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Editor’s note:

In this article, the authors present a circuit-level macro model (“NeuroSim” sim-
ulator) to estimate circuit-level performance of neuroinspired architectures to
facilitate design space exploration. The model is used to analyze the impact
of analog synapse device characteristics on the performance of a two-layer
multilayer perceptron (MLP) neural network and identify critical device proper-
ties (on/off ratio and asymmetry, in this case) to guide technology development.

—An Chen, Semiconductor Research Corporation

Il RECENT ADVANCES IN machine/deep learning
algorithms have achieved tremendous success in
speech and image recognition, implemented with
conventional graphics processing units and/or field
programmable gate arrays. Because of the limited
on-chip memory resources, traditional von Neumann
architecture is inadequate for fast training and/or
real-time classification. In recent years, several cus-
tom CMOS ASIC hardware accelerators have been
developed (e.g., MIT’s Eyeriss [1] and Google’s tensor
processing unit [2]), where SRAM is used to imple-
ment the synapses. Typically, the weight information
of a single synapse is stored using multiple binary
SRAM cells, which is area-inefficient (with cell size
100F?~200F?, F is the lithography feature size). As a
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result, part of the weights
may have to be stored
off-chip (i.e., in DRAM),
introducing the bottle-
neck of the off-chip mem-
ory access. To replace
SRAM, analog synaptic
devices (or analog syn-
apses) are considered as
promising candidates due
totheir compact device structure and the ability to store
“analog” weights. One type of analog synapsesis based
on emerging nonvolatile memory (eNVM) devices,
e.g., resistive memories [3]-[6] and phase change
memory (PCM) [7], [8]. These eNVM-based synapses
are two-terminal with cell size 4F>~12F?, and they
can represent the analog weight with their multilevel
conductance states, where the transition between
conductance states are triggered by electrical inputs.
Its detailed physical mechanism can be different
for different types of eNVM devices. Generally, the
conductance can be increased and decreased with
positive and negative programming voltage pulses.
Recently, there has been remarkable progress in
the array-level demonstration of the essential neural
computation operations including weighted sum and
weight update [9]-[12]. The other type of analog syn-
apses is based on ferroelectric field-effect transistor
(FeFET) [13], [14]. FeFET synapses are three-terminal
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like a conventional transistor, but with its gate die-
lectric replaced by a ferroelectric material that has
multiple domains of polarization. With programming
voltage pulses applied on the gate, part of the polar-
ization direction can be changed, enabling gradual
tuning of the threshold voltage and, thereby, the
channel conductance to store analog weights.

The most compact and simplest array structure to
form a weight matrix is the crossbar array structure with
eNVM analog synapses [15]. As shown in Figure 1a,
the weighted sum (matrix-vector multiplication) can
be performed in a parallel fashion with the input
vector being the voltages and the weighted sum being
the output currents [16]. An ideal analog synaptic
device behavior assumes a linear update of the con-
ductance (or weight) with the programming voltage
pulses. As shown in Figure 1b, however, the realistic
devices reported in the literature do not follow such
ideal trajectory, exhibiting “nonideal” properties
such as nonlinear and asymmetric weight increase/
decrease, limited precision, and finite ON/OFF ratio.
Such nonideal behaviors commonly exist in today’s
synaptic devices. In this article, we use the developed
NeuroSim+ simulator [17] to analyze the impact of
these nonideal device properties on the learning accu-
racy and investigate the design tradeoffs with SRAM
and analog synapses-based neuroinspired architec-
tures. The new materials presented in this article,
beyond [17], include more synaptic device candidates
such as PCM and FeFET; and an improved weight
update scheme to skip the unnecessary weight update
operations in order to reduce the latency and energy of
analog synapses.
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Figure 1. (a) Weighted-sum operation in an
eNVM-based synaptic crossbar array structure.
(b) Weight update of the eNVM-based synaptic

devices.
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NeuroSim architecture

