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Abstract – Recent advances in deep learning have shown that 

Binary Neural Network (BNN) is able to provide a satisfying 
accuracy on various image datasets with a significant reduction 
in computation and memory cost. With both weights and 
activations binarized to +1 or -1 in BNNs, the high-precision 
multiply-and-accumulate (MAC) operations can be replaced by 
XNOR and bit-counting operations. In this work, we present two 
computing-in-memory (CIM) architectures with parallelized 
weighted-sum operation for accelerating the inference of BNN: 1) 
parallel XNOR-SRAM, where a customized 8T-SRAM cell is 
used as a synapse; 2) parallel XNOR-RRAM, where a customized 
bit-cell consisting of 2T2R cells is used as a synapse. For large-
scale weight matrices in neural networks, the array partition is 
necessary, where multi-level sense amplifiers (MLSAs) are 
employed as the intermediate interface for accumulating partial 
weighted sums. We explore various design options with different 
sub-array sizes and sensing bit-levels. Simulation results with 
65nm CMOS PDK and RRAM models show that the system with 
128×128 sub-array size and 3-bit MLSA can achieve 87.46% for 
an inspired VGG-like network on CIFAR-10 dataset, showing 
less than 1% degradation compared to the ideal software 
accuracy. The estimated energy-efficiency of XNOR-SRAM and 
XNOR-RRAM shows ~30X improvement compared to the 
corresponding conventional SRAM and RRAM architectures 
with sequential row-by-row read-out. 

 

1. Introduction 
Deep learning has shown great performance in various 

intelligent applications including computer vision and speech 
recognition. However, the high demands on memory storage 
capacity and computational capability make it challenging to 
implement the state-of-the-art deep neural networks (DNNs) on 
resource-limited platforms such as mobile or sensory devices. 
For example, ResNet-50 [1] has 25.5M parameters and requires 
3.9G high precision multiply-and-accumulate (MAC) 
operations to classify one image and these numbers become 
higher for even deeper networks. Therefore, it is prohibitive to 
directly implement the entire DNNs on-chip, and the intensive 
data movements between on-chip processor and off-chip 
memory (e.g., DRAM) is the bottleneck of the system 
performance and energy efficiency. Various techniques such as 
network pruning [2] and fixed-point precision [3] were 
proposed to reduce the energy and area cost of the storage. 
Recently, it is demonstrated that the weight and neuron 
precision can be aggressively reduced to 1-bit in Binary Neural 

Networks (BNNs) [4, 5], which are still able to achieve a 
reasonable classification accuracy on representative image 
datasets (e.g., MNIST, CIFAR-10, and ImageNet). In these 
BNNs, both the weights and neuron activations are binarized to 
+1/-1, thus 1) the memory storage requirement is dramatically 
reduced; 2) computational resources are significantly reduced 
as high-precision MAC operations are replaced by XNOR and 
bit-counting operations. Therefore, BNNs provide a promising 
solution for on-chip implementation of DNNs. 

In the CMOS based DNN accelerators, SRAM buffer is 
commonly utilized to store the synaptic weights; however, the 
extensive computation such as MAC is performed using other 
digital logic circuits, e.g. multiplier and adders in the 
processing element (PE) [6, 7], as shown in Fig. 1(a). To 
improve the data utilization efficiency, parallelized 
computation is exploited across multiple PE arrays but still 
with inefficient row-by-row access to the weights stored in the 
shared SRAM buffer. To overcome this problem, it is more 
attractive to integrate the computation into the memory array 
itself, namely computing-in-memory (CIM) as shown in Fig. 
1(b). In CIM, the vector-matrix multiplication is done in a 
parallel fashion where the input vectors activate multiple rows 
and the dot-product is obtained as column voltage or current. 
For instance, the standard 6T SRAM array is proposed to 
perform MAC operation in parallel [8]. In [8], the word line 
(WL) of SRAM is driven by an analog voltage representing a 
5-bit input vector using a digital-to-analog converter (DAC), 
while the weights are stored in the bit-cells in a binary format 
(i.e. +1/-1). However, the analog WL voltage induces non-
linear bit line (BL) discharge current and extra circuitry is 
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Fig. 1. (a) The conventional deep neural network accelerator where 
the processing element (PE) arrays exploit parallelized computation 
but with inefficient row-by-row access to the weights stored in 
shared buffers (i.e. SRAM). (b) The diagram of CIM architecture 
where the input vectors activate multiple rows and the dot-product 
output is obtained as column voltage or current. (Adapted from [14]) 
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required for the linearization. Meanwhile, researchers have also 
proposed using emerging non-volatile memories (eNVMs) 
with much less area (than SRAM at the same technology node) 
such as resistive random access memory (RRAM) [9] and 
phase change memory (PCM) [10] to implement synaptic 
weights, where the computations are naturally performed in a 
true crossbar array or the pseudo-crossbar array with 1-
transistor-1-resistor (1T1R) [11]. The prior work in [12] 
experimentally demonstrated BNNs (a two-layer perceptron) 
on a 16Mb RRAM macro chip with row-by-row sequential 
read-out of binary RRAM cells, showing ~96.5% accuracy on 
MNIST dataset. To get rid of the row-by-row sequential read-
out, one could allow fully-parallel read-out by activating all the 
word lines (WLs) simultaneously for the weighted sum 
operation.  

