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 RECENT ADVANCES IN machine/deep learning 
algorithms have achieved tremendous success in 
speech and image recognition, implemented with 
conventional graphics processing units and/or field 
programmable gate arrays. Because of the limited 
on-chip memory resources, traditional von Neumann 
architecture is inadequate for fast training and/or 
real-time classification. In recent years, several cus-
tom CMOS ASIC hardware accelerators have been 
developed (e.g., MIT’s Eyeriss [1] and Google’s tensor 
processing unit [2]), where SRAM is used to imple-
ment the synapses. Typically, the weight information 
of a single synapse is stored using multiple binary 
SRAM cells, which is area-inefficient (with cell size 
100F2~200F2, F is the lithography feature size). As a 

result, part of the weights 
may have to be stored 
off-chip (i.e., in DRAM),  
introducing the bottle-
neck of the off-chip mem-
ory access. To replace 
SRAM, analog synaptic 
devices (or analog syn-
apses) are considered as 
promising candidates due 

to their compact device structure and the ability to store 
“analog” weights. One type of analog synapses is based 
on emerging nonvolatile memory (eNVM) devices,  
e.g., resistive memories [3]–[6] and phase change 
memory (PCM) [7], [8]. These eNVM-based synapses 
are two-terminal with cell size 4F2~12F2, and they 
can represent the analog weight with their multilevel 
conductance states, where the transition between  
conductance states are triggered by electrical inputs. 
Its detailed physical mechanism can be different 
for different types of eNVM devices. Generally, the 
conductance can be increased and decreased with 
positive and negative programming voltage pulses. 
Recently, there has been remarkable progress in 
the array-level demonstration of the essential neural 
computation operations including weighted sum and 
weight update [9]–[12]. The other type of analog syn-
apses is based on ferroelectric field-effect transistor 
(FeFET) [13], [14]. FeFET synapses are three-terminal 

Editor’s note:
In this article, the authors present a circuit-level macro model (“NeuroSim” sim-
ulator) to estimate circuit-level performance of neuroinspired architectures to 
facilitate design space exploration. The model is used to analyze the impact 
of analog synapse device characteristics on the performance of a two-layer 
multilayer perceptron (MLP) neural network and identify critical device proper-
ties (on/off ratio and asymmetry, in this case) to guide technology development.
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like a conventional transistor, but with its gate die-
lectric replaced by a ferroelectric material that has 
multiple domains of polarization. With programming 
voltage pulses applied on the gate, part of the polar-
ization direction can be changed, enabling gradual 
tuning of the threshold voltage and, thereby, the 
channel conductance to store analog weights.

The most compact and simplest array structure to 
form a weight matrix is the crossbar array structure with 
eNVM analog synapses [15]. As shown in Figure 1a, 
the weighted sum (matrix-vector multiplication) can 
be performed in a parallel fashion with the input 
vector being the voltages and the weighted sum being  
the output currents [16]. An ideal analog synaptic 
device behavior assumes a linear update of the con-
ductance (or weight) with the programming voltage 
pulses. As shown in Figure 1b, however, the realistic 
devices reported in the literature do not follow such 
ideal trajectory, exhibiting “nonideal” properties 
such as nonlinear and asymmetric weight increase/
decrease, limited precision, and finite ON/OFF ratio. 
Such nonideal behaviors commonly exist in today’s 
synaptic devices. In this article, we use the developed 
NeuroSim+ simulator [17] to analyze the impact of 
these nonideal device properties on the learning accu-
racy and investigate the design tradeoffs with SRAM 
and analog synapses-based neuroinspired architec-
tures. The new materials presented in this article, 
beyond [17], include more synaptic device candidates 
such as PCM and FeFET; and an improved weight 
update scheme to skip the unnecessary weight update 
operations in order to reduce the latency and energy of 
analog synapses.