Overview

NeuroSim is a circuitlevel macro model devel-
oped in C++ that can be used to estimate the area,
latency;, dynamic energy, and leakage power of neu-
romorphic hardware accelerators to facilitate the
design space exploration. The framework of Neuro-
Sim follows the principles of CACTI [18] for SRAM
cache and NVSim [19] for NVM, while NeuroSim is
dedicated to support neuroinspired architectures. The
hierarchy of the simulator consists of different levels
of abstraction from the memory cell parameters and
transistor technology parameters, to the gate-level
subcircuit modules and then to the array architecture.
Figure 2a shows an overview of the high-level architec-
ture with neuromorphic hardware accelerator to imple-
ment neural networks (NNs).A synaptic core is specifi-
cally designed for the weighted sum and weight update.
The computation within the core could be analog, but
the digital communication is enforced between the
cores.The synaptic array is the core unit of weighted-sum
computation and the array periphery helps transform
the results to digital [with analogto-digital converter
(ADC)]. On the other hand, the neuron periphery is
responsible for nonlinear activation function and com-
munication between synaptic cores.

Circuit architectures of synaptic cores

NeuroSim supports both SRAM, analog eNVM,
and analog FeFET synaptic cores, which are shown
in Figure 2b—d. As SRAM cells can only store binary
bits, we group multiple SRAM cells along the row as
one synapse to represent a higher weight precision.
Similar to conventional SRAM for read and write, the
weighted-sum and weight update operation in the
SRAM synaptic core are based on row-by-row fash-
ion. The input vector is encoded using multiple clock
cycles to represent its precision. For each row, an
input vector bit of 1 means the row will be selected
for read; otherwise, the row will be skipped. After the
memory data are read by the sense amplifier (S/A),
adder and register are used to accumulate the partial
weighted sum in a row-by-row fashion. The adder and
shift register pair at the bottom performs shift and add
of the weighted-sum result at each input vector bit
cycle to get the final weighted sum. For the write oper-
ation, all the cells on the same row can be updated at
the same time, and the new weight will be provided
from the input of the write driver.
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Figure 2. (a) Overview of high-level architecture with neuromorphic hardware
accelerator. (b)-(d) Circuit block diagram of SRAM, analog eNVM, and analog FeFET
synaptic cores. (e) Circuit schematic of the crossbar WL decoder. (f) Circuit schematic
of the BL switch matrix and its control signals in a binary bit stream to represent the

precision of input vector.

In NeuroSim, the analog eNVM synaptic core
supports the pseudocrossbar array architectures.
As shown in Figure 2c, this architecture is modified
from the conventional one-transistor one-resistor
array, with perpendicular bit lines (BLs) and source
lines (SLs) to enable the weighted-sum operation
[20], where the transistor can prevent write inter-
ference between cells. The word line (WL) decoder
is also modified to be “crossbar WL decoder” by
attaching the follower circuits to every output row of
the traditional decoder [21], as shown in Figure 2e. If
ALLOPEN =1, the crossbar WL decoder will activate
all the WLs; otherwise, it will function as a traditional
WL decoder. The switch matrix consists of transmis-
sion gates that are connected to each row or column,
and the input vector signal in a binary bit stream can
control these transmission gates to enable multiple
rows or columns, as shown in Figure 2d. In this way,
the read voltage (Vzz4p) can pass to the BLs and the
weighted sums are read out through SLs in parallel.
To convert these analog weighted-sum currents to
digital outputs, we use the read circuit [22] as the
ADC to employ the principle of the integrate-and-fire
neuron model. As the size of ADC is typically larger
than the column pitch, multiple columns may share
one ADC to improve the area efficiency. However,
this inevitably increases the weighted-sum latency
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as multiple-read-cycle (or time multiplexing) is
needed. The weight update in eNVM is performed
row by row with the write pulses coming from the
SL switch matrix. The weight update requires two
phases because there are two voltage polarities for
weight increase and decrease. On the other hand,
the FeFET synaptic core is different from the eNVM
one in the synaptic array structure, as shown in
Figure 2d. It also has an access transistor for each
cell to prevent programming on other unselected
rows during row-by-row weight update. As FeFET is
a three-terminal device, it needs two separate SLs:
source linvve south for the weighted sum and source
line north for the weight update, respectively.

