®

Check for
updates

SIMD||DNA: Single Instruction, Multiple
Data Computation with DNA Strand
Displacement Cascades

Boya Wang(®) Cameron Chalk, and David Soloveichik

The University of Texas at Austin, Austin, USA
bywangQ@utexas.edu

Abstract. Typical DNA storage schemes do not allow in-memory com-
putation, and instead transformation of the stored data requires DNA
sequencing, electronic computation of the transformation, followed by
synthesizing new DNA. In contrast we propose a model of in-memory
computation that avoids the time consuming and expensive sequencing
and synthesis steps, with computation carried out by DNA strand dis-
placement. We demonstrate the flexibility of our approach by developing
schemes for massively parallel binary counting and elementary cellular
automaton Rule 110 computation.

Keywords: DNA storage - DNA computing - Parallel computing -
Strand displacement

1 Introduction

Studies have espoused DNA as an incredibly dense (up to 455 exabytes per gram)
and stable (readable over millenia) digital storage medium [5]. Experiments stor-
ing text, images, and movies of hundreds of megabytes have demonstrated the
potential scalability of the approach [11]. Importantly, DNA’s essential biologi-
cal role ensures that the technology for manipulating DNA will never succumb
to obsolescence.

Typical DNA storage schemes have high information density but do not
permit “in-memory” computation: modifying data involves sequencing DNA
classically computing the desired transformation, and synthesizing new DNA.
In contrast, strand displacement systems store information in the pattern of
reconfiguration of exposed single-stranded regions. This pattern can be directly
manipulated through toehold exchange and other molecular primitives as a form
of information processing [25]. However, strand displacement is incompatible
with traditional DNA storage schemes.

Here we combine DNA storage with massively parallel computation on the
data stored using strand displacement. In our proposed scheme, which we call
SIMD||DNA (Single Instruction Multiple Data DNA), a multi-stranded DNA
complex acts as a single register storing a (binary) string. Although all the

© Springer Nature Switzerland AG 2019
C. Thachuk and Y. Liu (Eds.): DNA 25, LNCS 11648, pp. 219-235, 2019.
https://doi.org/10.1007/978-3-030-26807-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26807-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-26807-7_12

220 B. Wang et al.

complexes share the same sequence, different information is encoded in each
complex in the pattern of nicks and exposed single-stranded regions. There are
as many independent registers as the number of molecules of the multi-stranded
complexes, each capable of storing and manipulating a different string. This
allows information in different registers to be modified at the same time, utilizing
the parallelism granted by molecular computation.

Our method of storing information in DNA is motivated by recent develop-
ments in DNA storage employing topological modifications of DNA to encode
data. DNA storage based on programmable nicking on native DNA (forming
strand breaks at desired locations) permits high throughput methods of writing
information into registers [20]. To enable subsequent read-out, recently devel-
oped methods [9] could potentially read information encoded in nicks and single-
stranded gaps in double stranded DNA in a high throughput manner. Reading
out specific bits of registers could also be achieved with fluorescence based meth-
ods. Note that compared with storing data in the DNA sequence itself, encoding
data in nicks sacrifices data density but reduces the cost of large-scale synthesis
of DNA [20]. Here we show that it also enables greater flexibility of in-memory
computation.

To do parallel in-memory computation on our DNA registers, we employ sin-
gle instruction, multiple data (SIMD)! programs. An overview of a program’s
implementation is given in Fig.1. Each instruction of a program corresponds
to the addition of a set of DNA strands to the solution. The added strands
undergo toehold-mediated strand displacement with strands bound to the regis-
ter, changing the data. The long “bottom” strands of these registers are attached
to magnetic beads, allowing sequential elution operations. After the strands dis-
placed from the registers are eluted, subsequent instructions can be performed.
Note that the same instruction is applied to all registers in solution in paral-
lel (since they share sequence space), but the effect of that instruction can be
different depending on the pattern of nicks and exposed regions of the given
register.

We show that our DNA data processing scheme is capable of parallel, in-
memory computation, eliminating the need for sequencing and synthesizing new
DNA on each data update. Note that instruction strands are synthesized inde-
pendently of the data stored in the registers, so that executing an instruction
does not require reading the data. We should also note the doubly-parallel nature
of SIMD||DNA programs: instructions act on all registers in parallel, and instruc-
tion strands can act on multiple sites within a register in parallel.

! Single instruction, multiple data (SIMD) is one of the four classifications in Flynn’s
taxonomy [7]. The taxonomy captures computer architecture designs and their par-
allelism. The four classifications are the four choices of combining single instruction
(SI) or multiple instruction (MI) with single data (SD) or multiple data (MD). SI
versus MI captures the number of processors/instructions modifying the data at a
given time. SD versus MD captures the number of data registers being modified
at a given time, each of which can store different information. Our scheme falls
under SIMD, since many registers, each with different data, are affected by the same
instruction.