Theoretically, the binary activation in BNNs could allow 
using 1-bit sense amplifiers (SAs) instead of analog-to-digital 
converters (ADCs) to serve as the binary neuron. However, due 
to the intrinsic offset of the SAs introduced by process 
variation, the sensing failure becomes intensified when the 
column current increases [13] when multiple WLs are activated 
in the parallel read-out scheme. This may substantially degrade 
the classification accuracy as the threshold of binary neuron in 
the hardware may differ from the ideal value in algorithms, 
leading to a constraint on the column length or the array size. 
To overcome this design challenge, array partition must be 
adopted to split a large-scale matrix into multiple small sub-
arrays. In this way, ADC-like multi-level sense amplifiers 
(MLSAs) are exploited to generate the partial sums of sub-
arrays, which are eventually added up by an adder tree to be the 
final sum for binary activation. 

In this paper, we review two CIM architectures with 
parallel weighted-sum operation for accelerating the inference 
of BNNs: 1) parallel XNOR-SRAM [14], where a customized 
8T-SRAM cell is used as a synapse; 2) parallel XNOR-RRAM 
[15], where a customized bit-cell consisting of 2T2R is used as 
a synapse.  

2. CIM Architctures Based on SRAM and RRAM 
2.1 Binary Neural Networks 
 In a BNN, both the weights and neuron activations are 
binarized to -1 or +1. Therefore, multiplications between 
activations and weights can be simplified as XNOR operations 
and accumulation of the products is equivalent to bit-counting 
operation. In this work, we trained BNNs using the algorithm 
proposed in [4] on the Theano platform. An inspired VGG-like 
convolutional neural network (CNN) with 6 convolution layers 
and 3 fully-connected layers was trained for evaluations on 
CIFAR-10 dataset. The corresponding classification accuracy 
with floating point precision and binary precision is 89.98% 
and 88.34%, respectively. Such a minor degradation has also 
been observed in state-of-the-art BNNs. 

2.2 8T-SRAM based Synaptic Array  
      We propose a customized 8T-SRAM bit-cell design as 
shown in Fig. 2(a) for parallel XNOR-SRAM, which has two 
complementary WLs and two pairs of pass gates (PGs). The 
first pair of PGs controlled by WL connects Q and QB to BL 
and BLB, respectively. In contrast, the second pair of PGs 
controlled by WLB connects Q and QB to BLB and BL, 

respectively. This design is different from the conventional 
8T-SRAM that aims to improve the static noise margin [16], 
where two added transistor connected in series: 1) one gate is 
connected to one storage node and the other gate is controlled 
by a read WL; 2) one terminal of the two serial transistors is 
connected to ground and the other terminal is attached to the 
BL in order to decouple the read path and write path. In our 
8T-SRAM design, the synaptic weight is stored in Q and QB 
similarly as in 6T-SRAM. However, different from 6T SRAM, 
the input binary neuron of an 8T-SRAM is represented by a 
complimentary WLs. The two WLs (WL, WLB) in a bit-cell 
are in a complementary state of (1, 0) to represent neuron +1 
and (0, 1) to represent neuron -1. In the proposed 8T-SRAM 
bit-cell, neuron and weight are both non-zero. As a result, the 
multiplication result is non-zero. Therefore, there is always a 
non-zero voltage difference between BL and BLB, effectively 
performing the XNOR operation. Fig. 2 (b) summarizes the 
possible combination patterns of binary neuron and weight, 
and the resulting BL discharge current (Δi) or voltage (Δv) in 
8T-SRAM for BNNs. Fig. 2 (c) shows the diagram of the 
proposed parallel synaptic array architectures with 8T-SRAM 
for XNOR-SRAM. Instead of a normal decoder, a WL switch 
matrix is employed to activate multiple WLs simultaneously 
according to the input neuron vector to enable the parallel 
read-out. Note that each bit in the input vector is encoded to a 
pair of complementary signals to enable one WL and disable 
the other. In the parallel access design, the currents from 
multiple rows along the same column contribute together to 
discharge the bit line (BL or BLB). Thus, the total discharged 
voltage from BL or BLB depends on how many cells along the 
columns are discharging. As illustrated in the example in 
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+1/-1. (b) The truth table and operation principles. (c) Diagram of 
proposed parallel XNOR-SRAM architecture. (Adapted from [14]) 

