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Abstract—Memory array architecture based on emerging 
non-volatile memory devices have been proposed for on-chip 
acceleration of dot-product computation in neural networks. As 
recent advances in machine learning have shown that precision 
reduction is a useful technique to reduce the computation and 
memory storage, it is desired to evaluate their hardware cost. In 
this paper, we use a circuit-level macro model, i.e. NeuroSim, to 
benchmark the circuit-level performance metrics, such as chip 
area, latency, and dynamic energy for the XNOR-RRAM and 
conventional 8-bit RRAM architectures. Both architectures are 
implemented to process the dot-product operation of a 512×512 
synaptic matrix in sequential row-by-row and parallel read-out 
fashion separately. The simulation results are based on RRAM 
models and 32nm CMOS PDK, the energy-efficiency of the 
parallel XNOR-RRAM architecture could achieve 311 
TOPS/W, showing at least ~15× and ~621× improvement 
compared to the parallel and sequential conventional 8-bit 
RRAM architectures respectively. 
 
Keywords—non-volatile memory, machine learning, 

hardware accelerator, neuromorphic computing 
 

I. INTRODUCTION 
      Recent advances in deep neural networks (DNN) have 
achieved remarkable success in various area, including 
speech and image recognition. However, such applications 
that implemented with conventional CPUs/GPUs or FPGAs 
which are based on traditional von Neumann architecture are 
no longer adequate for the state-of-the-art DNN, due to the 
high requirement of bandwidth, memory storage capacity and 
power consumption for the data communication during 
weighted sum and weight update. Thus, the ultimate goal of 
hardware accelerator design for neural networks is to 
efficiently implement the entire learning algorithms on-chip 
to achieve significant computation speed-up and low power 
consumption.  
      Lots of effort has been made to design large-scale 
neuromorphic hardware accelerators in recent years, e.g. TPU 
[1], TrueNorth [2], Eyeriss [3], etc. These systems are 
custom-designed based on CMOS ASIC technology, and 
could operate more efficiently in terms of speed and power 
consumption. However, the synaptic matrix are normally 
stored in 6-transistor or 8-transistor SRAM arrays which are 
not area-efficient, since typically one single SRAM cell could 
occupy 100 ~200  (F is the lithography feature size). 
Thus, researchers have proposed the crossbar array based on 
resistive random access memory (RRAM) to implement 

synaptic arrays. RRAM is not only area-efficient (with size 
4 ~12  per cell), but can also achieve multilevel per bit by 
exploiting the multi-conductance-state, which makes it 
attractive to store “analog” synaptic weights with higher 
density [4].  
      Several RRAM-based hardware accelerators for DNN 
such as ISAAC [5] and PRIME [6] have been proposed to 
implement “analog” weight matrix (16-bit synaptic weights 
in ISAAC and 8-bit synaptic weights in PRIME), it was 
suggested that such architectures could potentially achieve 
significant improvement in throughput, energy, and 
computational density comparing with CMOS ASIC designs 
at the same technology node. Meanwhile, deep learning 
researchers have shown that Binary Neural Network (BNN) 
[7] could achieve satisfying classification accuracy on many 
representative image datasets, such as MNIST, CIFAR-10 
and ImageNet. Thus, correspondingly the XNOR-RRAM 
architecture [8] has been proposed to replace high-precision 
dot-product operations with bit-wise XNOR and bit-counting 
operations. It could help to dramatically decrease the 
hardware resources and significantly improve the 
computational energy-efficiency since the synaptic weights 
and neuron activations are binarized to “-1” and “+1”. 
      In this work, we utilize a circuit-level macro model, i.e. 
NeuroSim [9] to benchmark the conventional 8-bit RRAM 
and XNOR-RRAM architectures in sequential row-by-row 
and parallel read-out fashion separately. The case study is to 
process the dot-product operation of a 512×512 synaptic 
matrix, it means that the weight matrix is too large to be 
stored in one single RRAM array, which may cause slow-
accessing and extra energy consumption. Thus, array 
partitioning [10] is desired to improve the overall architecture 
performance by paralleling the computation efficiently.    
      The rest of the paper is organized as follows: Section II 
introduces the background of RRAM-based synaptic array. In 
section III, we describe the conventional 8-bit RRAM and 
XNOR-RRAM architectures in sequential row-by-row and 
parallel read-out fashion. Section IV discusses the benchmark 
results of the architectures mentioned above with the support 
of NeuroSim. Finally section V concludes the paper.  