NeuroSim architecture

Overview
NeuroSim is a circuit-level macro model devel-

oped in C++ that can be used to estimate the area, 
latency, dynamic energy, and leakage power of neu-
romorphic hardware accelerators to facilitate the 
design space exploration. The framework of Neuro-
Sim follows the principles of CACTI [18] for SRAM 
cache and NVSim [19] for NVM, while NeuroSim is 
dedicated to support neuroinspired architectures. The 
hierarchy of the simulator consists of different levels 
of abstraction from the memory cell parameters and 
transistor technology parameters, to the gate-level 
subcircuit modules and then to the array architecture.  
Figure 2a shows an overview of the high-level architec-
ture with neuromorphic hardware accelerator to imple-
ment neural networks (NNs). A synaptic core is specifi-
cally designed for the weighted sum and weight update. 
The computation within the core could be analog, but 
the digital communication is enforced between the 
cores. The synaptic array is the core unit of weighted-sum 
computation and the array periphery helps transform 
the results to digital [with analog-to-digital converter 
(ADC)]. On the other hand, the neuron periphery is 
responsible for nonlinear activation function and com-
munication between synaptic cores.

Circuit architectures of synaptic cores
NeuroSim supports both SRAM, analog eNVM, 

and analog FeFET synaptic cores, which are shown 
in Figure 2b–d. As SRAM cells can only store binary 
bits, we group multiple SRAM cells along the row as 
one synapse to represent a higher weight precision. 
Similar to conventional SRAM for read and write, the 
weighted-sum and weight update operation in the 
SRAM synaptic core are based on row-by-row fash-
ion. The input vector is encoded using multiple clock 
cycles to represent its precision. For each row, an 
input vector bit of 1 means the row will be selected 
for read; otherwise, the row will be skipped. After the 
memory data are read by the sense amplifier (S/A), 
adder and register are used to accumulate the partial 
weighted sum in a row-by-row fashion. The adder and 
shift register pair at the bottom performs shift and add 
of the weighted-sum result at each input vector bit 
cycle to get the final weighted sum. For the write oper-
ation, all the cells on the same row can be updated at 
the same time, and the new weight will be provided 
from the input of the write driver.

Figure 1. (a) Weighted-sum operation in an  
eNVM-based synaptic crossbar array structure.  
(b) Weight update of the eNVM-based synaptic  
devices.
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In NeuroSim, the analog eNVM synaptic core 
supports the pseudocrossbar array architectures. 
As shown in Figure 2c, this architecture is modified 
from the conventional one-transistor one-resistor 
array, with perpendicular bit lines (BLs) and source 
lines (SLs) to enable the weighted-sum operation 
[20], where the transistor can prevent write inter-
ference between cells. The word line (WL) decoder 
is also modified to be “crossbar WL decoder” by 
attaching the follower circuits to every output row of 
the traditional decoder [21], as shown in Figure 2e. If 
ALLOPEN = 1, the crossbar WL decoder will activate 
all the WLs; otherwise, it will function as a traditional 
WL decoder. The switch matrix consists of transmis-
sion gates that are connected to each row or column, 
and the input vector signal in a binary bit stream can 
control these transmission gates to enable multiple 
rows or columns, as shown in Figure 2d. In this way, 
the read voltage (VREAD) can pass to the BLs and the 
weighted sums are read out through SLs in parallel. 
To convert these analog weighted-sum currents to 
digital outputs, we use the read circuit [22] as the 
ADC to employ the principle of the integrate-and-fire 
neuron model. As the size of ADC is typically larger 
than the column pitch, multiple columns may share 
one ADC to improve the area efficiency. However, 
this inevitably increases the weighted-sum latency 

as multiple-read-cycle (or time multiplexing) is 
needed. The weight update in eNVM is performed 
row by row with the write pulses coming from the 
SL switch matrix. The weight update requires two 
phases because there are two voltage polarities for 
weight increase and decrease. On the other hand, 
the FeFET synaptic core is different from the eNVM 
one in the synaptic array structure, as shown in 
Figure 2d. It also has an access transistor for each 
cell to prevent programming on other unselected 
rows during row-by-row weight update. As FeFET is 
a three-terminal device, it needs two separate SLs: 
source linvve south for the weighted sum and source 
line north for the weight update, respectively.