Table I. Discharged voltages from BL and BLB  

 W In Mul VBL VBLB 
 +1 +1 +1 0 Δv 
 -1 +1 -1 Δv  0 
 -1 +1 -1 Δv 0 
 +1 -1 -1 Δv 0 
 -1 +1 -1 Δv 0 
 -1 -1 +1 0 Δv 

Sum N/A N/A -2 4Δv 2Δv 



Table I, the total voltages discharged from BL and BLB are 
4Δv and 2Δv, resulting in a voltage difference -2Δv. The 
analog voltage difference between BL and BLB can be used to 
determine the weighted sum. The parallel XNOR-SRAM 
architecture leverages the analog voltage discharge along the 
column to effectively realize the MAC operation. 

2.3 RRAM based Synaptic Array 
      Fig. 3 (a) shows the proposed bit-cell design for parallel 
XNOR-RRAM implementation. For each synaptic weight, -1 is 
represented by two cells where the top one is in high resistance 
state (HRS) and the bottom one is in low resistance state 
(LRS). The reversed pattern is used for +1. For the WL input 
pattern, two adjacent WLs for each weight-cell are in 
complimentary state where (0, 1) represents -1 and (1, 0) 
represents +1. In this way, the value of the current that flows 
through each weight-cell during read-out is dependent on the 
combination of WL input pattern and bit-cell pattern. For 
example, when input vector is -1, for the cell of weight -1, the 
cell in the activated row is in LRS, leading to a large cell 
current, which can be regarded as a bit-wise XNOR output of 
“+1”. For the cell of weight +1, the cell in the activated row is 
in HRS, leading to a small cell current, which can be regarded 
as a bit-wise XNOR output of “-1”. When multiple WLs are 
activated in parallel, the LRS-cells will dominate the total bit 
line current (IBL) if the on/off ratio of RRAM is sufficiently 
large. Consequently, IBL will be proportional to the bit-counting 
results equivalent to the number of LRS-cells along the 
column. For example, 50% “+1” and 50% “-1” will lead to a 
final weighted sum of 0. Assuming the column length of the 
sub-array is 64, the sum of 0 can be mapped to the IBL = 32 
activated LRS-cells. Therefore, the reference current (IREF) for 
the current sense amplifier (CSA) could be set to 32 LRS-cells’ 
current for the binary neuron activation. If IBL is smaller than 
IREF that generates a CSA output “-1”, it represents that there 
are more “-1” than “+1” along the column, and vice versa. 

      For the parallel XNOR-RRAM design in Fig. 3(b), similar 
as parallel XNOR-SRAM design, instead of a normal decoder, 
a WL switch matrix is designed to activate multiple WLs 
simultaneously depending on the input vectors to enable the 
parallel read-out operation. The parallel XNOR-RRAM 
architecture leverages the analog current summation along the 
column to effectively realize the MAC operation. 