II. BACKGROUND 
      Fig. 1 shows the basic functional unit of a RRAM-based 
accelerator, which is called pseudo-crossbar array [11]. As 
one type of non-volatile memory that stores information by 
changing cell resistances, every RRAM cell in the pseudo-
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crossbar array can be used to represent the elements of a 
matrix. The input vector is represented as voltage inputs of 
the bit-lines (BLs), such that the dot-product value will be the 
current passing through the RRAM cells that sharing one 
sense-line (SL), and can be obtained by a current (or voltage) 
current sense amplifier (CSA) or analog to digital converter 
(ADC). 
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Fig. 1. (a) Using a sense-line (SL) to perform sum of dot-products. 
(b) Pesudo-crossbar array with Switch Matrix, MUX+MUX 
Decoder and ADC. 

 
      This pseudo-crossbar array can naturally perform 
“analog” matrix-vector multiplication. To address this, we 
can either use a high-precision DAC to provide the input 
voltages with multiple voltage levels, or we can represent the 
inputs as multiple sequential pulse cycles with a single fixed 
voltage level. We employed the multiple-cycle design as it 
does not introduce the distortion to the dot-product due to the 
nonlinear I-V characteristics of RRAM [12]. The “analog” 
synaptic weights can be represented by multi-bit RRAM 
cells, however it is impractical to represent a high-precision 
synaptic weight (e.g. 16-bit) by a single RRAM cell, thus we 
can use several multi-bit RRAM cells in a row to represent a 
high-precision synaptic weight (e.g. use 4× 4-bit RRAM cells 
to represent a 16-bit synaptic weight). 
      In this work, we chose to implement an 8-bit neuron 
activation by 8-bit sequential voltages, representing LSB to 

MSB of the fixed-point input, which means to get one dot-
product result, we need to process at least 8 cycles. At first 
cycle, the first partial sum will be read out by the ADC and 
stored in the register, at following cycles, the partial sums will 
be shifted and accumulated to the earlier results that stored in 
the register to get the final dot-product. To investigate how 
the number of RRAM bits affect corresponding circuit-level 
performance, we benchmarked three cases, i.e. to represent 
the 8-bit synaptic weights with 8× 1-bit RRAM cells, 4× 2-bit 
RRAM cells and 2× 4-bit RRAM cells separately.  

III. RRAM-BASED ARCHITECTURE DESIGN 
      In this work, we implemented four architectures, 
including sequential and parallel XNOR-RRAM, sequential 
and parallel conventional 8-bit RRAM architectures as shown 
in Fig. 2.  
      For the XNOR-RRAM [8], the neuron activations and 
synaptic weights are binarized to “+1” and “-1”. One synaptic 
weight is represented by two RRAM cells in column. 
Synaptic weight “-1” is represented by such RRAM pair 
where the top one is high resistance state (HRS) and bottom 
one is low resistance state (LRS), i.e. (HRS; LRS), inversely 
synaptic weight “+1” is represented as a (LRS; HRS) RRAM 
pair. Similarly, neuron activations “-1” and “+1” are also 
represented respectively as input voltage pairs (0; 1) and (1; 
0). Thus, it is straight-forward to read out row-by-row 
sequentially, while sensing current passing through LRS 
represents “+1”, and sensing current passing through HRS 
represents “-1”.  As Fig. 2 (a) shows, the partial sums will be 
accumulated by adders and stored in registers till reading out 
all the rows, then the total weighted-sum will be binarized by 
the digital comparators. When it is parallel read-out, the 
current flowing through the SLs  is dependent on the 
combination of WL input patterns and RRAM cell patterns, 
since the LRS cells will dominate the total current, it can be 
considered that  is proportional to the number of LRS cells 
along the column. Thus, the reference  of ADC for 
parallel mode should be set to the current value when half of 
the activated cells are LRS in the column. For example, if 