Transistor and memory cell models

At the device level, NeuroSim is featured with
various design options in transistor technologies
and synaptic devices. The transistors can be con-
figured to be high-performance or low-standby-
power type with different technology nodes from
130 nm down to 7 nm, where FinFET is used at
14 nm and beyond. The transistor models are cali-
brated based on predictive technology model [23].
Important parameters in transistor models include
device W/L, the operating and threshold voltage,
gate and parasitic capacitance (per unit area), and
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NMOS/PMOS saturation/off current density across
different temperatures. Based on these parameters,
the area and intrinsic RC model of standard logic
gates (INV, NAND, and NOR) can be calculated, and
thus, the circuit-level performance metrics of each
subcircuit module can be estimated. The design of
SRAM, eNVM, and FeFET cells in NeuroSim is also
flexible. We use conventional 6T SRAM, where all
transistors’ W/L can be adjusted. On the other hand,
eNVM and FeFET cells have parameters such as
max/min conductance, read/write voltage and
pulsewidth, number of multilevel (precision), and/
or I-V nonlinearity degree.

Benchmark with NeuroSim+ framework

To benchmark the performance of various syn-
aptic devices on NNs, NeuroSim is integrated with
a two-layer multilayer perceptron (MLP) NN with
synaptic device properties incorporated into the
weights. The entire framework is named “Neuro-
Sim+,” which is able to evaluate the online learning
accuracy as well as the circuit-level performance
such as area, latency, energy, and leakage at the
run-time of the algorithm [17].
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Figure 3. (a) The two-layer MLP NN. The input MNIST
images are cropped and encoded into black/white
data for simplification. (b) In NeuroSim+, the weights
W4 and Wy, are mapped to synaptic cores. For
analog synapses, the device properties include the
nonlinear weight update (shown here), conductance
ON/OFF ratio, cycle-to-cycle weight update variation,
and so on.
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Adapt MLP network to hardware

As shown in Figure 3a, we use MNIST handwritten
digits [20] as the training and testing data sets in the
MLP network, and the network topology is 400(input
layer) —100(hidden layer) —10(output layer), where
400 neurons of the input layer correspond to a
20 x 20 MNIST image (converted to black/white and
edge cropped), and 10 neurons of the output layer
correspond to 10 classes of digits. The two-layer MLP
NN is mapped to two synaptic cores (Figure 3b)
with neuron peripheries serving as connection paths
between the cores (not shown). Such a simple two-
layer MLP can achieve 96%~97% in online learning
in the software baseline, which is not as high as
reported (>98%) [24] due to the simplicity made for
hardware implementation, where the neuron node
is modularized to truncate the weighted sum to 1-bit
output value through a low-precision activation func-
tion for the input of the next neuron node. Moreover,
it should be noted that the synaptic devices can only
represent positive weights, thus a mapping from the
algorithm’s weight (-1~1) to device’s weight (0~1)
is required. In neuron peripheral circuits, the array’s
weighted-sum result will be mapped back to the
algorithm’s weighted-sum result by subtracting the
sum of input vector elements.

Impact of nonideal synaptic device properties

For analog synapses, we consider several noni-
deal synaptic device propetrties. To analyze the effect
of nonlinear weight update, we define a set of non-
linear curves labeled with nonlinearity values from
6 to -6 for both the potentiation (weight increase)
and depression (weight decrease), as shown in
Figure 3b. In particular, the positive conductance
change (G+) and negative conductance change
(G-) with the number of pulses (P) are described
with the following equations:

G, =B(-e@)sG,. M
G = -Bl1-e) 1+ Gy @
B = (Gpu—Gr)l(1=e ). 3)

where G,.y, Gunin, and P, are directly extracted
from the experimental data, which represents the
maximum conductance, minimum conductance,
and the maximum pulse number required to switch
the device between the minimum and maximum
conductance states; A is the parameter that controls
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the nonlinear behavior of weight update; and B is
simply a function of A that fits the functions within
the range of G.., Gmin, and Pp,,. A and B may be
different in (1) and (2).

The potentiation and depression will not nec-
essarily follow the same trajectory, resulting in
asymmetry with the positive nonlinearity value for
potentiation and negative nonlinearity for depres-
sion. More experimental results of eNVMs today
[3]-[6] show asymmetry in that the potentiation and
the depression have positive and negative nonline-
arities, respectively. These nonlinearity values can
be extracted from the experimental data. During
weight update, the device’s conductance is tuned
within a confined conductance range, and only a
finite number of conductance states are available
due to the weight precision. Ideally, the lowest con-
ductance state (OFF-state) should be low enough to
represent the zero weight in the algorithm, making
the dynamic range (conductance ON/OFF ratio) suf-
ficiently large. In reality, the ON/OFF ratio is always
finite and normally not large enough. On top of the
nonlinear weight update curves, there are also con-
siderable weight update variations from one pulse
to another within one device. The effect of this
cycle-to-cycle variation refers to as the variation in
conductance change at every programming pulse.

