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Abstract— Resistive random access memory (RRAM) based
array architecture has been proposed for on-chip acceleration of
convolutional neural networks (CNNs), where the array could be
configured for dot-product computation in a parallel fashion by
summing up the column currents. Prior processing-in-memory
(PIM) designs unroll each 3D kernel of the convolutional layers
into a vertical column of a large weight matrix, where the input
data will be accessed multiple times. As a result, significant
latency and energy are consumed in interconnect and buffer. In
this paper, in order to maximize both weight and input data
reuse for RRAM based PIM architecture, we propose a novel
weight mapping method and the corresponding data flow which
divides the kernels and assign the input data into different
processing-elements (PEs) according to their spatial locations.
The proposed design achieves ~65% save in latency and energy
for interconnect and buffer, and yields overall 2.1x speed up and
~17% improvement in the energy efficiency in terms of TOPS/W
for VGG-16 CNN, compared with the prior design based on the
conventional mapping method.

Keywords— non-volatile memory, processing-in-memory,
machine learning, deep neural network, hardware accelerator

I INTRODUCTION

The state-of-the-art deep neural networks (DNNs) have
achieved remarkable success in various applications, including
speech recognition and image classification. To avoid the
extensive off-chip data access during weighted-sum and
weight-update, it is desirable to design the DNN hardware
accelerators which can efficiently implement the entire
algorithms on-chip to achieve significant speed-up and power
reduction. To achieve this goal, the embedded non-volatile
memory such as RRAM is of great interests.

Recently, lots of efforts have been made to design silicon
CMOS ASIC accelerators that could utilize the distributed
computations in an array of multiply-accumulate (MAC) units
with local registers and global buffers (such as TPU [1] and
Eyeriss [2]), while the computation is still performed in the
digital domain. A more energy-efficient approach is the
processing-in-memory (PIM) where the computation is
embedded into the memory directly, by analog computation
with the column current summation [3]. In such context, the
crossbar array with RRAM is an ideal platform for dot-product
computation in DNNs. As the two-terminal selector technology
is premature, one-transistor-one-resistor (1T1R) based pseudo-
crossbar is practical for large-scale integration [3]. RRAM
could store multi-bit weights by exploiting the multi-

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

conductance-state, which makes it attractive as ‘“analog”
synapses with higher density. Fig. 1 shows the pseudo-crossbar
array that can naturally perform ‘“analog” matrix-vector
multiplication, where the word lines (WLs) could be turned on
simultaneously for dot-product computation. The input vector
is represented as voltage inputs of the bit-lines (BLs), and the
dot-product value will be the current passing through the
RRAM cells that sharing one sense-line (SL), such that the sum
of dot-product in each column can be obtained by an analog-to-
digital converter (ADC) at the end of each SL. Recently,
several RRAM based PIM accelerators for DNNs (e.g. ISAAC
[5], PRIME [6], etc.) have been proposed.
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Fig. 1. (a) Using a sense-line (SL) current to perform sum of dot-products.
(b) Pesudo-crossbar array with peripherical circuits Switch Matrix,
MUX+MUX Decoder and ADC.

WL Switch Matrix

To implement the convolutional layers, a basic weight
mapping method is to unroll each 3D kernel into a long vertical
column. Since the depth of input and output channels could be
large (hundreds by hundreds), using a single large matrix to
implement one convolutional layer may cause slow-access and
extra energy consumption, thus, array partitioning [7] can be
introduced to parallelize the computation into multiple sub-
arrays. However, the input data will be reused repeatedly for
convolution, and we aim to solve the unnecessary latency and
energy waste in interconnect and buffer due to this input data
reuse in this work. Here we focus on a RRAM based PIM
architecture that supports 8-bit weight and 8-bit activation for
CNN inference, which exploits a novel weight mapping and
data flow to maximize both the input and weight data reuse.
We benchmark the hardware performance using a circuit-level
macro model NeuroSim [8] at 32 nm CMOS node and compare
with a design based on the conventional mapping method.

II.  BACKGROUND

Fig. 2 shows how the convolutional layer computes the
outputs: In layer<n+1>, the size of input feature maps (IMFs)



is WxWxD (D is the depth of input feature channel), which are
the outputs from layer<n>, and the kernel size is KxKxDxN (D
is the kernel depth), considering same-padding and the stride
equals to one, the output feature maps (OFMs) of layer<n+1>
will be WxWxN (N is the depth of output feature channel).
From the example shown in Fig. 2, it is clear that the kernels
slide over the input data to perform elementwise
multiplications with a certain stride, and then sum up the
partial sums to get the output, which means part of the input
data will be reused for the computation.
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Fig. 2. Example of convolutional layer computation.

