

symmetric spaces of large volume.

Constructions of IRSs in real hyperbolic spaces. To describe these examples, it will be

more useful to interpret discrete (by a corollary of Borel’s density theorem [2, Theorem

2.9], any IRS of a simple Lie group G that does not have an atom at G ∈ SubG is discrete

almost surely) IRSs of SO(n, 1) as random framed hyperbolic n-orbifolds.

Whenever � is a discrete subgroup of SO(n, 1), the quotient M� = �\Hn is a

hyperbolic n-orbifold. If a baseframe is fixed in H
n, its projection gives a canonical

baseframe for M�, and the map � �→ M� is a bijection from the set of discrete subgroups

of G to the set of isometry classes of framed hyperbolic n-orbifolds. A random � then

gives a random framed orbifold. Intuitively, a random framed hyperbolic n-orbifold

represents an IRS if whenever a particular (unframed) orbifold is chosen, the base

frames for that orbifold are distributed according to the natural Riemannian volume

on the frame bundle. This is made precise in Abert–Biringer [3], but here we will always

just work with the IRS directly.

Example 2. (IRSs from shift spaces, see Section 13) Let N0, N1 be two hyperbolic n-

manifolds with totally geodesic boundary, such that each boundary is the disjoint union

of two isometric copies of some fixed hyperbolic (n − 1)-manifold �. Given a sequence

α = (αi)i∈Z ∈ {0, 1}Z, construct a hyperbolic n-manifold Nα by gluing copies of N0, N1

according to the pattern prescribed by α.

If ν is a shift invariant measure on {0, 1}Z, construct a random framed hyperbolic

n-manifold by picking α randomly with respect to ν, and then picking a vol-random

base frame from the frame bundle of the “center” block, that is, the copy of N0 or N1
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Exotic Invariant Random Subgroups in Rank One 5

corresponding to 0 ∈ Z. This defines an IRS of SO(n, 1). Moreover, we show that if N0, N1

embedded in non-commensurable compact arithmetic n-manifolds M0, M1, and α is not

supported on a periodic orbit, then the IRS is not induced by a lattice.

In some sense, these shift examples are still quite “finite”, in that the manifolds

involved are constructed as gluings of compact pieces. So for instance, there is a

universal upper bound for the injectivity radius at every point of every manifold in

the support of such an IRS. Here is an example that is more truly “infinite type”, and

where the injectivity radius is not bounded above. Note: one could also construct IRSs

with unbounded injectivity radius by summing an appropriate sequence of lattice IRSs

against a geometric series, but the following examples are ergodic:

Example 3. (Random trees of pants, see Section 12.1) Let S be a topological surface

constructed by gluing together pairs of pants glued together in the pattern dictated

by an infinite 3-regular tree. If the set of simple closed curves on S along which two

pairs of pants are glued is written C, then one can produce a hyperbolic metric on S by

specifying Fenchel–Nielsen coordinates, which consist of a choice of length and twist

parameter (lc, tc) ∈ (0, ∞) × S1 for each curve c ∈ C.

Fix a probability measure on (0, ∞), consider S1 with the Lebesgue probability

measure and fix a “center” pair of pants on S. Construct a random framed hyperbolic

surface by choosing (lc, tc) independently and randomly from (0, ∞) × S1, equipped

with the product measure, and choosing a base frame vol-randomly from the frame

bundle of the center pair of pants. The result is a random framed hyperbolic surface

corresponding to an ergodic IRS of SO(2, 1). When ν is chosen appropriately, this IRS is

not induced from an IRS of a lattice, and when ν has unbounded support, the injectivity

radius at the base frame is not bounded above.

In three dimensions, there is a canonical example of a nontrivial finitely

generated IRS with infinite covolume; the IRS induced by the infinite cyclic cover M̂ of

a hyperbolic 3-manifold fibering M over the circle. Namely, Thurston’s Hyperbolization

Theorem [53] gives many examples of closed hyperbolic 3-manifolds M equipped with a

fibration

� −→ M −→ S1,

where � is a closed surface. On the level of fundamental groups, this becomes

1 −→ π1� −→ M −→ Z.
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6 M. Abert et al.

Identify π1M with a lattice in SO(3, 1). Then π1� is a normal subgroup of π1M, and

hence can be induced to an IRS of SO(3, 1), as explained above and in Section 11.1. The

resulting IRS is a.e. isomorphic to π1�, and the quotient manifolds are all isometric to

the corresponding Z-cover of π1M, which has infinite volume.

In Section 12.5 we generalize this example by showing that the basic idea behind

the shift IRS construction can be performed in three dimensions without producing

infinitely generated fundamental group. Namely,

Example 4. (IRSs supported on surface groups, see Section 12.5) Let � be a closed,

orientable surface and φ1, . . . , φn : � −→ � be pseudo-Anosov homeomorphisms that

freely generate a Schottky subgroup of Mod(�). Choose a sequence (wi) of words in

the letters φ1, . . . , φn with |wi| → ∞ and let Mi be the hyperbolic mapping torus with

monodromy wi. After passing to a subsequence, the measures (μMi) weakly converge

to an IRS μ of SO(3, 1) that is supported on uniformly thick, doubly degenerate

hyperbolic 3-manifolds homeomorphic to � ×R. Moreover, if the words (wi) are chosen

appropriately, no manifold in the support of μ covers a finite volume manifold, and in

particular μ is not induced from an IRS of any lattice.

The homeomorphisms φ1, . . . , φn play the role of the building blocks N0, N1 in the

shift examples, in the sense that the geometry of the mapping torus of each φk roughly

appears as a “block” in the manifold Mn whenever φk is a letter in wn, and these blocks

will persist in the limit IRS. Making this intuition precise requires us to use Minsky’s

model manifold machinery for understanding ends of hyperbolic 3-manifolds up to

bilipschitz equivalence [40, 44], although in our setting we only need his earliest version

for thick manifolds. Although it seems plausible that one could use his machinery to

construct the limit IRS directly, it is much easier to proceed as we do above through a

limiting argument.

Further questions. The topology of the space of IRSs of SO(n, 1) is quite rich—indeed,

it is built on the already rich structure of the Chabauty topology. While a complete

understanding of it (as in the higher-rank case) is certainly intractable, we are interested

in the following question, which we phrase more generally:

Question 5. Is every ergodic IRS of a simple Lie group G other than μG a weak limit of

IRSs corresponding to lattices of G?

It is easy to see that all the examples in SO(n, 1) that we have described are

weak limits of lattice IRSs, and this is trivially true for higher-rank G. Question 5 is a
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Exotic Invariant Random Subgroups in Rank One 7

continuous analog of a question of Aldous–Lyons [5, Question 10.1] that asks whether

every unimodular random graph is a weak limit of finite graphs and that is in turn a

generalization of the question of whether all groups are sofic.

While the doubly degerenate examples in dimension 3 are finitely generated, and

there are no such examples in dimension 2, the following question is open:

Question 6. Are there non-lattice IRSs in SO(n, 1), n ≥ 4 that are finitely generated with

positive probability?

Note that it is already unknown whether lattices in SO(n, 1) may have infinite,

infinite index finitely generated normal subgroups.

For some groups there are no constructions of IRSs known beyond lattices and

their normal subgroups. We may ask the following questions:

• Are there non-lattice, almost surely irreducible ergodic IRSs in product

groups such as PSL2(R) × PSL2(R)?

• Are there examples of ergodic IRSs in SU(n, 1), n ≥ 1, which are not induced

from lattices?

11 Limit Sets and Induced IRSs

11.1. Induction

To begin with, let � be a lattice in a Lie group G and suppose that � contains a normal

subgroup �; we construct an IRS supported on the conjugacy class of � as follows. The

map G � g �→ g−1�g ∈ SubG factors as

G −→ �\G −→ SubG,

and the 2nd arrow pushes forward Haar measure on �\G to an IRS μ� of G. Geomet-

rically, if D ⊂ G is a fundamental domain for � and D is its image in G/�, then a μ�-

random subgroup is the stabilizer in G of a random point in D. If � is a sublattice of �

this is coherent with the previous definition.

This construction produces new examples of invariant random subgroups of

rank one Lie groups. Namely, lattices in R-rank one simple Lie groups are Gromov

hyperbolic and it follows from [29, Theorem 5.5.A] that they contain infinite, infinite

index normal subgroups. In other words, the Margulis normal subgroup theorem fails

for these groups. Note that if G = SO(1, n) or SU(1, n), this can be seen for example
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8 M. Abert et al.

because in any dimension there are compact real or complex hyperbolic manifolds with

positive 1st Betti number. Now any such infinite, infinite index normal subgroup � of a

lattice in one of these groups G gives an IRS supported on the conjugacy class of �. In

particular, Theorem fails for these G.

