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Abstract — Recent advances in deep learning have shown that
Binary Neural Network (BNN) is able to provide a satisfying
accuracy on various image datasets with a significant reduction
in computation and memory cost. With both weights and
activations binarized to +1 or -1 in BNNs, the high-precision
multiply-and-accumulate (MAC) operations can be replaced by
XNOR and bit-counting operations. In this work, we present two
computing-in-memory (CIM) architectures with parallelized
weighted-sum operation for accelerating the inference of BNN: 1)
parallel XNOR-SRAM, where a customized 8T-SRAM cell is
used as a synapse; 2) parallel XNOR-RRAM, where a customized
bit-cell consisting of 2T2R cells is used as a synapse. For large-
scale weight matrices in neural networks, the array partition is
necessary, where multi-level sense amplifiers (MLSAs) are
employed as the intermediate interface for accumulating partial
weighted sums. We explore various design options with different
sub-array sizes and sensing bit-levels. Simulation results with
65nm CMOS PDK and RRAM models show that the system with
128x128 sub-array size and 3-bit MLSA can achieve 87.46% for
an inspired VGG-like network on CIFAR-10 dataset, showing
less than 1% degradation compared to the ideal software
accuracy. The estimated energy-efficiency of XNOR-SRAM and
XNOR-RRAM shows ~30X improvement compared to the
corresponding conventional SRAM and RRAM architectures
with sequential row-by-row read-out.

1. Introduction

Deep learning has shown great performance in various
intelligent applications including computer vision and speech
recognition. However, the high demands on memory storage
capacity and computational capability make it challenging to
implement the state-of-the-art deep neural networks (DNNs) on
resource-limited platforms such as mobile or sensory devices.
For example, ResNet-50 [1] has 25.5M parameters and requires
39G high precision multiply-and-accumulate (MAC)
operations to classify one image and these numbers become
higher for even deeper networks. Therefore, it is prohibitive to
directly implement the entire DNNs on-chip, and the intensive
data movements between on-chip processor and off-chip
memory (e.g., DRAM) is the bottleneck of the system
performance and energy efficiency. Various techniques such as
network pruning [2] and fixed-point precision [3] were
proposed to reduce the energy and area cost of the storage.
Recently, it is demonstrated that the weight and neuron
precision can be aggressively reduced to 1-bit in Binary Neural
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Fig. 1. (a) The conventional deep neural network accelerator where
the processing element (PE) arrays exploit parallelized computation
but with inefficient row-by-row access to the weights stored in
shared buffers (i.e. SRAM). (b) The diagram of CIM architecture
where the input vectors activate multiple rows and the dot-product
output is obtained as column voltage or current. (Adapted from [14])

Networks (BNNs) [4, 5], which are still able to achieve a
reasonable classification accuracy on representative image
datasets (e.g., MNIST, CIFAR-10, and ImageNet). In these
BNNSs, both the weights and neuron activations are binarized to
+1/-1, thus 1) the memory storage requirement is dramatically
reduced; 2) computational resources are significantly reduced
as high-precision MAC operations are replaced by XNOR and
bit-counting operations. Therefore, BNNs provide a promising
solution for on-chip implementation of DNNSs.

In the CMOS based DNN accelerators, SRAM buffer is
commonly utilized to store the synaptic weights; however, the
extensive computation such as MAC is performed using other
digital logic circuits, e.g. multiplier and adders in the
processing element (PE) [6, 7], as shown in Fig. 1(a). To
improve the data utilization efficiency, parallelized
computation is exploited across multiple PE arrays but still
with inefficient row-by-row access to the weights stored in the
shared SRAM buffer. To overcome this problem, it is more
attractive to integrate the computation into the memory array
itself, namely computing-in-memory (CIM) as shown in Fig.
1(b). In CIM, the vector-matrix multiplication is done in a
parallel fashion where the input vectors activate multiple rows
and the dot-product is obtained as column voltage or current.
For instance, the standard 6T SRAM array is proposed to
perform MAC operation in parallel [8]. In [8], the word line
(WL) of SRAM is driven by an analog voltage representing a
5-bit input vector using a digital-to-analog converter (DAC),
while the weights are stored in the bit-cells in a binary format
(i.e. +1/-1). However, the analog WL voltage induces non-
linear bit line (BL) discharge current and extra circuitry is



required for the linearization. Meanwhile, researchers have also
proposed using emerging non-volatile memories (eNVMs)
with much less area (than SRAM at the same technology node)
such as resistive random access memory (RRAM) [9] and
phase change memory (PCM) [10] to implement synaptic
weights, where the computations are naturally performed in a
true crossbar array or the pseudo-crossbar array with 1-
transistor-1-resistor (1T1R) [11]. The prior work in [12]
experimentally demonstrated BNNs (a two-layer perceptron)
on a 16Mb RRAM macro chip with row-by-row sequential
read-out of binary RRAM cells, showing ~96.5% accuracy on
MNIST dataset. To get rid of the row-by-row sequential read-
out, one could allow fully-parallel read-out by activating all the
word lines (WLs) simultaneously for the weighted sum
operation.