SIMD||DNA 221

Instruction i Instruction i+1
— S~~~

N/

Data Data

coe .msmmm ‘_mmm oce

-~ o——

'—““M \‘l.vas:ey .M—’
/S

Fig.1. Each DNA register is a multi-stranded complex. Different information is
encoded in the pattern of nicks and exposed single-stranded regions in the register.
Registers are attached to magnetic beads (MB). To perform each instruction, first a
set of instruction strands is added to the solution and reacts with all the registers
in parallel. Then waste species (unreacted instruction strands and displaced reaction
products) are washed away by elution.

Our programs require a small number of unique domains (subsequences of
nucleotides which act as functional units), independent of the register length.
A common assumption for correctness in strand displacement systems is that
domains are orthogonal, meaning two domains which are not fully complemen-
tary do not bind. In experiments, enforcing this assumption requires specialized
sequence design. Further, for any fixed domain length, the space of orthogonal
domains is limited, restricting the scalability of the system. SIMD||[DNA encodes
information in the pattern of nicks and exposed domains. This allows our pro-
grams to require only a constant set of orthogonal domains to be used (five for
one program and six for the other), simplifying the sequence design problem
for experimental implementation. In addition, the instruction strands for one
instruction can share sequences, resulting in a reduced cost of strand synthesis.

In this paper, we show two SIMD|[DNA programs. One of the programs
implements binary counting. Starting from arbitrary initial counts stored in dif-
ferent registers, each computation step increments all the registers in parallel.
Binary counting allows one SIMD||DNA program to move data through a num-
ber of states exponential in the size of the register. We consider this a requirement
of any useful data storage/computation suite: if instead not all configurations
of the register were reachable from some initial configuration via some program,
then the useful density of the storage would be reduced.

222 B. Wang et al.

In addition to binary counting, we also give a program which simulates
elementary cellular automaton (CA) Rule 110.2 Critically, Rule 110 has been
shown to be Turing universal [6], so this simulation shows that SIMD|[DNA’s
in-memory computation model is as powerful as any other space-bounded com-
puting technique. In other words, our space-bounded simulation of Rule 110
immediately gives that any computable function—if the required space is known
beforehand—can be computed by a SIMD||DNA program.

We note the contrast to typical strand displacement schemes that perform
a single computation in solution. For example, although a logic circuit [13,18]
computation might involve hundreds of billions of separate molecules, the redun-
dancy does not help computationally. Such schemes seem to not use the massively
parallel power of chemistry [1]. Previous ideas for performing parallel compu-
tation with strand displacement cascades relied on a complex scheme involving
4-way branch migration on DNA origami [14] or information processing in differ-
ent spatial locations [17]. Turing universal computation with strand displacement
could not handle multiple independent computations running in parallel [12],
leaving the extension to parallel computation as the major open question.

Note that SIMD||DNA is non-autonomous since each instruction requires
manual strand addition and elution. In this regard it is similar to early stud-
ies of parallel DNA computing machines. Dating back to the 1990s, Adle-
man experimentally demonstrated solving instances of NP-complete problems
using DNA [1], which encouraged other DNA computing models. Many models
rely on enzymes to introduce covalent modification on DNA [2,3,8,15], which
increases experimental complexity. Other enzyme-free models such as the sticker
model [16] encode information in the pattern of exposed domains, similar to
our scheme. However, the sticker model requires a number of orthogonal domain
types that scales with the amount of data. In addition, these domains require
well-tuned binding affinities to allow a melting procedure which selectively dis-
sociates some strands but not others. In contrast, our programs only require
a constant number of unique domains for any register length. Instead of com-
putation through controlled hybridization and melting, strand displacement is
a more versatile mechanism to achieve modification of information, potentially
making parallel molecular computation more feasible.?

2 SIMD||DNA

Here we propose the general scheme. First we will explain the notations we use
in this paper. We use the domain level abstraction for DNA strands. Consecutive

2 In [24] an enumeration of all possible rules for elementary CA is given. Rule 110
refers to that enumeration.

In a sense, we realize an extension of the sticker model envisioned by [4]: “Recent
research suggests that DNA ‘strand invasion’ might provide a means for the specific
removal of stickers from library strands. This could give rise to library strands that
act as very powerful read-write memories. Further investigation of this possibility
seems worthwhile.”.

3

SIMD||DNA 223

nucleotides that act as a functional unit are called a domain. Complementary
domains are represented by a star (). The length of the domains is chosen so
that: (1) each domain can initiate strand displacement (can act as a toehold), (2)
strands bound by a single domain readily dissociate, and (3) strands bound by
two or more domains cannot dissociate.® We call an exposed (unbound) domain
a toehold.

2.1 Encoding Data

Data is stored in multi-stranded complexes (Fig.1), each called a register. A
register contains one long strand, called the bottom strand and multiple short
strands, called top strands, bound to the bottom strand. Each bottom strand
is partitioned into sets of consecutive domains called cells. Each cell contains
the same number of domains. Depending on the configuration of the top strands
bound (e.g., their lengths, or the presence or absence of toeholds), cells encode
information. In this work we use a binary encoding, with each cell representing
one bit.

See Sect. 4.1 for a discussion of potential experimental methods of preparing
the initial registers.

