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ABSTRACT

Weakly-hard systems are real-time systems that can tolerate oc-
casional deadline misses in a bounded manner. Compared with
traditional systems with hard deadline constraints, they provide
more scheduling flexibility, and thus expand the design space for
system configuration and reconfiguration. A key question for such
a system is precisely to what degree it can tolerate deadline misses
while still meeting its functional requirements. In this paper, we
provide a formal treatment to the verification problem of a gen-
eral class of weakly-hard systems. We discuss relaxation and over-
approximation techniques for managing the complexity of reacha-
bility analysis, and develop algorithms based upon these for verify-
ing the safety of weakly-hard systems. Experiments demonstrate
the effectiveness of our approach in understanding the impact of
and guiding the selection among different weakly-hard constraints.
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1 INTRODUCTION

Timing constraints are critical for real-time systems. However, it
has been observed that the traditional hard real-time constraints
can be too rigid, and can lead to over-provisioning of system re-
sources or inability to cope with deadline misses that may arise
in practical settings [9]. An example of this is the retrofitting au-
tomotive electronic system for security [10, 52]. Recent studies
showed that the hard real-time model is incompatible with even
lightweight defense mechanisms due to timing violations caused
by the additional overhead [28].

Weakly-hard systems employ a timing model that aims at re-
laxing the constraints of a real-time system by allowing certain
degrees of deadline misses. A common example of the weakly-hard
model is the (m,K ) constraint, which specifies that among any
K consecutive task activations, at mostm instances could violate
their execution deadlines [6, 36]1. Such weakly-hard constraints
can enhance the system’s capability to accommodate timing viola-
tions. Compared with traditional hard deadlines, they significantly
expand the feasible system configuration space, and provide more
scheduling slack and flexibility; while compared with soft dead-
lines, they can provide deterministic guarantees on system safety,
stability, performance, data quality and other properties.

1Hard constraints can viewed as a special case of weakly-hard constraints, withm = 0,
while soft constraints can be viewed as a special case with no restriction onm.

Certain types of systems also fit naturally with a weakly-hard
model. In the Internet-of-Things (IoT) space, transiently-powered
devices are embedded systems that operate based on unreliable
energy sources such as energy harvesters [5, 44]. These systems
exhibit an intermittent pattern of computationwhere a computation
may need to be suspended until sufficient energy is gathered (and
thus potentially violating its deadline) [4, 14]. Another class is multi-
rate distributed systems that are sensitive to message losses. For
instance, a sensor might be sending messages at a faster rate than
the receiving controller can process them [27]. Such message losses
can be translated to deadline misses under a weakly-hard model.

The central question for weakly-hard systems is precisely to what
degree the systems can tolerate such deadline misses. The well-known
(m,K ) model specifies a high-level constraint on the frequency of
deadline misses. However, further verification is needed to ensure
that such timing violations do not impact the system’s functionality
and safety. In this paper, we focus on the safety verification problem
of nonlinear weakly-hard systems. We show that such a system
can be naturally modeled as a hybrid automaton that captures the
discrete nature of a sampled-data system, the system’s dynamics, as
well as the nondeterminism in deadline misses. Existing verification
techniques for hybrid systems, however, cannot be directly applied
to this model. There are three main difficulties: (1) uncertainty of
when deadline misses occur, (2) exact state being unknown at each
sampling instant, and (3) infinite number of discrete and continuous
transitions. To address these difficulties, we relax the original prob-
lem through three steps, namely split, localize and classify (details
in Section 4), which result in a finite-time problem of local safety
and inductiveness. We show that these are sufficient conditions for
the original safety problem and thus guarantee soundness of our
approach. By separately considering local safety and inductive-
ness based on over-approximation techniques, we can compute the
safe region of the system at the typical worst-case response time
(TWCRT)W . The safe initial region can then be computed using re-
gion of attraction (ROA) techniques [20, 23, 45, 46]. Thus, the safety
of the system under a given initial state can be checked by simply
testing if it belongs to the safe initial region. Prior works on safety
verification of weakly hard systems are limited to linear/piecewise
affine dynamical systems [15, 16]. To the best of our knowledge,
this is the first work that addresses the infinite-time verification
problem of weakly-hard systems with nonlinear dynamics.

Our paper makes the following contributions.

• We propose a relaxation approach to convert the infinite-time
verification problem of weakly hard systems with nonlinear
dynamic into a finite-time one of local safety and inductiveness.

• We develop an over-approximation based technique to analyze
the local safety and inductiveness.



Chao Huang, Wenchao Li, and Qi Zhu

• We demonstrate the effectiveness of our approach on multiple
examples with linear or nonlinear dynamics.

The rest of the paper is structured as follows. Section 2 gives an
overview of related work. Section 3 introduces the system model
and the verification problem. Section 4 and Section 5 describe the
relaxation techniques and the over-approximation based analysis
approach respectively. Section 6 presents experimental results. We
conclude and lay out future directions in Section 7.

2 RELATED WORK

Weakly-hard constraints: The notion of (m,K ) constraints was
first introduced in [18]. The authors in [6] formally defined weakly-
hard constraints for real-time systems and presented schedula-
bility analysis for periodic tasks under fixed-priority scheduling.
Other schedulability analysis works [7, 26, 43] were presented
under various assumptions such as bi-modal execution and non-
preemptiveness.Weakly-hard constraints were also studied to bound
the temporal behavior of overloaded systems [2, 19, 36, 48], where
typical worst-case analysis (TWCA) is conducted for tasks that are
activated periodically with sporadic overload. Recently, a job-level
scheduling policy was presented for weakly-hard constraints to
improve system schedulability [12].

Besides schedulability analysis, analyzing and optimizing con-
trol stability is another topic studied with weakly-hard constraints.
In [37], periodic task instances are statically separated into manda-
tory and optional instances based on the (m,K ) constraints, and
only the mandatory ones are guaranteed to complete in time. The
work in [17] extends this work to improve the performance of
optional instances, and the work in [31] considers additional non-
periodic execution. In [34], a general state-basedweakly-hardmodel
is proposed to measure the performance cost of deadline misses.
In [30], a deadline miss is modeled as a probabilistic event. Several
approaches have also been proposed for control-schedule co-design
under possible deadlinemisses [8, 13, 42]. Thework in [22] proposes
to leverage weakly-hard constraints for modeling disturbances in
networked systems and analzying system properties.

