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Abstract—Memory array architecture based on emerging
non-volatile memory devices have been proposed for on-chip
acceleration of dot-product computation in neural networks. As
recent advances in machine learning have shown that precision
reduction is a useful technique to reduce the computation and
memory storage, it is desired to evaluate their hardware cost. In
this paper, we use a circuit-level macro model, i.e. NeuroSim, to
benchmark the circuit-level performance metrics, such as chip
area, latency, and dynamic energy for the XNOR-RRAM and
conventional 8-bit RRAM architectures. Both architectures are
implemented to process the dot-product operation of a 512x512
synaptic matrix in sequential row-by-row and parallel read-out
fashion separately. The simulation results are based on RRAM
models and 32nm CMOS PDK, the energy-efficiency of the
parallel XNOR-RRAM architecture could achieve 311
TOPS/W, showing at least ~15x and ~621x improvement
compared to the parallel and sequential conventional 8-bit
RRAM architectures respectively.
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I. INTRODUCTION

Recent advances in deep neural networks (DNN) have
achieved remarkable success in various area, including
speech and image recognition. However, such applications
that implemented with conventional CPUs/GPUs or FPGAs
which are based on traditional von Neumann architecture are
no longer adequate for the state-of-the-art DNN, due to the
high requirement of bandwidth, memory storage capacity and
power consumption for the data communication during
weighted sum and weight update. Thus, the ultimate goal of
hardware accelerator design for neural networks is to
efficiently implement the entire learning algorithms on-chip
to achieve significant computation speed-up and low power
consumption.

Lots of effort has been made to design large-scale
neuromorphic hardware accelerators in recent years, e.g. TPU
[1], TrueNorth [2], Eyeriss [3], etc. These systems are
custom-designed based on CMOS ASIC technology, and
could operate more efficiently in terms of speed and power
consumption. However, the synaptic matrix are normally
stored in 6-transistor or 8-transistor SRAM arrays which are
not area-efficient, since typically one single SRAM cell could
occupy 100F2~200F?% (F is the lithography feature size).
Thus, researchers have proposed the crossbar array based on
resistive random access memory (RRAM) to implement
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synaptic arrays. RRAM is not only area-efficient (with size
4F2~12F? per cell), but can also achieve multilevel per bit by
exploiting the multi-conductance-state, which makes it
attractive to store “analog” synaptic weights with higher
density [4].

Several RRAM-based hardware accelerators for DNN
such as ISAAC [5] and PRIME [6] have been proposed to
implement “analog” weight matrix (16-bit synaptic weights
in ISAAC and 8-bit synaptic weights in PRIME), it was
suggested that such architectures could potentially achieve
significant improvement in throughput, energy, and
computational density comparing with CMOS ASIC designs
at the same technology node. Meanwhile, deep learning
researchers have shown that Binary Neural Network (BNN)
[7] could achieve satisfying classification accuracy on many
representative image datasets, such as MNIST, CIFAR-10
and ImageNet. Thus, correspondingly the XNOR-RRAM
architecture [8] has been proposed to replace high-precision
dot-product operations with bit-wise XNOR and bit-counting
operations. It could help to dramatically decrease the
hardware resources and significantly improve the
computational energy-efficiency since the synaptic weights
and neuron activations are binarized to “-1” and “+1”.

In this work, we utilize a circuit-level macro model, i.e.
NeuroSim [9] to benchmark the conventional 8-bit RRAM
and XNOR-RRAM architectures in sequential row-by-row
and parallel read-out fashion separately. The case study is to
process the dot-product operation of a 512x512 synaptic
matrix, it means that the weight matrix is too large to be
stored in one single RRAM array, which may cause slow-
accessing and extra energy consumption. Thus, array
partitioning [10] is desired to improve the overall architecture
performance by paralleling the computation efficiently.

The rest of the paper is organized as follows: Section II
introduces the background of RRAM-based synaptic array. In
section III, we describe the conventional 8-bit RRAM and
XNOR-RRAM architectures in sequential row-by-row and
parallel read-out fashion. Section I'V discusses the benchmark
results of the architectures mentioned above with the support
of NeuroSim. Finally section V concludes the paper.