With the PIM approach, the kernels (weight) will be
mapped into memory crossbar arrays as conductance of each
cross-point, such that, this 3D elementwise multiplication will
be transformed to a dot-product multiplication. Since the
partial sums in each 3D kernel will be summed up to get the
final output, it is straightforward to unroll each 3D kernel into a
long vertical column, by utilizing the nature of crossbar array
which could perform the sum of dot-products in the SLs. In
this way, all the kernels in each convolutional layer is mapped
into a large weight matrix. Fig. 3 shows the basic weight
mapping method [9] (or baseline in this work). With the same
example in Fig. 2, one 3D kernel with size KxKxD could be
unrolled to a long vertical column which length equals to
KxKxD, the kernel depth is N, which means there are N
vertical columns in total. Thus, in layer<n+1>, the kernels
could be mapped to a large weight matrix, whose length and
width equals to KxKxD and N, respectively.
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Fig. 3. A basic mapping method of input and weight data, with kernal
moving in multiple cycles [10].

To get the OFMs, as Fig. 3 shows, at first cycle, a part of
IFMs (shown in dark blue cube) will be multiplied with each
3D kernels, the sum of dot-products from the first kernel will
be the first element in the first OFM, the sum of dot-products
from the second kernel will be the first element in the second
OFM, and so on, thus, at the first cycle, we could get the first
elements in every OFM (shown in light green row in size
1x1xN); in the same way, at the second cycle, the kernels will

“slide over” the inputs with a stride (equals to one in this
example), it is clear that part of the IMFs used in the first cycle
will be reused at the second cycle, to generate the second
elements in every OFM. Thus, to generate the total OFMs in
layer<n+1>, we need to “slide over” the IFMs by WxW times,
i.e. we need WxW cycles to finish the computation.

Typically, the kernel size varies in different convolutional
layers, thus the unrolled weight matrix size is quite different,
which leads to various number of sub-arrays representing
different layers. Hence, it is impractical to reuse the unrolled
input data along various number of sub-arrays, since it needs
different control signals to send each segment of input data to
several sub-arrays. Therefore, it is crucial to design a novel
mapping method and data flow that could maximize input data
reuse, where the weight data and input data can be mapped
according to their spatial location, and the hardware can
actually “slide over” the input data with a global control unit.

III.  PIM ARCHITECTURE DESIGN BASED ON NOVEL WEIGHT
MAPPING AND DATA FLOW

A. A Novel Weight Mapping Method

In this work, we propose a novel mapping method as Fig. 4.
Instead of unrolling 3D kernels into a large matrix, we map the
weights at different spatial location of each kernel into
different sub-matrices. Hence, KxK sub-matrices are needed
for the KxK kernels, and the input data at each kernel location
will be sent to the corresponding sub-matrix, respectively.
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Fig. 4. A novel mapping method that map the weights along the spatial
location to a group of sub-matrix.

Each sub-matrix can be represented by a group of sub-
arrays which makes the sub-matrix to be large enough to hold
the kernels from various layers, as the Fig. 6 (c) shows, such
group of sub-arrays with the necessary input and output buffers
and accumulation modules can be defined as a processing
element (PE). One should be noted that array partitioning
within the PE is helpful to maximize the memory utilization.
Since the kernels from some convolutional layers (normally the
first couple of layers) could be shallow and small, which will
not fill the entire PE and cause memory waste. With a group of
partitioned sub-arrays, those shallow kernels could be
duplicated in different sub-arrays and take multiple input data
to generate independent outputs simultaneously. In this case,



some convolutional layers which have shallow kernels but
large IFMs could speed up significantly.