The above is a special case of induction of an IRS of a lattice � to an IRSs of G. To

define this more carefully, note that if � is a finitely generated group, then an invariant

random subgroup of � is just a probability measure μ ∈ P(Sub�) that is invariant under

conjugation. Examples include the Dirac mass at a normal subgroup, and the mean over

the (finitely many) conjugates of a finite index subgroup of a normal subgroup. Less

trivially, Bowen [16] has shown that there is a wealth of invariant random subgroups of

free groups.

So, let μ be an IRS of a lattice � in a Lie group G. Define the IRS of G induced

from μ to be the random subgroup obtained by taking a random conjugate of � and then

a μ-random subgroup in this conjugate (which is well defined because of the invariance

of μ). Formally, the natural map

G × Sub� � (g, �) −→ g�g−1 ∈ SubG

factors through the quotient of G × Sub� by the �-action (g, �)γ = (gγ , γ −1�γ ). This

quotient has a natural G-invariant probability measure, and we define our IRS to be the

push forward of this measure by the factored map (G × Sub�)/� → SubG.

11.2. Limit sets of rank one IRSs

We show in this section that IRSs in rank one groups have either full or empty limit

set. This is a trivial application of Poincaré recurrence that works whenever one has a

reasonable definition of limit set.

Let G be a simple Lie group with rankR(G) = 1. The symmetric space G/K is

a Riemannian manifold with pinched negative curvature and therefore has a natural

Gromov boundary ∂∞X. The limit set �(H) of a subgroup H < G is the set of

accumulation points on ∂∞X of some (any) orbit Hx, where x ∈ X. We say that H is

nonelementary if �(H) contains at least three points.

11.3. Proposition Suppose that G is a simple Lie group with rankR(G) = 1 and that H

< G is a closed, nonelementary subgroup. Let A � H be the compact, normal subgroup

consisting of all elements that fix pointwise the union of all axes of hyperbolic elements

of H. Then if μ is an IRS of H, either
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Exotic Invariant Random Subgroups in Rank One 9

(1) the limit set of a μ-random � < H is equal to �(H), or

(2) μ (SubA) > 0.

In particular, any IRS of G without an atom at id has limit set ∂∞X. As a further

example explaining condition (2), note that H = SO(2, 1) × SO(3) embeds in SO(5, 1) and

any IRS of A = SO(3) induces an IRS of H with empty limit set.

Proof. Assume that with positive μ-probability, the limit set of a subgroup � < H is

smaller than �(H). As �(H) is 2nd countable, there exists an open set U ⊂ �(H) such that

�(�) ∩ U = ∅ with μ-probability ε > 0. Since H is nonelementary, there is a hyperbolic

element h ∈ H with repelling fixed point λ− ∈ U (see [31, Theorem 1.1]). The element h

acts on ∂∞X with North–South dynamics [31, Lemma 4.4], and we let λ+ ∈ ∂∞X be its

attracting fixed point. Then for each i, the μ-probability that �(�) ∩ hi(U) = ∅ is also ε,

by H-invariance of μ.

Passing to a subsequence, we may assume that the sets hi(U) form a nested

increasing chain with union ∂∞X \ λ+. Therefore, passing to the limit we have that the

μ-probability that �(�) ⊂ {λ+} is ε. But the μ-probability that �(�) = {λ+} is zero, since

as � is nonelementary, the H-orbit of λ+ is infinite [31, Theorem 1.1] and there is equal

probability of having limit set any translate of λ+. Therefore, �(�) = ∅ with positive

μ-probability.

Suppose now that (2) does not hold; then with positive μ-probability we have

�(�) = ∅ and � /∈ A. Pick some � < H that satisfies these two conditions such that in

every neighborhood of � the μ-probability of satisfying the two conditions is positive.

Since � has empty limit set, � must be finite, and therefore has a nonempty fixed set

F� ⊂ X, which is a totally geodesic hyperplane in X. Since � is not contained in A, there

is some hyperbolic element h ∈ H whose axis is not contained in F�. Then fixing x ∈ X,

max
γ∈�

dist
(
γ ◦ hi(x), hi(x)

)
−→ ∞

as i increases. Moreover, this is true uniformly over some neighborhood U of � ∈ SubH .

Namely, for sufficiently small U , we have that as i increases,

inf
finite �′∈U

max
γ∈�′ dist

(
γ ◦ hi(x), hi(x)

)
−→ ∞.
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10 M. Abert et al.

We can rephrase this by saying that as i increases,

inf
finite �′∈ h−iUhi

max
γ∈�′ dist (γ (x), x) −→ ∞.

Thus, for an infinite collection of indices i, the subsets h−iUhi are pairwise disjoint in

SubH . This is a contradiction, since they all have the same positive μ-measure. �

If � < G is a subgroup whose limit set is not the full boundary ∂∞G, then there

is no upper bound for the local injectivity radius inj�\X(x) at points x ∈ �\X. Suppose

that μ is an ergodic IRS of G. One can ask whether the function

SubG → R, � �→ inj�\X([id])

necessarily have finite μ-expected value. Here, [id] is the projection of the identity

element under G −→ �\X = �\G/K. Dropping the ergodicity condition one can easily

construct convex combinations of lattice IRSs with infinite expected injectivity radius.

Also, in Section 12.1 we construct ergodic IRSs that have unbounded injectivity radius.

12 Exotic IRSs in Dimensions 2 and 3

12.1. Random trees of pants—examples in G = SO(2, 1)

The idea for this construction was suggested by Lewis Bowen.

Suppose that S is a topological surface obtained by gluing together pairs of pants

in the pattern dictated by a 3-valent graph X, that is, properly embed X in R
3 and let S

be the boundary of some regular neighborhood of it. Let C be the set of simple closed

curves on S corresponding to the boundary components of these pants. Given a function

C → (0, ∞) × S1, c �→ (lc, tc),

called Fenchel–Nielsen coordinates, we can construct a hyperbolic structure on S by

gluing together hyperbolic pairs of pants whose boundary curves have lengths lc, and

where the two pairs of pants adjacent to a boundary curve are glued with twisting

parameter tc. The resulting structure is well defined up to an isometry that fixes the

homotopy class of every curve in C. See [39] for finite-type surfaces, and [6] for a

discussion of issues in the infinite-type case.
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Exotic Invariant Random Subgroups in Rank One 11

Pick a Borel probability measure ν on (0, ∞) and consider S1 with Lebesgue

probability measure λ. We then have a probability measure (ν ×λ)C on the moduli space

M(S). Fix some pair of pants P ⊂ S bounded by curves in C. We create an IRS μ of G

as follows. Randomly select an element [d] ∈ M(S), represented by a hyperbolic metric

d on S. Let Pd ⊂ S be the totally d-geodesic pair of pants in the homotopy class of P

and pick a base frame f on Pd randomly with respect to its Haar probability measure

md. The stabilizer Stab(d, f ) of f under the G-action on the frame bundle of (S, d) is a

μ-random subgroup of G.

More formally, if A ⊂ SubG is a Borel subset, let

μ(A) =
∫

d∈M(S)

md

(
frames f on Pd

with Stab(d,f )∈A

)
d(ν × λ)C .

12.2. Proposition If the 3-valent graph X is vertex transitive, then μ is G-invariant.

Moreover, if X is also infinite then μ is ergodic.

Proof. Fix g ∈ G and some Borel subset A ⊂ SubG. Subdividing A if necessary, we may

assume that there is some pair of pants P ′⊂ S bounded by curves in C such that if d is a

hyperbolic metric on X as above and f is a frame on Pd, then

Stab(d, f ) ∈ A �⇒ gf ∈ P′
d,

where P′
d is the totally d-geodesic pair of pants homotopic to P ′. Then we have

μ(A) =
∫

d∈M(S)

md

(
frames f on P′

d
with Stab(d,f )∈gA

)
d(ν × λ)C

=
∫

d′∈M(S)

md′
(

frames f on Pd′
with Stab(d′,f )∈gA

)
d(ν × λ)C

= μ(gA).

Here, the 1st equality follows from our assumption on A and the fact that g acts as a

measure preserving homeomorphism on the frame bundle of (S, d). For the 2nd, let v �→ v′

be a graph isomorphism of X taking the vertex corresponding to P to that corresponding

to P′. Then there is an induced map d �→ d′ on M(S); this map preserves the measure

(ν × λ)C , so the 2nd inequality follows.

Now suppose that X is infinite and A ⊂ SubG is a G-invariant set. Define

A = { d ∈ M(S) | ∃ a frame f on Pd with Stab(d, f ) ∈ A } .
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12 M. Abert et al.

