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Abstract
We describe two new 3/2-approximation algorithms and a
new 2-approximation algorithm for the minimum weight
edge cover problem in graphs. We show that one of the
3/2-approximation algorithms, the Dual Cover algorithm,
computes the lowest weight edge cover relative to previously
known algorithms as well as the new algorithms reported
here. The Dual Cover algorithm can also be implemented
to be faster than the other 3/2-approximation algorithms on
serial computers. Many of these algorithms can be extended
to solve the b-Edge Cover problem as well. We show the
relation of these algorithms to the K-Nearest Neighbor
graph construction in semi-supervised learning and other
applications.

1 Introduction

An Edge Cover in a graph is a subgraph such that
every vertex has at least one edge incident on it in
the subgraph. We consider the problem of computing
an Edge Cover of minimum weight in edge-weighted
graphs, and design two new 3/2-approximation al-
gorithms and a new 2-approximation algorithm for
it. One of the 3/2-approximation algorithms, the
Dual Cover algorithm is obtained from a primal-
dual linear programming formulation of the problem.
The other 3/2-approximation algorithm is derived from
a lazy implementation of the Greedy algorithm for
this problem. The new 2-approximation algorithm
is related to the widely-used K-Nearest Neighbor
graph construction used in semi-supervised machine
learning and other applications. Here we show that
the K-Nearest Neighbor graph construction pro-
cess leads to a 2-approximation algorithm for the
b-Edge Cover problem, which is a generalization of
the Edge Cover problem. (These problems are for-
mally defined in the next Section.)

The Edge Cover problem is applied to cover-
ing problems such as sensor placement, while the
b-Edge Cover problem is used when redundancy is
necessary for reliability. The b-Edge Cover problem
has been applied in communication networks [17] and
in adaptive anonymity problems [15].
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The K-Nearest Neighbor graph is used to spar-
sify data sets, which is an important step in graph-based
semi-supervised machine learning. Here one has a few
labeled items, many unlabeled items, and a measure of
similarity between pairs of items; we are required to
label the remaining items. A popular approach for clas-
sification is to generate a similarity graph between the
items to represent both the labeled and unlabeled data,
and then to use a label propagation algorithm to classify
the unlabeled items [23]. In this approach one builds
a complete graph out of the dataset and then sparsi-
fies this graph by computing a K-Nearest Neighbor
graph [22]. This sparsification leads to efficient al-
gorithms, but also helps remove noise which can af-
fect label propagation [11]. In this paper, we show
that the well-known Nearest Neighbor graph con-
struction computes an approximate minimum-weight
Edge Cover with approximation ratio 2. We also
show that the K-Nearest Neighbor graph may have
a relatively large number of redundant edges which
could be removed to reduce the weight. This graph
is also known to have skewed degree distributions
[11], which could be avoided by other algorithms for
b-Edge Covers. Since the approximation ratio of
K-Nearest Neighbor algorithm is 2, a better choice
for sparsification could be other edge cover algorithms
with an approximation ratio of 3/2; algorithms that lead
to more equitable degree distributions could also lead to
better classification results. We will explore this idea in
future work.

Our contributions in this paper are as follows:

• We improve the performance of the Greedy algo-
rithm for minimum weight edge cover problem by
lazy evaluation, as in the Lazy Greedy algorithm.

• We develop a novel primal-dual algorithm for the
minimum weight edge cover problem that has ap-
proximation ratio 3/2.

• We show that the K-Nearest Neighbor ap-
proach for edge cover is a 2-approximation algo-
rithm for the edge weight. We also show that prac-
tically the weight of the edge cover could be reduced
by removing redundant edges. We are surprised
that these observations have not been made earlier
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given the widespread use of this graph construc-
tion in Machine Learning, but could not find these
results in a literature search.

• We also conducted experiments on eleven different
graphs with varying sizes, and found that the
primal-dual method is the best performing among
all the 3/2 edge cover algorithms.

The rest of the paper is organized as follows.
We provide the necessary background on edge covers
in Section 2. We discuss several 3/2-approximation
algorithms including the new Dual Cover algo-
rithm in Section 3. In Section 4, we discuss the
Nearest Neighbor approach in detail along with two
earlier algorithms. We discuss the issues of redundant
edges in Section 5. In Section 6, we experiment and
compare the performance of the new algorithms and
earlier approximation algorithms. We summarize the
state of affairs for Edge Cover and b-Edge Cover
problems in Section 7.

2 Background

Throughout this paper, we denote by G(V,E,W ) a
graph G with vertex set V , edge set E, and edge weights
W . An Edge Cover in a graph is a subgraph such
that every vertex has at least one edge incident on it in
the subgraph. If the edges are weighted, then an edge
cover that minimizes the sum of weights of its edges
is a minimum weight edge cover. We can extend these
definitions to b-Edge Cover, where each vertex v must
be the endpoint of at least b(v) edges in the cover, where
the values of b(v) are given.

The minimum weighted edge cover is related to the
better-known maximum weighted matching problem,
where the objective is to maximize the sum of weights of
a subset of edges M such that no two edges in M share a
common endpoint. (Such edges are said to be indepen-
dent.) The minimum weight edge cover problem can be
transformed to a maximum weighted perfect matching,
as has been described by Schrijver [21]. Here one makes
two copies of the graph, and then joins corresponding
vertices in the two graphs with linking edges. Each
linking edge is given twice the weight of edge of mini-
mum weight edge incident on that vertex in the original
graph. The complexity of the best known [6] algorithm
for computing a minimum weight perfect matching with
real weights is O(|V ||E| + |V |2log|E|)), which is due
to Gabow [8]. As Schrijver’s transformation does not
asymptotically increase the number of edges or vertices,
the best known complexity of the optimal edge cover
is the same. The minimum weighted b-Edge Cover
problem can be obtained as the complement of a b′-
matching of maximum weight, where b′(v) = deg(v) −

b(v) [21]. Here deg(v) is the degree of the vertex v. The
complement can be computed in O(|E|) time. For exact
b′-matching the best known algorithm is due to Anstee,
with time complexity min{O(|V |2|E| + |V |logβ (|E| +
|V |log|V )), O(|V |2log|V (|E|+ |V |log|V |))} [1, 21].