Only a few prior works have studied the safety verification prob-
lem of weakly-hard systems [15, 16]. Both of these rely on using
satisfiability modulo theories (SMT) solvers and can only handle
linear/piecewise affine dynamical systems.

Sampled-data systems: Sampled-data systems [11] are simple
version weakly-hard systems with no deadline misses. Most of the
current works focus on the stability analysis of different dynamical
systems. Linear dynamical systems were considered in [24, 39],
while nonlinear dynamical systems were considered in [32, 33].
In recent years, sampled-data systems with control inputs miss-
ing have attracted much interests [25, 50]. These works share the
same pre-condition that when an input misses for some reason, the
system will apply zero input, that is, the system runs in the open
loop. Different from these works, we consider weakly-hard systems
where the input in the last sampling period will be applied when
the current execution deadline is not met.

Hybrid systems: Hybrid systems [3] are dynamical systems with
both continuous evolution and discrete jumps. They are suitable for
modeling weakly-hard systems which are sampled-data systems
with a bounded degree of nondeterminism on deadline misses.

Researchers of hybrid systems mainly focus on reachability, that is,
compute the set of states that a hybrid system can reach in finite or
infinite time. For instance, deterministic hybrid systems are studied
in [35, 47, 49], while stochastic hybrid system are studied in [1,
21, 41]. However, due to the sampled-data nature of weakly-hard
systems, existing analysis approaches of hybrid systems cannot be
directly applied to weakly-hard systems.

To the best of our knowledge, this is the first work that addresses
the infinite-time verification problem of weakly-hard systems with
nonlinear dynamics.

3 MODEL WEAKLY-HARD SYSTEMS

Figure 1 shows a typical weakly-hard system, where x ∈ Rn is the
state variable, u ∈ Rm is the input variable. The state equation is

ẋ = f (x ) + д(x )u (1)

where f : Rn → Rn andд : Rn → Rn×m are polynomial functions.
For any t ≥ 0, let i = ⌊(t −W )/T ⌋,

u (t ) = ui =

0, i < 0, t ∈ [0,W ]

π (x (iT )), i ≥ 0, t ∈ [iT+W , (i+1)T+W ]
(2)

where π (x ) is Lipschitz continuous with Lipschitz constant cL , that
is, there exists cL ∈ R

+ such that

∀x1,x2 ∈ R
n , ∥π (x1) − π (x2)∥ ≤ cL ∥x1 − x2∥ .

Remark 1. If π is linear, its linear coefficient is a Lipschitz constant.

For general nonlinear π , it needs a case-by-case analysis to obtain

cL . For instance, recent work showed that a function represented as a

neural network with various types of activation functions is Lipschitz

continuous and the corresponding Lipschitz constant can be calculated

accordingly [38].

In this paper, we consider weakly-hard systems that are defined
by (m,K ) constraint:

Definition 3.1. An (m,K ) weakly-hard system is a sampled-data
real-time system, where there are at mostm deadline misses among
any K consecutive executions.

The (m,K ) weakly-hard system in Figure 1 runs as follows. At
the instant t = 0, the system applies the input 0 as a default input
for the typical worst-case response time (TWCRT)W . Meanwhile,
the system samples the current state and tries to compute the input
function u1. The computation time does not exceed the TWCRT,
therefore the system can apply u1 from t =W to T +W . The same
procedure repeats at the next sampling instant t = T . This time
the computation does not meet the deadline, therefore the system
is not able to obtain the newest input u2 and have to use the last
input u1. The above procedure will continue for infinite time.

We assume that the equilibrium point of the dynamical system
(1) is known a priori. Without loss of generality, let the origin be
the equilibrium, that is, f (0) = 0. We assume that the state space
of the system is Rn , and the safe region of the system is

Xs = B (d ), (3)

where B (r ) ≜ {x | ∥x ∥ ≤ r } representing a ball around the origin
with radius r , and d represents the safety distance threshold from
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𝑊 𝑇 ൅𝑊 2𝑇 ൅𝑊
𝑇 2𝑇 3𝑇

Sample 𝑥 0 Sample 𝑥 𝑇 Sample 𝑥 2𝑇 Sample 𝑥 3𝑇
Compute 𝑢ଵ ൌ 𝜋 𝑥 0 Compute 𝑢ଶ ൌ 𝜋 𝑥 𝑇 Compute 𝑢ଷ ൌ 𝜋 𝑥 2𝑇

𝑖𝑓𝑀𝑒𝑒𝑡 ൌ true → 𝑢 ൌ 𝑢ଵActuation: 𝑖𝑓𝑀𝑒𝑒𝑡 ൌ false → 𝑢 ൌ 𝑢ଵ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌ true → 𝑢 ൌ 𝑢ଷ𝑢 ൌ 𝑢଴ ൌ 0
Figure 1: Structure of a Weakly-Hard System

0. Then the unsafe state set can be described as the complement of
feasible region Xs :

Xu = X
c
s = Bc (d ). (4)

Let x (0) be the initial state. The safety verification of this weakly-
hard system is to check whether the system will never enter a given
unsafe state set Xu from a given initial state x (0).

The weakly-hard system can be modeled as a hybrid automa-
ton (Figure 2). It is generally difficult to verify such a system di-
rectly based on the traditional hybrid automata techniques such as
bounded model checking or barrier certificate checking, due to the
following factors:

• [UnpredictableDeadline-Meeting]: Even thoughwe are given
a bound on the deadline miss rate, we cannot know if the dead-
line miss will actually occur at a certain sampling period.

• [UnknownParameters]: A classical hybrid automaton is purely
autonomous, where no sampling is involved. The periodic sam-
pling x (NT ), N ≥ 0 brings unknown parameters into the au-
tomaton and cannot be handled with techniques such as barrier
certificate.

• [Infinite Discrete Transitions]: The transition guard condi-
tions depend on the period number which increases as time
progresses. This means that we have an infinite number of tran-
sitions and need to consider infinite-time verification.

