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ABSTRACT

We present an automated pipeline capable of distinguishing the
phenotypes of myeloid-derived suppressor cells (MDSC) in healthy
and tumor-bearing tissues in mice using flow cytometry data. In
contrast to earlier work where samples are analyzed individually,
we analyze all samples from each tissue collectively using a repre-
sentative template for it. We demonstrate with 43 flow cytometry
samples collected from three tissues, naive bone-marrow, spleens of
tumor-bearing mice, and intra-peritoneal tumor, that a set of tem-
plates serves as a better classifier than popular machine learning
approaches including support vector machines and neural networks.
Our "interpretable machine learning" approach goes beyond classi-
fication and identifies distinctive phenotypes associated with each
tissue, information that is clinically useful. Hence the pipeline pre-
sented here leads to better understanding of the maturation and
differentiation of MDSCs using high-throughput data.
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1 INTRODUCTION

Can algorithms distinguish the phenotypes of myeloid-derived sup-
pressor cells (MDSC) in a tumor environment from MDSCs present
in healthy tissues in mice using flow cytometry (FC) data? We an-
swer this question in the affirmative. We consider three different
tissues in mice, and identify distinct immune cell populations that
are present in each tissue by first clustering cells in each flow cytom-
etry sample and then registering these cell populations across the
samples to form meta-clusters. We build templates, i.e., collections
of meta-clusters in the samples to provide a summary representa-
tion of each tissue, and then classify new samples to the closest
template. Central to our approach is a combinatorial measure of
dissimilarity between two clustered samples computed using the
flowMatch algorithm [3] from a mixed edge cover of minimum
weight in a bipartite graph.

Inflammation and cancer affect the formation of cells in the
bone marrow by altering myelopoiesis toward immunosuppressive
cells and reducing maturation of innate immune cells. The hetero-
geneous collection of immature myeloid cells that can potentially
suppress the T-cell response at the tumor are designated MDSCs [5].
In mice, monocytic MDSCs (M-MDSC; CD11b*Ly6CMLy6G /1)
and granulocytic MDSCs (G-MDSC; CD11b*Ly6C™Ly6GM), are
two MDSC subtypes that can be separated using the markers above
via flow cytometry (FC) [5]. Since MDSCs are associated with tu-
mor progression and increased metastasis, these cells are candidate
targets for immune therapy.

In this study, we consider MDSC cells from three tissues: naive
bone marrow (NVBM), tumor-bearing spleen (TBSP), and intra-
peritoneal tumors (IPTM). We have shown that the MDSC cells
from TBSP are a less mature phenotype that lack immediate T-cell
suppressive ability but they gain this function during a 3-day sup-
pression assay [4, 8]. In contrast, tumor MDSCs possess immediate
T-cell suppressive ability [4, 8].

We make the following contributions in this paper:
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(1) New insights into MDSC phenotyping: We use new MDSC
data to classify samples in three different tissue types using
all myeloid cells, M-MDSCs only, and G-MDSCs only. We also
identify the impact of cell types on correct classification and
phenotyping.

(2) New computational cytometry approach: We apply a ma-
chine learning (ML) algorithm developed in earlier work, flow-
Match [3], to classify MDSCs and allow human-interpretable
identification of cell populations in each tissue as meta-clusters.
The template-based classification is more accurate than tradi-
tional ML techniques such as support vector machines (SVM)
or neural networks. The flowMatch software is available as a
Bioconductor package (DOI: 10.18129/B9.bioc.flowMatch).

(3) Automation of FC analysis: We present a fully automated
pipeline to classify samples and identify MDSC phenotypes that
includes: data transformation, gating and clustering, cluster
matching and template formation, and finally, sample classifica-
tion and phenotype discovery. This is the first fully automated
phenotypic analysis of MDSCs.

2 METHODS
2.1 Description of dataset

The data were drawn from an archive of FC data-sets of ~60 individ-
ual experiments conducted over a period of 2 years and representing
94 biological samples. Samples were generated using reagents and
methods described previously by our group [4].