Transistor and memory cell models
At the device level, NeuroSim is featured with 

various design options in transistor technologies 
and synaptic devices. The transistors can be con-
figured to be high-performance or low-standby-
power type with different technology nodes from 
130 nm down to 7 nm, where FinFET is used at 
14 nm and beyond. The transistor models are cali-
brated based on predictive technology model [23]. 
Important parameters in transistor models include 
device W/L, the operating and threshold voltage, 
gate and parasitic capacitance (per unit area), and  

Figure 2. (a) Overview of high-level architecture with neuromorphic hardware  
accelerator. (b)–(d) Circuit block diagram of SRAM, analog eNVM, and analog FeFET 
synaptic cores. (e) Circuit schematic of the crossbar WL decoder. (f) Circuit schematic 
of the BL switch matrix and its control signals in a binary bit stream to represent the 
precision of input vector.
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NMOS/PMOS saturation/off current density across 
different temperatures. Based on these parameters, 
the area and intrinsic RC model of standard logic 
gates (INV, NAND, and NOR) can be calculated, and 
thus, the circuit-level performance metrics of each 
subcircuit module can be estimated. The design of 
SRAM, eNVM, and FeFET cells in NeuroSim is also 
flexible. We use conventional 6T SRAM, where all 
transistors’ W/L can be adjusted. On the other hand, 
eNVM and FeFET cells have parameters such as 
max/min conductance, read/write voltage and 
pulsewidth, number of multilevel (precision), and/
or I–V nonlinearity degree.

Benchmark with NeuroSim+ framework
To benchmark the performance of various syn-

aptic devices on NNs, NeuroSim is integrated with 
a two-layer multilayer perceptron (MLP) NN with 
synaptic device properties incorporated into the 
weights. The entire framework is named “Neuro-
Sim+,” which is able to evaluate the online learning 
accuracy as well as the circuit-level performance 
such as area, latency, energy, and leakage at the  
run-time of the algorithm [17].

Adapt MLP network to hardware
As shown in Figure 3a, we use MNIST handwritten 

digits [20] as the training and testing data sets in the 
MLP network, and the network topology is 400(input 
layer) –100(hidden layer) –10(output layer), where 
400 neurons of the input layer correspond to a 
20 × 20 MNIST image (converted to black/white and 
edge cropped), and 10 neurons of the output layer 
correspond to 10 classes of digits. The two-layer MLP 
NN is mapped to two synaptic cores (Figure 3b) 
with neuron peripheries serving as connection paths 
between the cores (not shown). Such a simple two-
layer MLP can achieve 96%~97% in online learning 
in the software baseline, which is not as high as 
reported (>98%) [24] due to the simplicity made for 
hardware implementation, where the neuron node 
is modularized to truncate the weighted sum to 1-bit 
output value through a low-precision activation func-
tion for the input of the next neuron node. Moreover, 
it should be noted that the synaptic devices can only 
represent positive weights, thus a mapping from the 
algorithm’s weight (−1~1) to device’s weight (0~1) 
is required. In neuron peripheral circuits, the array’s 
weighted-sum result will be mapped back to the 
algorithm’s weighted-sum result by subtracting the 
sum of input vector elements.