Theoretically, the binary activation in BNNs could allow
using 1-bit sense amplifiers (SAs) instead of analog-to-digital
converters (ADCs) to serve as the binary neuron. However, due
to the intrinsic offset of the SAs introduced by process
variation, the sensing failure becomes intensified when the
column current increases [13] when multiple WLs are activated
in the parallel read-out scheme. This may substantially degrade
the classification accuracy as the threshold of binary neuron in
the hardware may differ from the ideal value in algorithms,
leading to a constraint on the column length or the array size.
To overcome this design challenge, array partition must be
adopted to split a large-scale matrix into multiple small sub-
arrays. In this way, ADC-like multi-level sense amplifiers
(MLSAs) are exploited to generate the partial sums of sub-
arrays, which are eventually added up by an adder tree to be the
final sum for binary activation.

In this paper, we review two CIM architectures with
parallel weighted-sum operation for accelerating the inference
of BNNs: 1) parallel XNOR-SRAM [14], where a customized
8T-SRAM cell is used as a synapse; 2) parallel XNOR-RRAM
[15], where a customized bit-cell consisting of 2T2R is used as
a synapse.

2. CIM Architctures Based on SRAM and RRAM
2.1 Binary Neural Networks

In a BNN, both the weights and neuron activations are
binarized to -1 or +1. Therefore, multiplications between
activations and weights can be simplified as XNOR operations
and accumulation of the products is equivalent to bit-counting
operation. In this work, we trained BNNs using the algorithm
proposed in [4] on the Theano platform. An inspired VGG-like
convolutional neural network (CNN) with 6 convolution layers
and 3 fully-connected layers was trained for evaluations on
CIFAR-10 dataset. The corresponding classification accuracy
with floating point precision and binary precision is 89.98%
and 88.34%, respectively. Such a minor degradation has also
been observed in state-of-the-art BNNs.

2.2 8T-SRAM based Synaptic Array

We propose a customized 8T-SRAM bit-cell design as
shown in Fig. 2(a) for parallel XNOR-SRAM, which has two
complementary WLs and two pairs of pass gates (PGs). The
first pair of PGs controlled by WL connects Q and QB to BL
and BLB, respectively. In contrast, the second pair of PGs
controlled by WLB connects Q and QB to BLB and BL,
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Fig. 2. (a) Schematic of the customized 8T-SRAM bit-cell design
and bitwise XNOR operation of both binary neuron and weight in
+1/-1. (b) The truth table and operation principles. (c) Diagram ot
proposed parallel XNOR-SRAM architecture. (Adapted from [14])

Table I. Discharged voltages from BL and BLB

w In Mul VsL VsLB
+1 +1 +1 0 Av
-1 +1 -1 Av 0
-1 +1 -1 Av 0
+1 -1 -1 Av 0
-1 +1 -1 Av 0
-1 -1 +1 0 Av
Sum N/A N/A 2 4Av 2Av

respectively. This design is different from the conventional
8T-SRAM that aims to improve the static noise margin [16],
where two added transistor connected in series: 1) one gate is
connected to one storage node and the other gate is controlled
by a read WL; 2) one terminal of the two serial transistors is
connected to ground and the other terminal is attached to the
BL in order to decouple the read path and write path. In our
8T-SRAM design, the synaptic weight is stored in Q and QB
similarly as in 6T-SRAM. However, different from 6T SRAM,
the input binary neuron of an 8T-SRAM is represented by a
complimentary WLs. The two WLs (WL, WLB) in a bit-cell
are in a complementary state of (1, 0) to represent neuron +1
and (0, 1) to represent neuron -1. In the proposed 8T-SRAM
bit-cell, neuron and weight are both non-zero. As a result, the
multiplication result is non-zero. Therefore, there is always a
non-zero voltage difference between BL and BLB, effectively
performing the XNOR operation. Fig. 2 (b) summarizes the
possible combination patterns of binary neuron and weight,
and the resulting BL discharge current (Ai) or voltage (Av) in
8T-SRAM for BNNs. Fig. 2 (c¢) shows the diagram of the
proposed parallel synaptic array architectures with 8T-SRAM
for XNOR-SRAM. Instead of a normal decoder, a WL switch
matrix is employed to activate multiple WLs simultaneously
according to the input neuron vector to enable the parallel
read-out. Note that each bit in the input vector is encoded to a
pair of complementary signals to enable one WL and disable
the other. In the parallel access design, the currents from
multiple rows along the same column contribute together to
discharge the bit line (BL or BLB). Thus, the total discharged
voltage from BL or BLB depends on how many cells along the
columns are discharging. As illustrated in the example in
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Fig. 3. (a) The customized RRAM bit-cell design for XNOR-

