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Abstract—Neuro-inspired architectures based on synaptic
memory arrays have been proposed for on-chip acceleration of
weighted sum and weight update in machine/deep learning algo-
rithms. In this paper, we developed NeuroSim, a circuit-level
macro model that estimates the area, latency, dynamic energy,
and leakage power to facilitate the design space exploration
of neuro-inspired architectures with mainstream and emerging
device technologies. NeuroSim provides flexible interface and
a wide variety of design options at the circuit and device level.
Therefore, NeuroSim can be used by neural networks (NNs)
as a supporting tool to provide circuit-level performance eval-
uation. With NeuroSim, an integrated framework can be built
with hierarchical organization from the device level (synaptic
device properties) to the circuit level (array architectures) and
then to the algorithm level (NN topology), enabling instruction-
accurate evaluation on the learning accuracy as well as the
circuit-level performance metrics at the run-time of online
learning. Using multilayer perceptron as a case-study algo-
rithm, we investigated the impact of the “analog” emerging
nonvolatile memory (eNVM)’s “nonideal” device properties and
benchmarked the tradeoffs between SRAM, digital, and ana-
log eNVM-based architectures for online learning and offline
classification.

Index Terms—Emerging nonvolatile memory (eNVM), machine
learning, neural network (NN), neuromorphic computing, offline
classification, online learning, synaptic devices.

I. INTRODUCTION

NEURO-INSPIRED computing has attracted a lot of
interest as the traditional Boolean computing based

on CMOS technology is reaching its physical limits [1].
Recent advances in neuro-inspired learning algorithms have
achieved tremendous success in speech and image recognition,
implemented with conventional CPUs/GPUs and/or FPGAs
that are based on the sequential von Neumann architecture,
which involves separation of the computing unit and memory
between a data bus path. Due to the requirement of high
bandwidth and power consumption for data communication
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via this data bus, traditional von Neumann architecture is inad-
equate for fast training and/or classification, such as real-time
image and speech training and/or recognition. This challenge
is recognized as the “von Neumann bottleneck” that degrades
the overall efficiency and performance of the system [2]. In
contrast, a biological brain (e.g., mammalian brain) enables
parallel processing of a massive amount of information in
a small area with high efficiency and low power consump-
tion. Therefore, the ultimate goal of neuro-inspired computing
is to develop artificial neural network (NN) that emulates
highly efficient processing of biological information to bridge
this efficiency gap between the network and real brain. The
most straightforward approach is to simulate NN in soft-
ware by using a von Neumann-based computer. However, this
approach is limited due to significantly higher power consump-
tion to mimic a biological brain with ∼1013 synapses, which
can only be feasible with a very powerful supercomputer [3].
Another approach is to build artificial NN (ANN) on digital
hardware, which is an ASIC implementation of the software
NN. Several custom CMOS ASIC neuromorphic hardware
accelerators have been developed in the recent years, such
as BrainScaleS [4], Neurogrid [5], TrueNorth [6], Eyeriss [7],
and DNPU [8]. These accelerators could operate more effi-
ciently in terms of speed and power consumption than the
software-based one. However, it is impractical to implement
an ANN on-chip with similar complexity as a biological brain,
because the current CMOS technology is not adequate to
provide sufficient on-chip memory resources. Typically, the
weight information of a single synapse is stored using 6- or
8-transistor SRAM cells, which is not area-efficient (with cell
size 100–200 F2, F is the lithography feature size). Therefore,
it is attractive to explore more compact synaptic devices using
emerging nonvolatile memory (eNVM) devices (with cell size
4–12 F2).

In general, eNVM devices could form the “digital” synapses
if only the ON and OFF binary states are exploited and
multiple binary cells could be grouped to represent multilevel
weights in a binary format. On the other hand, eNVM could
also form the “analog” synapses by exploiting the multilevel
conductance states [9]. However, these analog eNVM devices
may not be as reliable as traditional CMOS digital circuits
or digital eNVM devices, potentially suffering from nonideal
device properties, such as limited precision, finite conductance
ON/OFF ratio, weight update nonlinearity, variation and noise,
etc. Prior works [10]–[12] have studied the impact of several
nonideal eNVM synaptic device properties on the learning
accuracy by incorporating the device behavioral model directly
to the algorithm’s code, therefore they could not address the
impact on the circuit-level performance (e.g., area, latency,
dynamic energy, and leakage power). On the other hand, the
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reported architectural simulator platforms (e.g., PRIME [13],
Harmonica [14], and ISSAC [15]) have demonstrated pow-
erful capability and flexibility at the system-level design,
but they have limited considerations at the aforementioned
nonideal device properties (they only considered the weight
precision and/or variation). MNSIM [16] is a circuit-level
macro model of neuro-inspired architecture, but the accuracy
in this model is the output error of weighted sum (matrix-
vector multiplication), which is just one step of the algorithms
thus it lacks the run-time learning accuracy of the entire algo-
rithms. In such context, it is crucial to develop a circuit-level
macro model that can be integrated with the learning algorithm
(or NN) to form a simulation platform that is hierarchically
organized from the device level, circuit level up to the algo-
rithm level, where each level covers a wide variety of design
options.

In this paper, we developed NeuroSim for the neuro-inspired
architecture design at the circuit level. NeuroSim can sup-
port various mainstream and emerging memory technologies,
and NeuroSim can also support various machine learning NNs
to form a complete simulation framework that is instruction-
accurate. Compared to a full SPICE simulation, NeuroSim
leverages the circuit/device model parameters on a small
but realistic neuro-inspired architecture, enabling fast early
stage design exploration. The inputs to the simulator include
memory types, nonideal device parameters, transistor technol-
ogy nodes, network topology and array size, training dataset
and traces, etc. The outputs of the simulator include the circuit-
level performance metrics, such as area, latency, dynamic
energy and leakage power consumption and algorithm-level
learning accuracy in run-time. As a case study, NeuroSim is
used to support a 2-layer multilayer perceptron (MLP) NN to
benchmark different neuro-inspired architecture design options
in the online learning and offline classification. The main
contributions of this paper can be summarized as follows.

1) Developed NeuroSim with a wide variety of flexible
design options to estimate the circuit-level performance
of neuro-inspired architectures to facilitate the design
space exploration.

2) Calibrated the circuit-level performance metrics based
on cell characteristics at logic gate level, and performed
validation of these metrics compared to layout and
SPICE simulation.

3) Demonstrated the use of NeuroSim in the MLP simula-
tor to be capable of evaluating both the learning accuracy
and circuit-level performance metrics at the run-time of
the algorithm.

4) Investigated the design tradeoffs with SRAM, digital,
and analog eNVM-based neuro-inspired architectures
considering the nonideal device properties in the online
learning and offline classification.

In the discussions, we will illustrate the usage of NeuroSim
with different scenarios, as well as pointing out the limita-
tions of NeuroSim. At the current stage, the target users of
NeuroSim are device engineers, as it is most suitable for them
to quickly benchmark system-level performance with synaptic
device properties in basic NN algorithms. The source code of
NeuroSim v1.0 is publicly available at [17]. In this version,
only analog eNVM architectures are included.

The rest of this paper is organized as follows. Section II
introduces the background of synaptic devices and their array
architectures. Section III describes the NeuroSim architecture
and its customization, usage, and limitations. Section IV dis-
cusses the performance modeling and validation of NeuroSim.

(a) (b)

Fig. 1. Reported measured experimental data of weight update in (a) Ag:a-Si
and (b) TaOx/TiO2-based synaptic devices.