Inclusion criterion for samples in the FC file dataset: Each
data file was inspected using FlowJo v.10 software (FlowJo LLC;
Ashland, OR). Samples that met the following criteria were included
in the final dataset: (a) a minimum of 10,000 recorded events, (b)
available data for FSC-A, SSC-A, FSC-H, FSC-W, SSC-H, SSC-W,
CD11b, Ly6C and Ly6G, (c) use of a common fluorescent compensa-
tion protocol, and (d) complete separation of the fluorescent signals
for each fluorochrome pair (APC, PE, and PE-Cy?7). The quality of
each sample was defined with traditional biplots: i.e. (a) FSC-A x
SSC-A, (b) PE-Cy7-CD11b x SSC-A, (c) PE-Ly6G x APC-Ly6C [4].
Only samples where positive and negative populations of cells were
clearly defined on a specific axis were included in the final dataset
(i.e. FSC and SSC (neg: <30, pos. >40 on linear scale) and each fluo-
rochrome (neg: 0-102, pos. 103-104 on log scale)). The final dataset
for testing included 10 NVBM samples, 13 TBSP samples, and 20
IPTM samples.

2.2 Automated gating and clustering

In most FC studies, the subset of cells for downstream analysis is
selected by manual gating enabled by visual inspection of bivariate
plots. Alternatively, the important cell populations can be identified
by automated clustering algorithms.

Automated gating,. First, we use the biexponential/logicle func-
tion [11] to perform heteroskedasticity correction. For this purpose,
we employed the R library flowCore and estimated the parameters
of the transformation running the estimateLogicle function.

We automated the initial gating steps selecting viable, single
cells, and removing doublets, cellular debris, and clumps (Figure 3).
Myeloid cell selection and MDSC subtype selection were done based
on fluorochrome intensity. Both M-MDSC and G-MDSC subtype
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Figure 1: Creating a template from four FC samples. The
union of registered clusters forms a meta-cluster, and a col-
lection of meta-clusters defines a template.

selection used the known location of these cell types within the
Ly6C and Ly6G biplot [12]. Our approach to automated gating
followed a similar procedure to the one offered by the flowDensity
R-Bioconductor package, and is based on recognizing regions of
high local densities and significant curvatures [9].

Automated clustering. After a series of gating steps, we re-
duced the dimensionality of the samples from 9-D to 3-D. We clus-
tered each of these gated samples to identify subtypes of cells, using
the k-means algorithm. To identify the number of clusters kop;,
we used the minimum value of the S_Dbw index [7]. In our expe-
rience, [3] the S_Dbw index works better with high-dimensional
samples than some specialized implementations of k-means, such
as flowMeans [1]. However, the S_Dbw index tends to favor k-
values which are too high when used with preselected MDSCs,
so in this case, we used a combination of three cluster validation
criteria: average Silhouette width, Calinski-Harabasz index, and
Dunn index. We assume that cells in a p-dimensional cluster are
normally distributed, and hence can be statistically summarized by
two distribution parameters p, the p-dimensional mean vector, and
3, the p X p covariance matrix.

2.3 Registering cell clusters across samples

After clustering each FC sample independently, we match phe-
notypically-similar clusters across samples, a process commonly
known as cluster registration.

To match cell clusters, we used a robust variant of a graph match-
ing algorithm called the Mixed Edge Cover (MEC), that allows a
cluster in one sample to be matched with zero, one, or more clusters
in the second sample [2]. This is a different approach from those
taken by other FC algorithms utilizing meta-clusters [6, 10]. The
algorithm to compute an optimal MEC was developed in our prior
work [2]. Here, we briefly summarize it for completeness.

The MEC algorithm initially creates a bipartite graph from a
pair of samples, where vertices in each part represent clusters from
a sample. A pair of vertices (clusters) is connected by an edge
whose weight is computed by the Mahalanobis distance between a
normally distributed pair of clusters. Next, a modified minimum-
weight edge cover is computed on the bipartite graph. The resultant
solution matches clusters across samples, while possibly leaving a
small number of clusters unmatched. For each unmatched cluster
we pay a penalty A, which ensures that the number of such clusters
remains small. The cost of a mixed edge cover is the sum of weights
of all matched edges and the penalties due to the unmatched clusters.
An optimal MEC can be computed in O(k? log k) time where k is
the maximum number of clusters in a sample [2].