The set A is invariant under the action on M(S) corresponding under Fenchel–Nielsen

coordinates to the subgroup of C-permutations arising from graph automorphisms of

X. As X is infinite and vertex transitive, for every finite subset F of C there is such a

permutation such that F is disjoint from its image. It follows from a standard argument

that the (ν×λ)C-measure of A is either 0 or 1. As A is G-invariant, it can be recovered from

A as the set of stabilizers of all frames on (S, d) where d ranges through A. Therefore,

μ(A) is either 0 or 1. �

If X is infinite and vertex transitive, and ν is nonatomic and supported within

(0, ε), where ε is less than the Margulis constant, the measure μ cannot be induced from

a lattice. For then with full (ν × λ)C-probability, the length parameters of the Fenchel–

Nielsen coordinates of a point in M(S) cannot be partitioned into finitely many rational

commensurability classes. In a finite volume hyperbolic surface, there are only finitely

many closed geodesics with length less than ε. If a hyperbolic surface isometrically

covers a finite volume hyperbolic surface, then the lengths of its closed geodesics that

are shorter than ε can be partitioned into finitely many rational commensurability

classes. Therefore, at most a measure zero set of Fenchel–Nielsen coordinates give

hyperbolic structures on S that isometrically cover finite volume hyperbolic surfaces.

This shows that μ cannot be induced from a lattice.

There is one additional feature of this example that is of interest.

12.3. Proposition If X is an infinite 3-valent tree and ν has unbounded support, then

the injectivity radius at the base frame of a framed hyperbolic surface has infinite μ-

essential supremum.

To prove the proposition, we need the following lemma.

12.4. Lemma Suppose l > 0 and P is a hyperbolic pair of pants with geodesic boundary

all of whose boundary components have length in [l, l + 1]. Let γ be a geodesic segment

in P that has endpoints on ∂P but is not contained in ∂P. Then

length(γ ) ≥ sinh
(

1

sinh(l)

)
.

Also, if the endpoints of γ lie on the same component of ∂P then length(γ ) ≥ l−1
2 .
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Exotic Invariant Random Subgroups in Rank One 13

Proof. It suffices to prove the lemma when γ is a simple closed curve. For the 1st part,

double P to obtain a closed hyperbolic surface of genus 2. There is a closed geodesic γ̄

on this surface homotopic to the double of γ ; this has length at most twice that of γ .

The Collar Lemma [24, Lemma 12.6] states that the radius sinh−1 (1/sinh
(1

2 lengthγ̄
))

-

neighborhood of γ̄ is an annulus; as some boundary curve of P intersects γ̄ , this radius

is at most l. This gives the 1st inequality.

If the endpoints of γ lie on the same component of ∂P, they part that component

into two arcs α and β. Without loss of generality, length(α) ≤ l+1
2 . But the concatenation

γ · α is homotopic to one of the other two boundary components of P, so it must have

length at least l. The lemma follows. �

Proof of Proposition 12.3. Recall that to pick a μ-random framed hyperbolic surface,

we choose length and twist parameters for each edge of X, produce from these a

hyperbolic metric d on the surface S and then choose a base frame randomly from a

totally geodesic pair of pants Pd on S corresponding to some root of X. Fix some large

l, R > 0 such that ν([l, l + 1]) > 0. Then with positive probability the length parameters

for every edge in an R-ball around the root in X are within [l, l + 1]. It follows that the

injectivity radius at any point p ∈ Pd is at least

� = min
{

l − 1

2
, R sinh

(
1

sinh(l)

)}
.

To see this, note that the injectivity radius is realized as the length of a geodesic

segment that starts and terminates at p. Either this geodesic enters and leaves the same

boundary component of some pair of pants with boundary lengths in [l, l + 1], in which

case the 1st estimate applies, or it passes through at least R such pants and the 2nd

applies. As � can be made arbitrarily large, the proposition follows.
�

12.5. IRSs of SO(3, 1) ∼= PSL2C supported on thick surface groups

Suppose that � is a closed, orientable surface of genus g. In this section we construct

a large family of IRSs of PSL2C that are supported on subgroups � with H
3/�

homeomorphic to � × R. These examples are similar in spirit to those constructed—

in any dimensions—by gluings in the following section, but have the added feature that

they are supported on finitely generated subgroups of PSL2C.b
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14 M. Abert et al.

12.6.

The construction makes use of the action of the mapping class group Mod(�) on the

Teichmuller space T(�); we refer to [24], [33], [39] for the general theory. We identify T(�)

as the space of equivalence classes of hyperbolic metrics on �, where two metrics d0, d1

are equivalent if there is an isometry (�, d0) → (�, d1) homotopic to the identity map.

We will sometimes denote elements of Teichmuller space as (�, d) and sometimes as X,

depending on context. The group Mod(�) acts properly discontinuously on T(�) and the

quotient is the moduli space of all hyperbolic metrics on �. Teichmuller space admits a

natural Teichmuller metric (see [33]), with respect to which Mod(�) acts by isometries.

Thurston has shown [52] how to give the union of T(�) with the space of projective

measured lamination space PML(�) a natural topology so that the resulting space is

homeomorphic to a ball of dimension 6g − 6, with T(�) as the interior and PML(�) as

the boundary. This topology is natural, in the sense that the action of Mod(�) on T(�)

extends continuously to the natural action of Mod(�) on PML(�).

Our construction of IRSs of PSL2C relies on the following definition.

Definition 12.7. (Farb–Mosher) A finitely generated, free subgroup F ⊂ Mod(�) is

Schottky if any orbit of the action of F on T(�) is quasi-convex, that is, after fixing

X ∈ T(�), there are some C > 0 such that any Teichmuller geodesic segment that joins

two points from the orbit F(X) lies in a C-neighborhood of F(X).

Remark. Farb and Mosher [25] have shown that if φ1, . . . , φn are pseudo-Anosov

elements of Mod(�) with pairwise distinct attracting and repelling laminations, then

for all choices of sufficiently large exponents the elements φ
e1
1 , . . . , φen

n freely generate a

purely pseudo-Anosov Schottky subgroup of Mod(�).

Suppose from now on that φ1, . . . , φn ∈ Mod(�) freely generate a Schottky

subgroup F ⊂ Mod(�). Choose a sequence of finite strings

e1 =
(
e1

1, . . . , e1
n1

)
, e2 =

(
e2

1, . . . , e2
n2

)
, . . .

with entries in {0, . . ., n} and let C be the sub-shift of {0, . . . , n}Z consisting of strings all

of whose finite substrings are contained in ei for some i. Set

fi : � → �, fi = φei
ni

◦ · · · ◦ φei
1
.
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Exotic Invariant Random Subgroups in Rank One 15

A celebrated theorem of Thurston [53] then implies that each mapping torus

Mfi = � × [0, 1]/(x, 0) ∼ ( fi(x), 1)

admits a (unique) hyperbolic metric. We let μi be the corresponding IRS of PSL2C.

Theorem 12.8. Any weak limit of a subsequence of (μi) is an IRS μ of PSL2C that is

supported on subgroups � < PSL2C with H
3/� homeomorphic to � × R. Moreover, if

the shift space C does not contain periodic sequences, no subgroup � < PSL2C in the

support of μ is contained in a lattice of PSL2C.

Before beginning the proof in earnest, we give a motivational outline. The idea

is to use the Schottky group F := 〈φ1, . . . , φn〉 to associate to every element γ ∈ {0, . . . , n}Z
of the shift space a pair consisting of the following elements:

(1) a hyperbolic 3-manifold Nγ homeomorphic to � × R;

(2) a “coarse base point” Pγ , that is, a subset of Nγ with universally bounded

diameter.

Shifting a string γ corresponds to shifting the base point of Nγ and convergence of

γi ∈ {0, . . . , n}Z corresponds to based Gromov–Hausdorff convergence of the associated

pairs (Nγi , Pγi). A periodic string with period (e1, . . . , ek) corresponds to the infinite cyclic

cover of the mapping torus Mφe1 ,...,φek
, where the placement of the base point depends

on the particular shift of the periodic string; moreover, no aperiodic string produces a

hyperbolic 3-manifold that covers a finite volume manifold. If the IRSs μi limit to μ as

in the statement of the theorem, then the support of μ consists of subgroups � < PSL2C

with H
3/� a based Gromov–Hausdorff limit of the mapping tori Mfi (in fact, of their

infinite cyclic covers) under some choice of base points. Using the correspondence above,

we see that such H
3/� arise from elements of {0, . . . , n}Z that are limits of periodic

sequences used in producing the mapping tori Mfi . Varying the base points chosen on

Mfi gives Gromov–Hausdorff limits corresponding exactly to the elements of the sub-

shift C ⊂ {0, . . . , n}Z. Therefore, as long as C does not contain periodic sequences, no

such Gromov–Hausdorff limit can cover a finite volume hyperbolic 3-manifold.

The correspondence between elements of {0, . . . , n}Z and coarsely based hyper-

bolic 3-manifolds occupies most of the exposition to follow. It will be convenient to

embed the shift space inside of an auxiliary space, consisting of geodesics in the
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16 M. Abert et al.