Section V demonstrates a 2-layer MLP NN with the support
of NeuroSim to benchmark SRAM, digital, and analog eNVM
architectures in online learning and offline classification.
Section VI summarizes this paper.

II. BACKGROUND ON SYNAPTIC DEVICES
AND ARRAY ARCHITECTURES

A. Synaptic Devices

In the neuromorphic system, a synapse serves as a com-
munication path for one neuron to pass the signal to another
neuron, and its strength (e.g., weight) can be gradually modi-
fied during the learning. For a complex neuromorphic system,
the number of synapses is far more than the number of
neurons. To prevent a tremendous hardware cost with CMOS-
based synapses, the current progress in nanotechnology is
paving the way toward implementation of synapses using low-
cost and ultra-high density memory array [18]. In fact, due to
its maturity, the floating-gate memory technology has been
successfully implemented on a single chip as synapses for the
neuromorphic computing [19]. To achieve even higher inte-
gration density, faster speed, and lower programming voltage,
compact synaptic devices based on eNVM are proposed for
the neuromorphic systems, including resistive random access
memory [20]–[25] and phase change memory [11], [26], [27],
etc. These eNVM devices are two-terminal, and they can repre-
sent the weight with their analog multilevel conductance states.
In this paper, we simply refer to these devices as “synap-
tic devices”. Modification of the weight (weight update) thus
relies on the transition between different conductance states in
the synaptic devices, which is typically triggered by electrical
inputs. The detailed physical mechanism of this conductance
transition can be different for different types of synaptic
devices. Generally, the conductance of synaptic devices can
be increased and decreased with positive and negative pro-
gramming voltage pulses, which are referred to as weight
increase and decrease, respectively. An ideal synaptic device
behavior assumes a linear update of the weight with identical
programming voltage pulses. As shown in Fig. 1, however,
the realistic devices reported in literature do not follow such
ideal trajectory, exhibiting “nonideal” properties, such as non-
linear and noisy weight increase/decrease, limited precision,
and finite ON/OFF ratio. For example, Ag:a-Si devices [20]
show a nonlinear and noisy weight increase/decrease; though
TaOx/TiO2 devices [21] exhibit a more linear and smooth
weight increase/decrease, the ON/OFF ratio is very limited
(∼2). Such nonideal behaviors commonly exist in today’s
synaptic devices [20]–[23], possibly due to the inherent
drift and diffusion dynamics of the ions/vacancies in these
materials.
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Fig. 2. (a) Weighted sum operation in an eNVM-based synaptic crossbar
array structure. (b) Equivalent RC model of a synaptic device.

B. Crossbar Array Architecture

A set of synapses that fully connects between two lay-
ers of neurons can be viewed as a weight matrix. The most
compact and simplest array structure for synaptic devices to
form this weight matrix is the crossbar array structure, where
each synaptic device is located at each cross point. The cross-
bar array structure can achieve a high integration density of
4 F2/cell. As shown in Fig. 2(a), if the input vector is encoded
by read voltage signals, the weighted sum operation (matrix-
vector multiplication) can be performed in a parallel fashion
with synaptic crossbar array [28], [29]. The weighted sum
result in terms of the output currents are then obtained at
the end of each column. Ideally, it can be expressed in a
matrix form⎛

⎜⎜⎝
I1
I2
...
In

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

G11 G12 · · · G1m
G21 G22 · · · G2m
...

...
. . .

...
Gn1 Gn2 · · · Gnm

⎞
⎟⎟⎠

⎛
⎜⎜⎝

V1
V2
...

Vm

⎞
⎟⎟⎠ (1)

where each G element in the weight matrix is the conductance
of the synaptic devices. Fig. 2(b) shows the equivalent RC
model of a single cell in the crossbar array structure, which
can be duplicated to form the whole array. The wire para-
sitics (Rw and Cw) not only bring extra latency and energy
consumption in the array, but also causes IR drop (reduction
of access voltage) along the weighted sum path. Aggressive
downscaling of the wire width (W) will make the IR drop more
severe. Hence, the weighted sum current in (1) may not be
accurately obtained. Fortunately, the sneak path problem [30]
of the unselected cells in the array for conventional memory
application does not exist in the weighted sum operation, if
all the cells are participating in the computation. For weight
update operation, though a fully parallel write scheme has been
proposed [21], programming all the cells in the array may con-
sume too much peak power that the peripheral circuits can
provide. Therefore, row-by-row write scheme has to be used.
As there is no isolation between cells, it is necessary to apply
some voltage (smaller than the programming voltage) at all the
unselected rows and columns to prevent the write disturbance
on unselected cells during weight update [31]. In this scheme,
a lot of energy is consumed to charge up all unselected rows
and columns for every single operation. Therefore, the cross-
bar array architecture may not be energy-efficient in weight
update.

C. Pseudo-Crossbar Array Architecture

The write disturbance problem in crossbar array architecture
is a concern in both traditional memory and neuromorphic

(a) (b)

Fig. 3. Transformation from (a) conventional 1T1R array to (b) pseudo-
crossbar array by 90◦ rotation of BL to enable weighted sum operation.

applications. In principle, a two-terminal selector device
should be added to prevent the interference between cells [32],
however, the development of selector device is not mature at
this stage. A common design solution is to add a cell selection
transistor in series with the eNVM device, forming the one-
transistor one-resistor (1T1R) array architecture, as shown in
Fig. 3(a). The word line (WL) controls the gate of the transis-
tor, which can be viewed as a switch for the cell. The source
line (SL) connects to the source of the transistor. The eNVM
cell’s top electrode connects to the bit line (BL), while its bot-
tom electrode connects to the drain of the transistor through
a contact via. In such case, the cell area of 1T1R array is then
determined by the transistor size, which is typically >6 F2

depending on the maximum current required to be delivered
into the eNVM cell. Larger current needs larger transistor gate
width/length (W/L). However, conventional 1T1R array is not
able to perform the weighted sum operation that follows (1).
In this case, we have to modify the conventional 1T1R array
by rotating the BLs by 90◦, which is known as the pseudo-
crossbar array architecture [33], as shown in Fig. 3(b). In
weighted sum operation, all the transistors will be transparent
when all WLs are turned on. Thus, the input vector voltages
are provided to the BLs, and the weighted sum currents are
read out through SLs in parallel. It should be noted that the
IR drop problem still exists in the pseudo-crossbar array, and
the wire RC model in Fig. 2(b) can also be applied here to
study the IR drop problem.

The voltage bias schemes for weight update are shown in
Fig. 4. As the weight increase and decrease need different
programming voltage polarities, the weight update process
requires two steps with different voltage bias schemes. In
weight update, the selected cells will be on the same row,
and programming pulses or biases (if no update) are pro-
vided from the SL, allowing the selected cells to be tuned
on in parallel. To perform weight update for the entire array,
a row-by-row operation is still necessary. Ideally, the entire
row should be selected at a time to ensure the maximum par-
allelism. However, only part of a row may be selected at a time
if the write circuitry cannot afford such a large write current.
With only the selected WL activated, the unselected cells at all
other rows can be free from the write disturbance, meanwhile
achieving significant reduction on the energy consumption in
biasing these unselected rows. In principle, similar row-by-
row write scheme could be applied to the crossbar array with
selectors.