Before tackling above difficulties, we would like to first introduce
an important assumption throughout the rest of the paper.

Assumption 1. If the system is a hard real-time system, that is,

the computation deadline is met in every sampling period, then the

open loop control law π can make the system safe, that is,

∥x (t )∥ ≤ d,∀t ≥ 0

Meanwhile, the system is exponentially stable for the hard real-time

system under the control law π , i.e. the system is asymptotically stable

and there exists α > 0, λ > 0, such that

∥x (t )∥ ≤ αe−λt ∥x (0)∥ .

Remark 2. Note that Assumption 1 is not restrictive in practice.

If the designed control law cannot make the hard real-time system

stable and safe, there is no reason to expect the system can satisfy the

same safety property with deadline misses. On the flip side, analyzing

exponential stability for a general control system and determining λ

and α are not trivial. Our rationale behind making this assumption

is largely based on the recent results from the control community on

this problem [24, 33, 39, 40].

4 PROBLEM CONVERSION

In order to solve the verification problem mentioned above, we
propose to first convert the problem into three steps, namely split,
localize, and classify. In the split step, we split the hybrid automaton
(Figure 2) into two parts, the first incomplete period (input is fixed
to 0 and lasts only forW ), and the following complete periods. In
the localize step, we consider every K consecutive complete periods
as a union. In the classify step, we separately consider the cases of
deadline miss and deadline meet.

By these three steps, we convert the original infinite time ver-
ification problem of a hybrid system with uncertainty into the
verification of finite-time deterministic hybrid systems, which is
much easier to handle. It is worthy noting that, each conversion
step is theoretically sufficient, that is, a solution to the new problem
after conversion must be a solution to the original one.

4.1 Split

𝑙଴𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ𝑥 ∈ Θ𝑢 ൌ 0𝑡 ൌ 0
𝑡 ൌൌ 𝑊𝑥 ∈ 𝒳଴

𝑙௙𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ𝑥 ∈ 𝒳଴𝑡 ൌ 𝑊
𝑢 ← 𝑢

𝑢 ← 𝜋 𝑥 0𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true

𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false 𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false𝑢 ← 𝑢𝑁 ← 𝑁 ൅ 1

𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true
𝑢 ← 𝜋 𝑥 𝑁𝑇𝑁 ← 𝑁 ൅ 1(a) initial period

𝑙଴𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ𝑥 ∈ Θ𝑢 ൌ 0𝑡 ൌ 0
𝑡 ൌൌ 𝑊𝑥 ∈ 𝒳଴

𝑙௙𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ𝑥 ∈ 𝒳଴𝑡 ൌ 𝑊
𝑢 ← 𝑢

𝑢 ← 𝜋 𝑥 0𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true

𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false𝑢 ← 𝑢𝑁 ← 𝑁 ൅ 1

𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true
𝑢 ← 𝜋 𝑥 𝑁𝑇𝑁 ← 𝑁 ൅ 1

(b) subsequent periods

Figure 3: Split Models

Note that different from other inputs, the first input u0 = 0 is
only applied forW . Meanwhile, the system is purely deterministic
in t ∈ [0,W ]. Thus our first step is to split the original system
into two sub-automata (Figure 3), which are named as initial period
(Figure 3a) and subsequent periods (Figure 3b), respectively. Let
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𝑙଴𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ 𝑙௙𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ𝑥 ∈ Θ𝑢 ൌ 0𝑁 ൌ 0

𝑡 ൌൌ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false

𝑡 ൌൌ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true

𝑢 ← 𝑢

𝑢 ← 𝜋 𝑥 0

𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false𝑢 ← 𝑢𝑁 ← 𝑁 ൅ 1

𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ⋀ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true
𝑢 ← 𝜋 𝑥 𝑁𝑇𝑁 ← 𝑁 ൅ 1

Figure 2: Hybrid Automaton Model of a Weakly-Hard System

𝑙௙𝑥ሶ ൌ 𝑓 𝑥, 𝑢𝑥 ∈ 𝒳௦, 𝑢 ∈ ℛ
𝑢 ← 𝑢

𝑢 ← 𝜋 𝑥 0𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true

𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false𝑁 ൏ 𝐾 െ 1 ∧ 𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ∧ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ false𝑢 ← 𝑢𝑁 ← 𝑁 ൅ 1

𝑁 ൏ 𝐾 െ 1 ∧  𝑡 ൌൌ 𝑁 ൅ 1 𝑇 ൅ 𝑊 ∧ 𝑖𝑓𝑀𝑒𝑒𝑡 ൌൌ true
𝑢 ← 𝜋 𝑥 𝑁𝑇𝑁 ← 𝑁 ൅ 1

𝑡 ൌൌ 𝐾𝑇 ൅ 𝑊𝑥 ∈ 𝒳௄𝑥 ∈ 𝒳଴𝑡 ൌ 𝑊

Figure 4: Localize the Model Shown in Figure 3b

X (t ) represent the state set of the system at the instant t . When
t = NT +W , we may sometimes use XN for simplicity. Then
X0 = X (W ) can be considered either the output of the initial period
or the input of the subsequent periods.

It is important to note that this łsplitž step is an equivalent
transformation. Thus, we have following theorem.

Theorem 4.1. The system in Figure 2 is safe iff both the initial

period in Figure 3a and the subsequent periods in Figure 3b are safe.

Since the initial period is a purely deterministic continuous sys-
tem, we can analyze it based on classical techniques. In the next
two steps, we will focus on subsequent periods.

4.2 Localize

Note that the verification of the subsequent periods is still an
infinite-time problem. In this localize step, we try to convert it into
a finite-time one. We point out that different from the split step, the
localize step is not equivalent but sufficient. In the following, we
describe this conversion step in detail.

Specifically, we consider the system in Figure 4, namelyK-period,
which describes the behavior of the control system with at most
m deadline misses in K periods. It is because the set of subsequent
periods is a subset of the set of the systems composed of K-period.

Proposition 4.2. For an (m,K ) weakly-hard system, its subse-

quent periods is composed of consecutive infinite K-periods.