Schottky group F = 〈φ1, . . . , φn〉. Namely, we consider F with its word metric

dist(g, h) = min
{
k | h−1g = φi1 . . . φik

}
,

and define the space of geodesics in F as the set

G(F) := {γ : Z −→ F | γ word-isometric embedding
}

,

which we consider with the compact-open topology. The space of geodesics G(F) has a

natural shift operator defined by the formula

S : G(F) −→ G(F), S(γ ) (i) = γ (i − 1).

The group F acts on G(F) via ( g · γ )(x) = gγ (x) and the quotient G(F)/F can be identified

with the space of geodesics γ : Z → F with γ (0) = 1. Note that the shift operator S

descends to another “shift operator”, also called S, on G(F)/F. Finally, there is then a

natural shift invariant embedding

{0, . . . , n}Z −→ G(F)/F, e �→ [γe]

determined by the constraint γe(i)−1γe(i + 1) = φei .

It now remains to relate elements of G(F)/F to hyperbolic 3-manifolds. The key

to this is Minsky’s theorem [41] that ε-thick doubly degenerate hyperbolic 3-manifolds

homeomorphic to � × R are modeled on geodesics in the Teichmuller space T(�). The

plan for the rest of the section is as follows. In Section 12.9, we show how to go from

elements of G(F)/F to Teichmuller geodesics. Section 12.13 describes Minsky’s theorem

above, and the following section completes the relationship between elements of G(F)/F

and hyperbolic 3-manifolds. Section 12.20 shows that convergence in G(F)/F translates

to based Gromov–Hausdorff convergence of hyperbolic 3-manifolds. We then indicate

how shift-periodic elements of G(F)/F correspond to infinite cyclic covers of mapping

tori and end with a section devoted to the proof of Theorem 12.8.

12.9. Geodesics in F and thick Teichmuller geodesics

Let O : F −→ T(�) be some orbit of the action F � T(�). By [25, Theorem 1.1], the

map O is a quasi-isometric embedding that extends continuously to an F-equivariant

embedding O : ∂∞F −→ PML(�). The following lemma is implicit in [25].
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Exotic Invariant Random Subgroups in Rank One 17

Lemma 12.10. For sufficiently large C > 0, if γ : Z → F is any geodesic then there is a

Teichmuller geodesic αγ : R → T(�) such that the Hausdorff distance between O ◦ γ (Z)

and αγ (R) is at most C. If we require

lim
t→∞ αγ (t) = lim

i→∞
O ◦ γ (i), lim

t→−∞ αγ (t) = lim
i→−∞

O ◦ γ (i),

then αγ is unique up to orientation preserving reparameterization.

Proof. By quasi-convexity of O(F) ⊂ T(�), each of the geodesic segments

αi = [O ◦ γ (−i), O ◦ γ (i)] ⊂ T(�)

is contained in the ε-thick part

Tε(�) = {(�, d) ∈ T(�) | inj(�, d) ≥ ε}

of T(�) for some universal ε = ε(F, O). Therefore, Theorem 4.2 from [43] implies that

there exists some C = C(F, O) > 0 such that {O ◦ γ (−i), . . . , O ◦ γ (i)} is contained in a

C-neighborhood of αi for all i. This means that all αi pass within a bounded distance

of O ◦ γ (0), so Arzela–Ascoli’s theorem guarantees that after passing to a subsequence

(αi) converges to a geodesic αγ : R → T(�). Then O ◦ γ (Z) lies in a C-neighborhood of

αγ (R), and thus also αγ (R) lies in a C′-neighborhood of O ◦ γ (Z) for some C′ depending

on C and the distortion constants of the quasi-isometric embedding O. The uniqueness

is [25, Lemma 2.4]. �

Note in particular that αγ has image contained in the ε-thick part Tε(�) for some

universal ε = ε(F, O).

Remark 12.11. Here one word of caution about Thurston’s boundary of Teichmuller

space is in order; if γ : [0, ∞) → T(�) is a geodesic ray, then it is not always true that

γ converges to a single point in the boundary PML(�) [35]. It is, however, true if γ is

contained in Tε(�), the ε-thick part of Teichmuller space, as follows from three theorems

of Masur [36], [37], [38, Theorem 1.1]. We state these as a lemma.

12.12. Lemma (Masur) Fix ε > 0 and let γ : [0, ∞) → Tε(�) be a geodesic ray. Then γ

converges to a point λ ∈ PML(�), and the lamination λ is filling and uniquely ergodic.
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18 M. Abert et al.

Furthermore, if two geodesic rays γ , γ ′ : [0, ∞) → Tε(�) converge to the same point of

PML(�), then they are asymptotic.

12.13. Doubly degenerate hyperbolic structures on � × R

In this section we review some well-known facts about the geometry of hyperbolic

structures on � × R and present Minsky’s theorem that thick doubly degenerate

hyperbolic structures are modeled on Teichmuller geodesics. To begin, consider the

deformation space

AH(�) = {ρ : π1� → PSL2C | ρ discrete, faithful}/PSL2C,

where the quotient is with respect to the conjugation action of PSL2C. We consider

AH(�) with the topology induced from the compact-open topology on the representation

variety Hom(π1�, PSL2C). The space AH(�) has a geometric interpretation as the set of

“marked isometry types” of hyperbolic structures on � × R:

AH(�) ∼=
{
(N, μ)

∣∣ N is a hyperbolic 3-manifold
homeomorphic to �×R

, μ:�−→N is a
homotopy equivalence

}/
∼,

where (N1, μ1) ∼ (N2, μ2) when there is an isometry φ : N1 → N2 with φ ◦ μ1 homotopic

to μ2. Here, the correspondence assigns to a representation ρ the quotient manifold

N = H
3/ρ(π1�) and a marking μ : � → N such that composing μ∗ : π1� → π1N with

the holonomy map gives ρ up to conjugacy. We will use these two descriptions of AH(�)

interchangeably.

Suppose now that N is a complete hyperbolic 3-manifold with no cusps that is

homeomorphic to �×R. The two ends of N admit a geometric classification; very loosely,

an end of N is convex cocompact if level surfaces increase in the area as they exit the

end, while an end is degenerate if the areas of level surfaces stay bounded. We refer the

reader to [39] for actual definitions and further exposition.

One says N is doubly degenerate if both its ends are degenerate. We write

DD(�) = { (N, μ) ∈ AH(�) | N doubly degenerate}

for the space of all doubly degenerate elements of the deformation space AH(�).

If (N, μ) is doubly degenerate, each of its ends has an ending lamination, a

geodesic lamination on � that captures the geometric degeneration of level surfaces

exiting that end (see [39]). Ending laminations are always filling and they always admit
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Exotic Invariant Random Subgroups in Rank One 19

a transverse measure of full support [42, Lemmas 2.3 and 2.4]. It is therefore convenient

to define the space EL(�) as the set of supports of filling measured laminations on �; in

particular, the weak-* topology on (filling) measured laminations descends to a natural

topology on EL(�). We then have a function

E : DD(�) −→ EL(�) × EL(�)

that takes a doubly degenerate hyperbolic 3-manifold to its two ending laminations.

The following theorem is well known; the injectivity is Thurston’s Ending

Lamination Conjecture, recently resolved by Brock–Canary–Minsky [18], and the topo-

logical content follows from standard arguments and Brock’s proof of the continuity of

Thurston’s length function [19]. However, a nicely written proof of the full statement

was recorded by Leininger and Schleimer in [34].

12.14. Theorem (Theorem 6.5, [34]) The map above gives a homeomorphism

E : DD(�) −→ EL(�) × EL(�) − �

onto the space of distinct pairs of elements of EL(�).

A fundamental result of Minsky [42] states that doubly degenerate hyperbolic

3-manifolds with injectivity radius bounded away from zero are “modeled” on universal

curves over bi-infinite geodesics in Teichmuller space. This was an early part of

Minsky’s program to prove Thurston’s Ending Lamination Conjecture, which as noted

above was established by Brock–Canary–Minsky in [18]. The following theorem is a

major step in this work.

12.15. Theorem (Minsky [41]) If (N, μ) ∈ DD(�) is a doubly degenerate hyperbolic 3-

manifold and inj(N) ≥ ε > 0, there is some C = C(ε, �) and a bi-infinite Teichmuller

geodesic α : R −→ T(�) with the following properties:

(1) If (�, d) is a point on the geodesic α(R) ⊂ T(�), there is a point (�, d′) ∈ T(�)

at distance at most C from (�, d) and a pleated surface fd : (�, d′) −→ N in

the homotopy class of μ.

(2) If f : (�, d′) −→ N is a pleated surface in the homotopy class of μ, then the

distance in T(�) between (�, d′) and the image α(R) is at most C.
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20 M. Abert et al.

Moreover, α limits to exactly two points on PML(�) = ∂T(�), the two projective

measured laminations supported on the two ending laminations E(N, μ). If

E(N, μ) =
(

lim
t→∞ α(t), lim

t→−∞ α(t)
)

,

then α is unique up to orientation preserving reparameterization. In this case, we say

that (N, μ) is modeled on the geodesic α ⊂ T(�).