2.2 Instructions

An instruction is a set of strands. To apply an instruction to the data, these
strands are added to the solution at high concentration. Adding these strands can
lead to three different types of reactions on the registers. Figure 2a explains the
figure notation used to describe instructions throughout the paper, and Fig.2b
gives examples of the three types of reactions. They are:

Attachment: This reaction preserves all the strands originally bound to the
register and attaches new strands. An instruction strand can attach to registers if
it binds strongly enough (by two or more domains). Note that the attachment of
an instruction strand can lead to a partial displacement of a pre-existing strand
on the register.

Displacement: This reaction introduces new strands to the register and
detaches some pre-existing strands. Upon binding to a toehold on the regis-
ter, the instruction strand displaces pre-existing strands through 3-way branch
migration.® Toehold exchange reactions are favored towards displacement by the
instruction strand since they are added at high concentration. Two instruction
strands can also cooperatively displace strands on the register.

Detachment: This reaction detaches pre-existing strands without introduc-
ing new strands to the registers. An instruction strand that is complementary to

4 Given these properties, in practice one could choose the domain length to be from
5 to 7 nucleotides at room temperature.

5 Although other more complicated strand displacement mechanisms (e.g. 4-way,
remote toehold, associative toehold strand displacement) could provide extra power
in this architecture, they usually sacrifice the speed and increase the design com-
plexity, so we do not include them in this work.

224 B. Wang et al.

a pre-existing strand with an open overhang can use the overhang as a toehold
and pull the strand off the register. Throughout this paper, a dashed instruction
strand indicates the domains in the instruction strand are complementary to
other vertically aligned domains.

When an instruction strand displaces a top strand, we assume the waste top
strand does not interact further within the system (the instruction strands are
present in high concentration while the waste is in low concentration). After
the reactions complete, the waste is removed via elution. We assume washing
removes all species without a magnetic bead. Lastly, we assume there is no
leak—displacement of a strand without prior binding of a toehold. We discuss
the possibility and extent of errors caused by relaxing these assumptions in
Sect. 4.2.

In general, two reactions can be applicable but mutually exclusive. Then two
(or more) resulting register states may be possible after adding the instruction
strands. The instructions used in this paper do not have this issue. This point
is related to deterministic versus nondeterministic algorithms, and is discussed
further in Sect. 4.5.

2.3 Programs

We consider sequences of instructions, called programs. We design programs for
functions f : {0,1}™ — {0,1}"™ so that, given a register encoding any s =
{0,1}", after applying all instructions in the program sequentially as in Fig. 1,
the resulting register encodes f(s).

3 Programs for Binary Counting and Rule 110

Here we give our two programs: binary counting and simulation of elementary
cellular automaton Rule 110. We first present the Rule 110 simulation, as the
program is simpler to explain than binary counting.

3.1 Cellular Automaton Rule 110

An elementary one-dimensional cellular automaton consists of an infinite set of
cells {...,c_1,co,c1,...}. Each cell is in one of two states, 0 or 1. Each cell
changes state in each timestep depending on its left and right neighbor’s states.
Rule 110 is defined as follows: the state of a cell at time ¢+ 1, denoted ¢;(¢t + 1),
is f(ei—1(t),ci(t), civ1(t)), where f is the following:

£(0,0,0) =0 £(1,0,0) =
£(0,0,1) =1 £(1,0,1) =1
£(0,1,0) = £(1,1,0) =
£(0,1,1) =1 F(1,1,1) =

Note that a simple two-rule characterization of f is as follows: 0 updates to 1 if
and only if the state to its right is a 1, and 1 updates to 0 if and only if both

SIMD||DNA 225

(a) e85 t’(_)lnucleotldes
1 23456738 T T T T T Tt T
! Instruction strand:
— | <4,5,6,7,8>

€——mmmev 2. orthogonal | + Instruction strand:

‘\\ oy tedomain7 |\ ______ <36 AS>

Fig. 2. (a) The notation used to describe instructions. Domains are represented by
square boxes. We indicate complementarity of instruction strands to register domains
by vertical alignment. If a domain label is given explicitly, such as a and a” in this
figure, the domain is orthogonal to the other vertically aligned domains. A strand
can be described by listing the constituent domains in a bracket <> from 5’-end to
3’-end. Strands with solid lines are complementary to the corresponding domains in
the bottom strand. Strands with dashed lines are complementary to the corresponding
domains in the top strand. The blue dot represents the magnetic bead. (b) The three
instruction reactions. Attachment: instruction strands attach to the register without
releasing any other strands. Displacement: instruction strands attach to the register
and displace pre-existing strands on the register. Toehold-mediated strand displace-
ment (left), toehold-exchange strand displacement (right), and cooperative strand dis-
placement (bottom) mechanisms are allowed. Detachment: instruction strands fully
complementary to previously bound top strands pull strands off the register. (Color
figure online)

226 B. Wang et al.

neighbors are 1. This characterization is useful for proving correctness of the
program.