III. NEUROSIM ARCHITECTURE

A. Overview

NeuroSim is a circuit-level macro model developed in C++
that can be used to estimate the area, latency, dynamic energy,
and leakage power of neuromorphic hardware accelerators
with SRAM and eNVM-based architectures to facilitate the
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Fig. 4. Voltage bias schemes in the write operation of pseudo-crossbar array.
Two separate phases for weight increase and decrease are required. In this
example, the left cell of the selected cells will be updated in phase 1, while
the right one will be updated in phase 2.

design space exploration. The framework of NeuroSim fol-
lows the principles of CACTI [34] for SRAM cache and
NVSim [35] for NVM. These simulators focus on the design
for traditional memory application, and do not support the
memory design for neuromorphic computing. In contrast,
NeuroSim is dedicated to support neuro-inspired architectures.
The hierarchy of the simulator consists of different levels of
abstraction from the memory cell parameters and transistor
technology parameters, to the gate-level subcircuit modules
and then to the array architecture including the peripheral
circuits. Fig. 5(a) shows an overview of the high-level archi-
tecture with neuromorphic hardware accelerator to implement
NNs. NNs generally require multiple (or deep) layers for better
learning performance, where each layer contains the synap-
tic core and neuron periphery. A synaptic core is specifically
designed for weighted sum and weight update. It takes the
digital input vector and gives out the weighted sum result in
the digital format. Thus, the digital communication is used
between synaptic cores while the analog computation will just
be done within the core only. The synaptic core further consists
of the synaptic array and array periphery. The synaptic array
[such as Figs. 2(a) or 3] is the core unit of weighted sum com-
putation and the array periphery helps transform the results
to be the digital format if necessary. Currently, NeuroSim
supports SRAM, digital, and analog eNVM-based synaptic
cores, as shown in Fig. 5(b)–(d). On the other hand, the
neuron periphery is responsible for nonlinear activation func-
tion and communication from one synaptic core to another.
Currently, NeuroSim can implement nonlinear activation func-
tion using an SRAM/eNVM array-based look-up table, while
it also supports the low-precision activation function, such as
thresholding with step function. As the circuit implementation
of neuron periphery is more flexible and can vary between
different NNs, we will only show an example one of low-
precision activation function in the case study of Section V in
this paper.

B. Synaptic Cores

In this section, we introduce the detailed architecture of
three types of synaptic cores: 1) SRAM; 2) digital; and 3) ana-
log eNVM. In NeuroSim, the synaptic cores are considered to
be at one hierarchy level higher than the subcircuit modules,
as they consist of both memory array and peripheral circuits
that are closely jointed to form a standalone weighted sum
computation unit. Important parameters at this level include
synaptic array types and sizes, operating modes of peripheral

circuits, and the number of synapses that can be accessed in
parallel during weighted sum and weight update, etc.

1) SRAM Synaptic Core: The circuit block diagram of
SRAM synaptic core is shown in Fig. 5(b). As SRAM cells can
only store binary bits, we group multiple SRAM cells along
the row as one synapse to represent a higher weight precision.
The weighted sum and weight update operation in the SRAM-
based synaptic core are essentially row-by-row-based, which
is similar to the read and write operation in a conventional
SRAM memory.

In the weighted sum operation, the input vector is encoded
using multiple clock cycles to represent its precision. For each
row, an input vector bit of 1 means the row will be selected
for read, otherwise the row will be skipped. To select a row,
the WL is activated through the WL decoder. To access all
the cells on the selected row, the BLs are precharged by the
precharger and the write driver in weighted sum and weight
update, respectively. After the memory data are read by the
sense amplifier (S/A), the adder and register are used to accu-
mulate the partial weighted sum in a row-by-row fashion. To
make sure the overflow will not occur during the accumula-
tion, the adder and register need to have a longer bit-width than
the weight precision of a synapse. The adder and shift register
pair at the bottom performs shift and add of the weighted sum
result at each input vector bit cycle to get the final weighted
sum. The bit-width of the adder and shift register needs to be
further extended depending on the precision of input vector. If
the values in the input vector are only 1 bit, then the adder and
shift register pair is not required. For the write operation, new
weights will be provided from the input of the write driver.
All the cells on the same row can be updated at the same time,
thus the weight update operation is also row-by-row-based.

2) Digital eNVM Synaptic Core: The circuit block dia-
gram of digital eNVM synaptic core is shown in Fig. 5(c).
By replacing the SRAM core memory with eNVM without
much modification on the whole digital circuit architecture, we
potentially get smaller synaptic core area. The way the digital
eNVM synaptic core works is very similar to the SRAM one,
thus it can just use the traditional 1T1R array as the synaptic
array. As mentioned in Section I, we have to group multiple
binary 1T1R cells along the row as one synapse to represent
a higher weight precision.

The weighted sum operation in digital eNVM synaptic core
is also row-by-row-based. After the memory data are read out
by the voltage S/A, adder and register will perform accumu-
lation on the partial weighted sum through row-by-row. One
key difference compared to the SRAM synaptic core is the use
of multiplexer (Mux). As the cell size in 1T1R array is much
smaller, it will not be area-efficient to put all the read periph-
ery circuits underneath the array. Therefore, it is necessary to
use a Mux to share the read periphery circuits among synaptic
array columns. However, this inevitably increases the latency
of weighted sum as time multiplexing is needed because of the
sharing. For the weight update, the column decoder can select
a group of synapses at a time depending on the design, and
the programming voltages will be provided from the decoder
driver. Two phases are required to program the cells to be ON
and OFF because they need different WL voltages.

3) Analog eNVM Synaptic Core: In NeuroSim, the ana-
log eNVM-based synaptic core supports two types of the
synaptic array architecture: 1) the crossbar and 2) the
pseudo-crossbar array architectures, as described earlier in
Sections II-B and II-C. In this paper, we will only discuss
the pseudo-crossbar array architecture. As shown in Fig. 5(d),
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(a) (b) (c) (d)

Fig. 5. (a) Overview of high-level architecture with neuromorphic hardware accelerator. (b) Circuit block diagram of SRAM synaptic core. (c) Circuit block
diagram of digital eNVM synaptic core. (d) Circuit block diagram of analog eNVM synaptic core with the pseudo-crossbar array.

Fig. 6. Circuit diagram of the crossbar WL decoder. Follower circuit is
attached to every row of the decoder to enable activation of all WLs when
ALLOPEN = 1.

the peripheral circuits in analog eNVM synaptic core are quite
different than the one in the SRAM and digital eNVM synap-
tic core. First, the WL decoder is modified to be “crossbar
WL decoder,” which has an additional feature to activate
all the WLs for making all the transistors transparent for
weighted sum. Inspired from [16], the crossbar WL decoder
is constructed by attaching the follower circuits to every out-
put row of the traditional decoder, as shown in Fig. 6. If
ALLOPEN = 1, the crossbar WL decoder will activate all
the WLs no matter what input address is given, otherwise it
will function as a traditional WL decoder.

Second, switch matrices are used for fully parallel voltage
input to the array rows or columns. Fig. 7(a) shows the BL
switch matrix for example. It consists of transmission gates
that are connected to all the BLs, with control signals (B1–Bn)
of the transmission gates stored in the registers (not shown
here). In the weighted sum operation, the input vector signal
is loaded to B1–Bn, which decide the BLs to be connected to
either the read voltage or ground. In this way, the read voltage
that is applied at the input of transmission gates can pass to the
BLs and the weighted sums are read out through SLs in paral-
lel. If the input vector is not 1 bit, it should be encoded using
multiple clock cycles. The reason why we do not use analog
voltage to represent the input vector precision is the I–V non-
linearity of eNVM cell, which will cause the weighted sum
distortion or inaccuracy [29]. As shown in Fig. 7(b), B1–Bn

(a) (b)

Fig. 7. (a) Transmission gates of the BL switch matrix in the weighted
sum operation. A vector of control signals (B1–Bn) from the registers (not
shown here) decide the BLs to be connected to either a voltage source or
ground. (b) Control signals in a bit stream to represent the precision of the
input vector.

are a vector of bit streams. Similarly, the adder and shift regis-
ter pair in Fig. 5(b) will perform shift and add on the weighted
sum results of all bit cycles to obtain the final weighted result.