2.4 Algorithms to create templates

We previously designed an algorithm to create a template from
a group of similar samples [3]. First, we create a template from
all samples of the same class (Figure 1) by registering clusters in
these samples using the MEC algorithm, and merging the matched
clusters into meta-clusters (i.e., groups of phenotypically similar
clusters that have smaller distances among themselves relative to
their distance to other clusters). In Figure 1, the matched clusters
are shown joined by dashed lines, and these are merged to form
meta-clusters in the rightmost subfigure. Similar to the statistical
representation of a cluster, we model a meta-cluster by a Gaussian
distribution along with its mean and covariance matrix. Finally, a
collection of meta-clusters defines a template of a class of samples
as shown in Figure 1. The same statistical representation of a sample
and a template with a Gaussian mixture model enables seamless
matching of clusters and meta-clusters via the MEC algorithm.

To simplify the registration of clusters across many samples, the
algorithm iteratively merges the most similar pair of samples. The
similarity is computed by the cost of the optimum mixed edge cover.
The pair of samples considered in the current iteration is merged
to create an intermediate template. The algorithm for creating
templates organizes samples in a binary tree, and merges a pair of
samples and intermediate templates that are the most similar in the
current round.

2.5 Template-driven classification

Given a group of FC samples belonging to m classes, we build m
templates, T1, Tz, ..., T, one for each class. A new sample S is com-
pared with each of the templates via the MEC algorithm and is
predicted to belong to the class whose template it is most similar
(least dissimilar) to. This approach is a template-driven nearest
neighbor classification, which is more robust than sample-driven
nearest neighbor classification. The template-based classification
requires m MEC computations, one with each template, making
it significantly faster than nearest-neighbor classification that re-
quires a new sample to be compared with all existing samples.

Fully automated classification pipeline. The key to a suc-
cessful automation pipeline (Figure 2) lies in the parameter opti-
mization steps, since the parameters depend entirely on the data
distribution of input FC samples. Two parameters that significantly
influence the classification result are: the number of clusters (k) in
k-means, and the unmatch penalty (1) in the MEC algorithm. The
variable k defines how many distinct cell populations we believe are
reasonable in a given sample, and A determines whether two clus-
ters should be matched or left unmatched in a pair of samples. We
described our strategy to select k in Section 2.2. Two approaches are
recommended for selecting A. First, vary the unmatch penalty and
find the inflection point when the number of meta-clusters in the
template decreases dramatically and thereafter remains constant
[2]. Second, use a multiplier (> 2) of the maximal standard devi-
ation (estimated by the square root of the trace of the covariance
matrix) of clusters in the samples. The idea behind this approach is
to unmatch the clusters if they do not significantly intersect with
each other in multi-dimensional feature space.

Template evaluation and classification quality score. Due
to the small dataset (43 samples) we use the Leave One Out Cross
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Figure 2: Pipeline of automated template-based classifica-
tion. Purple blocks denote core steps, and yellow blocks in-
dicate parameter optimization steps.

Validation (LOOCV) technique to evaluate the prediction accuracy
of the templates. In turn, we make each sample the test sample,
create templates using all other samples, and then classify the test
sample to the nearest template.

To evaluate the classification confidence of the samples, we de-
fine a classification quality score by the following formula

classification_quality_score = 1 — d; /min{dg,, dp}, (1)

where d; is the dissimilarity of the test sample and the true template
of the tissue it belongs to, and d, and dj, refer to the dissimilarity
of the test sample and the other two templates, respectively. (Recall
that since we are doing LOOCV, we know the true template for
each sample.) Hence a positive score indicates a correct prediction,
while a negative score identifies a misclassification. The higher
the classification quality score is, the more confidence we have in
classifying the sample.

3 RESULTS

3.1 Selecting myeloid cell subsets

To identify different myeloid cell subtypes, we applied a sequence of
gates as shown in Figure 3. The boundary of each gate is computed
as described in Section 2.2, and we compared these with manual
gating patterns across samples to confirm that our method selected
commonly accepted ranges for each gate.

When we consider all myeloid cells, we cluster cells using the
k-means algorithm after the myeloid gate is applied, but not the M-
MDSC and G-MDSC gates (see Figure 3). In contrast, to investigate
M-MDSCs and G-MDSCs in isolation, we gate on Ly6C and Ly6G to
identify these subtypes and then apply k-means clustering. In both
cases, we cluster cells in three dimensional marker space (CD11b,
Ly6C and Ly6G).