RRAM. (b) Diagram of proposed parallel
architecture. (Adapted from [15])

Table I, the total voltages discharged from BL and BLB are
4Av and 2Av, resulting in a voltage difference -2Av. The
analog voltage difference between BL and BLB can be used to
determine the weighted sum. The parallel XNOR-SRAM
architecture leverages the analog voltage discharge along the
column to effectively realize the MAC operation.

2.3 RRAM based Synaptic Array

Fig. 3 (a) shows the proposed bit-cell design for parallel
XNOR-RRAM implementation. For each synaptic weight, -1 is
represented by two cells where the top one is in high resistance
state (HRS) and the bottom one is in low resistance state
(LRS). The reversed pattern is used for +1. For the WL input
pattern, two adjacent WLs for each weight-cell are in
complimentary state where (0, 1) represents -1 and (1, 0)
represents +1. In this way, the value of the current that flows
through each weight-cell during read-out is dependent on the
combination of WL input pattern and bit-cell pattern. For
example, when input vector is -1, for the cell of weight -1, the
cell in the activated row is in LRS, leading to a large cell
current, which can be regarded as a bit-wise XNOR output of
“+1”. For the cell of weight +1, the cell in the activated row is
in HRS, leading to a small cell current, which can be regarded
as a bit-wise XNOR output of “-1”. When multiple WLs are
activated in parallel, the LRS-cells will dominate the total bit
line current (Igy) if the on/off ratio of RRAM is sufficiently
large. Consequently, Iz will be proportional to the bit-counting
results equivalent to the number of LRS-cells along the
column. For example, 50% “+1” and 50% “-1” will lead to a
final weighted sum of 0. Assuming the column length of the
sub-array is 64, the sum of 0 can be mapped to the Iz = 32
activated LRS-cells. Therefore, the reference current (Irgr) for
the current sense amplifier (CSA) could be set to 32 LRS-cells’
current for the binary neuron activation. If Igp is smaller than
Irer that generates a CSA output “-17, it represents that there
are more “-1” than “+1” along the column, and vice versa.

For the parallel XNOR-RRAM design in Fig. 3(b), similar
as parallel XNOR-SRAM design, instead of a normal decoder,
a WL switch matrix is designed to activate multiple WLs
simultaneously depending on the input vectors to enable the
parallel read-out operation. The parallel XNOR-RRAM
architecture leverages the analog current summation along the
column to effectively realize the MAC operation.

XNOR-RRAM

Partial Sum

AR CATA R RS

o —— Quantization edges
6.0x10° | XNOR-Net + Quantization levels

inspired VGG-
.| Neton CIFAR-10

0.0 " " |l|||l |||l| " "
64 48 32 16 0 16 32 48 64
Partial Sum
Fig. 4. Distribution of partial sums of XNOR values of the CNN on
CIFAR-10. Sub-arrays are assumed to be 64x64. Red lines are 7
nonlinear quantization edges (or references) and red diamonds
indicate 8 quantization levels. (Adapted from [14])

O Linear 100 Sub-array size:

100 (a) % Non-linear ® (b) 0 32*32
g ) o o o o 9 & 64%64
£ - % 128*128
3 Accuracy baseline: 88.34% g 10 0 . -
o 10 * . ] Non-linear quantization
; Sub-array size: 64 x 64 ; A baseline: 88.34%
3 . 3 3 Accuracy baseline: 88.34%
g 1} XNOR-BNN g 1FXNOR-BNN 8
8 Inspired VGG 8 |inspired VGG § )

on CIFAR-10 ® % on CIFAR-10

0.1 0.1
2 4 6 8 10 12 2 4 6 8 10 12 14

Quantization Levels Quantization Levels

Fig. 5. (a) The accuracy degradation as a function of quantization
levels for linear and non-linear quantization for inspired VGG-like
network on CIFAR-10. (b) The accuracy degradation as a function of

quantization levels for different sub-array size. (Adapted from [14])