Impact of nonideal synaptic device properties
For analog synapses, we consider several noni-

deal synaptic device properties. To analyze the effect 
of nonlinear weight update, we define a set of non-
linear curves labeled with nonlinearity values from 
6 to −6 for both the potentiation (weight increase) 
and depression (weight decrease), as shown in 
Figure 3b. In particular, the positive conductance 
change (G+) and negative conductance change 
(G−) with the number of pulses (P) are described 
with the following equations:
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where Gmax, Gmin, and Pmax are directly extracted 
from the experimental data, which represents the 
maximum conductance, minimum conductance, 
and the maximum pulse number required to switch 
the device between the minimum and maximum 
conductance states; A is the parameter that controls 

Figure 3. (a) The two-layer MLP NN. The input MNIST 
images are cropped and encoded into black/white 
data for simplification. (b) In NeuroSim+, the weights 
WIH and WHO are mapped to synaptic cores. For 
analog synapses, the device properties include the 
nonlinear weight update (shown here), conductance 
ON/OFF ratio, cycle-to-cycle weight update variation, 
and so on.



35May/June 2019

the nonlinear behavior of weight update; and B is 
simply a function of A that fits the functions within 
the range of Gmax, Gmin, and Pmax. A and B may be 
different in (1) and (2). 

The potentiation and depression will not nec-
essarily follow the same trajectory, resulting in  
asymmetry with the positive nonlinearity value for 
potentiation and negative nonlinearity for depres-
sion. More experimental results of eNVMs today 
[3]–[6] show asymmetry in that the potentiation and 
the depression have positive and negative nonline-
arities, respectively. These nonlinearity values can 
be extracted from the experimental data. During 
weight update, the device’s conductance is tuned 
within a confined conductance range, and only a 
finite number of conductance states are available 
due to the weight precision. Ideally, the lowest con-
ductance state (OFF-state) should be low enough to 
represent the zero weight in the algorithm, making 
the dynamic range (conductance ON/OFF ratio) suf-
ficiently large. In reality, the ON/OFF ratio is always 
finite and normally not large enough. On top of the 
nonlinear weight update curves, there are also con-
siderable weight update variations from one pulse 
to another within one device. The effect of this 
cycle-to-cycle variation refers to as the variation in 
conductance change at every programming pulse.

To quantify the impact of the aforementioned 
nonideal device properties, we performed sensitiv-
ity analyses in online learning using our simulator. 
Figure 4a shows the requirement of weight preci-
sion. The result suggests that 6-bit weight is required 
for online learning (at least for MNIST data set). 
Figure 4b shows the learning accuracy with differ-
ent ON/OFF ratios. Limited ON/OFF ratio (<10) will 
degrade the accuracy of online learning. Figure 4c 
shows the impact of weight update nonlinearity and 
asymmetry. The result shows that the asymmetry 
(positive potentiation P and negative depression D) 
is the key factor that degrades the accuracy, and 
high nonlinearity can be tolerated if P/D has the 
same polarity, which agrees with the results in [25].  
However, for common situations where P/D is posi-
tive/negative, the impact of nonlinearity on the online 
learning accuracy is very critical. High accuracy can 
only be achieved with small nonlinearity (<1). The 
device’s cycle-to-cycle variability is modeled as a 
random Gaussian-like fluctuation to the conduct-
ance after each programming pulse, and the amount 
of cycle-to-cycle variation (σ) is expressed in terms 

of percentage of the entire weight range. As shown 
in Figure 4d, small cycle-to-cycle variation (<2%) 
can alleviate the degradation of learning accuracy 
by high nonlinearity. The reason may be attributed 
to the random disturbance that aids convergence  
of the weights to an optimal weight pattern (i.e.,  
to help the system jump out of local minima). Thus, 
synaptic devices with nonlinear weight update 
behavior may perform better than expected if they 
exhibit a little noisy weight update. However, too 
large variation (>2%) overwhelms the deterministic 
weight update amount defined by the algorithm and, 
thus, is harmful to the learning accuracy.