To convert these analog weighted sum currents to digital
outputs, we use the read circuit [36] to employ the principle of
the integrate-and-fire neuron model. The read circuit integrates
the weighted sum current on the finite capacitance of the array
column. Once the voltage charges up above a certain threshold,
the read circuit fires an output pulse and the capacitance is
discharged back. The precision required for this analog-to-
digital conversion (ADC) determines the pulse width in each
bit of the input vector. As the cell size in 1T1R array is much
smaller compared to the ADC size, multiple synaptic array
columns may share one ADC through Mux to improve the
area efficiency, which is similar to the case in digital eNVM
synaptic core. However, this inevitably increases the latency



3072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 12, DECEMBER 2018

of weighted sum as time multiplexing is needed because of
the sharing.

Analog eNVM synaptic cores can also use multiple multibit
cells to represent a higher precision, but it needs an extra Mux
and an extra adder and shift register pair at the bottom of
synaptic core to perform the summing. On the other hand,
the weight update operation in analog eNVM synaptic core is
performed row-by-row with the write pulses coming from the
SL switch matrix. As mentioned in Section II-C, the weight
update operation requires two phases because there are two
voltage polarities for weight increase and decrease.

C. Transistor and Memory Cell Models

At the device level, NeuroSim is featured with various
design options in transistor technologies and memory cells.
The transistors can be configured to be high-performance or
low-standby-power type with different technology nodes from
130 nm down to 7 nm, where FinFET is used at 14 nm
and beyond. The transistor models are calibrated based on
predictive technology model (PTM) [37]. Compared to indus-
try transistor models, PTM is available to the public and
it has a wide range of technology nodes, which is suitable
for the design space exploration at the early design stage.
Important parameters in transistor models include device W/L,
the operating voltage (VDD), threshold voltage (VTH), gate and
parasitic capacitance, and nMOS/pMOS saturation/off current
density across different temperatures, etc. In particular, VTH
is extracted at the gate voltage (VGS), where the drain cur-
rent density (JDS) is 300 nA/μm under VDS = VDD. In bulk
MOSFET, the total gate capacitance is the sum of ideal, fringe,
and overlap gate capacitance, while the total drain capacitance
includes the capacitance in the diffusion region from junction
to bottom, channel and the other three sidewalls. Based on
these parameters, the area and intrinsic RC model of standard
logic gates (INV, NAND, NOR, transmission gates, etc.) can
be calculated analytically thus the circuit-level performance
metrics of each subcircuit module can be estimated.

The design of SRAM and eNVM cells in NeuroSim is also
flexible. We use conventional 6T SRAM (extendable to 8T
SRAM), where all transistors’ W/L can be adjusted. The tran-
sistor technology defined for other digital circuits also applies
to SRAM’s transistors. On the other hand, eNVM cells in
NeuroSim have basic device parameters, such as max/min
conductance, read/write voltage and pulse width, the num-
ber of conductance states (weight precision), I–V nonlinearity
degree, etc. These parameters play an important role in the
array-level performance, and will further affect the peripheral
circuit design in the synaptic core.

D. Customization

In NeuroSim, synaptic cores are like standard templates.
For a more complex design, it may be necessary to insert
one or more hierarchical layers that uses the synaptic cores
or other circuit modules as building blocks. If the users could
not find a circuit module that serves their needs, they can
build up a new module with the assistance of NeuroSim’s
infrastructure, which is relatively easier than writing a new
module from scratch as NeuroSim has a clear device-to-circuit
hierarchy for doing so. At the device level, the customization
is even easier because the users can just modify the device
parameters to fit different device characteristics. However, it
should be noted that NeuroSim only has basic eNVM parame-
ters as mentioned in Section III-C. It does not capture detailed
device properties, such as weight update nonlinearity and vari-
ations, as it is currently not designed to provide weighted

Fig. 8. Different usage scenarios for NeuroSim.

sum results or new weight matrix pattern as feedback thus
the basic device parameters are sufficient for the circuit-level
performance evaluation.

E. Usage of NeuroSim

As a circuit-level macro model, NeuroSim does not incorpo-
rate the learning algorithms, and it estimates the circuit-level
performance of a synaptic core by taking either the data pat-
terns of the input vector and weight matrix from the algorithm,
or the average parameters of these patterns to have a good
approximation of performance evaluation. For the latter one,
for example, we can assume the activity of the input vector is
0.5 (50% 1 and 0 in the vector). At the device level, it may
assume an average conductance of the synaptic devices and
an average number of pulses for the weight update operation
in analog eNVM synaptic core. To illustrate how NeuroSim
works, we have considered three different usage scenarios as
shown in Fig. 8, and they are described below.

1) NeuroSim for Architectural Performance Estimation: In
this scenario, NeuroSim alone is used to estimate the circuit-
level performance metrics of neuro-inspired architectures. As
mentioned earlier, a synaptic core in NeuroSim takes weighted
sum or weight update instruction with specified data pattern or
average parameters to calculate the circuit-level performance
per instruction, and it will quickly show the performance
breakdown results from the synaptic core to its subcompo-
nents. Thus, using NeuroSim alone is very handy for quick
circuit-level performance benchmark without the need to run
a full SPICE simulation. The prototype of NeuroSim has
been used in this scenario in our several earlier works, such
as [33], [38], and [39].

2) NeuroSim As Supporting Tool for NN: In this scenario,
NeuroSim is used as a supporting module to provide circuit-
level performance estimation for NN simulators, which is
helpful for NN researchers to explore the design space of
NN architectures at early design stage. This scenario can
be done in two ways. The first way is that the NN sim-
ulator calls NeuroSim routines at every weighted sum and
weight update operation, which makes the performance evalu-
ation instruction-accurate. However, this approach may not be
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applicable if the NN simulator is not compatible with C++
NeuroSim interface. The second way is that NeuroSim takes
the trace of data patterns that are recorded during the run-time
of the NN simulator, which is essentially a trace-based simula-
tion. This approach is much simpler than the first one and has
no limitation on the platform, but it is much less efficient and
requiring more simulation time to fetch the data from a trace
file as it can be very large in size.

3) NeuroSim As Supporting Tool for NN+Device: This
scenario is very similar to the second one, except the dif-
ference that part of the circuit-level performance estimation
that NeuroSim provides may only be on the array peripherals,
because the NN simulator has already incorporated a more
complex synaptic array and device behavioral model. In this
example, the NN simulator can estimate the energy con-
sumption of the synaptic array more precisely and efficiently
with its device model, thus NeuroSim is only responsible for
the energy consumption on the array peripherals. For other
performance metrics, NeuroSim still provide the estimation
based on the whole architecture because they are more at
the scope of architecture or circuit level. As mentioned in
Section I, several works [10]–[12] published by the device
community have demonstrated such an NN+device framework
for evaluation of learning accuracy with various synaptic array
and device characteristics, but they cannot address the circuit-
level performance. Thus, we believe that NeuroSim can be
a good supporting tool to fill up the gap between the algo-
rithm and device for these frameworks as well as enabling the
co-optimization of circuit and device for the device engineers.

F. Limitations of NeuroSim

Despite that NeuroSim features a wide variety of design
options for the usage/support of circuit-level performance
benchmark in neuro-inspired architectures, there are still sev-
eral aspects that NeuroSim has not incorporated yet, leaving
the room for future improvement. These include the following.