B. Data Flow to Maximize IFM Reuse

With this novel mapping method, which divides the kernels
and assign the input data into different PEs according to their
spatial locations, it is possible to maximize the reuse of input
data. Fig. 5 shows an example of processing a 3x3 kernel. At
the very beginning, all the input data are at the corresponding
PEs, i.e. at T=1, IMF[1][1] (a vector with length D) is assigned
to PE[1][1], IMF[1][2] is assigned to PE[1][2], and so on, the
partial sums in these 9 PEs will be summed up (by adder tree)
to get OFMJ2][2] (with size 1x1xN). At the next cycle, the
IFMs that will be used for the next computation will be
transferred to the neighboring PEs and the useless IFMs will be
released, i.e. at T=2, IFM[1][1] is released, IFM[1][2] is
transferred from PE[1][2] to PE[1][1], IFM[2][2] is transferred
from PE[2][2] to PE[2][1], and so on, then the partial sums in
these 9 PEs will give OFM][2][3]. By passing the used IMFs in
the same direction as the kernel “slides over” the inputs, the
IMFs can be used among PEs efficiently.
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Fig. 5. (a) An example of IFMs transferred among PEs in mutiple cycles. (b)
An example of how the kernel “slides over” the input in mutiple cycles.

C.  RRAM based PIM Architecture

Fig. 6 (a) shows the top-level RRAM based PIM
architecture, which contains multiple tiles, accumulation units,
pooling and activation units, L3 buffer and the global control,.
Fig. 6 (b) shows a tile contains multiple PEs with routers and
L2 buffer. Within a tile, the routers make it possible to
communicate among PEs and transfer partial sums from PEs to
accumulation units. Fig. 6 (c¢) shows a PE contains multiple
sub-arrays and L1 buffer. Fig. 6 (d) shows the modules within
one sub-array. To implement 8-bit analog synaptic weights, we
use 4 RRAM cells (assuming each RRAM could store 2-bit
weight), the 8-bit fixed-point neuron activations are mapped as
8-bit sequential cycles with input voltages. The shift-add
modules are used to shift and accumulate the partial sums of
the 8-bit sequential input voltages during 8 cycles. The sub-
array size is set to 128128, to guarantee maximum memory
efficiency. Since in most shallow convolutional layers, the
depth of feature channels could be smaller than 128, thus, if we
use larger sub-array size (i.e. 256x256), at least half of the
memory will not be used. Also, we do not further downsize our
sub-array (to 64x64), because normally the periphery
dominates the area of sub-array, and thus degrade the area
efficiency (i.e. comparing four 64x64 sub-arrays with one
128x128 sub-array, the area efficiency of the latter is higher).
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Fig. 6. The diagram of (a) RRAM based PIM architecture; (b) a tile with
multiple PEs, routers and L2 buffer; (c) a PE contains 16 sub-arrays, L1
buffer and control units, accumulation modules and output buffer; (d) parallel
8-bit RRAM sub-array.

IV. RESULTS AND DISCUSSION

A.  Simulations Setup

To evaluate the hardware performance of the RRAM based
PIM architecture, we utilized a circuit-level macro model
NeuroSim [8] to estimate the area, latency and energy based on
at 32nm CMOS node where RRAM integration is feasible
from the industry’s perspective. We use a relatively large-scale
weight (as used in TPU [1]), to guarantee the sufficient
computation accuracy. We set the basic weight mapping
method with conventional H-tree routing as the baseline, to
evaluate the latency and energy saving in interconnect and
buffer in this work. Table I shows the component parameters
on chip. The energy is given in energy per unit (or module and
PE) per operation (or bit), i.e. sub-array energy is 25.04 nJ/op,
which tells the total energy for one single sub-array to do one
vector-matrix multiplication (or dot-product computation).

B. Results and Discussion

According to the novel weight mapping and data flow in
this work, instead of passing the entire KxK IFMs, every time
the PE groups only takes the new 1xK IFMs from L2 buffer,
and the used (K-1)xK IFMs will be moved forward to
neighboring PEs and be reused for the computation of next
OFMs. Hence, compared to the baseline, only a small amount
of bits will be visited in buffers, and interconnect will transfer
much less data every time in this work. Here we consider the
latency and energy for one CIFAR image inference. Due to the
limitation of bus width and the number of bits that can be read
out at each access for different buffer size, around 30% of the
total latency and 23% of the total energy consumption are
caused by the interconnect and buffers according to the
simulation result.