II. BACKGROUND

Fig. 1 shows the basic functional unit of a RRAM-based
accelerator, which is called pseudo-crossbar array [11]. As
one type of non-volatile memory that stores information by
changing cell resistances, every RRAM cell in the pseudo-



crossbar array can be used to represent the elements of a
matrix. The input vector is represented as voltage inputs of
the bit-lines (BLs), such that the dot-product value will be the
current passing through the RRAM cells that sharing one
sense-line (SL), and can be obtained by a current (or voltage)
current sense amplifier (CSA) or analog to digital converter
(ADC).
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Fig. 1. (a) Using a sense-line (SL) to perform sum of dot-products.
(b) Pesudo-crossbar array with Switch Matrix, MUX+MUX
Decoder and ADC.

This pseudo-crossbar array can naturally perform
“analog” matrix-vector multiplication. To address this, we
can either use a high-precision DAC to provide the input
voltages with multiple voltage levels, or we can represent the
inputs as multiple sequential pulse cycles with a single fixed
voltage level. We employed the multiple-cycle design as it
does not introduce the distortion to the dot-product due to the
nonlinear [-V characteristics of RRAM [12]. The “analog”
synaptic weights can be represented by multi-bit RRAM
cells, however it is impractical to represent a high-precision
synaptic weight (e.g. 16-bit) by a single RRAM cell, thus we
can use several multi-bit RRAM cells in a row to represent a
high-precision synaptic weight (e.g. use 4x 4-bit RRAM cells
to represent a 16-bit synaptic weight).

In this work, we chose to implement an 8-bit neuron
activation by 8-bit sequential voltages, representing LSB to

MSB of the fixed-point input, which means to get one dot-
product result, we need to process at least 8 cycles. At first
cycle, the first partial sum will be read out by the ADC and
stored in the register, at following cycles, the partial sums will
be shifted and accumulated to the earlier results that stored in
the register to get the final dot-product. To investigate how
the number of RRAM bits affect corresponding circuit-level
performance, we benchmarked three cases, i.e. to represent
the 8-bit synaptic weights with 8x 1-bit RRAM cells, 4x 2-bit
RRAM cells and 2x 4-bit RRAM cells separately.

III. RRAM-BASED ARCHITECTURE DESIGN

In this work, we implemented four architectures,
including sequential and parallel XNOR-RRAM, sequential
and parallel conventional 8-bit RRAM architectures as shown
in Fig. 2.

For the XNOR-RRAM [8], the neuron activations and
synaptic weights are binarized to “+1” and “-1”. One synaptic
weight is represented by two RRAM cells in column.
Synaptic weight “-1” is represented by such RRAM pair
where the top one is high resistance state (HRS) and bottom
one is low resistance state (LRS), i.e. (HRS; LRS), inversely
synaptic weight “+1” is represented as a (LRS; HRS) RRAM
pair. Similarly, neuron activations “-1” and “+1” are also
represented respectively as input voltage pairs (0; 1) and (1;
0). Thus, it is straight-forward to read out row-by-row
sequentially, while sensing current passing through LRS
represents “+1”, and sensing current passing through HRS
represents “-1”. As Fig. 2 (a) shows, the partial sums will be
accumulated by adders and stored in registers till reading out
all the rows, then the total weighted-sum will be binarized by
the digital comparators. When it is parallel read-out, the
current flowing through the SLs (Ig;) is dependent on the
combination of WL input patterns and RRAM cell patterns,
since the LRS cells will dominate the total current, it can be
considered that Ig; is proportional to the number of LRS cells
along the column. Thus, the reference (I,.r) of ADC for
parallel mode should be set to the current value when half of
the activated cells are LRS in the column. For example, if