1) The ability to automatically map NN to several partitions
of synaptic core and neuron periphery.

2) The interconnection, routing and network topology of
synaptic cores at the architecture level.

3) The overhead of off-chip memory access.
4) A complete set of modules in support of machine learn-

ing NNs, such as convolutional NN (CNN) or recurrent
NN (RNN).

5) The ability to adapt other NN types, such as spiking
NN (SNN).

For 1), currently the users have to manually instantiate
the synaptic cores by providing the synaptic array sizes that
equal to the weight matrix sizes of the algorithm, thus only
custom design is supported. The automatic mapping of the
weight matrix sizes to arbitrary synaptic array sizes is to be
developed for reconfigurable design. For 2), the overhead of
latency and energy due to interconnection or routing between
synaptic cores may become noticeable as the synaptic array
size scales up. This will be the issue to solve after 1) is
done. For 3), the overhead of off-chip memory access can-
not be ignored if only part of the weights are stored on-chip.
NeuroSim may have to be integrated with some third-party
C++ DRAM modules (e.g., DRAMSim2 [40]) to take this
overhead into account. For 4), currently NeuroSim partially
supports CNN but more modules are still under development.
For example, it has the module for the convolutional kernel
and average pooling but no maximum pooling or batch nor-
malization. On the other hand, RNN requires a different type
of synaptic core that can achieve recurrent connections, which

is not included in NeuroSim yet. Therefore, the users may
have to bring their own design to NeuroSim if there is no
existing module available there. For 5), the synaptic core and
other subcircuit modules in NeuroSim are designed to support
the key operations in machine learning NNs in a synchronous
fashion. Event-driven asynchronous SNN works in a differ-
ent way that the key operations rely on the timing between
spikes to encode information, which NeuroSim cannot imple-
ment with its current form. Considering the limitations listed
above are more at the algorithm and architecture level, at
the current stage we would like to position NeuroSim as
a circuit-level macro model that is most suitable for the device
engineers to quickly benchmark various synaptic devices and
neuro-inspired architectures with a basic NN algorithm.

IV. PERFORMANCE ESTIMATION MODELS

As a circuit-level estimation tool, NeuroSim is beneficial
in exploring the design space of neuro-inspired architectures
at early design stage. Typical circuit-level performance met-
rics include the area, latency, dynamic energy, and leakage
power. Compared to the time-consuming SPICE simulation,
NeuroSim provides fast estimation of the performance met-
rics using analytical models or predefined values provided by
the user with reasonable accuracy. In this section, we introduce
the performance estimation models in NeuroSim.

A. Model Setup

Fig. 9 shows the basic execution flow of subcircuit mod-
ule functions to obtain the performance results of subcircuit
modules. Before performance estimation, the subcircuit mod-
ule has to be constructed and initialized. In the initialization
step, functionality of the subcircuit module is outlined, such
as the module interface, operating modes, and logic gates with
sizing information (transistor W/L). In general, we predefine
the transistor W/L for the logic gates in subcircuit modules
according to the drivability that are needed. Specifically, we
design the transistor W/L for the transmission gates that drives
the array, such as the ones in the decoder driver, switch matrix
and Mux of the eNVM-based synaptic array. We consider the
worst case where the synaptic array has all its eNVM at the
lowest resistance, and calculate the maximum effective resis-
tance of the transmission gates (RTG) under a coefficient of
IR drop tolerance (IR_DROP_TOL):

RTG = RWORST_ROW/COL×IR_DROP_TOL (2)

where RWORST_ROW/COL is the total resistance of all eNVM
cells in parallel in a row or column depending on either the
transmission gate connects to the array row or column. By
setting up a small IR_DROP_TOL (0.1 by default), we can
make sure the input voltage can be delivered into the array
without noticeable degradation in most cases.

At the architecture level, the flow is similar to the one for
subcircuit modules. We show the execution flow of a synaptic
core as a basic example of architecture in Fig. 10. In the ini-
tialization step of synaptic core, initialization of all subcircuit
modules that belong to this synaptic will be performed. The
same organization is also applied for the rest of performance
estimation functions. In this way, a well-defined nested hier-
archy from subcircuits to architectures can be constructed,
enabling bottom-up level-by-level performance estimation.

B. Area Estimation

Once the transistors’ sizing in each logic gate is known,
the logic gates’ layout height or width can then be calculated
given the other dimension fixed. For example, if the driver
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Fig. 9. Software execution flow of subcircuit module functions to estimate
the performance metrics.

has a large transistor W/L and its layout height is constrained
by the array row pitch, then NeuroSim will try to find the
minimum layout width of the driver that can accommodate
this W/L by folding. In FinFET, the area estimation model
becomes a little bit different because the number of fins needs
to be an integer.

In general, we use the same cell layout height for most of the
logic gates in subcircuit modules, and calculate its cell layout
width depending on its transistor W/L. For the synaptic array,
the layout dimensions of a memory cell can be predefined
by the user. If the transistor size of the 1T1R or pseudo-
crossbar array is estimated [using the same method as (2)]
to be larger than the predefined memory cell size, NeuroSim
will report an error and request a larger predefined size. After
the synaptic array dimensions are determined, NeuroSim will
estimate the layout dimensions of subcircuit modules. There
are three input arguments as shown in Fig. 9. The first two
arguments, assignedHeight and assignedWidth, are the con-
straints on the layout height and width, respectively. If one of
them is provided, the other dimension can then be estimated to
obtain the total area. If neither of them is provided, the logic
gates will be placed in the most straightforward way for total
area estimation. The third input argument, AreaModifyOption,
can be specified for special adjustment of area, which has the
following options.

1) NONE: This option is the regular one, indicating no
further adjustment after the area estimation.

2) MAGIC: In this option, it is assumed that the layout of
subcircuit module can be “magically” folded into any
shape while conserving its total area, guaranteeing no
waste of area. This option is designed for quick and
simple estimation, but it will give the most optimistic
result.

3) OVERRIDE: In this option, the estimated layout dimen-
sions will be just overridden by the input arguments

Fig. 10. Software execution flow of performance estimation functions at the
architecture level (a synaptic core for example).

assignedHeight and assignedWidth for the total area.
This is designed for the user-defined layout dimensions,
or for the cases where both dimensions are constrained.

In the subcircuit module’s area calculation function, the
capacitance at logic gate level is estimated at the last step
(Fig. 9) because the total drain capacitance is dependent on
the layout structure of logic gate. For example, logic gates with
different number of folding have different area and sidewall
length of diffusion region. At the architecture level, NeuroSim
provides two different total area estimations, as shown in
Fig. 10. The first one is to estimate the bounding box area that
encloses the entire layout of architecture. The other one is
to directly sum up the area of array and subcircuit mod-
ules, which may be optimistic but it actually reflects the real
case, where the layout is always optimized to save chip cost.
For the area results in this paper, we use the latter one (the
optimized one).