After we gate and cluster every sample individually, we group all
samples collected from a tissue and create a template for that tissue
type (NVBM, TBSP, and IPTM). Furthermore, to investigate different
cell types in each tissue, we create templates using three different set
of cells: all myeloid cells, M-MDSCs only, and G-MDSCs only. Hence
we construct nine templates as shown in Figure 4. To compare the
templates, we summarize the meta-clusters within each template
with respect to the following four aspects: number of meta-clusters,
fraction of cells in all myeloid cells, average expression level of
markers Ly6G and Ly6C, and average standard deviation of the
meta-clusters (Table 1). The average expression level of markers
measures the approximate position of meta-clusters in the 2-D
template plot, and the average standard deviation estimates the
spatial extent of each meta-cluster.

(a) Myeloid cells templates. From the myeloid cells templates,
for the three tissues we observed similar meta-cluster distribution
patterns that contain the M-MDSC range at top left, the G-MDSC



(b) SSC gate

(a) Non-debris gate
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Figure 3: The sequence of gates applied to FC data to select
MDSC subtypes. The red rectangle in each plot shows the
boundaries for the gates. Gates listed in Subfigures (a) to (d)
are applied in sequence to select myeloid cells, followed by
individual gating of the M- or G-MDSC subtypes.

range at the middle right, and other cell populations at left bottom
(Figure 4a). However, significant differences exist across templates.
As our primary interest is in MDSCs, we analyze the meta-clusters
based on the areas: M-MDSC, G-MDSC, and ‘Others’. We consider
only the meta-clusters which reside entirely within each subtype
range as G- or M-MDSC meta-clusters, and those partially involved
in the subtype range are considered in the ‘Others’ category. Be-
cause of the large number of meta-clusters identified in each tem-
plate, only significant meta-clusters are shown in the table and in
the template plots. A meta-cluster is significant if it exists in more
than one sample or has > 1% of myeloid cells. In general, NVBM
and TBSP have fewer meta-clusters than IPTM, especially within
the ‘Others’ area. Numbers and patterns of meta-clusters within the
M- and G-MDSC range appear similar across tissues, but a slight
shift of meta-clusters can be observed: for example, meta-clusters in
M-MDSC shift upward (Ly6C increases) from NVBM to IPTM, while
TBSP tends to have lower Ly6C and Ly6G expression in G-MDSC.

Although a few common meta-clusters that appear in all tissues
are identified in the templates, we also discover many unique meta-
clusters that exist in only one tissue. A large number of myeloid cells
are selected by the gating procedure, but the M and G subtype gates
represent a much smaller fraction of the meta-clusters. Therefore,
we consider the gating of the M and G subtypes across samples to

investigate if flowMatch would classify the tissues based solely on
these subtypes.

(b) M-MDSC templates. We observe that IPTM is the most
distinctive template among all, with the highest number and the
broadest distribution of meta-clusters (Figure 4b). Table 1 shows
that we observe a large gap in the number of meta-clusters in
M-MDSC templates, which provides a good separation between
tissues. We include all meta-clusters (including insignificant ones)
in the table to avoid losing information with few meta-clusters. The
expression level of both Ly6C and Ly6G increase from naive samples
to tumor samples, which shows up as an upward and rightward
shift of meta-clusters in the template plots. Unlike the Myeloid cells
templates, the average spatial size of meta-clusters remains similar
across tissues. We observe an increase of fraction of MDSCs from
NVBM to TBSP, then followed by a decrease of M-MDSCs in IPTM.
The two significant meta-clusters in NVBM template are also found,
one each, in the TBSP and IPTM templates, and hence there is no
significant unique meta-cluster in the NVBM template.

(c) G-MDSC templates. The G-MDSC templates reveal diver-
gent patterns. Firstly, the location of meta-clusters is changed across
tissues: NVBM meta-clusters aggregate at the middle left, TBSP
meta-clusters are centered at the bottom right, while in IPTM, they
are distributed along the diagonal line, which can be confirmed
from the average expression level of markers (Table 1). Secondly,
the number of meta-clusters dramatically increases in the IPTM
template. G-MDSCs account for over 60% of myeloid cells in NVBM,
and decrease from TBSP to IPTM. Additionally all meta-clusters
are unique in the corresponding tissue, indicating that G-MDSC
templates are more distinctive than M-MDSC templates.