In the set cover problem we are given a collection
of subsets of a set (universe), and the goal is to choose
a sub-collection of the subsets to cover every element in
the set. If there is a weight associated with each subset,
the problem is to find a sub-collection such that the sum
of the weights of the sub-collection is minimum. This
problem is NP-hard [13]. There are two well known
approximation solutions for solving set cover. One is to
repeatedly choose a subset with the minimum cost and
cover ratio, and then delete the elements of the chosen
set from the universe. This Greedy algorithm is due to
Johnson and Chvatal [4, 12], and it has approximation
ratio Hk, the k-th harmonic number, where k is the
largest size of a subset. The other algorithm is a primal-
dual algorithm due to Hochbaum [9], and provides
f−approximation, where f is the maximum frequency
of an element in the subsets. The latter algorithm is
important because it gives a constant 2-approximation
algorithm for the vertex cover problem. An edge cover
is a specific case of a set cover where each subset has
exactly two elements (k = 2). The Greedy algorithm
of Chvatal achieves the approximation ratio of 3/2 for
this problem, and we will discuss it in detail in Section
3. The primal-dual algorithm of Hochbaum is a ∆-
approximation algorithm for edge cover, where ∆ is the
maximum degree of the graph.

Recently, a number of approximation algorithms
have been developed for the minimum weighted
b-Edge Cover. Khan and Pothen [14] have de-
scribed a Locally Subdominant Edge algorithm (LSE).
In [16], the current authors have described two differ-
ent 2-approximation algorithms for the problem, static
LSE (S-LSE) and Matching Complement Edge cover
(MCE). We will discuss these algorithms in Section
4. In [10], Huang and Pettie developed a (1 + ε)-
approximation algorithm for the weighted b-edge cover,
for any ε > 0. The complexity of the algorithm is
O(mε−1 logW ), where W is the maximum weight of any
edge. The authors showed a technique to convert the
runtime into O(mε−1 log(ε−1)). This scaling algorithm
requires blossom manipulation and dual weights adjust-
ment. We have implemented (1−ε)-approximation algo-
rithms based on scaling ideas for vertex weighted match-
ing, but they are slower and practically obtain worse ap-
proximations than a 2/3-approximation algorithm [5].
Since the edge cover algorithms are also based on the
scaling idea, it is not clear how beneficial it would be
to implement this algorithm. On the other hand, our
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2- and 3/2- approximation algorithms are easily imple-
mented, since no blossoms need to be processed, and
also provide near-optimum edge weights. This is why
we did not implement the (1 + ε)-approximation algo-
rithm.

3 3/2-Approximation Algorithms

In this section we discuss four 3/2-approximation al-
gorithms for the minimum weighted Edge Cover
problem. Two of these algorithms are the classical
Greedy algorithm, and a variant called the Locally
Subdominant Edge algorithm, LSE, which we have de-
scribed in earlier work. The other two algorithms, the
Lazy Greedy algorithm and a primal-dual algorithm,
Dual Cover, are new.

Let us first describe the primal and dual LP formu-
lations of the minimum weighted Edge Cover prob-
lem. Consider the graph G(V,E,W ), and define a bi-
nary variable xe for each e ∈ E. Denote the weight of
an edge e by we, and the set of edges adjacent to a ver-
tex v by δ(v). The integer linear program (ILP) of the
minimum weighted edge cover problem is as follows.

min
∑
e∈E

wexe, subject to
∑
e∈δ(v)

xe ≥ 1,∀v ∈ V,

xe ∈ {0, 1},∀e ∈ E.(3.1)

If the variable xe is relaxed to 0 ≤ xe ≤ 1, the
resulting formulation is the LP relaxation of the original
ILP. Let OPT denote the optimum value of minimum
weighted edge cover defined by the ILP, and OPTLP
be the optimum attained by the LP relaxation; then
OPTLP ≤ OPT since the the feasible region of the
LP contains that of the ILP. We now consider the dual
problem of the LP. We define a dual variable yv for each
constraint on a vertex v in the LP.

max
∑
v∈V

yv, subject to yi + yj ≤ we,∀e(i, j) ∈ E,

yv ≥ 0, ∀v ∈ V.(3.2)

From the duality theory of LPs, any feasible solu-
tion of the dual problem provides a lower bound for the
original LP. Hence FEASdual ≤ OPTLP ≤ OPTILP ,
where FEASdual denotes the objective value of any fea-
sible solution of the dual problem.

3.1 The Greedy Algorithm. Since an
Edge Cover is a special case of the set cover,
we can apply the Greedy set cover algorithm [4] to
compute an Edge Cover. We define the effective
weight of an edge as the weight of the edge divided by
the number of its uncovered endpoints. The Greedy
algorithm for minimum weighted edge cover works

as follows. Initially, no vertices are covered, and the
effective weights of all the edges are half of the edge
weights. In each iteration, there are three possibilities
for each edge: i) none of its endpoints is covered, and
there is no change in its effective weight, ii) one of the
endpoints is covered, and its effective weight doubles,
or iii) both endpoints are covered, its effective weight
becomes infinite, and the edge is marked as deleted.
After the effective weights of all edges are updated, we
choose an edge with minimum effective weight, add
that edge to the cover, and mark it as deleted. The
algorithm iterates until all vertices are covered. This
produces an edge cover whose weight is at most 3/2 of
the minimum weight. The worst case time complexity
of the Greedy algorithm is O(|E|log|E|).

Using the primal dual LP formulation stated
in Equations 3.1 and 3.2, we will prove the 3/2-
approximation ratio for the Greedy algorithm. This
proof is important because it lays the foundation for the
analysis of the Dual Cover algorithm that we will see
later.

Lemma 3.1. The approximation ratio of the Greedy
algorithm is 3/2.