The instructions implementing one timestep evolution are shown in Fig. 3.
Each state-0 cell is fully covered by two strands, one of length three and one
of length two. Each state-1 cell is partially covered by a length-five top strand
and has an open toehold at the leftmost domain. The program consists of six
instructions. The program first marks the string “01” (Instruction 1)—here, the 0
will change to 1 later. Then it erases the internal 1’s in any string of at least three
consecutive 1’s (Instructions 2 and 3). These are the 1’s with two neighboring
1’s, which should be updated to 0, so the program fills in the empty cells with 0
(Instruction 4). Finally it removes the markers from Instruction 1 and changes
previously marked 0’s to 1’s (Instructions 5 and 6).

We claim that this program enforces the two-rule characterization of Rule
110. We first argue that 1 updates to 0 if and only if both neighbors are 1. Then
we argue that 0 updates to 1 if and only if the state to its right is a 1. Let i
denote the kth domain on cell ¢ (from left to right). All cells can share the same
sequences, but we assume that each domain within a cell is orthogonal.

Claim. A cell 7 initially in state 1 updates to a 0 if cells i + 1 and ¢ — 1 are
initially 1.

Proof. During Instruction 1, the instruction strands cannot displace the strands
in state-1 cells. In Instruction 2, the strand on cell ¢ is displaced cooperatively
only if the toeholds on both the left and the right side of the strand are open.
By assumption, cell ¢ + 1 is a 1, so the toehold immediately to the right of
cell 4, (i + 1)1, is free. Since cell ¢ — 1 is in state 1, domain ¢; is not covered
after Instruction 1 (¢ would be covered if cell i — 1 were 0). Thus the strand
on cell ¢ can be displaced by the instruction 2 strands. In Instruction 3, the
instruction 2 strands in cell 7 are detached, so every domain in cell i is free. Then
in Instruction 4 we attach the strands corresponding to a state 0, updating cell
i to 0. Instructions 5 and 6 do not introduce any instruction reaction on cell i,
so cell ¢ remains in state 0. O

Claim. A cell i initially in state 1 stays in state 1 if either cell i +1 or i — 1 is
initially 0.

Proof. During Instruction 1, the instruction strands cannot displace the strands
in state-1 cells. In Instruction 2, the strand on state-1 cells is displaced cooper-
atively only if the toeholds on both the left and the right side of the strand are
open. By assumption that the left or right cell is a 0, the toeholds required for
this, i1 or (¢ + 1)1, will be covered: First consider that cell i — 1 is a 0. Then
in Instruction 1, the instruction strand displaces one strand at cell i — 1 and
covers the toehold ¢;. On the other hand, if cell i + 1 is 0, then domain (i + 1)1
is covered since strands for the 0 state cover all the domains in that cell. So if
either neighbor state is 0, Instruction 2 does not displace the strand on cell i.
Then note that Instructions 3 and 4 do not introduce any instruction reaction
at cell 7. The instruction 5 strands detach the instruction 1 strands if cell i — 1

SIMD|[DNA 227

1 i 0
o e

7 1 1 1 ¢ 04 1 i 0
0 e o e o o DY

oo

Ay ax ax ax Ar __ Gx _ Gx _ Gx _ Gx _ Qr _ Ox
PR 1 o ot Bt O

| 9# Mark the string “01”. !
| 1 |
| .

3 Displace <4,5> of the state-0 cell and cover the toehold of the state-1 cell 3

T 2345 toprevent it from being modified in Instruction 2.
/
be b b by by b by b b b b
i i i Y i i i i Y i i
> R e o oo o e T Y

; ; and initiate state change of the internal 1’s.

i
;_EEEEI_ Displace <2,3,4,5> of the state-1 cell, only if both of the neighbors are 1.

\
@1 l}(Detect a string with at least three consecutive 1’s, :
|
l
12345, (If its left cell is 0, the toehold at domain 1 is covered in Instruction 1.) :

% 2
e Ny b b B

i i i i i i i O i i
ST et o o o P
; ; i i a ; ; ; ; i Ox ; ;
4-~H‘V‘I‘|"l|u|i|\m‘1zl‘!‘|"l ; A e o Y
; b Detach instruction strands | | Change state to 0 A
T “ attached in Instruction 2. | | ange state to 4. !

a, a, a, a, a, a, a, a, a,s a, a,r

D" D" €t €=t €= D" €= €=t P S— P R— D R——

i i i iKY i i i i i O | i
5m=!‘!‘|‘|"1|HlHH‘FI‘ﬁ‘!‘l"IHHHlHM||||\|\|H||\|H|Hm

R s i O s o O s

o o Ty A o e A)

| o, Detach instruction strands | | ! i\ Complete state change |

Lo attached in Instruction 1. ' | !le_lg_%: from 0 to 1. l

\ ’ \ ' /
18 0 7 100 1 o i 0 i 1 1 1 0 i

P e o T e o e e T P

Fig. 3. The program implementing one timestep of Rule 110 shown on an example
register. The top register shows the initial state of each cell. After 6 instructions, the
register updates to the state shown at the bottom. Strand colors have three information
categories: state 1 (dark blue), state 0 (light blue), intermediates (other colors). Solid
boxes show the instruction strands and the state of the register before the strands are
applied. Dashed boxes explain the logical meaning of the instructions. The overhang
domains a and b are orthogonal to their vertically aligned domains. (Color figure online)

228 B. Wang et al.

is 0, freeing the toehold at i¢; and recovering the state-1 cell. Instruction 6 does
not change the state-1 cell. O

Claim. A cell i initially in state 0 updates to a 1 if cell 4 + 1 is initially a 1.