To quantify the impact of the aforementioned
nonideal device properties, we performed sensitiv-
ity analyses in online learning using our simulator.
Figure 4a shows the requirement of weight preci-
sion.The result suggests that 6-bit weight is required
for online learning (at least for MNIST data set).
Figure 4b shows the learning accuracy with differ-
ent ON/OFF ratios. Limited ON/OFF ratio (<10) will
degrade the accuracy of online learning. Figure 4c
shows the impact of weight update nonlinearity and
asymmetry. The result shows that the asymmetry
(positive potentiation P and negative depression D)
is the key factor that degrades the accuracy, and
high nonlinearity can be tolerated if P/D has the
same polarity, which agrees with the results in [25].
However, for common situations where P/D is posi-
tive/negative,the impact of nonlinearity on the online
learning accuracy is very critical. High accuracy can
only be achieved with small nonlinearity (<1).The
device’s cycle-to-cycle variability is modeled as a
random Gaussian-like fluctuation to the conduct-
ance after each programming pulse,and the amount
of cycle-to-cycle variation (6) is expressed in terms
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Figure 4. The impact of (a) weight precision,
(b) conductance ON/OFF ratio, (c) weight update
asymmetry/nonlinearity, and (d) weight update

cycle-to-cycle variation in online learning.

of percentage of the entire weight range. As shown
in Figure 4d, small cycle-to-cycle variation (<2%)
can alleviate the degradation of learning accuracy
by high nonlinearity. The reason may be attributed
to the random disturbance that aids convergence
of the weights to an optimal weight pattern (i.e,,
to help the system jump out of local minima). Thus,
synaptic devices with nonlinear weight update
behavior may perform better than expected if they
exhibit a little noisy weight update. However, too
large variation (>2%) overwhelms the deterministic
weight update amount defined by the algorithm and,
thus, is harmful to the learning accuracy.

Benchmark results and discussion

Table 1 surveys the representative analog syn-
aptic devices in the literature with the extracted
aforementioned device properties. Based on these
parameters, NeuroSim+ was used to evaluate the
system-level performance metrics such as learning
accuracy, area, latency, energy, and leakage power
for online learning with 1 million MNIST images being
trained. The benchmark results show that all analog
eNVM devices fail to achieve good accuracy (>90%).
The cause of degradation can be largely attributed
to the devices’ poor ON/OFF ratio. It is observed
that for an ON/OFF ratio <10, the devices cannot
perform well in the learning no matter how good
other parameters are. This agrees with the results
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[ 1 —
Table 1. Specs and online learning performance of different synaptic devices.
Analog eNVM synapses Analog FeFET synapses Digital synapse
Device type Aga-Si[3] TaOJTiO,[4] PCMO[5] AIOJHIO;[6] GST PCM [7] HZO[ IF;JFET HZ(? lFf]FET 6-bit SRAM
# of conductance states 97 102 50 40 100-120 32 32
Nonlinearity (weight 24/48%8  185-1.79 3.68-676  1.94/-0.61 0.1052.4  253/1.83  1.545/1.755
increase/decrease)
Ron 26 MQ 5MQ 23 MQ 16.9 kQ 4.71 kQ 559.28 kQ 500 kQ
ON/OFF ratio 125 2 6.84 4.43 19.8 45 ~1300
Weight increase pulse 3.2V/300ps 3V/40ms -2V/1ms 0.9V/100ps 0.7V (ave)/ 3.6V (ave)/ 2.17V (avg.)
6us 75ns 50ps
. 3V (avg.)) -2.95V (avg.)/ -1.62V (avg.)/
Weight decrease pulse -2.8V/300ps  -3V/10ms 2V/1ms -1V/100pus 125ns 75ns S0us
Cycle-to-cycle variation (c) 3.5% <1% <1% 5% 1.5% <1% <1% -
Online learning accuracy ~73% ~10% 10% ~41% ~87% ~90% ~90% ~94%
Area 1072.0 um?> 10713 pm? 10713 pm? 36572 um®>  7233.0 um?>  1190.4 um?>  1193.5 um? 10311 um?
Latency (naive) 4.20E8 s 3.57E10 s 7.00E8 s 5.60E7 s 4.39E6 s 3.36E4s 2.24E7 s 7.76s
Energy (naive) 87.94 mJ 65.86 mJ 29.4 mJ] 150 mJ 1.521] 98.01 mJ 38.39 mJ 6.98 mJ
Latency (optimized) 64200 s 2.845s 5.2507 s 44398 s 413.0s 1.2924 s 479.6 s 3.7049 s
Energy (optimized) 14.81 mJ 0.17 mJ 0.17 mJ 146.19 mJ 1.34] 0.21 mJ 0.28 mJ 33ml
Leakage power 3529 pW 3529 uW 3529 uW 3529 uW 3529 uW 3529 uW 3529 uW 1.1 mW