Fig. 2. The diagram of (a) sequential XNOR-RRAM architecture; (b) parallel XNOR-RRAM architecture; (c) conventional sequential 8-bit 
RRAM architecture; (d) conventional parallel 8-bit RRAM architecture.
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there are more “+1” dot-products than “-1”, the current  is 
larger than , and ADC will give out “+1”. 
      For the conventional 8-bit RRAM architectures, the 
fixed-point neuron activations are mapped as 8-bit sequential 
voltages, which means it needs 8 cycles to get the total 
weighted-sum. The synaptic weights are implemented as 8× 
1-bit RRAM cells (or 4× 2-bit cells, 2× 4-bit cells) in a row, 
representing from the LSB to MSB. Fig. 2 (c) shows the 
sequential mode, where the adders and registers are used for 
row-by-row sequential read-out and accumulation. After 
reading the whole array, the partial sum will go through the 
shift-add modules, which are used to shift and accumulate the 
partial sums of the 8-bit sequential input voltages during 8 
cycles. One should notice that, when we use several multi-bit 
RRAM cells to form the 8-bit synaptic weights, i.e. 4× 2-bit 
cells or 2× 4-bit cells, correspondingly, the ADC should also 
be set to multi-bit precision, i.e. either 2-bit or 4-bit ADC, to 
guarantee the computation accuracy. Similarly, Fig. 2 (d) 
shows the parallel architecture, which does not need adders 
and registers for row-by-row accumulation, instead, it 
requires high-precision ADC to read out the weighted-sum of 
one column, which is capable of truncating the weighted-sum 
to a reasonable precision and guarantee the computation 
accuracy.  
      When the matrix size is larger (e.g. 512×512), the 
corresponding peripheral circuits will be heavier, it will take 
longer time to process a larger array, and more importantly, 
it will require an ADC with much higher precision for parallel 
read-out, which is impractical for circuit design. Thus, array 
partition is a promising solution to save the area, latency and 
energy. In this way, the entire matrix can be implemented by 
several sub-arrays, and the output of each sub-array is just the 
partial weighted-sum. While all the sub-arrays can operate in 
parallel simultaneously, the partial weighted-sum will go 
through some adder trees to get the total weighted-sum. Such 
that, even though the matrix size is much larger, the total 
latency is still quite short, i.e. the sum of latency for single 
sub-array operation and the latency of adder trees. 

IV. SIMULATION SETUP AND RESULTS 
      To benchmark the RRAM-based architectures mentioned 
above, we customized a circuit-level macro model called 
NeuroSim [9] to estimate the circuit-level performance, 
including area, latency, dynamic energy and leakage power. 
The case study is to process a 512×512 dot-product operation, 
while we assumed various design options from device level 
to circuit level.  
      Table I shows the key parameters of simulation. 
Considering the array partitioning, we fixed sub-array size to 
be 256×256, and the partial weighted-sums of each sub-array 
will be summed up by the adder trees at the end. For different 
architecture and design options (e.g. RRAM cell precision, or 
ADC precision) which will affect the output precision of each 
sub-array, the number of bits of corresponding adder trees 
should also be different. Since the ADC layout area is 
relatively larger than a single RRAM cell, it is impractical to 
implement an ADC to each column, thus we assumed that 

every 8 columns sharing 1 ADC, which helps to save the chip 
area, but as a trade-off, we need to process 8 cycles to read 
out all the columns. 