Consistent with other research, it was found that in all cases,
there are more (or similar numbers of) MDSCs in NVBM samples
compared to the IPTM samples. This is most likely due to NVBM
enrichment of myeloid-precursor cells that express the selected
markers, whereas IPTM consists of a broader mix of immune cell
types found in the tumor microenvironment.

3.2 Classifying samples using templates

We show the classification quality score of each sample when us-
ing different sets of templates in Figure 5. With each of the three
template sets: myeloid cells templates, M-MDSC templates, and
G-MDSC templates, we observe that the flowMatch algorithm cor-
rectly classifies all samples to their true tissue. Compared with the
others, G-MDSC templates have the highest average score when
classifying NVBM samples (Figure 5c¢), while regarding TBSP and
IPTM, myeloid cells templates perform the best, followed by M-
MDSC templates and G-MDSC templates. Surprisingly, M-MDSC
templates show higher classification confidence when classifying
TBSP compared with G-MDSC templates (Figure 5b). Observing the
distribution of meta-clusters, TBSP samples are more distinct in G-
MDSCs than in M-MDCSs. One possible reason could be the higher
number of IPTM meta-clusters in M-MDSC templates, making it
easier to distinguish IPTM from the TBSP. As we expected, myeloid
templates have the highest average classification confidence (Fig-
ure 5a), because they capture the characteristic distribution of both
G-MDSCs and M-MDSCs, and also other myeloid cells.
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Table 1: Comparison of meta-clusters in three sets of templates shown in Figure 4. Only significant meta-clusters are included

Samples by tissue, ordered

(a) Myeloid Cells Templates

Samples by tissue, ordered

(b) M-MDSC Templates

Samples by tissue, ordered

(c) G-MDSC Templates

Tissue
* NVBM
TBSP
IPTM

Figure 4: Templates for NVBM (col-
umn 1), TBSP (column 2), and IPTM
(column 3) illustrated by their meta-
clusters. Each meta-cluster is repre-
sented by a contour that includes 95%
of the cells within it. Templates are
built with a) all myeloid cells, b) M-
MDSCs only, and ¢) G-MDSCs only.
These are 2-D plots obtained from a
collection of 3-D contour plots. (a).
Purple and red rectangles indicate the
approximate areas of M-MDSC and
G-MDSC, respectively. Unique meta-
clusters in each template are indi-
cated by arrows with indices speci-
fied. b) and c). Distinct meta-clusters
are represented by different colors,
with matched meta-clusters repre-
sented by the same color across tem-
plates. Meta-clusters that are present
in only one sample are omitted for
simplicity.

Figure 5: The classification quality
score of samples classified by near-
est templates using LOOCYV, using G-
MDSCs only, M-MDSCs only, or all
myeloid cells. Horizontal lines indi-
cate the average classification quality
score of each template. Higher score
indicates higher confidence in the pre-
diction.

Tissue Myeloid cells templates M-MDSC  G-MDSC
M-MDSC range G-MDSC range Others range templates templates

NVBM  Fraction in Myeloid Cells 19.23% 49.27% 28.54% 18.55% 62.12%
Avg. Expression Level (Ly6G, Ly6C) (1.48, 3.51) (3.44, 2.57) (2.01, 2.02) (1.25,3.49) (3.19, 2.56)
Avg. Standard Deviation 0.15 0.07 0.29 0.16 0.11
Number of MC 3 3 6 3 4

TBSP  Fraction in Myeloid Cells 19.87% 25.41% 54.36% 19.14% 25.28%
Avg. Expression Level (Ly6G, Ly6C)  (1.31, 3.52) (3.27, 2.47) (1.47,1.51) (1.35,3.51)  (3.31, 2.50)
Avg. Standard Deviation 0.19 0.14 0.25 0.14 0.09
Number of MC 2 2 6 3 3

IPTM  Fraction in Myeloid Cells 15.77% 17.24% 56.78% 14.38% 19.14%
Avg. Expression Level (Ly6G, Ly6C)  (1.40, 3.53) (3.43, 2.66) (1.96,1.65)  (1.41,3.57) (3.27, 2.56)
Avg. Standard Deviation 0.24 0.15 0.18 0.16 0.09
Number of MC 3 2 9 10 7

for myeloid cell templates, while for G- and M-MDSC templates all meta-clusters are included.