Proof. Since cell i 4+ 1 is in state 1, the toehold at domain (i 4+ 1); is available
for the instruction strand in Instruction 1 to bind, and the rightmost strand on
cell ¢ is displaced. Then note that Instructions 2 through 4 do not introduce
any instruction reaction at cell ¢. In Instruction 5, the instruction strand from
Instruction 1 is detached, freeing domains i4 and i5. In Instruction 6 the instruc-
tion strand binds at domains i, and i5 and displaces the strand at cell i. So after
Instruction 6, cell 7 is in state 1. O

Claim. A cell i initially in state O stays in state O if cell ¢ 4+ 1 is initially a 0.

Proof. Simply note that for any instruction, no instruction reaction on cell 4
occurs. So cell ¢ stays in state 0. O

These four claims combined verify that the two-rule characterization given
at the beginning of this section is satisfied, so the instructions implement one
timestep evolution of Rule 110.

Note that the Rule 110 simulation invokes two sources of parallelism. Instruc-
tion strands are applied to all registers in parallel, and every cell within a register
can update concurrently.

Also note that Rule 110 is defined only for an infinite set of cells or a circular
arrangement of finitely many cells. For a finite set of cells arranged linearly, one
must define boundary conditions for updating the leftmost and rightmost cells.
Boundary conditions can be constant or periodic. For space-bounded computa-
tion by Rule 110, it suffices to set periodic boundary conditions based on the
periodic initial condition of the CA given in [6]. These periodic boundary states
can be implemented by periodic instructions.

3.2 Counting

The counting program computes f(s) = s + 1. Binary counting is captured by
changing all the 1s to 0 from the least significant bit to more significant bits
until the first 0, and changing that 0 to 1. All the bits more significant than the
rightmost 0 remain the same. For example, f(1011) = 1100, and f(1000) = 1001.
In the case of overflow, we rewrite the register to all Os. In other words, on inputs
of all 1s, we output all Os: f(1111) = f(0000).

The full program is in Fig. 4. Each state-0 cell is fully covered by two strands,
with one covering the first three domains and the other one covering the last
two domains. Each state-1 cell is fully covered by two strands, with one covering
the first two domains and the other one covering the last three domains. One
extra domain is included to the right of the rightmost cell which is used to
initiate displacement. The program contains seven instructions. It erases all the
1’s in between the rightmost cell and the rightmost state-0 cell at Instructions

SIMD||DNA 229

1 and 2, and changes those cells to 0 at Instructions 4 and 5. It marks the
rightmost state-0 cell at Instruction 3, and change the marked state-0 cell to
state 1 at Instructions 6 and 7.

To prove correctness, we first argue that all the 1’s from the least significant
bit to the rightmost 0 update to 0. Then we argue that rightmost 0 updates to

1 0 1 1 (oo T o \
! —27 Displace <4,5> or <3,4,5>.!
LD I o o ot e N e I : br :
f 'If the left cell is 1, displacement,
(A siammial
bx bz bx ba_arx T2 5} | cascade proceeds to the left. !
: ! b —_——
B e e e e e, T > L
-) Wzsis| pprTRERy | = i e]
(B ' ' ! ' !l
(" bir b bir bis a-) |If the left cell is 0, terminate the cascade.,
D b —> I
b ba iax | —
PO e e UG TS B
N /2 N e s SR S)
e N T T T s v e T s
_— — —s — | <--%" Detach instruction strands |
3 ‘ \ «___b attached in Instruction 1.
S e e N T B —
N J rTTII3T T R \
- ~ (1) Initiate state change from |
H I
[: Oto 1. ‘
123145 (2)Prevent domains 4 and5
ese . . . !
<4 EEd . [L) | acting as open toeholds in reactions for |
i state change from 1 to 0. |
4 N o\ ________ .
.
5 - [PIIP(TP [TT1 | [TT) | Shift strands and initiate |
9) > state change from 1to0 0. |
V112345 ,
4 I
2 N
| |
6 DI [T [T T T : T Change state to 0. :
_ J \»172737475 7777777777777777777 4/
e YT i \
—_ —_ —_ —_ D ; Detach strands with |
i i T !
QL o e I e L open toehold. |
N ! ! J ST ToTTTTTTTmTTTTTT
[—— N
1 1 0 0 - Complete state change [
S ot e B from 0 to 1. !
h 1 1 1 \ V112345 ,

Fig. 4. The program implementing addition by 1 of a binary string on an example
register. The top register shows the initial state of each cell. After 7 instructions, the
register updates to the state shown at the bottom. Strand colors have three information
categories: state 1 (purple), state 0 (pink), intermediates (other colors). Solid boxes
show the instruction strands and the state of the register before the strands are applied.
Dashed boxes explain the logical meaning of the instructions. The overhang domains
a and b are orthogonal to their vertically aligned domains. (Color figure online)

230 B. Wang et al.

1. Assume the bit string has length n and the least significant bit is at cell n
and the rightmost 0 is at cell m (m < n). As in the Rule 110 simulation proof,
we let ji denote the kth domain on cell j (from left to right). All cells can share
the same sequences, but we assume that each domain within a cell is orthogonal.
Additionally, the extra domain to the right of the rightmost cell is orthogonal
to all other domains.