TABLE I.    SIMULATION PARAMETERS 

Parameters Values 
Sub-array size 256×256 
Technology node 32 nm 
RRAM resistance 100 k  / 10 M  
Number of columns share 1 ADC 8 
Read activity 50% 
Read voltage 0.5 V 
ADC precision of parallel XNOR 4-bit 
CSA precision of sequential XNOR 1-bit 
ADC precision of parallel_1bit_cell 7-bit 
ADC precision of parallel_2bit_cell 8-bit 
ADC precision of parallel_4bit_cell 9-bit 
CSA precision of sequential_1bit_cell 1-bit 
ADC precision of sequential_2bit_cell 2-bit 
ADC precision of sequential_4bit_cell 4-bit 

 
      Table II summarizes the benchmark results for 8 cases, 
including sequential and parallel XNOR-RRAM; sequential 
conventional 8-bit RRAM architectures implemented by 1-
bit, 2-bit and 4-bit RRAM cells separately; parallel 
conventional 8-bit RRAM architectures implemented by 1-
bit, 2-bit and 4-bit RRAM cells separately. It shows that the 
parallel XNOR-RRAM greatly reduces the latency by ~176× 
and the energy-efficiency could be improved by >37× 
compared to the sequential XNOR-RRAM.  
      For the parallel conventional 8-bit RRAM architectures, 
as we use higher-precision RRAM cells to implement the 
synaptic weights, the actual total number of RRAM cells 
becomes less, consequently the peripheral circuits are less. 
Thus, it shows that when we use 4-bit RRAM cells, the 
circuit-level performance is the best among the three cases, 
the energy-efficiency can achieve ~20 TOPS/W. However, 
compared to the parallel XNOR-RRAM, the area is ~5× 
larger and energy-efficiency is ~15× lower. 
      Although the sequential conventional 8-bit RRAM 
architectures are more area-efficient compared to the parallel 
ones (because ADCs dominant the area while sequential ones 
have much lower-precision ADCs), the latency and energy-
efficiency are still much worse since sequential ones need 
extra time and energy to process row-by-row. It should be 
noticed that, different from the parallel modes, when the 
number of bits of the RRAM cell becomes higher, the energy-
efficiency becomes worse (0.5>0.27>0.17 TOPS/W). This is 
because the higher-bit RRAM cells required higher-precision 
ADCs (which consume higher energy) while the ADCs 
dominant the total energy.  
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TABLE II.    BENCHMARK OF ARCHITECTURES FOR 512×512 
DOT-PRODUCT  

 Area 
( m^2) 

Latency 
(ns) 

Energy  
(pJ) 

TOPS/
W 

Parallel-XNOR 36618.4 30.5 840.3 311.95 
Sequential-XNOR 31030.3 5293.4 31560.5 8.31 
Parallel-1bit-cell 322246.7 742.3 50213.7 5.22 
Parallel-2bit-cell 213853.8 428.1 25382.7 10.33 
Parallel-4bit-cell 188375.4 272.9 13095.7 20.02 
Sequential-1bit-cell 154802.2 16155.5 522544.7 0.50 
Sequential-2bit-cell 89557.0 15806.9 987954.7 0.27 
Sequential-4bit-cell 67342.0 15912.0 1550660.5 0.17 

V. CONCLUSION 
      In this paper, we benchmarked XNOR-RRAM and 
conventional 8-bit RRAM architectures in sequential row-by-
row and parallel read-out fashion. To analyze the impact of 
RRAM precision, we have also set several cases, i.e. use 1-
bit, 2-bit and 4-bit RRAM cells to form 8-bit synaptic weights 
separately. We used NeuroSim as a handy tool to estimate the 
hardware performance, i.e. area, latency and dynamic energy 
to investigate the trade-offs among those architectures. The 
simulation result shows that the parallel XNOR-RRAM is 
capable to achieve the best performance, while the energy-
efficiency to process a 512×512 dot-product operation is 
~311 TOPS/W at 32nm PDK, which shows at least ~15× and 
~621× improvement compared to the parallel and sequential 
conventional 8-bit RRAM architectures respectively.  
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