Remark 3. Note that the opposite of Proposition 4.2 is not true. For

instance, letm = 1 and K = 2. Assume the second deadline misses in

a certain K-period, and the first deadline misses in the next K-period.

It is obvious that deadline misses occur for consecutive two times, and

thus the system is not a (1,2) weakly-hard system.

Let EN represent the event when the system meets the dead-
line in the N -th period. If the deadline is met, EN = 1, otherwise
EN = 0. Then, we can use a K-sequence Ẽ = {E1, · · · ,EK } to
represent the behavior trace of the system in a K-period, namely
deadline miss/meet sequence. The (m,K ) specification indicates
that all the possible behaviors of the system is a sequence set
E (m,K ) = {Ẽ |

∑K
N=1 EN ≥ K − m}. The safety problem of the

subsequent periods can be reformulated as follows:

Theorem 4.3. The subsequent periods is safe if we can find a set

X0 ⊆ Xs , such that for any start state x ∈ X0, and any Ẽ ∈ E (m,K ),

• Local Safety: The system is safe within [W ,KT +W ];
• Inductiveness: The reachable set XK after KT +W satisfies

XK ⊆ X0.

Proof. Let S ′ be the system that consists of infinite consecutive
K-period starting from X0. By the property of local safety and
inductiveness, we know that S ′ is safe. Combining Proposition 4.2,
the theorem is true. □

Remark 4. Readers may find the concept of X0 is similar to for-
ward invariant. Note thatX0 is weaker since we do not need x (t ) ∈ X0,
t ∈ (W ,KT +W ). The analogous concept can be found in [51], which

is used for controller synthesis of an industrial oil pump.

By localize step, we focus our attention to the finite time system
K-period. In the next step, we further refine the safety problem,
and give the formal description of the problem after converted.

4.3 Classify

The K-period consists of K consecutive periods, where the input
computation of each period can either meet or not meet the deadline.
We can therefore consider these two cases separately.

When N ∈ [0,K−1], we use the function R (A,t ,E) : Rn×[0,T ]×
{0,1} → Rn to denote the reachable set function from the set A
after time t with the event E (0 for deadline miss and 1 for deadline
meet) in a sampling period. Then we have the following theorem.

Theorem 4.4. The subsequent periods is safe if we can find a set

X0 ⊆ Xs , such that for any start state x ∈ X0,

• Local Safety: The system is safe within [W ,KT +W ];
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• Inductiveness: X0 satisfies:
⋃

Ẽ∈E (m,K )

R (·,T ,EK−1) ◦ · · · ◦ R (·,T ,E0) (X0) ⊆ X0 (5)

Recall the initial period. Once X0 is obtained, we can see that if
from a certain initial state x (0), the system with zero input, that
is ẋ = f (x ), enters X0 at t =W and is safe within [0,W ], then the
system is safe over t ∈ [0,∞). Thus we need to compute the region
of attraction (ROA) that is defined as:

Definition 4.5. The set Θ is called region of attraction of the sys-
tem ẋ = f (x ), if it consists of all the state from which the system
can enter X0 at t =W . Formally,

Θ ≜ {x0 | ∃x (·),s.t. ẋ = f (x )∧

x (0) = x0 ∧ x (W ) ∈ X0 ∧ x (t ) ∈ Xs ,∀t ∈ [0,W ]}

We can now formally state the problem we will try to solve in
this paper by combining Theorem 4.1, 4.4 and Definition 4.5:

Problem 1. For an (m,K ) weakly-hard system with dynamic (1),
control policy (2), unsafe region Xu (4), find a set Θ, such that there

exists a set X0, which satisfies

• Θ is ROA of ẋ = f (x );

• local safety and inductiveness in Theorem 4.4.

After Θ is obtained, the safety of the system with a given initial
state x (0) can be easily checked by testing if x (0) ∈ Θ.

5 TECHNIQUES AND ALGORITHMS

The key step of solving Problem 1 is to find X0. However, it is
difficult to obtain the exact X0 for an arbitrary nonlinear system.
Inspired by the classical idea that uses over-approximation, instead
of exact reachable set, to verify system safety, we propose an over-
approximation based approach to estimate X0 with guarantee of
soundness. Specifically, we use a closed ball B (r (t )) around the
origin with radius r (t ) to over-approximate the reachable set X (t )
at any time (Figure 5). For convenience, we use rN to represent
r (t ), when t = NT +W , N = 0,1, · · · ,K . Thus, we can estimate the
reachable set by just considering a one-dimensional variable, the
radius r (t ), which greatly reduces the complexity. In the following,
we describe the corresponding algorithms in detail.

First, we assume that X0 = B (r0), where r0 is the parameter we
hope to obtain. Obviously, the system satisfies local safety if the
over-approximated state set is contained inside the safe region Xs .

Theorem 5.1. ∀t ∈ [W ,KT +W ], X (t ) ⊆ Xs if B (r (t )) ⊆ Xs .

For inductiveness, we know that if the over-approximated state
set B (rK ) is contained inside X0, XK is also contained inside X0.

Theorem 5.2. XK ⊆ X0 if B (rK ) ⊆ X0.

The key of applying Theorem 5.1 and Theorem 5.2 is to estimate
r (t ), t ∈ [W ,KT +W ]. In the following, we separately analyze the
estimation of r (t ) under the cases of deadline miss or deadline meet.

By Assumption 1, we know that the correct input should cause
the bound of system state to contract when the computation meets
the deadline. On the other hand, the deadline miss may make the
system divergent. If the input computation meets the deadline at
the N -th sampling period, let ζ (N ) be the length of the consecutive

deadline meet sequence ended at the N -th sampling period, and let
∆t = t − NT −W ∈ [0,T ]. Then for t ∈ [NT +W , (N + 1)T +W ],

r (t ) ≤ αe−λ ((ζ (N )−1)T+∆t )rN−ζ (N )+1.