Proof. We define a variable, price, at each vertex of the
graph. When the Greedy algorithm chooses an edge
in the cover we can consider that it assigns prices on the
two end-points of the vertex. The value of price should
be set such that the prices of the endpoints pay for the
weight of the edges in the cover. When an edge (i, j) is
added to the cover in the Greedy algorithm, we could
have two cases: i) The edge covers both of its endpoints.
In this case, the price of each end-point is the effective
weight of the edge (i.e., half of the actual weight). Or
ii) only one endpoint of (i, j), say i, was covered earlier;
then the price of i was set in a previous iteration. Since
we have selected the edge (i, j) to add to the cover, we
assign the weight of the edge to be the price of j. If
we assign the price of each vertex in this way, then the
sum of weights of the edges in the cover computed by
the Greedy algorithm would be equal to the sum of
the price of the vertices.

The pricing mechanism assigns a value on each
vertex, but can we derive yv values feasible for the
dual LP from them? Let us consider the constraints
assuming yv = price(v). First consider the edges
which are in the cover. Again we have two cases to
consider: i) The edge (i, j) covers two endpoints. In
this case, price(i) = price(j) = w(i,j)/2, resulting in
price(i) + price(j) = w(i,j). So for these edges the
constraints are satisfied, and price(v) is equal to yv.
ii) Now consider those edges (i, j) that cover only one
endpoint, say i. From the assignment of the price
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we know that price(j) = w(i,j). Since all the prices
are positive, this tells us that the constraint of (i, j)
is violated. We now show that price(i) ≤ w(i,j)/2.
When i was covered by some edge other than (i, j), the
effective weight of (i, j) was w(i,j)/2. So the selected
edge must have effective weight w(i,j)/2, which implies
that price(i) + price(j) ≤ 3/2 ∗ w(i,j).

Now consider an edge (i, j) which is not included
in the Greedy edge cover. Suppose vertex i is covered
before vertex j. When i is covered, the effective weight
of the edge (i, j) is w(i,j)/2 since both vertices i and
j were uncovered prior to that step. As the vertex i
is being covered by some edge e′ other than (i, j), and
the greedy algorithm chooses an edge of least effective
weight, this weight is less than or equal to w(i,j)/2.
Hence price(i) is less than or equal to this value. Now
when the vertex j is covered, the effective weight of
the edge (i, j) is w(i,j). Following the argument as for
vertex i, we find that price(j) ≤ w(i,j). Hence we have
that price(i) + price(j) ≤ 3/2 ∗ w(i,j).

Now if we set yv = 2/3 ∗ price(v), then the dual
problem is feasible. We say that 3/2 is a shrinking
factor. We can write

OPTGreedy =
∑
v

price(v) = 3/2 ∗
∑
v

yv

≤ 3/2 ∗OPTLP ≤ 3/2 ∗OPTILP .

3.2 The Lazy Greedy Algorithm. The effective
weight of an edge can only increase during the Greedy
algorithm, and we exploit this observation to design
a faster variant. The idea is to delay the updating
of effective weights of most edges, which is the most
expensive step in the algorithm, until it is needed. If the
edges are maintained in non-increasing order of weights
in a heap, then we update the effective weight of only
the top edge; if its effective weight is no larger than
the effective weight of the next edge in the heap, then
we could add the top edge to the cover as well. A
similar property of greedy algorithms has been exploited
in submodular optimization, where this algorithm is
known as the Lazy Greedy algorithm [18].

The pseudocode of the Lazy Greedy algorithm is
presented in Algorithm 1. The Lazy Greedy algo-
rithm maintains a minimum priority queue of the edges
prioritized by their effective weights. The algorithm
works as follows. Initially all the vertices are uncov-
ered. We create a priority queue of the edges ordered by
their effective weights, PrQ. An edge data structure in
the priority queue has three fields: the endpoints of the
edge, u and v, and its effective weight w. The priority

queue has four operations. The makeHeap(Edges) oper-
ation creates a priority Queue in time linear in the num-
ber of edges. The deQueue() operation deletes and re-
turns an edge with the minimum effective weight in time
logarithmic in the size of queue. The enQueue(Edge e)
operation inserts an edge e into the priority queue ac-
cording to its effective weight. The front() operation
returns the current top element in constant time with-
out popping the element itself.

At each iteration, the algorithm dequeues the top
element, top, from the queue, and updates its effective
weight to top.w. Let the new top element in PrQ be
newTop, with effective weight (not necessarily updated)
newTop.w. If top.w is less than or equal to newTop.w,
then we can add top to the edge cover, and increment
the covered edge counter for its endpoints. Otherwise,
if top.w is not infinite, we enQueue(top) to the priority
queue. Finally, if top.w is infinite, we delete the edge.
We continue iterating until all the vertices are covered.
The cover output by this algorithm may have some
redundant edges which could be removed to reduce the
weight. We will discuss the algorithm for removing
redundant edges in Section 5.

Algorithm 1 Lazy Greedy(G(V,E,W ))

1: C = ∅; . the edge cover
2: c = Array of size |V | initialized to 0; . indicates if

a vertex is covered
3: PrQ = makeHeap(E) . Create a min heap from E
4: while there exists an uncovered vertex do
5: top = PrQ.deQueue()
6: Update effective weight of top edge,
7: assign to top.w
8: if top.w <∞ then
9: newTop = PrQ.front()

10: if top.w ≤ newTop.w then
11: C = C ∪ top
12: Increment c(u) and c(v) by 1
13: else
14: PrQ.enQueue(top)

15: C =Remove Redundant Edge(C)
16: return C

Next we compute the approximation ratio of the
algorithm.

Lemma 3.2. The approximation ratio of the
Lazy Greedy algorithm is 3/2.

Proof. The invariant in the Greedy algorithm is that
at every iteration we select an edge which has minimum
effective weight over all edges. Now consider an edge
x chosen by the Lazy Greedy algorithm in some
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iteration. According to the algorithm the updated
effective weight of x, denoted by x.w, is less than or
equal to the effective weight of the current top element
of the priority queue. Since, the effective weight of an
edge can only increase, then x has the minimum effective
weight over all edges in the queue. So the invariant in
the Greedy algorithm is satisfied in the Lazy Greedy
algorithm, resulting in the 3/2-approximation ratio.