Claim. All state 1 cells to the right of the rightmost 0 cell change to a 0.

Proof. Instruction 1 initiates a series of sequential reactions from the least sig-
nificant bit n to the rightmost 0. First the instruction strand with overhang
domain a displaces the strand covering domains n4 and ns. If the least signifi-
cant bit is 1 (m < n), the domain n3 becomes unbound after this displacement
reaction. Then the domain ng serves as an open toehold to initiate another dis-
placement reaction with the instruction strand with overhang domain b. Similar
displacement reactions proceed until cell m. By assumption, cell m is a state-0
cell, so the domain m3 will not be open after the displacement step, thus the
displacement cascade stops. Then the strands added in Instruction 2 detach the
strands from Instruction 1, leaving the cells from the (m + 1)th bit to the nth
bit free. In Instruction 3, every applied instruction strand from cell m + 1 to n
attaches to the register. Instruction 4 shifts those strands added in Instruction
3 one domain to the left, which opens toeholds for the cooperative displacement
in Instruction 5. After those cells change to state-0 in Instruction 5, the strands
added in Instruction 6 and 7 do not change them, so they remain in state 0. [

Claim. The rightmost state 0 cell changes to a 1.

Proof. Instruction 1 initiates a series of sequential reactions from the least sig-
nificant bit to the rightmost 0 at cell m. The domain ms will not be open after
the instruction strand displaces the strand covering domains m4 and ms and
no more strand displacement cascade can proceed to the left. Then the strands
added in Instruction 2 detach the strands from Instruction 1, leaving the domains
my and mg free. The strands added in Instruction 3 serve as two purposes: (1)
They correspond to one of the strands representing state 1, thus they help cell
m to transition to state 1 and they partially displace the strand at domain ms.
(2) They serve as a place holder by binding at domains m4 and ms to prevent
cell m from being modified in Instructions 4 and 5. Instruction 6 detaches the
strand originally bound from domain m; to mg, leaving the domains m; and mso
open. In Instruction 7, the instruction strand attaches to the register at domain
my and mg, which completes the state changing from 0 to 1. O

Claim. The cells to the left of the rightmost state 0 cell stay the same.

Proof. Note that no open toeholds are exposed at cells to the left of cell m, and
the displacement cascade does not pass to the left of cell m, thus no changes are
made to the states of those cells. O

SIMD||DNA 231

4 Discussion and Future Work

4.1 Data Preparation

If we do not try to reuse domain sequences, the registers could be prepared by
topologically modifying naturally occurring DNA at desired locations through
nicking enzymes® [20]. If the distance between two nicks is short (for example
the length of one domain), the strand in between will spontaneously dissociate,
forming a toehold. After the registers with different information are prepared
separately and attached to magnetic beads, they are mixed into one solution.

If we reuse domains between cells, the initial preparation of registers requires
different techniques. For example, all registers can be initialized to 0 in separate
test tubes, and then separate programs executed which move the registers to the
desired initial state.

4.2 Experimental Feasibility and Error Handling

Toehold-mediated strand displacement and elution through magnetic beads are
well-established techniques, which supports the feasibility of experimental imple-
mentation of SIMDI||DNA. Other than attaching registers to magnetic beads,
registers can also be affixed to the surface of a microfluidic chip. Further, since
the instruction strands are added at high concentration and we do not rely on
slow mechanisms such as 4-way branch migration, each instruction should finish
quickly. However, strand displacement systems can be error prone, and our con-
structions make several assumptions, the violation of which could lead to various
errors.

The first assumption is that waste products from reactions between the
instruction strands and registers do not react further with the system. Reg-
isters and instruction strands should be allowed to react for a short amount of
time before elution such that the high concentration instruction strands interact
with the registers, but the low concentration waste products do not. Violating
this assumption can cause undesired displacements to occur, leading to possible
error in the computation. Interestingly, we conjecture that, besides the reverse
of the intended reaction (in the case of toehold exchange), the waste products
and registers cannot react in the two programs given here, and therefore our
programs are robust to this type of error.

The next assumption is that of a perfect washing procedure where only
species with magnetic beads remain after elution. Imperfect washing can result
in previous instruction strands reacting with registers undergoing subsequent
instructions. In practice, the remains of imperfect washing would appear in low
concentration so as to have a low probability of affecting the system.