Here, a pleated surface f : (�, d′) −→ N is a map that is an isometric embedding on the

complement of some geodesic lamination on (�, d′). Note that in particular any pleated

surface is 1-lipschitz. We refer the reader to [39] for more details.

Remark. We should mention that the statement of Theorem 12.15 given here is slightly

different than that of [41]. First of all, his theorem is more general since it deals with

arbitrary hyperbolic 3-manifolds rather than doubly degenerate structures on � × R.

Also, his (1) states that (�, d) can be mapped into N by a map with bounded energy,

rather than giving a pleated map from a nearby point in T(�). The version of (1) above

can be deduced from his (1) and Proposition 6.2 from his paper. Next, Minsky’s statement

does not reference uniqueness of α or its endpoints in PML(�). However, if a geodesic

α satisfies (1) then it follows from Corollary 9.3 of [42] all accumulation points of α

in PML(�) are supported on one of the ending laminations of (N, μ). Furthermore, (1)

implies immediately that α is contained in some ε′-thick part of Teichmuller space, so

Theorem 12.12 shows that the ending laminations of (N, μ) support unique projective

measured laminations and that these are the endpoints of α in PML(�). Theorem 12.12

shows that any two such α lie at bounded Hausdorff distance, so as any such α is

contained in the thick part of Teichmuller space the uniqueness follows from [25, Lemma

2.4].

12.16. Proposition Suppose that α : R −→ T(�) is a geodesic in the ε-thick part of T(�).

Then there is a unique (N, μ) ∈ DD(�) that is modeled on α, in the sense of Theorem

12.15. Moreover, inj(N) ≥ ε′ for some ε′ > 0 depending only on ε.

Proof. Let λ+, λ− ∈ PML(�) be the endpoints of α given by Theorem 12.12. Then by

Theorem 12.14, there is a doubly degenerate hyperbolic 3-manifold (N, μ) ∈ DD(�) with

ending laminations {|λ+|, |λ−|}. Combining theorems of Minsky [44] and Rafi [47], we see

that as α lies in the ε-thick part of T(�) there is a lower bound inj(N) ≥ ε′ > 0 for
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Exotic Invariant Random Subgroups in Rank One 21

the injectivity radius of N. Then Theorem 12.15 shows that there is some Teichmuller

geodesic α′ ⊂ T(�) on which (N, μ) is modeled. But the uniqueness statement in Theorem

12.12 then implies that α′ = α. �

12.17. Geodesics in F and hyperbolic 3-manifolds

Now suppose that γ ∈ G(F) and let αγ : R → T(�) represent the oriented Teichmuller

geodesic at bounded Hausdorff distance from O ◦ γ (Z) given by Lemma 12.10. Let

(Nγ , μ) ∈ DD(�)

be the unique doubly degenerate hyperbolic 3-manifold modeled on the geodesic αγ , as

given by Proposition 12.16. Then recalling that γ (0) ∈ Mod(�), we define

μγ = μ ◦ γ (0) : � −→ Nγ .

This gives a map G(F) −→ DD(�) defined by γ �→ (Nγ , μγ ).

Remark. It follows from Proposition 12.16 that the manifolds Nγ above all have

injectivity radius inj(Nγ ) ≥ ε for some ε > 0 depending only on F and O.

12.18.

The map : G(F) −→ DD(�) factors as

To see this, suppose that γ ∈ G(F) and g ∈ F. Then O(g · γ ) = gO(γ ), so the nearby

Teichmuller geodesics satisfy αgγ = gαγ . However, if (Nγ , μ) is modeled on αγ then it

follows immediately from the conditions in Theorem 12.15 that (Nγ , μ ◦ g−1) is modeled

on αgγ . So, Nγ = Ngγ and μgγ = μ ◦ g−1 ◦ (g · γ (0)) = μ ◦ γ (0) = μγ .

12.19. Proposition The map G(F)/F → DD(�), [γ ] �→ (Nγ , μγ ) is an embedding.

Proof. As mentioned above, the quotient map G(F) −→ G(F)/F restricts to a homeo-

morphism on the subset G0(F) consisting of geodesic γ ∈ G(F) with γ (0) = 1. Using the
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notation of Section 12.17, for γ ∈ G0(F) we have μ = μγ . Therefore,

commutes, where E takes a geodesic γ : Z → F to the pair of supports of

(
O
(

lim
t→∞ γ (t)

)
, O
(

lim
t→−∞ γ (t)

))
∈ PML(�) × PML(�) − �

and E is the map that takes a doubly degenerate hyperbolic 3-manifold to its pair

of ending laminations (see Theorem 12.14). The maps E and E−1 are continuous and

injective by Lemma 12.10 and Theorem 12.14, respectively. As the domain G0(F) is

compact and the co-domain DD(�) is Hausdorff, our map is an embedding. �

12.20. The topologies of G(F)/F and DD(�)

Let (�, d0) = O(1) be the point in Teichmuller space that is the image of the identity

1 ∈ F. We then have the following:

12.21. Lemma For all sufficiently large C = C(F, O) > 0, there is some D > 0 as follows.

If γ ∈ G(F) then the map μγ : � → Nγ is homotopic to a C-lipschitz map

m : (�, d0) −→ Nγ .

Moreover, after fixing γ , the union PC
γ = ⋃m m(�) of the images of all such maps is a

subset of Nγ with diameter at most D.

Proof. With the notation of Section 12.17, the point O(γ (0)) lies at a bounded distance

from the geodesic αγ . By Theorem 12.15 (1), there is a pleated surface f ′ : (�, d′) → Nγ

in the homotopy class of μ such that

dist
(
(�, d′), O(γ (0))

) ≤ C′, for some C′ = C′(F, O).

But then there is a pleated surface f :
(
�, γ (0)−1∗ d

)→ Nγ given by f = f ′ ◦γ (0) homotopic

to μγ . Since the Teichmuller distance between
(
�, γ (0)−1∗ d

)
and (�, d0) is bounded by C′,
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there is a C-lipschitz map (�, d0) → (�, γ (0)−1∗ d) homotopic to the identity map [22].

Composing this with f yields the map m desired.

For the diameter bound on Pγ , fix an essential closed curve a on �. Then if

m : (�, d0) −→ Nγ

is a C-lipschitz map homotopic to μγ , the image m(a) is a closed curve in Nγ with

length at most C lengthd0
(a). As the geodesic representative of μγ (a) has length at least

inj(Nγ ) ≥ ε = ε(F) > 0, its distance to m(a) is at most some D′ = D′(F). Therefore,

D = 2D′ + Cdiam(�, d0) is a bound for the diameter of the union Pγ . �

One way to interpret Lemma 12.21 is that one can regard the image of G(F) as a

space of hyperbolic 3-manifolds with preferred coarsely defined base points. The base

point for (Nγ , μγ ) is just any point contained in Pγ ; these base points are then well

defined up to a universally bounded error. This viewpoint motivates the following lemma

that should be interpreted as saying that G(F) maps continuously when the co-domain

is given the topology of based Gromov–Hausdorff convergence.

12.22. Lemma Suppose that γi → γ in G(F) and let C be as in Lemma 12.21. If pi ∈
PC

γi
and (Nγi , pi) converges in the Gromov–Hausdorff topology to a based hyperbolic 3-

manifold (N, p), then N is isometric to Nγ .

Proof. By Proposition 12.19, the pairs (Nγi , μγi) converge to (Nγ , μγ ) in DD(�). Let

ρi : π1� −→ PSL2C be representations with Nγi
∼= H

3/ρi(π1�) in such a way that the

composition of μ∗ : π1� → π1Nγi with the holonomy map gives ρi, and assume by

conjugation that ρi converges to some ργ similarly associated with (Nγ , μγ ). As there is a

universal lower bound for the injectivity radii inj(Nγi) by Lemma 12.10 and Proposition

12.16, the image ργ (π1�) does not contain parabolic elements. So, [7, Theorem F] implies

that ρi(π1�) converges to ργ (π1�) in the Chabauty topology.

Fix some point p ∈ H
3 and denote its projection to quotients by p̄. By [10,

Theorem E.1.13] the manifolds (Nγi , p̄) converge in the Gromov–Hausdorff topology to

a based hyperbolic 3-manifold isometric to Nγ . As noted in the proof of the lemma

above, the points pi lie at bounded distance from the geodesic representatives in Nγi

of the loops μγi(a), where a ⊂ � is any essential closed curve. However, the same is true

of the points p̄ since these geodesic representatives are the projections of the axes of

elements ρi([a]) ∈ PSL2C, which converge as i → ∞. Therefore, the distances dist(p̄, pi)
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are universally bounded above, which implies immediately that the Gromov–Hausdorff

limit N is isometric to Nγ . �

It is clear from the definitions that shifting a geodesic γ ∈ G(F) does not

change the isometry type of the manifold Nγ . Adopting the viewpoint suggested by

Lemma 12.21, shifting γ just changes the coarsely defined base point Pγ for Nγ . The

following lemma shows that the base points PSn(γ ) of shifts of γ coarsely cover Nγ .