The runtime for Lazy Greedy is also O(|E|log|E|),
because over the course of the algorithm, each edge
will incur at most two deQueue() operations and one
enQueue() operation, and each such operation costs
O(log|E|). The efficiency of the Lazy Greedy algo-
rithm comes from the fact that in each iteration we do
not need to update effective weights of the edges adja-
cent to the selected edge. But the price we pay is the
logarithmic-cost enQueue() and deQueue() operations.
We will see in Section 6 that the average number of
queue accesses in the Lazy Greedy algorithm is low
resulting in a faster algorithm over the Greedy algo-
rithm.

3.3 The LSE Algorithm. This algorithm [14] finds
a set of locally subdominant edges and adds them to the
cover at each iteration. An edge is locally subdominant if
its effective weight is smaller than the effective weights
of its neighboring edges (i.e., other edges with which
it shares an endpoint). It can be easily shown that
the Greedy and Lazy Greedy algorithms add locally
subdominant edges w.r.t the effective weights at each
step. The approximation ratio of LSE is 3/2.

3.4 The Dual Cover Algorithm. The proof of the
approximation ratio of the Greedy algorithm presented
in Section 3.1 provides an algorithm for the edge cover
problem. The algorithm works iteratively, and each it-
eration consists of two phases: the dual weight assign-
ment phase and the primal covering phase. At the start
of each iteration we initialize the price of each uncov-
ered vertex to∞. In the assignment phase, the effective
weight of each edge is computed. Each edge updates the
price of its uncovered end-points, to be the minimum of
its effective weight and the current price of that ver-
tex. After this phase, each uncovered vertex holds the
minimum effective weight of its incident edges. The al-
gorithm for the assignment phase is presented in 2.

The second phase is the covering phase. In this
phase, we scan through all the edges and add the edges
in the output that satisfy any of the two conditions.

i The edge covers both of its endpoints. The prices
on the two endpoints are equal and they sum up to
the weight of the edge.

Algorithm 2 Dual Assignment(G(V,E,W ),price)

1: for each v ∈ V do
2: if v is uncovered then price(v) = ∞
3: for each (u, v) ∈ E do
4: if (u and v are both uncovered) then
5: price(u) = MIN(price(u),W (u, v)/2)
6: price(v) = MIN(price(v),W (u, v)/2)
7: else if (only u is uncovered) then
8: price(u) = MIN(price(u),W (u, v))
9: else if (only v is uncovered) then

10: price(v) = MIN(price(v),W (u, v))

ii The edge covers only one endpoint. The price of the
uncovered endpoint is the weight of the edge, and
the two prices sum to at most 3/2 times the original
weight of the edge.

The algorithm for the primal covering phase is presented
in Algorithm 3. The overall algorithm is described in

Algorithm 3 Primal Cover(G(V,E,W ),price,C,c)

1: for each (u, v) ∈ E do
2: if u and v are both uncovered and condition (i)

is satisfied then
3: C = C ∪ (u, v)
4: Increment c(u) and c(v) by 1
5: else if only u or v is uncovered and condition

(ii) is satisfied then
6: C = C ∪ (u, v)
7: Increment c(u) and c(v) by 1
8: else if u and v are both covered then
9: Mark (u, v) as deleted

pseudocode in Algorithm 4.

Algorithm 4 Dual Cover(G(V,E,W ))

1: C = ∅
2: c = Array of size |V | initialized 0
3: price = array of size |V |
4: while there exists an uncovered vertex do
5: Call Dual Assignment(G(V,E,W ), price)
6: Call Primal Cover (G(V,E,W ), price, C, c)

7: C = Remove Redundant Edge(C)
8: return C

Now we prove the correctness and approximation
ratio of the Dual Cover algorithm.

Lemma 3.3. The Dual Cover algorithm terminates.

Proof. Suppose the algorithm does not terminate. Then
during some iteration of the algorithm, it fails to
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cover any uncovered vertices. We assume without loss
of generality that the graph is connected. Let the
uncovered vertices be L. We create a subgraph GL
induced by the edges that are adjacent to at least one
vertex in L. Now let el = (ul, vl) be an edge with the
lowest effective weight in GL. If el covers both of its
endpoints, then in the Dual Assignment phase, the
prices of ul and vl must be price(ul) = price(vl) =
weight(el)/2. So this edge fulfills condition (i). If el
covers only one endpoint, say vl, then vl /∈ L. Now
price(vl) ≤ weight(el)/2, since when vl was covered the
two endpoints of edge el were available to be added
to the cover. Despite this the assignment phase did
not assign weight(el)/2 to price(vl). So price(vl) ≤
weight(el)/2. Now the assignment phase would have
assigned price(ul) = weight(el) to satisfy condition (ii),
and the vertex ul would have been added to the cover.
This contradiction completes the proof.

Another way of looking at the Dual Cover al-
gorithm is in terms of locally sub-dominant edges.
The edges chosen at every iteration are locally sub-
dominant. Many edges could become sub-dominant at
an iteration, and the assignment phase sets up the price
to detect locally sub-dominant edges in the covering
phase. The efficiency of this algorithm comes from the
fraction of vertices covered through the sub-dominant
edges at every iteration. As we will show in the experi-
mental section the rate of convergence to full edge cover
is fast, although the worst-case complexity of this algo-
rithm could be O(|C||E|), where |C| is the number of
edges in the cover.

Lemma 3.4. The approximation ratio of the
Dual Cover algorithm is 3/2.

Proof. First note that the weight of the edge cover is
fully paid by the price of each vertex, which means that
the sum of the prices equals the sum of the weights of the
selected edges. Also note that for the edges in the cover
the shrinking factor is at most 3/2. Now we consider the
edges that are not in the edge cover. Let (u, v) be such
an edge, and let u be covered before v. When u was
covered both endpoints of (u, v) were available. Hence
the price(u) ≤ w(u,v)/2. Now when v was covered by
some edge other than (u, v), price(v) ≤ w(u,v). This
implies that for the edges that are not in the cover,
the shrinking factor is also 3/2. Now let the cover be
denoted by C. We have∑

e∈C
we =

∑
v∈V

price(v) ≤ 3/2 ∗
∑
v∈V

yv

≤ 3/2 ∗OPTLP ≤ 3/2 ∗OPTILP .