C. Latency Estimation

Once the capacitances at logic gate level are all known, the
latency and dynamic energy consumption can then be esti-
mated based on RC analyses. We follow the same methods of
estimation in CACTI [34] and NVSim [35]. For digital logic
gates, the latency is defined as the time required for the output
voltage to reach the switching voltage threshold after the input
voltage reaches it. We use Horowitz equation to calculate the
latency in digital logic gates

Latency = τf

√
ln(vs)

2 + 2

rampInput×τ f
β(1−vs) (3)

where vs is the normalized switching voltage threshold (typ-
ically 0.5). rampInput is the input voltage ramp rate, and
1/rampInput represents the rise time of the input voltage sig-
nal. β = 1/(gmR) is the reciprocal of the normalized input
transconductance gm times the output resistance R. τf = RC
is the total RC time constant at the output node (assuming
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a step input). After the latency estimation, the output ramp
rate of digital logic gates rampOutput will also be evaluated

rampOutput = (1−vs)/Latency (4)

which can be provided as the rampInput to the next stage of
the digital logic gate. For transmission gates used to pass ana-
log voltage signals, we use 2.3RC (0–90% voltage rise time)
instead of (3) to estimate the latency. The latency estimation at
all levels always considers the worst-case scenario. Generally,
there are three input arguments to the latency calculation func-
tion of a subcircuit module, as shown in Fig. 9. rampInput
determines the voltage ramp rate to the input of the subcircuit
module. capLoad is the load capacitance at the output node of
subcircuit module. rampInput and capLoad are required for the
critical path latency calculation. The third argument, numOp,
is the number of repeated operations, which is designed for the
convenience of the higher levels that may need multiple times
of access to a single subcircuit module. The total latency of
a subcircuit module can then be regarded as the critical path
latency multiplied by numOp.

At the architecture level, the total latency can be calculated
as the sum of latency of the subcircuit modules, as shown in
Fig. 10. For the weighted sum operation of an eNVM synaptic
core, the array RC is considered as the load parameters for
the subcircuit modules that drives the array. For the weight
update operation of an eNVM synaptic core, the latency of
device weight tuning is included in the latency calculation of
switch matrices.

D. Power Estimation

In the power estimation function of subcircuit modules, the
dynamic energy consumption (expressed as CVDD

2) and leak-
age power are calculated, as shown in Fig. 9. Since all the
capacitances at logic gate level are known, the dynamic energy
consumption of subcircuit module can then be calculated by
summing up the CVDD

2 at all nodes. Similarly, if numOp is
given, the total dynamic energy consumption in a number of
operations can be obtained.

In eNVM synaptic array, the energy consumption is mainly
static energy consumption (i.e., the current flow through
eNVM cells), as shown in Fig. 10. The energy consumption
on the selected analog eNVM cell at weight increase/decrease
phase can be simply written as

Ecell = GV2
WNTPULSE. (5)

In (5), G is the conductance of a cell. VW is the write voltage
for weight increase/decrease. N is the number of applied write
pulses and TPULSE is the pulse width. Besides the eNVM cell,
the dynamic energy consumption on the array wire capacitance
as well as SRAM cells (for SRAM architecture) will also be
calculated. Then, the total energy consumption for a synaptic
core can be estimated as the sum of the dynamic/static energy
consumption of array and the dynamic energy consumption of
subcircuit modules.

On the other hand, leakage power represents the power con-
sumption due to subthreshold leakage current (Ileak) in the
transistor channel when the transistor is turned off, where the
simplest form of expressing it is VDDIleak. For a simple logic
like INV, Ileak is just the average of nMOS and pMOS off cur-
rent. For a NAND or NOR logic that has more than one input,
we estimate the leakage current based on the average case. In
this way, an additional predefined ratio will be applied to the

Fig. 11. Example layout of the analog eNVM synaptic core (256 × 256 array
size) at FreePDK 45 nm.

leakage power calculation result. For example, the leakage of
a NAND3 can be expressed as

LeakageNAND3 = VDDIoff,PMOS×3×AR_LEAKNAND3 (6)

where AR_LEAKNAND3 represents the average ratio for leak-
age current in a NAND3 logic. In the synaptic array, the total
leakage power will be simply the sum of leakage of SRAM
cells (for SRAM architecture) and all subcircuit modules, as
shown in Fig. 10. eNVM cells do not need power to maintain
their data thus they do not have leakage.

E. Validation

NeuroSim offers a wide variety of design options for bench-
marking neuro-inspired architectures. Being the essential bases
for the entire simulation framework, the parameters in subcir-
cuit modules, memory cell and transistor models should be
accurate enough to support the validity of NeuroSim. In such
context, we have performed SPICE and layout-level calibra-
tion of subcircuit modules to validate the analytical models.
As mentioned in Section III-C, the transistor model parameters
are calibrated based on PTM. The area estimation, including
logic gates and subcircuits, is based on generic design rules.
As shown in Fig. 11, we have calibrated the area estimation of
an analog eNVM synaptic core with an array size of 256×256
at 45 nm technology node by comparing to its layout using
FreePDK45 process design kit [41]. As is shown in the lay-
out, the peripheral circuits (i.e., switch matrix) take substantial
area due to the requirement of relaxing W/L for transmission
gate for minimizing the IR drop to maintain good accuracy
in the analog computation in the synaptic array. The entire
layout area is measured to be 15 810 μm2, with a cell size
of 0.0324 μm2 (4 F × 4 F), while the area estimation by
NeuroSim (optimized) is 15 454 μm2, achieving an error rate
of −2.5%.

For latency, dynamic energy, and leakage power consump-
tion, we pick the representative modules for validation, such
as the decoder, adder, Mux, and switch matrix. As shown
in Fig. 12, we calibrated the analytical equations in these
performance estimation models at different synaptic array sizes
from 8 × 8 to 256 × 256 with SPICE simulation based on
PTM at 22, 32, and 45 nm technology node. In Fig. 12, the
latency and dynamic energy of the decoder is more like a stair-
case function with respect to the array size. This is because
the decoder has two stages and every two address bits will be
predecoded, thus the decoder structure will have less changes
from 2N−1 to 2N address bits where N is an even number.
On the other hand, the latency of Mux and switch matrix
does not increase with larger array size, because all the sig-
nal paths are independent and parallel. In Fig. 12, the leakage
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Validation on main circuit modules (decoder, switch matrix, adder,
mux) with different synaptic array sizes: (a) latency at 22 nm, (b) energy at
22 nm, (c) leakage power at 22 nm, (d) latency at 32 nm, (e) energy at 32 nm,
(f) leakage power at 32 nm, (g) latency at 45 nm, (h) energy at 45 nm, and
(i) leakage power at 45 nm technology node.

power of Mux is not shown, because it only has transmis-
sion gates where the transistor’s subthreshold leakage current
does not exist with a floating drain and the gate leakage cur-
rent can be negligible. In Fig. 12, the average absolute error
rates of the subcircuit modules at these technology nodes are
∼14.86%, ∼10.51%, and ∼13.96% for the latency, dynamic
energy, and leakage power, respectively. The validation results
are reasonably accurate considering these performance metrics
are modeled by simplified analytical equations as described in
Sections IV-C and IV-D, which we believe is sufficient for
a quick estimation of the circuit-level performance at early
design stage.

V. CASE STUDY BY USING NEUROSIM

In this section, we demonstrate the third usage scenario of
NeuroSim in Section III-E using a 2-layer MLP NN with
MNIST handwritten digits [42] as the training and testing
dataset to implement online learning and offline classifica-
tion. The network topology is 400(input layer)-100(hidden
layer)-10(output layer). Four hundred neurons of input layer
correspond to 20 × 20 MNIST image (edge cropped), and
10 neurons of output layer correspond to 10 classes of digits.
Such simple 2-layer MLP can achieve 96%–97% in the soft-
ware baseline. In online learning, the MLP simulator emulates
hardware to train the network with images randomly picked
from the training dataset (60k images) and classify the testing
dataset (10k images). In offline classification, the network is
pretrained by software, and the MLP simulator only emulates
hardware to classify the testing dataset.