12.23. Lemma There exists some C = C(F, O) > 0 such that if γ ∈ G(F) and p ∈ Nγ , then

there exists some shift Sn(γ ) and an isometry

i : Nγ −→ NSn(γ )

such that the distance between i(p) and PC
Sn(γ ) is at most C.

Proof. As in Section 12.17, assume that (Nγ , μ) is the element of DD(�) modeled on the

Teichmuller geodesic at bounded Hausdorff distance from γ (Z). To prove the lemma, we

need to show that for large C and some i ∈ Z, there is a C-lipschitz map (�, d0) −→ Nγ

in the homotopy class of μ ◦ γ (i) whose image is within C of p.

As Nγ is doubly degenerate, it follows from work of Thurston [52] that through

the point p ∈ Nγ there is some essential closed curve with length at most some C(�).

Again by [52], this closed curve is geodesically realized by a pleated surface f : (�, d) −→
Nγ in the homotopy class of μ. Since inj(Nγ ) ≥ ε = ε(F, O), the distance from p to f (�) is

at most some C(C′, ε) = C(F, O).

By Theorem 12.15 and Lemma 12.10, there is a point γ (i) ∈ T(�) at Teichmuller

distance at most some C(F, O) from (�, d). Therefore, there is a C(F, O)-lipschitz map

g : O(γ (i)) → (�, d) homotopic to the identity map [22]. Then

composes to a C-lipschitz map homotopic to μ ◦ γ (i) as desired. �

We use this lemma to prove the following proposition, which loosely states that

Gromov–Hausdorff limits can always be realized as limits in G(F)/F up to shifts.
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12.24. Proposition Suppose γi is a sequence in G(F), pi ∈ Nγi and that (Nγi , pi) converges

in the Gromov–Hausdorff topology to (N, p). Then after passing to a subsequence, there

is a sequence (ni) in Z and some γ ∈ G(F) such that

[
Sni(γi)

] −→ [γ ] ∈ G(F)/F

and Nγ is isometric to N.

Proof. By Lemma 12.23, we may assume after shifting each γi that the base points pi

lie in PC
γi

. Without changing their images in G(F)/F, we may translate the geodesics γi

so that γi(0) = 1 for all i. Then after passing to a subsequence, (γi) converges to some

γ ∈ G(F), and the proposition follows from Lemma 12.22. �

12.25. Shift periodicity and cyclic covers of mapping tori

If g : � → � is a pseudo-Anosov homeomorphism, we define M̂g to be the infinite cyclic

cover of

Mg = � × [0, 1]/(x, 0) ∼ (g(x), 1)

corresponding to the fundamental group of any of the level surfaces � × {t}. Note

that the map g is necessary to determine M̂g—it is not sufficient to know only the

homeomorphism class of Mg. The main result here is the following:

12.26. Proposition Suppose that γ ∈ G(F). If [γ ] ∈ G(F)/F is shift-periodic, then Nγ is

isometric to M̂g for some g : � → �. On the other hand, if [γ ] is not shift-periodic then

Nγ does not cover a finite volume hyperbolic 3-orbifold.

Proof. Since γ is shift-periodic in G(F)/F, one can easily check that it is the axis of

some element g ∈ F, that is, γ (Z) is invariant under the action of g on F by left translation

and the restriction of g to γ (Z) is a nontrivial translation.

Let (Nγ , μ) be the doubly degenerate hyperbolic 3-manifold modeled on the

Teichmuller geodesic at bounded Hausdorff distance from O ◦ γ (Z), as in Definition

12.17. Then μγ = μ ◦ γ (0) and μgγ = μ ◦ gγ (0). Since (Nγ , μγ ) and (Ngγ , μgγ ) represent

the same point of DD(�), this means that there is an isometry i : Nγ → Nγ with

i ◦ μ = μ ◦ g. As g has infinite order, the isometry i cannot have fixed points. Therefore,

the quotient is a hyperbolic 3-manifold M. But π1M is isomorphic to π1Mg, so a theorem
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of Waldhausen [57] implies that they are homeomorphic, in which case Nγ is isometric

to M̂g. This finishes the 1st part of the proposition.

For the 2nd statement, suppose that Nγ = N covers a finite volume hyperbolic

3-orbifold. Thurston’s Covering Theorem (as Thurston’s proof is not readily available,

we refer the reader to [20] for a proof by Canary of a more general result. Note that

although Canary’s statement does not deal with orbifold covers, the proof works just

as well) implies that Nγ is isometric to the fiber subgroup of a mapping torus of �.

Therefore, there is some isometry i : Nγ −→ Nγ with i ◦ μ = μ ◦ f for some pseudo-

Anosov homeomorphism f : � −→ �. Here, μ : � −→ Nγ is the map given in Section

12.17. Then it follows from Theorem 12.15 that the action of f on Teichmuller space

leaves the geodesic α ⊂ T(�) on which (Nγ , μ) is modeled invariant.

Fix some point X on α ⊂ T(�). As O ◦ γ (Z) lies at bounded Hausdorff distance

from α, for each i ∈ Z there is some ji ∈ Z with

sup
i

dist
(

f i(X), O ◦ γ (ji)
)

< ∞.

Therefore, by the equivariance of O we have that

sup
i

dist
(

γ ( ji)
−1f i(X), O ◦ γ (0)

)
< ∞.

Since the action of Mod(�) on T(�) is properly discontinuous, this means that the set

{γ (ji)−1f i | i ∈ Z} is finite. In other words, we have some i �= k with

g := f k−i = γ (ji)γ (jk)−1 ∈ F.

This means that there is some element g ∈ F that acts as a nontrivial translation along

the Teichmuller geodesic α. But recall from Lemma 12.10 that the extension O : ∂∞F −→
PML(�) is an embedding. Therefore, as O ◦ γ (Z) and O(Axis(g)) accumulate to the same

points of PML(�) we must have γ (Z) = Axis(g). Now if γ (Z) is the axis of g ∈ F, then

for some k we have

gγ (i) = γ (i + k) = S−kγ (i).

Then γ and S−k(γ ) have the same projection in G(F)/F, so [γ ] is periodic. �
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12.27. The proof of Theorem 12.8

For easy reading, we briefly recall the relevant notation. We have pseudo-Anosov maps

φ0, . . . , φn ∈ Mod(�) that generate a Schottky subgroup F < Mod(�). The group F acts

on the space G(F) of its geodesics and there is a shift-invariant embedding

{0, . . . , n}Z −→ G(F)/F, e �→ [γe]

determined by the constraints γe(i)−1γe(i + 1) = φei and γe(0) = 1. Note that any γe

satisfying the 1st property has the same projection in G(F)/F, so the condition that

γe(0) = 1 is necessary only to uniquely specify γe within its equivalence class.

As in the beginning of the section, choose a sequence of finite strings

e1 =
(
e1

1, . . . , e1
n1

)
, e2 =

(
e2

1, . . . , e2
n2

)
, . . .

with entries in {0, . . ., n} and let C be the sub-shift of {0, . . . , n}Z consisting of strings all

of whose finite substrings are contained in ei for some i.

12.28. Lemma Let ēi ∈ {0, . . . , n}Z be a bi-infinite string obtained by concatenating

copies of ei. Then the sub-shift C consists of all the accumulation points of sequences

Snj(ēij), where nj ∈ Z and ij ∈ N is increasing. Consequently, if

ēi �→ [γi] ∈ G(F)/F and C �→ �C ⊂ G(F)/F

then �C consists of all accumulation points in G(F)/F of sequences Snj(γij), where nj ∈ Z

and ij ∈ N is increasing.

Write Ni for the manifolds Nγi modeled on the geodesics in F corresponding to

the string ei, where γi is from the lemma above and Nγi is defined in Section 12.17. The

mapping classes fi = φei
ni

◦ · · · ◦ φei
1

∈ Mod(�) all pseudo-Anosov, so each

Mi = � × [0, 1]/(x, 0) ∼ ( fi(x), 1) (12.28.1)

has a hyperbolic metric, unique up to isometry. By Proposition 12.26, we identify Ni

with the infinite cyclic cover M̂g corresponding to π1(� × {t}). We prove the following:
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12.29. Theorem Assume pi ∈ Mi and that some subsequence of (Mi, pi) converges in

the Gromov–Hausdorff topology to a hyperbolic 3-manifold (N, p). If N covers a finite

volume hyperbolic 3-orbifold, then C contains a shift-periodic point.