Note that the above constraint is uncountable in t ∈ [NT +W , (N +
1)T +W ]. We use two over-approximate constraints to describe it.
For t ∈ [NT +W , (N + 1)T +W ], since e∆t ≥ 0, we have

r (t ) ≤ αe−λ (ζ (N )−1)T rN−ζ (N )+1. (6)

Specially, for the t = (N + 1)T +W , we have

r (t ) = rN+1 ≤ αe−λζ (N )T rN−ζ (N )+1. (7)

If the input computation misses the deadline at the N -th sam-
pling cycle, the system state maymove further away from the origin
due to the wrong input function. Given any x (NT +W ) ∈ XN , let
x̄ (t ) and x (t ) be the state at t ∈ [NT +W , (N + 1)T +W ] evolving
from x (NT +W ) with the last correct inputu (x ((N −δ (N ))T +W ))

before δ (N ) sampling periods and with the correct input u (x (NT )),
respectively, we have

r (t ) − r (t )

= max
xN ,xN−δ (N )

∥x̄ (t )∥ −



x (t )




 ≤ max
xN ,xN−δ (N )




x̄ (t ) − x (t )





= max
xN ,xN−δ (N )







(x (NT +W ) +

∫ ∆t

0
( f (x ) + д(x )π (xN−δ (N ) ))dµ )−

(x (NT +W ) +

∫ ∆t

0
( f (x ) + д(x )π (xN ))dµ )








= max
xN ,xN−δ (N )








∫ ∆t

0
д(x ) (π (xN−δ (N ) ) − π (xN ))dµ








≤ max
xN ,xN−δ (N )

∫ ∆t

0




д(x ) (π (xN−δ (N ) ) − π (xN ))



dµ

≤ max
xN ,xN−δ (N )

max
x ∈X



д(x )

 ·
∫ ∆t

0
∥π (x ((N − δ (N ))T )) − π (x (NT ))∥ dµ

≤ max
xN ,xN−δ (N )

max
x ∈X



д(x )

 cL (∥x ((N − δ (N ))T )∥ + ∥x (NT )∥)∆t

=max
x ∈X



д(x )

 cL (rN−δ (N ) + rN )∆t

Let γ = maxx ∈X 

д(x )

. We call γcL (rN−δ (N ) +rN )∆t the deadline
miss error. Since r (t ) corresponds to the case that deadline is met
and ζN ≥ 1, we have

r (t ) ≤ r (t )+γcL (rN−δ (N )+rN )t ≤ e−λ∆t rN+γcL (rN−δ (N )+rN )∆t

Note that if we independently consider the system over [W ,KT +
W ], the case of N < δN is ill-defined. To handle it, we use d to
bound rN−δ (N ) when N < δN , which relies on the underlying
precondition of safety. For t ∈ [NT +W , (N + 1)T +W ], we have

rt ≤

αe−λ∆t rN + γcL (d + rN )∆t N < δN

αe−λ∆t rN + γcL (rN−δ (N ) + rN )∆t N ≥ δ (N )

Similar to the case when the deadline is met, we split the above
constraint into two. For t ∈ [NT +W , (N + 1)T +W ],

rt ≤

αrN + γcL (d + rN )T N < δN

αrN + γcL (rN−δ (N ) + rN )T N ≥ δ (N )
(8)
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Figure 5: Over-approximation

Specially, for the t = (N + 1)T +W , we have:

rN+1 ≤

αe−λT rN + γcL (d + rN )T N < δ (N )

αe−λT rN + γcL (rN−δ (N ) + rN )T N ≥ δ (N )
(9)

As mentioned in Theorem 4.3, a suitable X0 should satisfy both
local safety and inductiveness. Now we respectively consider these
two properties.

[Local Safety]: The system is safe if it is safe in the worst case.
Thus we can consider the worst case based on the constraints (6),
(7), (8), (9). Specifically, for a given sequence Ẽ ∈ E (m,K ), we can
solve the following linear programming (LP) problem:

Find r0 (Ẽ)

such that



r ′
N+1 =



e−λ (ζ (N )−1)T rN−ζ (N )+1, EN = 1,

αrN + γcL (d + rN )T , EN = 0,N < δ (N ),

αrN + γcL (rN−δ (N ) + rN )T , EN = 0,N ≥ δ (N ),

0 ≤ N ≤ K − 1,

rN+1 =



αe−λζ (N )T rN−ζ (N )+1, EN = 1,

αe−λT rN + γcL (d + rN )T , EN = 0,N < δ (N ),

αe−λT rN + γcL (rN−δ (N ) + rN )T , EN = 0,N ≥ δ (N ).

0 ≤ N ≤ K − 1,

0 ≤ r ′
N
≤ d, 1 ≤ N ≤ K ,

0 ≤ rN ≤ d, 0 ≤ N ≤ K ,

(10)
Observing Constraint (10), we have the following important

conclusion on soundness:

Theorem 5.3. Given sequence Ẽ ∈ E (m,K ), if r is a feasible

solution of Constraint (10), then the system satisfies local safety from

any state x (W ) ∈ B (r ).

This LP problem provides the following property.

Proposition 5.4. Given sequence Ẽ ∈ E (m,K ), if r is a feasible

solution of Constraint (10), then any r ′ ∈ [0,r ] is also a feasible

solution of (10).

By Proposition 5.4, we can expect to find the largest r0 that satis-
fies local safety. Meanwhile, a suitable r0 should satisfy Constraint
(10) for any sequence in E. Thus, let R̃safe (Ẽ) be the feasible region

of Constraint (10), we can find the largest r0 for local safety by
solving:

rsafe = min
Ẽ∈E (m,K )

max
r0, · · · ,rK ∈R̃safe (Ẽ )

r0 (Ẽ) (11)

Essentially, Problem (11) is a minimax robust optimization prob-
lem. Note that the state space E (m,K ) of Ẽ is discrete and finite,
which allows an enumeration of all possible patterns to find the
solution. Specifically, we implement the algorithm as Algorithm 1.