A. Adapt MLP Network to Hardware

For the hardware implementation, the MNIST input images
are converted to black and white (1-bit) data to reduce the
complexity of input encoding, as shown in Fig. 13(a). For

(a)

(b) (c)

Fig. 13. (a) 2-layer MLP NN. (b) Schematic of a neuron node. (c) Circuit
block diagram for hardware implementation of the 2-layer MLP NN.

design simplicity, the neuron node is modularized to take the
weighted sum of 1-bit input data and truncate it to 1-bit output
value through a low-precision activation function (Heaviside
step function, e.g., a simple comparator circuit) for the input
of next neuron node, as shown in Fig. 13(b). In this way,
offline classification, which is purely feed forward (FF), can
be realized in 1-bit, as demonstrated in [43]. However, the
computation on the back propagation (BP) of weight update
generally needs higher precision to update the small errors.
Fig. 13(c) shows the circuit block diagram for hardware imple-
mentation of the 2-layer MLP network. The weighted sum
operation is performed using the synaptic cores. However, the
weights used in a regular synaptic array can only represent
positive values (WH = 0 ∼ 1), while the weights in algorithm
can be either positive or negative values (WA = −1 ∼ 1). The
algorithm’s weighted sum is then written as

WAV = (2WH − J)V = 2WHV − JV (7)

where V is the input vector and J is the matrix of all ones that
has the same dimension as WA and WH . In (7), WHV is the
weighted sum output from the synaptic core. Therefore, we
squeeze WA from (−1∼1) to the range of WH(0∼1): i.e., −1
is mapped to 0, 0 is mapped to 0.5, and 1 is mapped to 1.
To reconstruct WAV, we have to perform a two-step read from
the array: first, we read out WHV, and then multiply WHV by
2 using a 1-bit left-shift, and then subtract JV (basically the
sum of vector) from WHV through the adder at the periphery.
The MSB (sign bit in 2’s complement notation) of the adder
output will be the 1-bit output of the low-precision activation
function. It should be noted that we only consider the main
subcircuit modules for the neuron periphery at current stage of
this paper, and the hardware for BP error calculation as well
as the detailed control logics will be included in future work.

B. NeuroSim As Supporting Module for MLP Simulator

The MLP simulator is shown in Fig. 14. It has a hier-
archical organization from the algorithm level down to the
device level with consideration of synaptic array and real-
istic device properties in detail, and it can be regarded as
a standalone functional simulator that is able to evaluate the
learning accuracy and the circuit-level performance for the
synaptic array only during learning. To form a complete frame-
work, NeuroSim is needed to provide circuit-level performance
estimation.

At the run-time of NN, the MLP simulator iteratively per-
forms FF and BP, which contains a series of weighted sum and
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Fig. 14. NeuroSim as a supporting module to the MLP simulator. At the
run-time of NN, the weighted sum and weight update instructions will be
given to both the synaptic array/device model and NeuroSim for evaluation
of computation error and circuit-level performances, respectively.

(a) (b)

(c) (d)

Fig. 15. Impact of (a) weight precision, (b) conductance ON/OFF ratio,
(c) read noise, and (d) RON in online learning and offline classification.

weight update operations, respectively. Whenever a weighted
sum or weight update instruction is given, the instruction
will be passed to the synaptic array and device behavioral
model for calculation of computation error, as well as passed
to NeuroSim for evaluation of circuit-level performances.
As mentioned in the third usage scenario in Section III-E,
NeuroSim can be just responsible for the dynamic energy cal-
culation of the array peripherals because the MLP simulator
can better handle that of the synaptic array by itself.

C. Impact of Synaptic Device Properties on Accuracy

To quantify the impact of the aforementioned nonideal
device properties in Section II-A, we performed sensitiv-
ity analyses in online learning and offline classification.
Fig. 15(a) shows the requirement of weight precision. Because
the memory resources are limited on-chip, we have to truncate
the synapse weights into finite precisions. The result sug-
gests that 6-bit weight is required for online learning, while
2-bit weight is needed for offline classification (at least for
MNIST dataset) and 1-bit weight introduces slight degrada-
tion. Fig. 15(b) shows the learning accuracy with different
conductance ON/OFF ratios. Limited ON/OFF ratio < 50 will
degrade the accuracy of offline classification. The network
may adapt itself to this limited ON/OFF ratio during learn-
ing thus the online learning can tolerate more (ON/OFF

(a) (b)

Fig. 16. (a) Analog eNVM device behavioral model of the nonlinear weight
update. The nonlinearity is labeled from +6 to -6. (b) Impact of nonlinearity
in online learning.

ratio > 10 is needed). For the read noise, the accuracy loss will
become noticeable when σ is beyond 15%–25%, as shown in
Fig. 15(c). It is also found in Fig. 15(b)–(d) that although the
online learning can tolerate more on these nonideal properties,
the accuracy drop in online learning is usually much sharper
once the nonideal effect is beyond the tolerance range, which
is probably because the network will deviate more from its
correct form with both erroneous FF and BP results.

At array level, we also study the IR drop problem based
on the pseudo-crossbar array architecture at a wire width of
40 nm. With smaller eNVM ON-state resistance (RON, which
corresponds to the max conductance state), not only will the
wire resistance get closer to RON, but also the access tran-
sistor needs to be sized larger, which makes the array wire
longer and further worsen the IR drop problem. The results in
Fig. 15(d) suggests that RON should be higher than 500 k�
to prevent accuracy drop in the offline classification, while
online learning can also tolerate more IR drop as long as
RON > 10 k� possibly because of the ability for the network
to adapt itself to this spatial effect.

For the nonlinear weight update, we have built a device
behavioral model. As shown in Fig. 16(a), the conductance
change with number of pulses (P) is described with the
following equations:

GLTP = B
(

1−e
(− P

A

))
+ Gmin (8)

GLTD = −B

(
1−e

(
P−Pmax

A

))
+ Gmax (9)

B = (Gmax − Gmin)
/(

1 − e
−Pmax

A

)
(10)

where Gmax, Gmin, and Pmax are directly extracted from the
experimental data, which represents the maximum conduc-
tance, minimum conductance, and the maximum pulse number
required to switch the device between the minimum and max-
imum conductance states. A is the parameter that controls the
nonlinear behavior of weight update, and B is simply a func-
tion of A that fits the functions within the range of Gmax, Gmin,
and Pmax. A and B may be different in (8) and (9). As shown
in Fig. 16(a), a set of nonlinear weight increase (blue) and
weight decrease (red) behavior can be obtained by adjusting
A, where each nonlinear curve is labeled with a nonlinearity
value from +6 to −6. Fig. 16(b) shows that the impact of
nonlinearity on the online learning accuracy is very critical.
High accuracy can only be achieved with small nonlinearity
(<0.5∼1).

During weight update, synaptic devices usually show con-
siderable variation from device to device, and even from
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(a) (b)

Fig. 17. (a) Illustration of the device-to-device weight update variation.
(b) Online learning accuracy as a function of device-to-device weight update
variation at different nonlinearity baselines.

(a) (b)

Fig. 18. (a) Illustration of the cycle-to-cycle weight update variation.
(b) Online learning accuracy as a function of cycle-to-cycle weight update
variation at different nonlinearity baselines.

pulse to pulse within one device. The effect of device-to-
device weight update variation can be analyzed by introducing
the variation into the nonlinearity baseline in Fig. 16(a) for
each synaptic device, where it is defined as the nonlinear-
ity baseline’s standard deviation (σ ) respect to 1 step of
6 steps in Fig. 16(a). In Fig. 17(a), an example of the
device-to-device variation with 3σ = +/−1.5 is illustrated.
Generally, the network is resilient to the device-to-device
variation [10], [11], however, the impact of device-to-device
variation becomes prominent at high nonlinearity (>1), as
shown in Fig. 17(b). For offline classification, there is no
nonlinearity issue as the cell conductance can be iteratively
programmed to the desired value [44].