The final assumption is that there is no leak (only toehold-mediated displace-
ments occur). The registers contain nicks where strands could fray and undesired

5 For example, Cas9 nickase or restriction enzyme PfAgo, uses an RNA or DNA strand
as a guide and can nick at a desired location.

232 B. Wang et al.

toeholds could open, resulting in strands being mistakenly displaced or incorrect
strands binding. Our programs are not robust to leak, raising the question of
whether leakless design principles [21-23] can be imposed on the constructions.
Leak could also limit the longevity of information stored in our scheme: (toehold-
less) four-way branch migration can result in bit exchange errors between differ-
ent registers.

It remains to be seen whether freezing or other means of stabilizing the DNA
complexes suffices to ensure long term storage of information encoded in nicked
registers.

In addition to preventing errors at the experimental level, it remains open
to address errors at the “software level” by employing error correction codes in
the data and employing error correction schemes in the instructions.

4.3 Data Density

Unlike storing data in the DNA sequence itself, which has a data density of
2 bits per nucleotide, our schemes sacrifice data density. In our schemes, a bit
is encoded in a cell, which contains 5 domains. If a domain is composed of 6
consecutive nucleotides, it gives a data density of 0.033 (1/30) bit per nucleotide.
It is not obvious that the current construction with 5 domains per cell achieves
the highest possible data density for these programs. In practice, there is a
tradeoff between the strand binding stability and data density. Here we assume
that the minimal number of domains required for two strands to stably bind is
two, however in practice the binding strength is affected by experimental buffer
(salt concentration) and temperature. Given different experimental conditions,
it may be necessary to increase the number of domains in a cell, which could
reduce the data density further. However, one gram of DNA can still encode
exabytes of information. In principle, data density may also be increased by
using different encoding schemes, such as allowing overhangs on the top strands
to encode information.

4.4 Uniform Versus Non-uniform Instructions

We can identify instructions as uniform or non-uniform. Uniform instructions
have the property that the same type of instruction strands are added to every
cell, as is the case in our programs. Non-uniform instructions allow strands
to be added to particular cells and not others (e.g., add strands to every sev-
enth cell, or cells 42 and 71). The difference in computational power between
uniform and non-uniform instructions remains open, and non-uniform instruc-
tions could reduce the number of instructions required for some programs.
However, non-uniform instructions could require each cell to be orthogonal in
sequence. In contrast, uniform instructions allow every cell to consist of the same
sequence, requiring only the domains within the cells to be orthogonal. Shar-
ing the sequences between the cells reduces the number of different instruction
strands that need to be synthesized.

SIMD|[DNA 233

4.5 Determinism and Nondeterminism

Our programs are designed with deterministic instructions: given one state of
the register, after adding the instruction strands, the register changes to one
specific state. Deterministic instructions make it easy to design, predict, rea-
son about, and compose the programs. In contrast to deterministic instructions,
one could also construct nondeterministic instructions by introducing nondeter-
minism to the updates of the cells. For example, consider an empty cell with
domains (3*,2*,1*), and add instruction strands (1,2) and (2,3). Either the
first or second strand can bind, but since they displace each other, only one will
remain after elution. The probability of which strand remains depends on its rel-
ative concentration. In principle, applying nondeterministic instructions allows
for implementation of randomized algorithms and simulation of nondeterministic
computing machines.

4.6 Running Time

The running time of a program depends on two factors: running time per instruc-
tion and the number of instructions. The running time per instruction depends
on whether the instruction updates the cells through parallel or sequential reac-
tions. In general, instructions are capable of acting on each cell within each
register in parallel. Yet, Instruction 1 of the binary counting program does not
have this source of parallelism. A first reaction (displacement) must occur on
the rightmost cell prior to a second reaction occurring on the second cell, which
must occur prior to a third reaction on the third cell, and so on. Thus, this
instruction with sequential reactions loses the speedup given by independent
instruction reactions occurring in parallel on each cell within a register. Besides
the running time per instruction, the larger the number of instructions per pro-
gram, the more complex is the experimental procedure. This motivates studying
the smallest number of instructions required to achieve a computational task.

4.7 Universal Computation

Our registers as proposed are restricted to a finite number of cells. So although
Rule 110 on an infinite arrangement of cells can simulate an infinite-tape Turing
machine, our scheme is only capable of space-bounded computation. To claim
that a system is capable of universal computation, it is required that the data
tape—in our case, the number of cells—can be extended as needed as com-
putation proceeds. Since our program consists of uniform instructions, domain
orthogonality is only required within a cell. Therefore, in principle, the register
can be extended indefinitely during computation without exhausting the space of
orthogonal domains. The register’s length could perhaps be extended by merging
bottom strands with top strand “connectors”.

234 B. Wang et al.

4.8 Space-Efficient Computation

Although Rule 110 is Turing universal, computing functions through simula-
tion of a Turing machine by Rule 110 does not make use of the full power of
SIMD||DNA. First of all, while simulation of a Turing machine by Rule 110
was shown to be time-efficient [10], it is not space-efficient. Precisely, simulating
a Turing machine on an input which takes 7" time and S < T space requires
p(T) time and p(T') space (where p(T') is some polynomial in T'). However, Tur-
ing machines can be simulated time- and space-efficiently by one-dimensional
CA if the automaton is allowed more than two states [19]. Simulating larger
classes of CA is a promising approach to space-efficient computation in this
model, since our Rule 110 simulation suggests that CA are naturally simulated
by SIMD||DNA programs.