Benchmark results and discussion
Table 1 surveys the representative analog syn-

aptic devices in the literature with the extracted 
aforementioned device properties. Based on these 
parameters, NeuroSim+ was used to evaluate the 
system-level performance metrics such as learning 
accuracy, area, latency, energy, and leakage power 
for online learning with 1 million MNIST images being 
trained. The benchmark results show that all analog 
eNVM devices fail to achieve good accuracy (>90%). 
The cause of degradation can be largely attributed 
to the devices’ poor ON/OFF ratio. It is observed 
that for an ON/OFF ratio <10, the devices cannot 
perform well in the learning no matter how good 
other parameters are. This agrees with the results 

Figure 4. The impact of (a) weight precision, 
(b) conductance ON/OFF ratio, (c) weight update 
asymmetry/nonlinearity, and (d) weight update  
cycle-to-cycle variation in online learning.
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in Figure 4b. The second critical parameter is the 
asymmetry/nonlinearity. Even the Pr0.7Ca0.3MnO3 
(PCMO) device [5] has a slightly better ON/OFF 
ratio than the AlOx/HfO2 one [6]; its high nonline-
arity restrains itself from converging to the desired 
conductance during weight update, leading to poor 
accuracy of 10%. In contrast, the learning accuracy 
of both FeFET devices is much better (~90%), owing 
to their large ON/OFF ratio. Even though their non-
linearities are not small, the degradation can be less 
significant because the potentiation and depression 
are symmetric, as observed in Figure 4c. It should be 
pointed out that PCM [7] and FeFET [13], [14] used 
nonidentical pulses with increasing pulse ampli-
tude/widths to update the weights, which may com-
plicate the peripheral circuit design. 

Despite that SRAM can achieve better accuracy 
(~94%) than all analog synapses, it typically requires 
10× area and >30× leakage power consumption. How-
ever, some analog synapses such as AlOx/HfO2 [6] 
and Ge2Sb2Te5 (GST) PCM [7] have less advantage 
in the area due to their small RON, where the transistor 
W/L in peripheral circuits (such as Mux and switch 
matrixes) needs to be sized larger to prevent the  
noticeable current-resistance drop. On the other 
hand, it is found in analog synapses that most of the 
latency and energy are dominated by the weight 
update, and they are far too large compared to those 
in SRAM, making analog synapses unfavorable for 
the online learning. This is because we have used a 
naive scheme for the weight update, where all cells 

in each operation need to go through the full num-
ber of pulse cycles (essentially the worst case) even 
if the cells do not have to be updated ( W = 0). To 
optimize this scheme, in this article, we propose 
using the maximum W’s number of cycles in each 
weight update operation. If all the cells in an opera-
tion do not need an update ( W = 0), this operation 
can be skipped. Table 1 shows the latency and energy 
with both the naive and optimized schemes. In the 
optimized scheme, the latency in analog synapses is 
significantly reduced, indicating W are often small 
or zero. In TaOx/TiO2 [4] and PCMO [5] devices, the 
reduction ratios are extremely large because these 
devices basically could learn nothing (most W = 0). 
Similarly, the energy can also be greatly reduced in 
the optimized scheme with skipping operations, thus 
saving the dynamic energy in charging the array 
wires and circuits. The only exceptions are AlOx/
HfO2 [6] and GST PCM [7]. Their energy reduction 
is much less because their RON is small, thus the 
array static energy (consumed by cells) dominates 
rather than the dynamic energy. If the programming 
pulse is short enough (<100 ns), analog synapses 
can be superior to SRAM in every aspect of the cir-
cuit-level performance with the optimized weight 
update scheme, as observed from the results of  
Hf0.5Zr0.5O2 FeFET [13].

WE HAVE DEVELOPED an integrated framework, 
namely, NeuroSim+, which can evaluate the learn-
ing performance of neuroinspired architectures 

Table 1. Specs and online learning performance of different synaptic devices.
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with different device technologies. We have ana-
lyzed the impact of nonideal device properties 
and benchmarked several representative analog 
synapses such as resistive memories, PCM, and 
FeFET in a two-layer MLP. The results suggest 
that degradation of learning accuracy is mainly 
due to small ON/OFF ratio and large asymmetry 
and nonlinearity in weight update. Finally, the 
optimized weight update scheme is proposed to  
minimize the latency and energy overhead by skip-
ping redundant pulse cycles and even operations  
during training. 
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