3.5 Extension to b-Edge Cover. In the
b-Edge Cover problem each vertex v needs to
be covered by at least bv edges. The Greedy, the LSE
and the Lazy Greedy algorithms can be extended
to handle this constraint. To incorporate the bv con-
straint, we extend the definition of covering/saturation
of a vertex, v. A vertex is covered/saturated when
it is covered by at least bv edges. It is not difficult
to show that the extended algorithms also match
the approximation ratio of 3/2. In recent work, we
have extended the Dual Cover algorithm to the
b-Edge Cover problem, and we will report on this in
our future work.

4 2-Approximation Algorithms

We know of two different 2-approximation algorithms,
S-LSE and MCE, that have been discussed previously
for the minimum weighted edge cover problem [16]. In
this section we show that the widely-used k-nearest
neighbor algorithm is also a 2-approximation algorithm,
and then briefly discuss the two earlier algorithms.

4.1 Nearest Neighbor Algorithm. The nearest
neighbor of a vertex v in a graph is the edge of minimum
weight adjacent to it. A simple approach to obtain an
edge cover is the following: For each vertex v, insert
the edge that v forms with its nearest neighbor into the
cover. (We also call this a lightest edge incident on v.)

The worst-case runtime of the Nearest Neighbor
algorithm is O(|E|). This algorithm has many redun-
dant edges that it includes in the cover, and in a prac-
tical algorithm such edges would need to be removed.
Nevertheless, even without the removal of such edges,
we prove that the Nearest Neighbor algorithm pro-
duces an edge cover whose total weight is at most twice
that of the minimum weight.

Lemma 4.1. The approximation ratio of the
Nearest Neighbor algorithm is 2.

Proof. Let the optimal edge cover be denoted by OPT .
Let oi = (u, v) be an edge in the optimal cover. Suppose
that the edge oi is not included in the cover computed
by the Nearest Neighbor algorithm. Let a lightest
edge incident on u (v) be denoted by eu (ev). If eu and
ev are distinct, then both these edges (or two edges of
equal weight) are included in the Nearest Neighbor
edge cover. Since the edge oi is not included in the
Nearest Neighbor cover, we have w(eu) ≤ w(oi),
and w(ev) ≤ w(oi). So, in the worst case, for each
edge in the optimal cover, we may have two edges in
the Nearest Neighbor cover, whose weights are at
most the weight of the edge in the optimal cover.
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4.2 Extension to b-Edge Cover. To extend the
Nearest Neighbor algorithm to the b-edge cover,
instead of choosing a nearest neighbor, we will add b(v)
nearest neighbors of a vertex v into the cover. The
proof that this is a 2-approximation algorithm can be
obtained by the same argument as given above.

There are multiple ways of implementing the b-
Nearest Neighbor algorithm, of which we mention
two ways. The first is to sort all the edges incident
on each vertex v, and then to add the lightest b(v)
edges to the cover. The complexity of this approach
is O(|E| log ∆), where ∆ is the maximum degree of
a vertex. The second approach maintains a min-heap
for each vertex. The heap for a vertex v contains the
edges adjacent to it, with the edge weight as key. The
complexity of creating a heap for a vertex v isO(deg(v)).
Then for each vertex v, we query the heap b(v) times
to get that many lightest edges. This implementation
has runtime O(|V |β log ∆ + |E|), where β = maxv b(v).
The second version is asymptotically faster than the first
version as long as |E| = Ω(|V |β). We have used the
second approach in our implementation.

4.3 S-LSE Algorithm. The S-LSE algorithm is de-
scribed in [16], and it is a modification of the LSE
algorithm in which the algorithm works with static
edge weights instead of dynamically updating effective
weights. At each step, the algorithm identifies a set of
edges whose weights are minimum among their neigh-
boring edges. Such edges are added to the cover and
then marked as deleted from the graph, and the b(.)
values of their endpoints are updated. Edges with
both endpoints satisfying their b(.) constraints are also
deleted. The algorithm then iterates until the b-edge
cover is computed, or the graph becomes empty. The
approximation ratio of S-LSE is 2.

4.4 MCE Algorithm. The MCE algorithm de-
scribed in [16] also achieves an approximation ratio
of 2. This algorithm computes a b-Edge Cover by
first computing a 1/2-approximate maximum weight
b′-matching, with b′(v) = deg(v) − b(v). The
b-Edge Cover is the complement of the edges in a b′-
matching. If the latter is computed using an algorithm
that matches in each iteration locally dominant edges
(such as the Greedy or locally dominant edge or b-
Suitor algorithms), then the MCE algorithm obtains a
2-approximation to the b-Edge Cover problem. The
MCE algorithm produces an edge cover without any
redundant edges, unlike the algorithms that we have
considered.

5 Removing Redundant Edges

All the approximation algorithms (except the MCE)
discussed in this paper may produce redundant edges in
the edge cover. To see why, consider a path graph with
six vertices as shown in Subfigure (a) of Figure 1. All
the algorithms except MCE could report the graph as a
possible edge cover. Although the approximation ratios
of these algorithms are not changed by these redundant
edges, practically these could lead to higher weights.

We discuss how to remove redundant edges opti-
mally from the cover. A vertex is over-saturated if more
than one covered edge is incident on it. (Or more than
b(v) edges are incident on v for a b-Edge Cover.)

We denote by GT = (VT , ET ,WT ) the subgraph of
G induced by over-saturated vertices. For each vertex
v, let c(v) denote the number of cover edges incident
on v. Then c(vT ) is the degree of a vertex vT ∈ GT .
We let b′ = c(vT ) − b(vT ) for each vertex, vT ∈ VT .
We have shown in earlier work [16] that we could find
a maximum weighted b′-matching in GT and delete
them from the edge cover to remove the largest weight
possible from the edge cover. But since it is expensive to
compute a maximum weighted b′-matching, we deploy a
b-Suitor algorithm (1/2-approximation) to compute the
b′-matching.