Algorithm 1:MaxSafeRadius

Data: Dynamic system (1) with state constraint (3), the control
law (2) with exponentially stable parameter (α ,λ),
radius of safe state region d , weakly-hard constraint
(m,K ), sampling period T

Result: Safe initial radius bound for K-period rsafe
1 E (m,K ) ← generateSequences();

2 rsafe ← ∞;

3 for Ẽ ∈ E (m,K ) do

4 r ← maxr0, · · · ,rK ∈R̃safe (Ẽ )
r0 (Ẽ);

5 if rsafe ≥ r then

6 rsafe ← r ;

7 end

8 end

9 return rsafe;

[Inductiveness]: Similar to the analysis of local safety, we consider
the worst case based on the constraints (6), (7), (8), (9). Specifically,
for a given sequence Ẽ ∈ E (m,K ), we need to solve the following
linear programming problem:

Find r0 (Ẽ)

such that



rN+1 =



αe−λζ (N )T rN−ζ (N )+1, EN = 1,

αe−λT rN + γcL (d + rN )T , EN = 0,N < δ (N ),

αe−λT rN + γcL (rN−δ (N ) + rN )T , EN = 0,N ≥ δ (N ).

0 ≤ N ≤ K − 1,

r0 ≥ rK , r0 ≥ 0.
(12)

Observing Constraint (12), we have the following important
conclusion on soundness:
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Algorithm 2:MinInductiveRadius

Data: Dynamic system (1) with state constraint (3), the control
law (2) with exponentially stable parameter (α ,λ),
radius of safe state region d , (m,K ) constraint, sampling
period T

Result: Inductive initial radius bound for K-period rinductive
1 E (m,K ) ← generateSequences();

2 rinductive ← 0;

3 for Ẽ ∈ E (m,K ) do

4 r ← minr0, · · · ,rK ∈R̃inductive (Ẽ )
r0 (Ẽ);

5 if rinductive ≤ r then

6 rinductive ← r ;

7 end

8 end

9 return rinductive;

Theorem 5.5. Given sequence Ẽ ∈ E (m,K ), if r is a feasible

solution of Constraint (12), then the system will reach B (r ) after K

sampling periods from any initial state x (W ) ∈ B (r ). That is, the

system satisfies inductiveness.

This LP problem provides the following property.

Proposition 5.6. Given sequence Ẽ ∈ E (m,K ), if r is a feasible

solution of Constraint (12), then any r ′ ∈ [r ,∞) is also a feasible

solution of (12).

By Proposition 5.6, we can expect to find the smallest r0 that
satisfies inductiveness. Meanwhile, a suitable r0 should satisfy Con-
straint (12) for any sequence in E (m,K ). Thus, let R̃inductive (Ẽ) be
the feasible region of Constraint (12), we can find the smallest r0
for inductiveness by solving:

rinductive = max
Ẽ∈E (m,K )

min
r0, · · · ,rK ∈R̃inductive (Ẽ )

r0 (Ẽ) (13)

Similar to Problem (11), we enumerate all the possible patterns
to find the solution of Problem (13) by Algorithm 2.

Note that when we estimate rinductive, the bounds in (8) and (9)
rely on the local safety. Thus rinductive is valid only if rinductive ≤
rsafe and it directly implies the following conclusion.

Proposition 5.7. Any r ∈ [rinductive,rsafe] satisfies both local

stability and inductiveness, if rinductive ≤ rsafe.

When Proposition 5.7 is true, to get the largest X0, we let X0 =
B (rsafe). Then we can obtain Θ by computing the (inner) region
of attraction. In this paper, we adopt the moment-theory based
method in [23]. Note that, if we specially consider the region of
attraction Θ as a circle around a fixed center, the origin, with a
variable radius rΘ, then ROA becomes a one-dimensional problem.
Thus we can also use bisection to find rΘ based on barrier certificate
approaches [35, 49]. The main algorithm is given in Algorithm 3.

Based on the above analysis, we give the conclusion on the
soundness of our approach, which can be proved directly combining
Proposition 5.4, 5.6 and 5.7.

Theorem 5.8 (Soundness). Let Θ be the set obtained by Algo-

rithm 3. If the initial state x (0) ∈ Θ, then the (m,K ) weakly-hard

system is safe.

Algorithm 3: Safe initial state set computation (Main algo-
rithm)

Data: Dynamic system (1) with state constraint (3), the control
law (2) with exponentially stable parameter (α ,λ),
radius of safe state region d , (m,K ) constraint, sampling
period T , typical worst-case response timeW

Result: Safe initial state set Θ
1 rsafe ← MaxSafeRadius();

2 rinductive ← MinInductiveRadius();

3 if rsafe ≥ rinductive then

4 r0 ← rsafe;

5 Θ← ROA(B (r0),W );

6 return Θ;

7 else

8 return łWe cannot find the safe initial state set.ž ;

9 end

6 EXPERIMENT

We consider the following four kinds of deadline miss/meet se-
quence Ẽ of K-period. They represent further refinements of the
(m,K ) constraint.

• Case 1: Arbitrary deadline miss/meet sequence consistent with
(m,K ). We use E1 (m,K ) to represent the set that consists of all
such sequences;

• Case 2: No consecutive deadline miss is allowed in Ẽ. We use
E2 (m,K ) to represent this set;

• Case 3: First deadline must be met in Ẽ. We use E3 (m,K ) to
represent this set;

• Case 4: Ẽ simultaneously satisfies the requirements of Case 2
and Case 3. We use E4 (m,K ) to represent this set.

Remark 5. Mathematically, for a given (m,K ), we have

E4 (m,K ) ⊆ E2 (m,K ),E3 (m,K ) ⊆ E1 (m,K ).

Their practical meaning is as follows. Case 1 is the most general case

following the definition of (m,K ) weakly-hard systems. However, in

many situations, the safety requirement can be hard to satisfy under

Case 1, since multiple consecutive deadline misses will rapidly increase

the deadline miss error and lead to unsafety. Thus, we consider Case 2

as a weaker situation, where the deadline miss error could be reduced

by the next several deadline meets. Case 3 is another special weaker

case compared to Case 1. Observe Constraint (8) and (9). If the deadline
is missed in the first sampling period of the K-period, we should use d

instead of rN−δ (N ) to estimate the bound, which is much looser. Thus,

by letting the deadline be met in the first sampling period, we have

more chance to verify a given weakly-hard system. If no conclusion on

safety can be obtained under either Case 2 or Case 3, we can consider

the weakest situation Case 4.