4.9 Equalizing Encodings

Our two programs use different schemes for encoding binary information in a reg-
ister. Using some universal encoding would allow applying different consecutive
computations to the same registers. Alternatively, we could design programs to
inter-convert between different encodings. The reason for suggesting this alter-
native is that unlike classical machines acting on bits, in SIMD||DNA the way
a bit is encoded affects how it can be changed by instruction reactions. For
example, in the binary counting program, the encoding ensures that no toeholds
except for the rightmost domain are open on the register, which is used to argue
correctness. Alternatively, in the Rule 110 program, toeholds must be available
throughout the register to achieve the parallel cell updates required by CA.
Therefore having one encoding which implements these two different functions
seems difficult.

Acknowledgements. The authors were supported by NSF grants CCF-1618895 and
CCF-1652824, and DARPA grant W911NF-18-2-0032. We thank Marc Riedel for sug-
gesting the analogy to Single Instruction, Multiple Data Computers. We thank Marc
Riedel and Olgica Milenkovic for discussions.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(5187), 1021-1024 (1994)

2. Beaver, D.: A universal molecular computer. DNA Based Comput. 27, 29-36 (1995)

3. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of
DNA. Discret. Appl. Math. 71(1-3), 79-94 (1996)

4. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solu-
tion of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567), 499—
502 (2002)

5. Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information storage in
DNA. Science 337(6102), 1628 (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

SIMD||DNA 235

Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1-40
(2004)

Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans.
Comput. 21(9), 948-960 (1972)

Freund, R., Kari, L., Paun, G.: DNA computing based on splicing: the existence
of universal computers. Theory of Comput. Syst. 32(1), 69-112 (1999)

Liu, K., et al.: Detecting topological variations of DNA at single-molecule level.
Nat. Commun. 10(1), 3 (2019)

Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132-143. Springer, Heidelberg (2006). https://doi.org/10.1007/11786986-13
Organick, L., et al.: Random access in large-scale DNA data storage. Nat. Biotech-
nol. 36(3), 242-248 (2018)

Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp.
123-140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-
812

Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196-1201 (2011)

Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with
DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S.
(eds.) DNA 2014. LNCS, vol. 8727, pp. 114-131. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11295-4_8

Rothemund, P.W.K.: A DNA and restriction enzyme implementation of turing
machines. DNA Based Comput. 27, 75-119 (1995)

Roweis, S., et al.: A sticker-based model for DNA computation. J. Comput. Biol.
5(4), 615-629 (1998)

Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-
diffusion networks. Nat. Comput. 15(2), 197-214 (2016)

Seelig, G., Soloveichik, D., Zhang, Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585-1588 (2006)

Smith III; A.R.: Simple computation-universal cellular spaces. J. ACM 18(3), 339—
353 (1971)

Tabatabaei, S.K., et al.: DNA punch cards: encoding data on native DNA sequences
via topological modifications. bioRxiv, 10.1101/672394

Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement sys-
tems. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 133-153.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_9

Wang, B., Thachuk, C., Ellington, A.D., Soloveichik, D.: The design space of strand
displacement cascades with toehold-size clamps. In: Brijder, R., Qian, L. (eds.)
DNA 2017. LNCS, vol. 10467, pp. 64-81. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66799-7_5

Wang, B., Thachuk, C., Ellington, A.D., Winfree, E., Soloveichik, D.: Effective
design principles for leakless strand displacement systems. Proc. Nat. Acad. Sci.
115(52), E12182-E12191 (2018)

Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601—
644 (1983)

Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement
reactions. Nat. Chem. 3(2), 103 (2011)

https://doi.org/10.1007/11786986_13
https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1007/978-3-319-11295-4_8
https://doi.org/10.1007/978-3-319-11295-4_8
https://doi.org/10.1101/672394
https://doi.org/10.1007/978-3-319-21999-8_9
https://doi.org/10.1007/978-3-319-66799-7_5
https://doi.org/10.1007/978-3-319-66799-7_5

	SIMD||DNA: Single Instruction, Multiple Data Computation with DNA Strand Displacement Cascades
	1 Introduction
	2 SIMD||DNA
	2.1 Encoding Data
	2.2 Instructions
	2.3 Programs

	3 Programs for Binary Counting and Rule 110
	3.1 Cellular Automaton Rule 110
	3.2 Counting

	4 Discussion and Future Work
	4.1 Data Preparation
	4.2 Experimental Feasibility and Error Handling
	4.3 Data Density
	4.4 Uniform Versus Non-uniform Instructions
	4.5 Determinism and Nondeterminism
	4.6 Running Time
	4.7 Universal Computation
	4.8 Space-Efficient Computation
	4.9 Equalizing Encodings

	References