In Figure 1, two examples are shown of the removal
process. All algorithms except MCE could produce the
same graph as cover for both of the examples in Figure
1. For each example, the graph in the middle shows the
over-saturated subgraph of the original graph. The label
under the vertices represent the values of c(vT )−b(vT )).
In Subfigure (a) we generate a sub-optimal matching
(shown in dotted line), but in Subfigure (b) a maximum
matching was found by the edge removal algorithm (the
dotted line).

6 Experiments and Results

All the experiments were conducted on a Purdue Com-
munity cluster computer called Snyder, consisting of an
Intel Xeon E5-2660 v3 processor with 2.60 GHz clock, 32
KB L1 data and instruction caches, 256 KB L2-cache,
and 25 MB L3 cache.

Our testbed consists of both real-world and syn-
thetic graphs. We generated two classes of RMAT
graphs: (a) G500 representing graphs with skewed de-
gree distribution from the Graph 500 benchmark [19],
and (b) SSCA from HPCS Scalable Synthetic Compact
Applications graph analysis (SSCA#2) benchmark. We
used the following parameter settings: (a) a = 0.57,
b = c = 0.19, and d = 0.05 for G500, and (b) a = 0.6,
and b = c = d = 0.4/3 for SSCA. Additionally we con-
sider seven datasets taken from the University of Florida
Matrix collection covering application areas such as
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Figure 1: Removing redundant edges in two graphs. The top row of each column shows the original graph, the
middle row shows the graph induced by the over-saturated vertices, and the bottom row shows edges in a matching
indicated by dotted lines, which can be removed from the edge cover. In (a) we have a sub-optimal edge cover,
but in (b) we find the optimal edge cover.

Problems |V | |E| Avg.
Deg.

Fault 639 638,802 13,987,881 44

mouse gene 45,101 14,461,095 641

Serena 1,391,349 31,570,176 45

bone010 986,703 35,339,811 72

dielFilterV3real 1,102,824 44,101,598 80

Flan 1565 1,564,794 57,920,625 74

kron g500-logn21 2,097,152 91,040,932 87

hollywood-2011 2,180,759 114,492,816 105

G500 21 2,097,150 118,595,868 113

SSA21 2,097,152 123,579,331 118

eu-2015 11,264,052 264,535,097 47

Table 1: The structural properties of our testbed, sorted
in ascending order of edges.

medical science, structural engineering, and sensor data.
We also have a large web-crawl graph(eu-2015) [2] and
a movie-interaction network(hollywood-2011) [3]. Ta-
ble 1 shows the sizes of our testbed. There are two
groups of problems in terms of sizes: six smaller prob-
lems with fewer than 90 million edges, five problems
with 90 million edges or more. Most problems in the
collection have weights on their edges. The eu-2015
and hollywood-2011 are unit weighted graphs, and for
G500 and SSA21 we chose random weights from a uni-
form distribution. All weights and runtimes reported
are after removing redundant edges in the cover unless
stated otherwise.

6.1 Effects of Redundant Edge Removal. All
algorithms except the MCE algorithm have redun-
dant edges in their covers. We remove the redun-
dant edges by a Greedy matching algorithm discussed

in Section 5. The effect of removing redundant edges
is reported in Table 2. The second (fourth) col-
umn reports the weight obtained before applying the
reduction algorithm, and the third (fifth) column is
the percent reduction of weight due to the reduction
algorithm for Lazy Greedy (Nearest Neighbor).
The reduction is higher for Nearest Neighbor than
for Lazy Greedy as the geometric mean for per-
cent of reduction are 2.67 and 5.75 respectively. The
Lazy Greedy algorithm obtains edge covers with
lower weights relative to the Nearest Neighbor al-
gorithm.

Table 2: Reduction in weight obtained by removing
redundant edges for b = 5.

Problems Init. Wt. %Redn Init. Wt. %Redn
Lazy Lazy Nearest Nearest

Greedy Greedy Neighbor Neighbor
Fault 639 1.02E+16 4.02 1.09E+16 8.90
mouse gene 3096.94 6.41 3489.92 11.82
serena 7.46E+15 4.92 7.84E+15 8.00
bone010 8.68E+08 1.99 1.02E+09 15.46
dielFilterV3 262.608 1.36 261.327 0.58
Flan 1565 5.57E+09 1.38 5.97E+09 3.69
kron g500 4.58E+06 2.52 5.28E+06 8.55
hollywood 5.29E+06 2.78 7.63E+06 16.45
G500 1.37E+06 1.28 1.36E+06 0.95
SSA21 1.83E+12 7.43 1.87E+12 7.63
eu-2015 2.95E+07 1.60 3.31E+07 8.04
Geo. Mean. 2.67 5.75

6.2 Quality Comparisons of the Algo-
rithms. The LSE, and the new Lazy Greedy
and Dual Cover algorithms have approximation
ratio 3/2. The MCE and Nearest Neighbor algo-

Copyright c© 2017 by SIAM

Unauthorized reproduction of this article is prohibited



rithms are 2-approximation algorithms. But how do
their weights compare in practice? We compare the
weights of the covers from these algorithms with a
lower bound on the minimum weight edge cover. We
compute a lower bound by the Lagrangian relaxation
technique [7] which is as follows. From the LP formu-
lation we compute the Lagrangian dual problem. It
turns out to be an unconstrained maximization prob-
lem with an objective function with a discontinuous
derivative. We use sub-gradient methods to optimize
this objective function. The dual objective value is
always a lower bound on the original problem, resulting
in a lower bound on the optimum. We also parallelize
the Lagrangian relaxation algorithm. All the reported
bounds are found within 1 hour using 20 threads of an
Intel Xeon.