Proof. Pick lifts p̂i of pi in the cyclic covers Ni −→ Mi. We claim that a subsequence

of (Ni, p̂i) converges in the Gromov–Hausdorff topology to (N, p). To see this, note that

the projection onto the 2nd factor in Equation 12.28.1 gives a map Mi → S1; define the

circumference of Mi to be the length of the shortest loop that projects to a nontrivial

element of π1(S1). In [11, Proposition 5.1], it is shown that there are only finitely many

ε-thick mapping tori with circumference less than a given constant. The proof only uses

that the covers Ni are ε-thick, though, which we know to be the case by Lemma 12.10

and Proposition 12.16. So, it follows that the circumferences of Mi go to infinity. In other

words, there is an increasing sequence ri ∈ R such that the ball BMi(pi, ri) is isometric

to BNi(p̂i, ri) for all i. It follows immediately that a subsequence of (Ni, p̂i) converges to

(N, p).

Recall that Ni = Nγi , the manifold associated to γi ∈ G(F). By Proposition 12.24,

there is a sequence (ni) in Z and some geodesic γ ∈ G(F) with

[Sni(γi)] −→ [γ ] ∈ G(F)/F

and Nγ isometric to N. Since N covers a finite volume hyperbolic 3-orbifold, [γ ] is shift-

periodic in G(F)/F by Proposition 12.26. Lemma 12.28 implies that γ ∈ �C, but then as

the map {0, . . . , n}Z −→ G(F)/F is a shift-invariant embedding, γ must be the image of

some shift-periodic point of C. This finishes the proof. �

To conclude this section, we derive the statement of Theorem 12.8 given at the

beginning of the section. Suppose that μi is the IRS of PSL2C corresponding to the

hyperbolic 3-manifold Mi. If we write Mi = H
3/�i, then μi is supported on the set of

conjugates of �i < PSL2C. Suppose that μ is the weak limit of some subsequence of

μi. Then μ is supported within the set of accumulation points in SubPSL2C of sequences

gi�ig
−1
i , where gi ∈ PSL2C. But if

gi�ig
−1
i −→ � < PSL2C
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Exotic Invariant Random Subgroups in Rank One 29

then there are base points pi ∈ Mi and p ∈ H
3/� such that (Mi, pi) converges in

the Gromov-Hausdorff topology to (H3/�, p). Therefore, Theorem 12.8 follows from

Theorem 12.29.

13 A General Gluing Construction in SO(n, 1)

The analysis of this section has been an inspiration for some later works regarding

counting manifolds, which have already been published [28, 48].

13.1. Notation Let N0, N1 be two real hyperbolic n-manifolds such that each have

totally geodesic boundary and each boundary is the disjoint union of two copies of

some fixed hyperbolic (n − 1)-manifold �. Label for each Na a component �+
a of ∂Na,

and denote the other one by �−
a ; we call i±a the corresponding embeddings of � in ∂Na.

Given a sequence α = (αi)i∈Z ∈ {0, 1}Z we let Nα denote the manifold obtained by gluing

copies of N0, N1 according to the pattern prescribed by α:

Nα =
(⊔

i∈Z
Nαi × {i}

)/(
i+αi

x, i
)

∼
(
i−αi+1

x, i + 1
)

(i ∈ Z, x ∈ �).

For i ∈ Z, we shall denote by Nα,i the image of Nαi × {i} in Nα. More generally, for an

interval I ⊂ Z set Nα,I = ∪i∈INα,i.

13.2. Construction of the IRS

Let ν be a Borel probability measure on the Cantor set {0, 1}Z. We define a measure μν

on the set of framed hyperbolic n-manifolds, and the IRS will be the corresponding

measure on the set of discrete subgroups of SO(1, n) discussed in the introduction.

Let ν′ be the measure on {0, 1}Z, defined for Borel sets A ⊂ {0, 1}Z by

ν′(A) =
∫

A vol(Nα0) dν(α)∫
{0,1}Z vol(Nα0) dν(α)

.

By definition, we obtain a μν-random framed hyperbolic n-manifold by first choosing α

randomly against ν′, and then choosing a random base frame from Nα,0.

13.3. Example Let σ be the shift map on {0, 1}Z and suppose that ν is a σ -invariant

probability measure on {0, 1}Z that is supported on a periodic orbit, that is, there is

some α ∈ {0, 1}Z and k ∈ Z with σ k(α) = α and ν = 1
k

∑k−1
i=0 δσ i(α). We can construct a
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closed manifold M from α:

M =
⎛
⎝ ⊔

i∈Z/kZ

Nαi × {i}
⎞
⎠
/(

i+αi
x, i
)

∼
(
i−αi+1

x, i + 1
)

(i ∈ Z/kZ).

Then each Nβ , with β in the support of ν, is an infinite cyclic cover of M and the random

subgroup μν is the ergodic IRS obtained—as in Section 11 above—from the normal

subgroup π1(Nα) of the lattice π1(M).

More generally, we have the following result.

13.4. Lemma Let ν be a shift-invariant ergodic measure on {0, 1}Z. Then the random

subgroup μν constructed above is an ergodic IRS.

Proof. Fix g ∈ G = SO(1, n). Translated through the correspondence between framed

manifolds and discrete subgroups of G, the conjugation action of g � SubG restricts

to the right action of g on the frame bundle FM = �\G of any hyperbolic n-manifold

M = �\Hn. Note that this action preserves the Haar measure.

Let α ∈ {0, 1}Z and let U be an open-bounded set of frames on Nα. Then U and

gU are contained in some submanifold Nα,I , where I ⊂ Z is an interval. Because ν is

shift-invariant, we get the same random framed manifold by selecting a random frame

from Nβ,I for a ν′-random β.

Let V be some neighborhood of α containing all β ∈ {0, 1}Z such that for all

i = k, . . . , k + l we have βi = αi; for β ∈ V let Uβ be the image of U in Nβ . Since g

preserves the Haar measure on FNα, when taking a random frame in Nβ,I we have the

same probability to land in Uβ or gUβ , that is, if we set

W = W(U, V) = {y ∈ FUβ , β ∈ V}

then we get

μν(W) = μν({y ∈ gUβ , β ∈ V}) = μν(gW).

The G-invariance follows since the sets {y ∈ Uβ , β ∈ V} form a basis for Borel sets in the

support of μν .

To show ergodicity, note that the group G acts transitively on the frame bundle

of any connected hyperbolic n-manifold. So if a G-invariant set S of frames contains

a frame on some Nα it contains all frames on Nα. It follows that {α : �α ∈ S} is a
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shift-invariant set. Since ν is ergodic, it follows that this set has full or zero measure.

Therefore, S has full or zero measure for μν .
�

Remarks.

1) The IRSs we have constructed above are always limits of lattice IRSs since

shift-invariant measures are limits of measures supported on finite orbits.

2) We could have made the construction with more general graphs. If a group

� acts freely on a locally finite graph T, D is a connected fundamental

domain for � and N0, N1 are manifolds with totally geodesic boundary whose

boundary components are all isometric and indexed by ∂D then for any

α ∈ {0, 1}� we can glue them along T in the manner prescribed by α to get a

hyperbolic manifold. We can then construct ergodic IRSs in the same manner

as above from �-ergodic probability measures on {0, 1}�.

13.2. Exoticity

We now show that after choosing suitable N0 and N1, the construction above yields IRSs

that are not induced from a lattice.

13.6. Theorem Suppose that n ≥ 3 and that N0 (resp. N1) is isometrically embedded in

a compact arithmetic manifold M0 (resp. M1). If M0, M1 are non-commensurable then for

any sequence α ∈ {0, 1}Z that is not periodic the manifold Nα does not cover any finite

volume hyperbolic manifold.

13.7. Corollary Under the same hypotheses as in the above theorem, if the ergodic

shift-invariant measure ν is not supported on a periodic orbit then the support of the

IRS μν is disjoint from the set of all subgroups of all lattices of G (in particular it follows

that μν cannot be induced from a lattice).

The proof of this theorem occupies the rest of this section. In Section 13.8, we

recall how to construct (non-commensurable pairs of) arithmetic manifolds with totally

geodesic hypersurfaces. These will be the manifolds M0, M1 above, and cutting along the

hypersurfaces will give the desired N0, N1. The reason we use arithmetic manifolds here

is the very strong disjointness criterion in Proposition 13.10, which says that isometric

immersions of N0, N1 into a common manifold cannot have overlapping images. Using
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this, we then show that if there is a covering map from Nα to a finite volume manifold,

then α is periodic.

13.8. Constructing arithmetic manifolds

The standard way to construct arithmetic hyperbolic manifolds that contain totally

geodesic hypersurfaces is as follows. Let F be a totally real number field and q a

quadratic form in n + 1 variables over F such that q is definite positive at all real

places of F but one, where it has signature (1, n). Then the group of integer points �q =
SO(q,OF) is a lattice in SO(1, n). If q is written as a1x2

1 + . . . + an+1x2
n+1 where a1, . . . , an

are totally positive and an+1 is negative at exactly one real place, then �q contains

the subgroup associated to the quadratic form in n variables a2x2
2 + . . . + an+1x2

n+1

that gives rise to an imbedded totally geodesic hypersurface. It follows from work of

Millson that there exists an ideal p such that this hypersurface is actually embedded

in the manifold associated to the principal congruence subgroup of level p, that is,

� ∩ ker(SL(n + 1,OF) → SL(n + 1,OF/p)). Moreover, we can choose p so that this

hypersurface S is non-separating. In this case, M − S is the interior of a compact

manifold N that has two boundary components, both isometric to S. Note also that the

isometry type of S depends only on a2, . . . , an+1 and p.