2.4 Array Partition for Implementing Arbitrary Network

Size

At the system level, the proposed XNOR-SRAM array and
XNOR-RRAM array can be treated similarly as one PE to
perform MAC operations for a certain matrix size. In this
section, we analyze different design options with array
partition. Firstly, the size of the sub-array is a key design
parameter that may affect the classification accuracy and the
cost of system. After the matrix splitting, each small matrix
needs to generate a partial sum, which will be added up to
obtain the final sum for binary activation. Thus, the precision
of the partial sum may affect the value of the final sum and
then influence the classification accuracy. As a result, ADC-
like MLSAs are employed to generate partial sums with fixed-
point precision (larger than 1-bit). To minimize the
quantization error of the partial sums, we propose to perform
nonlinear quantization where quantization edges (or references)
are determined via Lloyd-Max algorithm [17] according to the
distribution of the partial sums. The idea is to make the
quantization edges denser in the center of the distribution thus
each quantization level has roughly the same number of partial
sums. Fig. 4 presents the distribution of partial sums for the
VGG-like network on CIFAR-10 with 7 quantization edges
and 8 quantization levels. Due to the reduced quantization
error, nonlinear quantization achieves significantly better
accuracy than linear quantization given the same number of
quantization levels. As shown in Fig. 5(a), the inspired VGG-
like network achieves an accuracy degradation of only 0.88%
with nonlinear quantization and of 74.07% with linear
quantization with 8 quantization levels. The system with larger
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sub-array size will cause a slightly larger accuracy degradation
than a system with a smaller sub-array size for 8 quantization
levels as shown in Fig. 5(b). We will use 8 quantization levels
(3-bit MLSA) in the design.

A generic system diagram that implements one BNN layer
is shown in Fig. 6. MLSASs in a sub-array take the quantization
edges as references and generate digital outputs, which then go
through a thermometer-to-binary (TM2B) encoder and a look-
up table (LUT) to be converted to the corresponding
quantization values as partial sums. Adder trees sum up the
partial sums to be the final weighted sum, which then goes
through the binary activation to generate the neuron output.

3. Benchmark Results

We employed a circuit-level macro model NeuroSim [18]
that can be used to estimate the area, latency, and energy
consumption of hardware accelerators. The hierarchy of the
simulator consists of different levels of abstraction from the
memory cell parameters and transistor technology parameters,
to the gate-level sub-circuit modules, and then to the array
architecture. In this section, we compared conventional row-
by-row sequential SRAM, parallel XNOR-SRAM, row-by-row
sequential RRAM, and parallel XNOR-RRAM architectures
with various options on sub-array size while MLSA bitwidth is
fixed as 3-bit for implementing a 512x512 weight matrix at
65nm technology node. Table II summarizes the results of each
case. The energy efficiency of XNOR-SRAM and XNOR-
RRAM with 128x128 sub-array size could achieve 21.26
TOPS/W and 122.35 TOPS/W, respectively, showing ~30X
improvement compared to  corresponding  sequential
SRAM/RRAM architectures. However, the area overhead of
XNOR-SRAM and XNOR-RRAM architectures significantly
increases due to more peripheral circuits such as MLSAs and
adder trees, especially when the sub-array size is small (e.g.
64x64). In addition, RRAM based architectures outperform
SRAM based ones on area and energy-efficiency due to
smaller cell size and lower read energy.

TABLE II. Comparison between different architectures
for implementing a 512x512 weight matrix at 65 nm

Architecture Area Latency | 1opgyy
(mm?) (ns)
Sequential SRAM 1.74 88.55 0.71
XNOR-SRAM 64x64 3.64 7.28 18.91
XNOR-SRAM 128x128 1.99 5.19 21.26
Sequential RRAM 0.14 5036.28 4.23
XNOR-RRAM 64x64 0.36 15.20 98.24
XNOR-RRAM 128x128 0.20 15.40 122.35

4. Conclusion

In this paper, we reviewed two CIM architectures, namely,
XNOR-SRAM and XNOR-RRAM, with customized bit-cell
designs and parallel weighted-sum operation for accelerating
the inference of BNNs. We investigated the MLSA’s bitwidth
for accumulating the partial sums from sub-arrays, and then
explored design trade-offs between different sub-array sizes
and MLSA bitwidth. Benchmark results show that the
proposed parallel XNOR-SRAM and XNOR-RRAM improve
the energy efficiency by ~30X compared to the corresponding
conventional SRAM and RRAM architectures with sequential
row-by-row read-out. Compared to the XNOR-SRAM, XNOR-
RRAM has further benefits such as ~10X smaller area, and
~5.7X improvement in energy efficiency.
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