2.4 Array Partition for Implementing Arbitrary Network 
Size 

At the system level, the proposed XNOR-SRAM array and 
XNOR-RRAM array can be treated similarly as one PE to 
perform MAC operations for a certain matrix size. In this 
section, we analyze different design options with array 
partition. Firstly, the size of the sub-array is a key design 
parameter that may affect the classification accuracy and the 
cost of system. After the matrix splitting, each small matrix 
needs to generate a partial sum, which will be added up to 
obtain the final sum for binary activation. Thus, the precision 
of the partial sum may affect the value of the final sum and 
then influence the classification accuracy. As a result, ADC-
like MLSAs are employed to generate partial sums with fixed-
point precision (larger than 1-bit). To minimize the 
quantization error of the partial sums, we propose to perform 
nonlinear quantization where quantization edges (or references) 
are determined via Lloyd-Max algorithm [17] according to the 
distribution of the partial sums. The idea is to make the 
quantization edges denser in the center of the distribution thus 
each quantization level has roughly the same number of partial 
sums. Fig. 4 presents the distribution of partial sums for the 
VGG-like network on CIFAR-10 with 7 quantization edges 
and 8 quantization levels. Due to the reduced quantization 
error, nonlinear quantization achieves significantly better 
accuracy than linear quantization given the same number of 
quantization levels. As shown in Fig. 5(a), the inspired VGG-
like network achieves an accuracy degradation of only 0.88% 
with nonlinear quantization and of 74.07% with linear 
quantization with 8 quantization levels. The system with larger 
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sub-array size will cause a slightly larger accuracy degradation 
than a system with a smaller sub-array size for 8 quantization 
levels as shown in Fig. 5(b). We will use 8 quantization levels 
(3-bit MLSA) in the design. 

A generic system diagram that implements one BNN layer 
is shown in Fig. 6. MLSAs in a sub-array take the quantization 
edges as references and generate digital outputs, which then go 
through a thermometer-to-binary (TM2B) encoder and a look-
up table (LUT) to be converted to the corresponding 
quantization values as partial sums. Adder trees sum up the 
partial sums to be the final weighted sum, which then goes 
through the binary activation to generate the neuron output.  

3. Benchmark Results  
We employed a circuit-level macro model NeuroSim [18] 

that can be used to estimate the area, latency, and energy 
consumption of hardware accelerators. The hierarchy of the 
simulator consists of different levels of abstraction from the 
memory cell parameters and transistor technology parameters, 
to the gate-level sub-circuit modules, and then to the array 
architecture. In this section, we compared conventional row-
by-row sequential SRAM, parallel XNOR-SRAM, row-by-row 
sequential RRAM, and parallel XNOR-RRAM architectures 
with various options on sub-array size while MLSA bitwidth is 
fixed as 3-bit for implementing a 512×512 weight matrix at 
65nm technology node. Table II summarizes the results of each 
case. The energy efficiency of XNOR-SRAM and XNOR-
RRAM with 128×128 sub-array size could achieve 21.26 
TOPS/W and 122.35 TOPS/W, respectively, showing ~30X 
improvement compared to corresponding sequential 
SRAM/RRAM architectures. However, the area overhead of 
XNOR-SRAM and XNOR-RRAM architectures significantly 
increases due to more peripheral circuits such as MLSAs and 
adder trees, especially when the sub-array size is small (e.g. 
64×64). In addition, RRAM based architectures outperform 
SRAM based ones on area and energy-efficiency due to 
smaller cell size and lower read energy.  

4. Conclusion 
In this paper, we reviewed two CIM architectures, namely, 

XNOR-SRAM and XNOR-RRAM, with customized bit-cell 
designs and parallel weighted-sum operation for accelerating 
the inference of BNNs. We investigated the MLSA’s bitwidth 
for accumulating the partial sums from sub-arrays, and then 
explored design trade-offs between different sub-array sizes 
and MLSA bitwidth. Benchmark results show that the 
proposed parallel XNOR-SRAM and XNOR-RRAM improve 
the energy efficiency by ~30X compared to the corresponding 
conventional SRAM and RRAM architectures with sequential 
row-by-row read-out. Compared to the XNOR-SRAM, XNOR-
RRAM has further benefits such as ~10X smaller area, and 
~5.7X improvement in energy efficiency.    
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Fig. 6. Generic system diagram for implementing one layer with 
arbitrary size in a network.  (Adapted from [15]) 

TABLE II. Comparison between different architectures 
for implementing a 512×512 weight matrix at 65 nm 

Architecture Area 
(mm2) 

Latency 
(ns) TOPS/W 

Sequential SRAM 1.74 88.55 0.71 
XNOR-SRAM 64×64 3.64 7.28 18.91 

XNOR-SRAM 128×128 1.99 5.19 21.26 
Sequential RRAM 0.14 5036.28 4.23 

XNOR-RRAM 64×64 0.36 15.20 98.24 
XNOR-RRAM 128×128 0.20 15.40 122.35 