in Figure 4b. The second critical parameter is the
asymmetry/nonlinearity. Even the Pr0.7Ca0.3MnO3
(PCMO) device [5] has a slightly better ON/OFF
ratio than the AlO,/HfO, one [6]; its high nonline-
arity restrains itself from converging to the desired
conductance during weight update, leading to poor
accuracy of 10%. In contrast, the learning accuracy
of both FeFET devices is much better (~90%), owing
to their large ON/OFF ratio. Even though their non-
linearities are not small, the degradation can be less
significant because the potentiation and depression
are symmetric, as observed in Figure 4c. It should be
pointed out that PCM [7] and FeFET [13], [14] used
nonidentical pulses with increasing pulse ampli-
tude/widths to update the weights, which may com-
plicate the peripheral circuit design.

Despite that SRAM can achieve better accuracy
(~94%) than all analog synapses, it typically requires
10x area and >30x leakage power consumption. How-
ever, some analog synapses such as AlO,/HfO, [6]
and Ge2Sb2Te5 (GST) PCM [7] have less advantage
in the area due to their small Ry, where the transistor
WI/L in peripheral circuits (such as Mux and switch
matrixes) needs to be sized larger to prevent the
noticeable currentresistance drop. On the other
hand, it is found in analog synapses that most of the
latency and energy are dominated by the weight
update, and they are far too large compared to those
in SRAM, making analog synapses unfavorable for
the online learning. This is because we have used a
naive scheme for the weight update, where all cells

in each operation need to go through the full num-
ber of pulse cycles (essentially the worst case) even
if the cells do not have to be updated (AW = 0). To
optimize this scheme, in this article, we propose
using the maximum AW’s number of cycles in each
weight update operation. If all the cells in an opera-
tion do not need an update (AW = 0), this operation
can be skipped. Table 1 shows the latency and energy
with both the naive and optimized schemes. In the
optimized scheme, the latency in analog synapses is
significantly reduced, indicating AW are often small
or zero. In TaO,/TiO, [4] and PCMO [5] devices, the
reduction ratios are extremely large because these
devices basically could learn nothing (most AW = 0).
Similarly, the energy can also be greatly reduced in
the optimized scheme with skipping operations, thus
saving the dynamic energy in charging the array
wires and circuits. The only exceptions are AlO,/
HfO, [6] and GST PCM [7]. Their energy reduction
is much less because their Rqy is small, thus the
array static energy (consumed by cells) dominates
rather than the dynamic energy. If the programming
pulse is short enough (<100 ns), analog synapses
can be superior to SRAM in every aspect of the cir-
cuit-level performance with the optimized weight
update scheme, as observed from the results of
Hf0.5Zr0.502 FeFET [13].

WE HAVE DEVELOPED an integrated framework,
namely, NeuroSim+, which can evaluate the learn-
ing performance of neuroinspired architectures
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with different device technologies. We have ana-
lyzed the impact of nonideal device properties
and benchmarked several representative analog
synapses such as resistive memories, PCM, and
FeFET in a two-layer MLP. The results suggest
that degradation of learning accuracy is mainly
due to small ON/OFF ratio and large asymmetry
and nonlinearity in weight update. Finally, the
optimized weight update scheme is proposed to
minimize the latency and energy overhead by skip-
ping redundant pulse cycles and even operations
during training. [ |
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