TABLE L CHIP PARAMETERS
Component Spec Ener; Area
p pec. gy (mmZ)
Chip Level
PE Number 432 0.202 pJ/PE/op 54.864
Device SRAM
Size 128 KB .
L3 Buffer Bus Widih 512 bit 0.254 pl/bit 4.928
Number 16
4-1  Pooling | Precision 8-bit .
Units Number 024 0.044 plJ/unit/op 0.1297
Accumulation Max Bit 26-bit .
Units Number 1024 9.795 pJ/unit/op 6.4169
Activation Precision 8-bit .
Units Number 1024 0.014 pJ/unit/op 0.0134
Device SRAM
Size 16 KB .
L2 Buffer Bus Widih 356 bit 0.132 pl/bit 1.95
Number 24
Chip Total (VGG-16Cov) 7.58 mJ 69
PE Level (432 PEs on Chip)
Sub-Array Number 16 25.04 nJ/op 0.101
Device Register
L1 Buffer Size 4 Kb 0.064 pl/bit 0.0073
Bus Width 128 bit
Max Bit 16-bit
Adder Tree Number 128 15.90 pJ/op 0.01
Device Register
Output Buffer Size 4 Kb 0.064 pl/bit 0.0073
Bus Width 128 bit
PE Total 0.202 uJ 0.127
Sub-Array Level (16 Sub-Arrays in one PE)
Size 128%128
RRAM array Cell . 0.88 pJ/op 0.0003
.. 2-bit
Precision
Precision 5-bit
ADC Number 6 22.45 pl/op 0.0036
Shift-Add & | Precision 14-bit
DFF Number 6 1.6 pJ/op 0.0014
Sub-Array Total 1.565 nJ 0.0063

Fig. 7 shows the latency and energy consumption of
interconnect (normalized to the first convolutional layer) and
buffers (normalized to the last convolutional layer) along the
convolutional layers in VGG-16 [10]. Since for interconnect,
the size of weight matrix used to map the synaptic weights
(the first layer has the minimum weight matrix) determines the
latency and energy consumption, while for the buffers, the
input feature sizes (the last layer has smallest input size)
determine those. For the baseline design, in principle, the
latency and energy consumption should be higher in deeper
layer, but there are some drops in layer 3, 5, 8 and 11, latency
and energy consumption should be higher in deeper because
there are max-pool layers before those layers, which cause 4x
decrease of transferring input data, but the results increase
dramatically after that, because the weight matrix are doubled
and leading to longer transferring distance (e.g. weight matrix
size in layer 8 is 2304x512, while in layer 9 is 4605x512). For
the proposed design, since the input reuse is maximized, each
time only 1/3 of the input as for baseline (kernel size is 3x3)
will be transferred from buffer to the nearest PEs, and the input
being reused will be transferred among the neighboring PEs
through a very short distance simultaneously, thus the bus

width will no longer limit the latency that much (as it does in
baseline) and the results of interconnect do not vary too much
along layers. While the results of buffer vary along layers,
because of the limitation of bits that can read out from buffers
at each access time. Overall, the novel mapping and data flow
can help to save ~65% of latency and ~69% of energy
consumption of interconnect and buffers. Table II summarizes
the estimation results of the 8-bit RRAM architecture for all
the convolutional layers in VGG-16 [10], this design could also
extend to XNOR-RRAM [11] for binary neural network.
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Fig. 7. (a) Normalized energy of interconnect and (b) buffer, (¢c) Normalized
latency of interconnect and (d) buffer for both baseline and this work.

TABLE IL BENCHMARK RESULTS
Architecture XNOR 8-bit
Chip Area (mm?) 12 69

Hardware Latency TOPS/'W Latency TOPS/'W

Performance (ms) (ms)
Baseline 1.293 124.2 12.737 4.045

This Work 0.748 149.6 5.882 4.767

Improvement 1.729x 20.4% 2.165x% 17.8%

V. CONCLUSION

In this paper, we propose an 8-bit RRAM based PIM
architecture based on a novel mapping method and data flow
which can maximize weight and input data reuse. To analyze
the latency and energy saving of interconnect and buffers, we
set a baseline which uses conventional mapping method and H-
tree routing. We used NeuroSim [8] to estimate the area,
latency and energy of VGG-16 [10] benchmark at 32nm, which
shows at least ~65% save of latency and energy in interconnect
and buffers. This novel mapping and data flow achieve overall
~2.1x speed up and ~17% improvement in energy efficiency,
where the 8-bit architecture is ~4.76 TOPS/W, and XNOR-
RRAM architecture is ~149.6 TOPS/W.
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