The simplest example of the previous procedure is when F = Q and a1, . . . , an >

0, an+1 < 0 but then the manifolds obtained are noncompact for n ≥ 4. However, if

F = Q(
√

d) for a square-free rational integer d > 0, a1, . . . , an ∈ Q
∗+ and an+1/

√
d ∈ Q

∗

then q is anisotropic over F so that �q\H3 is compact.

Now we want to find a1, . . . , an+1 and a′
1 such that

• both a1, . . . , an+1 and a′
1, . . . , an+1 satisfy the conditions above;

• the lattices obtained from q = a1x2
1 + . . . + an+1x2

n+1 and q′ = a′
1x2

1 + . . . +
an+1x2

n+1 are non-commensurable.

By [30, 2.6] it suffices to show that q′ and λq are not isometric for any λ ∈ F∗. For n odd,

since the discriminants of q′ and λq are equal for all λ it suffices that a1/a′
1 �∈ F2 since

then the discriminants of λq and q′ are never the same (as noted in [30]). For example,

we can take F = Q(
√

2) and

q = x2
1 + . . . + x2

n − 3
√

2x2
n+1, q′ = 7x2

1 + . . . + x2
n − 3

√
2x2

n+1.

For n even we need to consider another invariant. Let k be any field; for u, v ∈ k∗

the Hilbert symbol (u, v) is defined in [49, III, 1.1] as 1 if 1 = uv2 + vy2 for some x, y ∈ k

and −1 otherwise. Then it is shown in [49, IV, Théorème 2] that
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ε(q) =
∏
i<j

(ai, aj)

is an isometry invariant of q over k. Now suppose that k = Qp for a prime p > 2. Then

for a, b ∈ Zp, we have (a, b) = −1 if and only if either

(1) p divides a (resp. b) and b (resp. a) is a nonsquare unit (modulo squares), or

(2) a, b have the same p-valuation mod 2 and −a−1b is a square unit (see [49, III,

Théorème 2]).

Now let q and q′ be as above and λ ∈ Q
∗
7. Since 7 = 3 (mod 4), − 1 is not a square mod 7

and it follows that (λ, λ) = 1, so that ε(λq) = (λ, −λ
√

2)n = 1 since n is even. On the other

hand, we have −3
√

2 = 5 (mod 7), which is not a square, so that ε(q′) = (7, −3
√

2) = −1.

It follows that q′ and λq are not isometric over Q7 for any λ ∈ Q7.

In conclusion, this shows that we can find non-commensurable compact arith-

metic n-manifolds M0, M1 that both contain a totally geodesic hypersurface isometric to

some fixed S, and then we can cut M0, M1 along to produce manifolds N0, N1 as required

in the statement of Theorem 13.6.

13.9. The proof of Theorem 13.6

Suppose that n ≥ 3 and N0 ⊂ M0, N1 ⊂ M1 are hyperbolic n-manifolds as in the

statement of the theorem. The reason we require M0, M1 to be non-commensurable

arithmetic manifolds is the following.

13.10. Proposition Suppose that M is another hyperbolic n-manifold and i0 : N0 −→ M

and i1 : N1 −→ M are isometric immersions. Then the images of i0, i1 are disjoint, except

possibly along their boundaries.

To prove this, recall the following commensurability criterion (see [30, 1.6]).

13.11. Lemma If �, �′ are two arithmetic subgroups in SO(1, n) such that the intersec-

tion � ∩ �′ is Zariski-dense in SO(1, n), then this intersection has finite index in both of

them (so that in particular �, �′ are commensurable).

Proof of Proposition 13.10. Hoping for a contradiction, assume that the images of the

interiors intersect. To begin with, assume also that there are components �0 ⊂ ∂N0

and �1 ⊂ ∂N1 such that i0(�0) ∩ i1(int(N1)) �= ∅ and i1(�1) ∩ i0(int(N0)) �= ∅. Then the

preimages �′
0 = i−1

1 (i0(�0)) and �′
1 = i−1

0 (i1(�1)) are properly immersed totally geodesic

hypersurface in N1, N0, respectively.
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Fixing a monodromy map, identify π1(M) with a discrete subgroup of SO(1, n).

By choosing a base point within N0 ∩ N1, we can also select subgroups in π1(M) that

represent the fundamental groups of all the other manifolds and hypersurfaces above,

such that both π1�′
0 and π1�′

1 are contained in π1N1 ∩ π1N0.

By Corollary 1.7.B of [30], for instance, the Zariski closure of π1�′
0 in SO(1, n) is

isomorphic to SO(1, n − 1). Similarly, the Zariski closure of π1�′
1 is also isomorphic to

SO(1, n − 1). These two copies of SO(1, n − 1) embedded in SO(1, n) are different, since

they stabilize the preimages in H
3 of distinct closed, immersed hypersurfaces in M. So,

the group 〈π1�′
0, π1�′

1〉 is Zariski dense in SO(1, n). But

〈π1�′
0, π1�′

1〉 ⊂ π1N0 ∩ π1N1,

so π1M0, π1M1 can be represented by lattices in SO(1, n) with Zariski dense intersection.

By Lemma 13.11, this contradicts that M0, M1 are not commensurable.

The only remaining case is that, say, i0(∂N0) does not intersect i1(int(N1)), so

that i1(N1) ⊂ i0(int(N0)). In this case, though, i−1
0 (i1(N1)) is a compact, immersed

submanifold of N1. So, some finite index subgroup of π1N1 injects into π1N0, and as

π1N1 is Zariski dense in SO(1, n), we get a contradiction just as before.
�

The appeal to Corollary 1.7.B of [30] is the part of the argument above that

uses n ≥ 3. If n = 2, then �′
0 could be a geodesic segment, in which case its (trivial)

fundamental group is certainly not Zariski dense in SO(1, 1).

We are now ready to finish the proof of Theorem 13.6, which we encapsulate in

the following proposition.

13.12. Proposition Suppose that α = (αk) ∈ {0, 1}Z and that f : Nα −→ M is a covering

map, where M has finite volume. Then α is periodic.

Proof. For convenience, assume throughout the following that α is not a constant

sequence. Recall that Nα,i
∼= Nαi is the ith block in the gluing representing Nα. Let �i be

the hypersurface that is the common boundary of Nα,i and Nα,i+1. All the �i are isometric

to a fixed hyperbolic (n − 1)-manifold �.

By Proposition 13.10, we have that if αi = 0 and αj = 1, then

int(f (Nα,i) ∩ f (Nα,j)) = ∅. (13.12.1)

Hence, M = I0 ∪ I1, where I0 = f (∪i,αi=0Nα,i) and I1 is defined similarly. It follows

that I0 ∩ I1 is a set of totally geodesic hypersurfaces in M, each of which is covered

by �. A priori, you might imagine that the common boundary of I0 and I1 has corners,

remembering that the surfaces f (�i) are only immersed in M. However, if αi = 0 and
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αi+1 = 1, say, then any transverse self intersection of the image of f (�i) would create

interior in the intersection f (Nαi) ∩ f (Nαi+1), contradicting (13.12.1).

Let’s call a connected submanifold of Nα that is a maximal union of consecutive

blocks isometric to N0 a 0-chunk, and define a 1-chunk similarly. The restriction of f

to any 0-chunk is a covering map onto some component C ⊂ I0, and the degree of this

covering is 2vol(�)/vol(∂C). By volume considerations, the number of blocks in any 0-

chunk that covers C must then be

2vol(�) · vol(C)

vol(N0) · vol(∂C)
. (13.12.2)

Of course, all the same statements hold for 1-chunks covering components of I1.

From the covering property, every component C ⊂ I0 has either one or two

boundary components. It follows that either

(1) the (finitely many) components of I0 and I1 all have two boundary compo-

nents, and are arranged in M end-to-end in a circle, or

(2) the components of I0 and I1 are arranged in a line segment, with one-

boundary-component C’s at the extremities.

When a component C has two boundary components, the two boundary components

of a chunk covering C cover distinct components of ∂C. From this, it follows that α is

periodic. Namely, a cyclic word representing α can be obtained from the circle in case (1)

by using (13.12.2) to determine the number of 0’s and 1’s to associate to each component

of I0 and I1. Case (2) is similar, except that the cyclic word is produced by traversing the

line segment twice, first forward and then backward, but only counting the endpoints

once each. �
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