Sequential XNOR Parallel XNOR Sequential Analog-RRAM Parallel Analog-RRAM
[ SL Switch Matrix ] SL Switch Matrix ] [ SL Switch Matrix ] [ SL Switch Matrix ]
R WL i —— WL e —— 0 — Wty e === — Wt
X ; ha pa T 1 T 1 T X X L 1 =X 1 I=E X
F LT Ty, T T T Iy ST, oF DT Ty 1o T Ty o T Ty
J | Gells as one gynapse Gells as one gynapse,
1 5 S S L & pa p e ._L LU T 1 1 h e X
5] " X E x
8 || 2 || 2cells as one synapse z || 2célls as one synapse z =
e SL 1TIR Array H [SL 1TIR Array H Sbo R H b AR
g
= 8 ([[E 1 s 1 2 (1L als 1 1 2 [ 20 ¢ RRAM 1 als 2 [ 25 RRAM [ L X
Tiwe T Ty o Ly T Tl I, F Lo Ty T T Ly Flwe T Ly o Lwgef Ly
1 pa pa x T B T 1 T 1 1 T pa x x pa
Tl d Ly o T Ly T T, o Do Ly Tl d Ly, o T Ly Tl T, F Ly Ly
Mux | r_ — — 1% Muw | l;H Mux | Mux |
/ z z \ - - Weight-column [ / - - / - -
Mux csA | csA CSA X [ Aaoc [ aoc | [Aoc | mux Apc [ Apc ADC Mux ADC | ADC ADC
Decoder I dder | Adder Adder Dmde’E Adder | Adder Adder Dmdet ShiftAdd | ShiftAdd ShiftAdd
Register | Register Register Register | Register Register Register | Register Register
Comparator | Compartor Comparator ShiftAdd | Shiftadd ShiftAdd

(a) (b)

(c) (d)

Fig. 2. The diagram of (a) sequential XNOR-RRAM architecture; (b) parallel XNOR-RRAM architecture; (c) conventional sequential 8-bit
RRAM architecture; (d) conventional parallel 8-bit RRAM architecture.
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there are more “+1” dot-products than “-1”, the current Ig; is
larger than I..r, and ADC will give out “+1”.

For the conventional 8-bit RRAM architectures, the
fixed-point neuron activations are mapped as 8-bit sequential
voltages, which means it needs 8 cycles to get the total
weighted-sum. The synaptic weights are implemented as 8x
1-bit RRAM cells (or 4x 2-bit cells, 2x 4-bit cells) in a row,
representing from the LSB to MSB. Fig. 2 (c) shows the
sequential mode, where the adders and registers are used for
row-by-row sequential read-out and accumulation. After
reading the whole array, the partial sum will go through the
shift-add modules, which are used to shift and accumulate the
partial sums of the 8-bit sequential input voltages during 8
cycles. One should notice that, when we use several multi-bit
RRAM cells to form the 8-bit synaptic weights, i.e. 4x 2-bit
cells or 2x 4-bit cells, correspondingly, the ADC should also
be set to multi-bit precision, i.e. either 2-bit or 4-bit ADC, to
guarantee the computation accuracy. Similarly, Fig. 2 (d)
shows the parallel architecture, which does not need adders
and registers for row-by-row accumulation, instead, it
requires high-precision ADC to read out the weighted-sum of
one column, which is capable of truncating the weighted-sum
to a reasonable precision and guarantee the computation
accuracy.

When the matrix size is larger (e.g. 512x512), the
corresponding peripheral circuits will be heavier, it will take
longer time to process a larger array, and more importantly,
it will require an ADC with much higher precision for parallel
read-out, which is impractical for circuit design. Thus, array
partition is a promising solution to save the area, latency and
energy. In this way, the entire matrix can be implemented by
several sub-arrays, and the output of each sub-array is just the
partial weighted-sum. While all the sub-arrays can operate in
parallel simultaneously, the partial weighted-sum will go
through some adder trees to get the total weighted-sum. Such
that, even though the matrix size is much larger, the total
latency is still quite short, i.e. the sum of latency for single
sub-array operation and the latency of adder trees.

IV. SIMULATION SETUP AND RESULTS

To benchmark the RRAM-based architectures mentioned
above, we customized a circuit-level macro model called
NeuroSim [9] to estimate the circuit-level performance,
including area, latency, dynamic energy and leakage power.
The case study is to process a 512x512 dot-product operation,
while we assumed various design options from device level
to circuit level.