Table 3 shows the weights of the edge cover com-
puted by the algorithms for b = 1. We report re-
sults here only for b = 1, due to space constraints and
the observation that increasing b improves the near-
ness to optimality. The second column reports the
lower bound obtained from the Lagrangian relaxation
algorithm. The rest of the columns are the percent
of increase in weights w.r.t to the Lagrangian bound
for different algorithms. The third through the fifth
columns list the 3/2-approximation algorithms, and the
last two columns list the 2-approximation algorithms.
The lower the increase the better the quality; how-
ever, the lower bound itself might be lower than the
minimum weight of an edge cover. So a small in-
crease in weight over the lower bound shows that the
edge cover has near-minimum weight, but if all algo-
rithms show a large increase over the lower bound,
we cannot conclude much about the minimum weight
cover. The Dual Cover algorithm finds the lowest
weight among all the algorithms for our test problems.
Between MCE and Nearest Neighbor MCE pro-
duces lower weight covers except for the hollywood-2011,
eu-2015, kron g500-logn21 and bone010 graphs. Note
that the 3/2-approximation algorithms always produce
lower weight covers relative to the 2-approximation al-
gorithms. The difference in weights is high for bone010,
kron g500, eu-2015 and hollywood-2011 graphs. The
last two are unit-weighted problems, and the kron g500
problem has a narrow weight distribution (most of the
weights are 1 or 2). On the other hand, all the algo-
rithms produce near-minimum weights for the uniform
random weighted graphs, G500 and SSA21.

6.3 Lazy Greedy and Dual Cover Perfor-
mance. The two earlier 3/2-approximation algorithms
from the literature are the Greedy and the LSE [16].
Among them LSE is the better performing algo-

rithm [14]. Hence we compare the Lazy Greedy and
Dual Cover algorithms with the LSE algorithm. Ta-
ble 4 compares the run-times of these three algorithms
for b = 1 and 5. We report the runtimes (seconds)
for the LSE algorithm. The Rel. Perf. columns for
Lazy Greedy and Dual Cover report the ratio of
the LSE runtime to the runtime of each algorithm.
(The higher the ratio, the faster the algorithm). There
were some problems for which the LSE algorithm did
not complete within 4 hours, and for such problems
we report the run-times of the Lazy Greedy and the
Dual Cover algorithms.

It is apparent from the Table 4 that both
Lazy Greedy and Dual Cover algorithms are faster
than LSE. Among the three, the Dual Cover is the
fastest algorithm. As we have discussed in Section 3,
the efficiency of Lazy Greedy depends on the aver-
age number of queue accesses. In Figure 2, we show
the average number of queue accesses for the test prob-
lems. The average number of queue accesses is com-
puted as the ratio of total queue accesses (number of
invocations of deQueue() and enQueue()) and the size
of the edge cover. In the worst case it could be O(|E|),
but our experiments show that the average number of
queue accesses is low. For the smaller problems, except
for the mouse gene graph, which is a dense graph, the
average number of queue accesses is below 30, while for
mouse gene, it is about 600. For the larger problems,
this number is below 200.

Figure 2: Average number of queue accesses per edge in
the cover of Lazy Greedy algorithm.

Next we turn to the Dual Cover algorithm. As
explained in Section 3, it is an iterative algorithm, and
each iteration consists of two phases. The efficiency
of the algorithm depends on the number of iterations
it needs to compute the cover. In Figure 3, we show
the number of iterations needed by the Dual Cover
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Table 3: Edge cover weights computed by different algorithms, reported as increase over a Lagrangian lower
bound, for b = 1. The lowest percentage increase is indicated in bold font.

Problems
Lagrange %Increase

bound LSE LG DUALC MCE NN

Fault 639 7.80E+14 3.89 3.89 3.89 5.13 5.96
mouse gene 520.479 22.29 22.29 22.26 36.16 36.55
serena 5.29E+14 2.44 2.44 2.44 3.61 4.42
bone010 1.52E+08 2.49 5.67 2.49 30.09 29.68
dielFilterV3real 14.0486 3.58 3.58 3.58 3.62 3.65
Flan 1565 1.62E+07 12.87 12.87 12.87 12.87 12.87
kron g500-logn21 1.06E+06 5.68 8.52 5.68 26.27 22.96
G500 957392 0.07 0.07 0.07 0.11 0.13
SSA21 251586 1.13 1.13 1.13 1.87 3.15
hollywood-2011 1.62E+11 N/A 9.80 5.70 84.31 65.18
eu-2015 7.71E+06 N/A 4.28 3.19 21.01 16.52

Geo. Mean 2.80 3.21 2.80 5.57 6.14

Table 4: Runtime comparison of the LSE, Lazy Greedy, and Dual Cover Algorithms. Values in bold font
indicate the fastest performance for a problem.

Problems
b=1 b=5

Runtime Rel. Perf./Run Time Runtime Rel. Perf./
Run Time

LSE LG DUALC LSE LG
Fault 639 3.02 1.32 3.57 8.93 3.23
mouse gene 28.72 4.56 19.06 34.94 5.28
serena 7.56 1.10 6.32 16.11 2.00
bone010 70.26 63.48 259.1 162.2 109.13
dielFilterV3real 18.50 1.72 6.82 49.18 3.66
Flan 1565 9.53 1.26 7.06 26.76 2.47
kron g500-logn21 1566 112.4 275.8 3786 234.6
SSA21 144.6 1.67 6.42 211.3 2.32
G500 4555 54.71 237.6 >4 hrs (NA, 88.17)
hollywood-2011 >4 hrs (NA, 20.33) (NA, 3.19) >4 hrs (NA, 22.41)
eu-2015 >4 hrs (NA, 70.86) (NA, 7.48) >4 hrs (NA, 74.45)
Geo. Mean 5.95 23.58 8.09

algorithm. The maximum number of iterations is 20
for the Fault 639 graph, while for most graphs, it
converges within 10 iterations. Note that Fault 639 is
the smallest graph of all our test instances, although
it is the hardest instance for Dual Cover algorithm.
Note also that the hardest instance for Lazy Greedy
was mouse gene graph according to the average number
of queue accesses.