On the other hand, the cycle-to-cycle weight update varia-
tion is referred to as the variation in conductance change at
every programming pulse, as illustrated in Fig. 18(a). In this
paper, the amount of cycle-to-cycle variation (σ ) is expressed
in terms of the percentage of entire weight range. As shown in
Fig. 18(b), small cycle-to-cycle variation (<2%) can alleviate
the degradation of learning accuracy by high nonlinearity. The
reason may be attributed to the random disturbance that aids
convergence of the weights to an optimal weight pattern (i.e.,
to help the system jump out of local minima). Thus, synaptic
devices with nonlinear weight update behavior may perform
better than expected if they exhibit a little noisy weight update.
However, too large variation (>2%) overwhelms the deter-
ministic update amount defined by BP thus is harmful to the
learning accuracy.

Overall, Table I listed state-of-the-art synaptic devices in
literature with the extracted realistic device parameters. The
read noise and device-to-device weight update variation are

(a) (b)

Fig. 19. (a) Area and (b) leakage power estimation of MLP architecture with
SRAM, digital, and analog eNVM synaptic cores for learning.

not analyzed and included in this table because there are no
sufficient experimental data and their impact on the learning
accuracy is also less remarkable. However, the results suggest
that today’s analog eNVM devices are problematic to be used
in online learning as well as offline classification. Different
limiting factors shown in different devices: green color high-
lights good attributes, while red color highlights the major
cause of learning failure. Therefore, we propose to set up the
targeted eNVM specs that is able to achieve a good accu-
racy of 90% in online learning. As a reference, eNVM device
with ideal specs is also listed, which is supposed to be as
perfect as SRAM to achieve the same high accuracy of 94%–
95% with 6-bit weights for online learning, because SRAM
does not have the aforementioned nonideal device effects. To
achieve these two desired specs, analog eNVM devices have
to overcome significant challenges as suggested in Table I
by more advanced device engineering. Of course, there could
be circuit/architecture-level techniques to mitigate the accu-
racy degradation due to eNVM’s nonideal effects [10]. For
example, a dummy column could be added to compensate the
nonzero off-state current (or limited ON/OFF ratio); noniden-
tical pulse programing scheme could be used to improve the
weight update nonlinearity. However, these techniques come
with design overhead. In this paper, we only benchmark the
intrinsic device characteristics.

D. Circuit-Level Performance Benchmark

In the above section, we showed the results of learning
accuracy, we will show the estimation of the area, latency,
dynamic energy, and leakage power of the proposed MLP
architectures for online learning and offline classification. As
shown in Fig. 14, the area and leakage power can be directly
obtained during the setup of NN, while the latency and energy
consumption are calculated at the run-time. The benchmark is
performed at 14 nm node, and we also assume the weights
are 6-bit and there are 16 array columns sharing one read
peripheral circuit (col share = 16), such as voltage S/A, ADC,
etc., in eNVM-based synaptic cores. We estimated the total
area of SRAM, digital, and analog eNVM-based architectures,
as shown in Fig. 19(a). The analog eNVM core can achieve the
smallest area due to smaller cell size and multiple bits per cell.
In Fig. 19(b), the leakage power of these three architectures
for the learning is also estimated. Unlike SRAM, the eNVM-
based synaptic cores do not need power supply to maintain
the data in memory cells thus their leakage power is much
smaller compared to SRAM. On the other hand, the digital
eNVM synaptic core has less leakage power than the analog
one because a large portion of leakage power in the analog
one comes from the SL/BL switch matrix.

However, SRAM has more advantages over digital and ana-
log eNVM on the latency and dynamic energy consumption for
online learning, as shown in Fig. 20. Although analog eNVM’s
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TABLE I
SPECS AND LEARNING ACCURACY OF REPORTED AND DESIRED ANALOG ENVMS

(a) (b)

(c) (d)

Fig. 20. Dynamical trace of (a) latency in feed forward, (b) latency in weight
update, (c) energy in feed forward, and (d) energy in weight update during
online learning.

parallel weighted sum operation in the FF is much faster than
SRAM’s and digital eNVM’s row-by-row-based read, most of
the latency is dominated by the eNVM’s slow weight update,
with two phases (two voltage polarities for weight increase
and decrease) and multiple pulses per phase. Even the write
pulse width of ideal eNVM is assumed to be 10 ns, the weight
update latency of ideal eNVM is still ∼28× slower than that of
digital eNVM, and SRAM can be even faster than the digital
eNVM by 36× because the write latency of a single SRAM
cell (<ns) is much less than that of a single digital eNVM
(10 ns) and we assume that only part of the row is selected
at a time for weight update in digital eNVM. As there is only
a small portion of weights being updated at each cycle, analog
eNVMs with different pulse widths do not show any differ-
ence in weight update energy. In fact, most of the energy is
consumed at biasing the unselected columns.

It should be noted that given the same constraint of on-chip
area, SRAM has smaller capacity than eNVM if a large-scale
or deep NN is implemented. Therefore, SRAM-based archi-
tecture requires more frequent off-chip memory access (i.e.,
from DRAM main memory) for training with large dataset.
If the off-chip memory access is modeled with NeuroSim
(i.e., by integration with DRAMSim2 [40], its latency/energy
will be the dominant factor from the whole system point of
view. In this sense, eNVM-based architecture may potentially
solve this off-chip memory access bottleneck for implementing
large-scale or deep NN.

TABLE II
BENCHMARK OF ARCHITECTURE WITH SRAM, DIGITAL, AND ANALOG

ENVM-BASED SYNAPTIC CORE FOR OFFLINE CLASSIFICATION

For offline classification, accuracy >93% can be achieved
using either 2-bit SRAM and digital eNVM [equivalently
Fig. 15(a)] or 2-bit targeted/ideal eNVM (Table I). Table II
shows the circuit-level performance benchmark results of
SRAM, digital, and analog eNVM-based architectures for
offline classification on the entire testing dataset of 10k
images. Without any training process, the analog eNVM-based
architecture can be superior to the other two designs in terms
of latency and energy.

VI. CONCLUSION

In this paper, we have introduced the synaptic array archi-
tectures, circuit modules, memory device/transistor models,
functions, features, usage, and current limitations in NeuroSim
with detailed descriptions. As a circuit-level macro model,
NeuroSim alone can be a handy tool to estimate the circuit-
level performance metrics of neuro-inspired architectures by
taking trace of data patterns or average parameters. With
clear abstractions of all hierarchical layers and well-defined
interfaces of modules, NeuroSim can also be used as a sup-
porting module to provide circuit-level performance estimation
in NN learning algorithms. In the case study, we demonstrated
the use of NeuroSim in a 2-layer MLP simulator to evaluate
both the learning accuracy and circuit-level performance met-
rics at the run-time of online learning. NeuroSim provides
a wide variety of design options in the circuit and device
level (including nonideal properties) thus design tradeoffs can
be investigated. In the case study of a small NN, it is found
that SRAM still outperforms the digital and analog eNVM
for online learning due to its excellent performance in weight
update but with an overhead of much larger area and leakage
power. eNVM may provide advantages for larger or deep NN,
where the off-chip memory access will dominate due to small
capacity of on-chip SRAM. Capable of parallel weighted sum
operation, analog eNVM-based synaptic core is most suitable
for the read-intensive applications, such as the offline classifi-
cation, while the digital eNVM one may be a better choice
for low standby power design. NeuroSim is an extendable
platform that could be integrated with other machine learning
NNs, such as CNN, which will be our on-going future work.
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