Classifier All myeloid cells M-MDSCs G-MDSCs
A P R S F A P R S F A P R S F

KNN 0.721 0.787 0.800 0.870 0.728 0.744 0.751 0.782 0.874 0.752 0.930 0.916 0.908 0.952 0.909
SVM-Radial 0930 0935 0.924 0.961 0.929 0.837 0.831 0.831 0914 0.828 0.922 0970 0941 0971 0.953
SVM-Linear 0.837 0.840 0.856 0.913 0.847 0.488 0.473 0.478 0.737 0.472 0.837 0.849 0.874 0.920 0.851
Naive Bayes 0977 0.861 0.831 0.986 0.978 0.791  0.809 0.764 0.882 0.779 0.930 0.957 0923 0.957 0.933
Neural Network  0.791 0.814 0.765 0.881 0.781 0.442 0.394 0.418 0.716 0.397 0.814 0.841 0.814 0.894 0.826
FlowMatch 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Five Statistical measures (Accuracy, Precision, Recall, Specificity, and F-score) for the performance of classifiers using
all myeloid cells, only M-MDSCs, or only G-MDSCs. Each classifier was trained using LOOCYV and the final models were selected
based on the highest accuracy. All statistical measures except Accuracy are averages due to multi-class classification.

3.3 Other classification approaches

We compare the template-based classification method to five other
widely used non-template-based classification approaches, listed in
Table 2; these methods are available in the R package caret.

(a) Features construction. We cluster each sample by k-means
and construct features from the clusters. For each cluster, we select
the size (cell count), the mean vector, and the covariance matrix
as features, yielding a total of 1 + m + m? features for one cluster,
where m is the number of markers. With k clusters, an FC sample
is finally represented by a feature vector of length k * (1 + m +
m?). To ensure that the feature vectors have consistent meanings
across samples, we label clusters in the ascending order of their
mean vector. Additionally, we fix the the number of clusters for
this comparison so that each sample has equal number of features
without missing values. Using a majority voting rule, we set k = 10
in myeloid cells and k = 2 in M-MDSCs or G-MDSCs. With all
samples having three markers, this yields 130 features for a myeloid
cell sample and 26 features for an M-MDSC or G-MDSC sample.

(b) Classification results. The training function implemented
in Caret automatically selects the best parameter set yielding the
highest accuracy. For a fair comparison with flowMatch, we again
use LOOCV to evaluate each classifier, and classify samples using
myeloid cells, G-MDSCs only, and M-MDSCs only. For each classi-
fier and each set of cells, we report prediction accuracy, precision,
recall, specificity and the F-score in Table 2. SVM-Radial and Naive
Bayes generally have the highest accuracies and F-scores among
these, but at least one sample is misclassified by these methods. The
neural network performs the worst in all cases. When classifying
samples by non-template-based methods, G-MDSCs appear to be
more distinguishing than all myeloid cells and M-MDSCs, while the
highest classification accuracy comes from Naive Bayes classifier
using all myeloid cells, where only one sample is misclassified.

In conclusion, non-template-based classifiers perform well in
classifying samples using G-MDSCs and all myeloid cells, but none
of them achieves the 100% prediction accuracy attained by the
template-based method. Additionally, our template-based classifier
clearly shows the characteristic cell populations and their distri-
butions, thereby uncovering the underlying biological differences
that are useful to clinicians.

4 CONCLUSIONS

This paper presents a new approach to classifying and phenotyping
MDSCs by using templates built from FC data of NVBM, TBSP

and IPTM. These templates provide a simple, yet effective, clas-
sification scheme, as well as a cleaner way to track prototypical
changes in terms of their meta-clusters. For example, we can match
meta-clusters between the NVBM and IPTM templates and pre-
cisely identify changes in different cell types. The ability to identify
biologically interpretable features behind a classification decision
is the novel and compelling aspect of our method. Methods to
identify specific, disease-associated cell phenotypes is important
for cancer research and drug discovery. Our results show that a
phenotypic difference can be seen between MDSC found at the
tumor and peripheral sites. This finding is consistent with unpub-
lished trasncriptomic and functional data from our lab. As such, the
template-based classification may aid in the development of drugs
designed to target MDSC at a specific tissue or development state.
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