6.4 Nearest Neighbor Performance. The
fastest 2-approximation algorithm in the literature
is the MCE algorithm [16]. We compare the
Nearest Neighbor algorithm with MCE algorithm
for b = 1 in Table 5, and b = 5 in Table 6.The second
and third columns show the runtime for MCE and
relative performance of Nearest Neighbor w.r.t
MCE. The next two columns report the weight found
by MCE and percent of difference in weights computed
by the Nearest Neighbor algorithm; a positive value

indicates that the MCE weight is lower, and a negative
value indicates the opposite. The Nearest Neighbor
algorithm is faster than MCE.

The Nearest Neighbor algorithm is faster than
the MCE algorithm. For b = 1 the geometric mean
of the relative performance of the Nearest Neighbor
algorithm is 1.97, while for b = 5 it is 4.10. There
are some problems for which the Nearest Neighbor
also computes a lower weight edge cover (the reported
weight is the weight after removing redundant edges).
For the test graphs we used, the Nearest Neighbor
algorithm performs better than the MCE algorithm.

6.5 Nearest Neighbor and Dual Cover Com-
parison. From the discussion so far, the best 3/2-
serial algorithm for approximate minimum weighted
edge cover is the Dual Cover algorithm. The
Dual Cover algorithm computes near-minimum
weight edge covers fast. We now compare the
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Figure 3: Number of iterations taken by the
Dual Cover algorithm to compute an approximate
minimum weight edge cover.

Table 5: Runtime performance and difference in weight
of Nearest Neighbor w.r.t the MCE algorithm, with
b = 1.

Problems
Runtime Perf. Wt. %Wt.

Incr.
MCE NN MCE NN

Fault 639 2.42 0.31 8.20E+14 0.80%
mouse gene 6.79 0.58 708.697 0.28%
serena 6.02 0.72 5.49E+14 0.78%
bone010 3.72 0.27 1.97E+08 -0.32%
dielFilter 9.72 1.02 14.5565 0.04%
Flan 1565 9.77 0.85 1.83E+07 0.00%
kron g500 45.92 8.75 1.34E+06 -2.62%
hollywood-2011 33.89 5.63 1.76E+06 -10.38%
G500 66.98 3.18 251869 0.02%
SSA21 94.93 27.21 1.65E+11 1.26%
eu-2015 82.31 13.33 9.32E+06 -3.71%

Dual Cover algorithm with Nearest Neighbor for
b=1.

Table 7 shows the comparison between these two
algorithms. The Nearest Neighbor algorithm is
faster than Dual Cover but Dual Cover computes
lower weight edge covers. The geometric mean of
relative performance is 0.70%. For all the problems in
our testbed, the Dual Cover algorithm computes a
lower weight edge cover. The geometric mean of the
reduction in weight is 2.87%, while it can be as large as
36%.

7 Conclusions

We summarize the state of affairs for approximation
algorithms for the Edge Cover problem in Table 7.
Nine algorithms are listed, and for each we indicate
the approximation ratio; if it is a reduction from some

Table 6: Runtime performance and difference in weight
of Nearest Neighbor w.r.t the MCE algorithm, with
b = 5.

Problems
Runtime Rel. Perf. Wt %Wt.

Incr.
MCE NN MCE NN

Fault 639 2.31 4.32 9.89E+15 0.09
mouse gene 6.61 9.49 3087.81 -0.34
serena 5.73 4.27 7.20E+15 0.20
bone010 3.65 5.02 8.43E+08 2.09
dielFilter 9.37 5.45 259.326 0.19
Flan 1565 9.18 6.71 5.74E+09 0.25
kron g500 44.58 1.67 4.96E+06 -2.54
hollywood-2011 32.80 5.88 7.10E+06 -10.12
G500 66.06 1.77 1.35E+06 0.00
SSA21 92.01 9.81 1.71E+12 0.55
eu-2015 78.71 1.01 3.15E+07 -3.57

Table 7: The runtime and the edge cover weights of
the Nearest Neighbor and Dual Cover algorithms
for b = 1. The third column reports the ratio of run-
times(NN/DUALC); the fifth column reports the reduc-
tion in weight achieved by the Dual Cover algorithm.

Problems
Time
NN

Perf.
DUALC

Weight
NN

%Wt. Impr.
DUALC

Fault 639 0.31 0.37 8.26E+14 1.96
mouse gene 0.58 0.38 710.711 10.46
serena 0.72 0.60 5.53E+14 1.89
bone010 0.27 1.00 1.97E+08 20.97
dielFilterV3real 1.02 0.37 14.5616 0.07
Flan 1565 0.85 0.63 1.83E+07 0.00
kron g500-logn21 8.75 1.54 1.31E+06 14.06
hollywood-2011 3.18 1.00 1.58E+06 36.01
G500 13.33 0.70 251907 0.06
SSA21 5.63 0.25 1.67E+11 1.96
eu-2015 27.21 3.64 8.98E+06 11.44
Geo. Mean 0.70 2.87

form of matching; if there are redundant edges in the
cover that could be removed to practically decrease the
weight of the cover; and if the algorithm is concur-
rent. These algorithms can be extended to compute
b-Edge Covers. We have implemented the MCE and
S-LSE algorithms on parallel computers earlier [16], and
will implement the Dual Cover algorithm on parallel
machines in future work.

It seems surprising that the simple
Nearest Neighbor algorithm is better in quality and
runtime amongst other 2-approximation algorithms.
But keep in mind that the Nearest Neighbor
algorithm produces a number of redundant edges, and
that the number of redundant edges increases with b.
Also, the subgraph produced by Nearest Neighbor
has irregular degree distribution that results in high
degree nodes called hubs. These can be deterimental
in applications such as semi-supervised learning [20].
Alternative algorithms have been proposed for machine
learning, such as minimum weighted b-matching by
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Jebara et al. [11] or Mutual K-Nearest Neighbor
by Ozaka et al. [20]. We will explore the use of
b-Edge Cover algorithms for this graph construction.
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