We introduce following examples selected from related works.

Example 1. [24, 39, 40] The linear dynamic system is:
[
ẋ1
ẋ2

]
=

[
−2 0
0 −0.9

] [
x1
x2

]
+ u, where u =

[
−1 0
−1 −1

] [
x1
x2

]
.
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The safety distance is d = 6. The sampling period is T = 0.3 and

the TWCRTW = 0.1. The sampled system with no deadline miss is

exponentially stable with parameters α = 1.1 and λ = 1.8.

Example 2. [24, 39, 40] The linear dynamic system is:
[
ẋ1
ẋ2

]
=

[
0 1
0 −0.1

] [
x1
x2

]
+ u, , where u =

[
0 0

−0.375 −1.15

] [
x1
x2

]
.

The safety distance is d = 2. The sampling period is T = 1 and

the TWCRTW = 0.2. The sampled system with no deadline miss is

exponentially stable with parameters α = 1.8 and λ = 0.4.

Example 3. [40] The linear dynamic system is:
[
ẋ1
ẋ2

]
=

[
0 1
−2 −0.1

] [
x1
x2

]
+ u, , where u =

[
0 0
1 0

] [
x1
x2

]
.

The safety distance is d = 3. The sampling period is T = 1.6 and

the TWCRTW = 0.3. The sampled system with no deadline miss is

exponentially stable with parameters α = 2 and λ = 0.37.

Example 4. [33] The nonlinear dynamic system is:

ẋ = x2 − x3 + u, , where u = −2x .

The safety distance is d = 4. The sampling period is T = 0.6 and

the TWCRTW = 0.1. The sampled system with no deadline miss is

exponentially stable with parameters α = 1.4 and λ = 1.

Our experimental evaluation consists of three parts. First, we
take Example 1 for instance and demonstrate the safe radius r0 of
X0 obtained by our approach with different configurations. Second,
we show the minimal K value that provides feasible solution un-
der different configurations for all four cases. Finally, we give the
simulation results under selected configuration for Example 1. All
experiments were performed on Intel i7-8700 machine with 16GB
memory and the LP problems were solved using YALMIP [29].

6.1 Experimental Results of Example 1

Table 1 shows the safe radius r0 of X0 with different (m,K ) con-
straints under different deadline miss/meet sequence cases for Ex-
ample 1, where 1 ≤ m ≤ K ≤ 15.

First, most examples completed in seconds, while the longest
computation time occurred whenm = 7 and K = 15, which took
about 10 minutes. Since we reduce the original problem to a one-
dimensional problem, the complexity of our approach is indepen-
dent of the system size, but relies onm and K . In the worst case,

our approach terminates after solving 2 ·
(

K
m

)

LP problems.
Second, we can see that for each of the four cases, our approach

can obtain a feasible safe radius r0 of X0 with a satisfactory ratio
m/K . For instance, in Case 1, the system can be safe with at most
1 deadline miss in every 3 consecutive sampling periods, that is,
m/K = 33%. For all four cases, the allowable deadline miss ratio
m/K ∈ [0.273,0.418], which means a significant portion of system
resources can be saved.

Third, we can find that for a given case and a givenm, if there
exists a positive integer K0, such that the safe radius r0 (K0) of X0
exists for (m,K0), then for any K ≥ K0, the safe radius r0 (K ) also
exists. In addition, r0 (K ) = r0 (K0), K ≥ K0. It is due to that the
value of the safe radius r0 is determined by rsafe if exists. For a given
m, the worst case for safety occurs when the firstm deadlines are

all missed in K-period. Thus, once rsafe exists for a given (m,K0), it
will remain the same for (m,K ), K ≥ K0. As for the inductiveness,
due to the property of exponential stability, for a givenm, the larger
the K is, the more contracted the system is, which makes it easier
to guarantee inductiveness, that is, rinductive monotone decreases
with K . Combining the requirement of rinductive ≤ rsafe, we can
arrive at the above conclusion.

Finally, we can find that for a given (m,K ), the safe radius r ofX0
exists for Case 4, if one exists for Case 2 or Case 3. r0 exists for Case
2 or Case 3, if one exists for Case 1. In addition, if r0 exists for all four
cases, let r0 (Casei ) be the solution under Case i , i = 1,2,3,4, we
have r0 (Case1) ≤ r0 (Case2),r0 (Case3) ≤ r0 (Case4). This property
is due to the partial order among Ei (m,K ), i = 1,2,3,4 mentioned
in Remark 5.

6.2 A Glance on All Experimental Results

Table 2: Minimal K value that provides feasible solution:

This table shows the minimal K value for a given m such

that the safe radius r0 can be found by our approach under

the weakly-hard constraint (m,K ) for each example in dif-

ferent cases of alternating meet and miss sequence. We use

ł-ž to represent there is no feasible K ≤ 15 for a givenm.

m

type 1 2 3 4 5 6

Example 1

Case 1 3 - - - - -
Case 2 3 7 11 - - -
Case 3 3 5 8 10 12 15
Case 4 3 5 8 10 12 15

Example 2

Case 1 - - - - - -
Case 2 - - - - - -
Case 3 8 14 - - - -
Case 3 8 14 - - - -

Example 3

Case 1 - - - - - -
Case 2 - - - - - -
Case 3 7 12 - - - -
Case 4 7 12 - - - -

Example 4

Case 1 - - - - - -
Case 2 - - - - - -
Case 3 5 9 13 - - -
Case 4 5 9 13 - - -

Due to the space limit, we show the minimal feasible K for a
givenm of all four examples in Table 2. The complete experimental
results with concrete r0 can be found in the appendix. Since the ex-
ponential stability parameters α and λ are much larger and smaller
respectively in Examples 2-4, the deadline miss ratiom/K is lower
than it in Example 1. Specifically, in Case 1 and Case 2, we cannot
find a feasible K for any amount of deadline misses. However, if
we restrict the deadline miss/meet sequence to Case 3 and Case
4, we can still find at least 12.5%, 14.3%, 20.0% deadline miss ratio
for Examples 2, 3, 4, respectively, which also leads to a significant
resource saving.
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Table 1: Safe radius r0 of X0 for Example 1: This table shows the value of the safe radius r found by our approach under the

weakly-hard constraint (m,K ) for Example 1 in different cases of deadline miss/meet sequence. We use ł-ž to represent there

is no feasible r that can be found by our approach for a given (m,K ).