Table 1 shows the key parameters of simulation.
Considering the array partitioning, we fixed sub-array size to
be 256x256, and the partial weighted-sums of each sub-array
will be summed up by the adder trees at the end. For different
architecture and design options (e.g. RRAM cell precision, or
ADC precision) which will affect the output precision of each
sub-array, the number of bits of corresponding adder trees
should also be different. Since the ADC layout area is
relatively larger than a single RRAM cell, it is impractical to
implement an ADC to each column, thus we assumed that
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every 8 columns sharing 1 ADC, which helps to save the chip
area, but as a trade-off, we need to process 8 cycles to read
out all the columns.

TABLEI. SIMULATION PARAMETERS

Parameters Values
Sub-array size 256%256
Technology node 32 nm
RRAM resistance 100 kQ /10 MQ
Number of columns share | ADC 8
Read activity 50%
Read voltage 0.5V
ADC precision of parallel XNOR 4-bit
CSA precision of sequential XNOR 1-bit
ADC precision of parallel 1bit cell 7-bit
ADC precision of parallel 2bit cell 8-bit
ADC precision of parallel 4bit cell 9-bit
CSA precision of sequential 1bit cell 1-bit
ADC precision of sequential 2bit cell 2-bit
ADC precision of sequential 4bit cell 4-bit

Table II summarizes the benchmark results for 8 cases,
including sequential and parallel XNOR-RRAM; sequential
conventional 8-bit RRAM architectures implemented by 1-
bit, 2-bit and 4-bit RRAM cells separately; parallel
conventional 8-bit RRAM architectures implemented by 1-
bit, 2-bit and 4-bit RRAM cells separately. It shows that the
parallel XNOR-RRAM greatly reduces the latency by ~176x
and the energy-efficiency could be improved by >37x
compared to the sequential XNOR-RRAM.

For the parallel conventional 8-bit RRAM architectures,
as we use higher-precision RRAM cells to implement the
synaptic weights, the actual total number of RRAM cells
becomes less, consequently the peripheral circuits are less.
Thus, it shows that when we use 4-bit RRAM cells, the
circuit-level performance is the best among the three cases,
the energy-efficiency can achieve ~20 TOPS/W. However,
compared to the parallel XNOR-RRAM, the area is ~5x
larger and energy-efficiency is ~15x lower.

Although the sequential conventional 8-bit RRAM
architectures are more area-efficient compared to the parallel
ones (because ADCs dominant the area while sequential ones
have much lower-precision ADCs), the latency and energy-
efficiency are still much worse since sequential ones need
extra time and energy to process row-by-row. It should be
noticed that, different from the parallel modes, when the
number of bits of the RRAM cell becomes higher, the energy-
efficiency becomes worse (0.5>0.27>0.17 TOPS/W). This is
because the higher-bit RRAM cells required higher-precision
ADCs (which consume higher energy) while the ADCs
dominant the total energy.



TABLE II. BENCHMARK OF ARCHITECTURES FOR 512x512

DoTt-PRODUCT

Area Latency Energy TOPS/

(um*"2) (ns) ®J) W

Parallel-XNOR 36618.4 30.5 840.3 311.95
Sequential-XNOR 31030.3 5293.4 31560.5 8.31
Parallel-1bit-cell 322246.7 7423 50213.7 5.22
Parallel-2bit-cell 213853.8 428.1 25382.7 10.33
Parallel-4bit-cell 188375.4 272.9 13095.7 20.02
Sequential-1bit-cell 154802.2 16155.5 522544.7 0.50
Sequential-2bit-cell 89557.0 15806.9 | 987954.7 0.27
Sequential-4bit-cell 67342.0 15912.0 | 1550660.5 | 0.17

V. CONCLUSION

In this paper, we benchmarked XNOR-RRAM and
conventional 8-bit RRAM architectures in sequential row-by-
row and parallel read-out fashion. To analyze the impact of
RRAM precision, we have also set several cases, i.e. use 1-
bit, 2-bit and 4-bit RRAM cells to form 8-bit synaptic weights
separately. We used NeuroSim as a handy tool to estimate the
hardware performance, i.e. area, latency and dynamic energy
to investigate the trade-offs among those architectures. The
simulation result shows that the parallel XNOR-RRAM is
capable to achieve the best performance, while the energy-
efficiency to process a 512x512 dot-product operation is
~311 TOPS/W at 32nm PDK, which shows at least ~15x and
~621x improvement compared to the parallel and sequential
conventional 8-bit RRAM architectures respectively.
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