K

type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 m 1 - - 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947

Case 2 m
1 - - 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947
2 - - - - - - 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962
3 - - - - - - - - - - 0.352 0.352 0.352 0.352 0.352

Case 3 m

1 - - 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995
2 - - - - 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
3 - - - - - - - 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759
4 - - - - - - - - - 1.318 1.318 1.318 1.318 1.318 1.318
5 - - - - - - - - - - - 0.953 0.953 0.953 0.953
6 - - - - - - - - - - - - - - 0.824

Case 4 m

1 - - 3.995 3.995 3.995 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996
2 - - - - 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309
3 - - - - - - - 2.741 2.741 2.741 2.741 2.741 2.741 2.741 2.741
4 - - - - - - - - - 2.270 2.270 2.270 2.270 2.270 2.270
5 - - - - - - - - - - - 1.880 1.880 1.880 1.880
6 - - - - - - - - - - - - - - 1.557

0 1 2 3 4 5 6

Time t

-6

-4

-2

0

2

4

6

S
ta

te
 x

x
1

x
2

norm(x)

worst case: norm(x)

(a) Case 1,m=1, K=3, x0=
[
1, 1.5

]T

0 1 2 3 4 5 6

Time t

-6

-4

-2

0

2

4

6

S
ta

te
 x

x
1

x
2

norm(x)

worst case: norm(x)

(b) Case 2,m=2, K=7, x0=
[
−0.6, 0.7

]T

0 1 2 3 4 5 6

Time t

-6

-4

-2

0

2

4

6

S
ta

te
 x

x
1

x
2

norm(x)

worst case: norm(x)

(c) Case 3,m=3, K=8, x0=
[
1, −1.2

]T

0 1 2 3 4 5 6

Time t

-6

-4

-2

0

2

4

6

S
ta

te
 x

x
1

x
2

norm(x)

worst case: norm(x)

(d) Case 4,m=4,K=10, x0=
[
−1.5, 1.6

]T

Figure 6: Simulation Results of Selected Configurations of Example 1

6.3 Simulation Results of Example 1

We ran simulations of several configurations of Example 1 (Figure 6)
to assess how conservative the over-approximation is. In each sub-
figure, the yellow line represents the safe initial state set obtained
by our approach, the green point represents the distance (2-norm)
of the initial state from the origin, the red curve represents the
trajectory of x1, the blue curve represents the trajectory of x2, the
black curve represents the trajectory of the distance of x from the
origin, ∥x ∥, the purple curve represents the trajectory of ∥x ∥ under
the worst case, and the two cyan lines are the safety bound of ∥x ∥.
We can see the state trajectories from a safe initial state contract
away from the boundary quickly even in the worst case, which
indicates our approach might be too conserved. In future, we will
consider tightening the estimation for the safe radius r of X0.

7 CONCLUSION

In this paper, we study the safety verification problem of weakly-
hard systems with nonlinear dynamics. We propose a relaxation
technique to convert the original infinite-time safety problem into
finite-time problem of local safety and inductiveness. We have de-
veloped an over-approximation based technique to analyze these
two properties and give a sufficient initial condition to ensure safety.
Our experiment results show that our approach allows the designer
to better understand the impact of different (m,K ) constraints on
the safety of the system. Our future work includes tightening the
estimation of the safe initial set, and applying the proposed tech-
nique to larger systems such as adaptive cruise control and model
predictive control of self-driving vehicles.
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A COMPLETE EXPERIMENT RESULTS

The complete experiment results of four examples shown in Section
7 under four weakly hard cases with different (m,K ) constraints
are shown in Table 3.
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Table 3: Safe radius r0 for Examples 1-4

Example 1 K

type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 m 1 - - 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947

Case 2 m
1 - - 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947 1.947
2 - - - - - - 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962
3 - - - - - - - - - - 0.352 0.352 0.352 0.352 0.352

Case 3 m

1 - - 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995
2 - - - - 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
3 - - - - - - - 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759
4 - - - - - - - - - 1.318 1.318 1.318 1.318 1.318 1.318
5 - - - - - - - - - - - 0.953 0.953 0.953 0.953
6 - - - - - - - - - - - - - - 0.824

Case 4 m

1 - - 3.995 3.995 3.995 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996
2 - - - - 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309 3.309
3 - - - - - - - 2.741 2.741 2.741 2.741 2.741 2.741 2.741 2.741
4 - - - - - - - - - 2.270 2.270 2.270 2.270 2.270 2.270
5 - - - - - - - - - - - 1.880 1.880 1.880 1.880
6 - - - - - - - - - - - - - - 1.557

Example 2 K

type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 m 1 - - - - - - - - - - - - - - -

Case 2 m 1 - - - - - - - - - - - - - - -

Case 3 m
1 - - - - - - - 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269
2 - - - - - - - - - - - - - 0.065 0.065

Case 4 m
1 - - - - - - - 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.269
2 - - - - - - - - - - - - - 0.065 0.065

Example 3 K

type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 m 1 - - - - - - - - - - - - - - -

Case 2 m 1 - - - - - - - - - - - - - - -

Case 3 m
1 - - - - - - 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326
2 - - - - - - - - - - - 0.071 0.071 0.071 0.071

Case 4 m
1 - - - - - - 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326
2 - - - - - - - - - - - 0.071 0.071 0.071 0.071

Example 4 K

type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 m 1 - - - - - - - - - - - - - - -

Case 2 m 1 - - - - - - - - - - - - - - -

Case 3 m
1 - - - - 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053
2 - - - - - - - - 0.388 0.388 0.388 0.388 0.388 0.388 0.388
3 - - - - - - - - - - - - 0.143 0.143 0.143

Case 4 m
1 - - - - 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053
2 - - - - - - - - 0.388 0.388 0.388 0.388 0.388 0.388 0.388
3 - - - - - - - - - - - - 0.143 0.143 0.143
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