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ABSTRACT

On-chip learning with compute-in-memory (CIM) paradigm has
become popular in machine learning hardware design in the recent
years. However, it is hard to achieve high on-chip learning accuracy
due to the high nonlinearity in the weight update curve of emerging
nonvolatile memory (eNVM) based analog synapse devices.
Although digital synapse devices offer good learning accuracy, the
row-by-row partial sum accumulation leads to high latency. In this
paper, the methods to solve the aforementioned issues are presented
with a device-to-algorithm level optimization. For analog synapses,
novel hybrid precision synapses with good linearity and more
advanced training algorithms are introduced to increase the on-chip
learning accuracy. The latency issue for digital synapses can be
solved by using parallel partial sum read-out scheme. All these
features are included into the recently released MLP +
NeuroSimV3.0, which is an in-house developed device-to-system
evaluation framework for neuro-inspired accelerators based on
CIM paradigm.
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Compute-In-Memory Paradigm In the past decade, neural
network based machine learning algorithms have witnessed rapid
development and achieved commercial success in image/speech
recognition. However, the intensive matrix multiplication
operations and massive data movement between computation units
and memory make it inefficient to implement neural network based
algorithms on traditional computation platform (e.g. CPU), which
is based on von-Neumann architecture. The reasons can be
explained by the lack of parallelism during the matrix
multiplication and the so-called memory bottleneck. To overcome
these challenges, GPU is used to speed up the training process of
the neural networks due to its highly parallel computation
mechanisms. However, the high power consumption of GPU
(~100W scale) prevents it from being applied to the edge devices
where the power budget is limited.

To alleviate the memory bottleneck, which is caused by the
insufficient memory bandwidth during the frequent data transfer
between memory and computing unit when doing matrix
multiplication, one promising solution is to perform computation
inside the memory, which is referred to as compute-in-memory
(CIM) [1]-[6]. The basic idea of CIM is to map the elements of a
matrix into the conductance matrix of memory cells, which is
termed as synaptic array and each memory cell is called a synapse.
The vector is input at each row of the memory array as voltage level
and the multiplication results are represented by the partial sum
current at each column, as shown in Figure 1.
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Figure 1: Implementation of vector-matrix multiplication with
compute-in-memory paradigm.



MLP + NeuroSim Simulator CIM paradigm is facilitated by
recent research breakthroughs in emerging non-volatile memory
(eNVM). Four promising eNVM candidates: resistive RAM
(RRAM), phase change memory (PCM), spin-transfer-torque
magnetic RAM (STT-MRAM) and ferroelectric field-effect
transistor (FeFET) are featured of their small cell size, short
programming time, good endurance and data retention, which is
beneficial for CIM paradigm. To help evaluate memory device
properties on the performance of CIM based neural network
accelerator, an in-house device-to-system simulation framework
MLP+NeuroSim was developed [7),[8), which is publically
available at GitHub [9)]. The overall architecture of this simulator
is shown in Figure 2. In general, the framework consists of two
parts: the MLP simulator and NeuroSim simulator. The MLP
simulator helps evaluate the on-chip learning or inference accuracy
with a 2-layer MLP network. The default network topology is 400-
100-10 for MNIST dataset. Device properties such as nonlinearity,
cycle-to-cycle variations, device-to-device variations and number
of conductance levels are considered as input parameters to build
the synaptic arrays. On the other hand, the -circuit-level
performance metrics including chip area, read/write latency,
dynamic energy consumption and leakage power are estimated by
the NeuroSim simulator. The performance metrics of periphery
circuit modules (e.g. sense amplifiers, mux, decoders et. al) and
synaptic arrays are evaluated by built-in analytical models and user
defined values at specific technology node. More details about the
methodologies used in the framework can be found in our previous

papers [7] [8].
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Figure 2: Overview of the simulator architecture of MLP +
NeuroSim framework.

So far, Version 1.0 and 2.0 of the MLP + NeuroSim framework
have been released in 2017 and 2018, respectively. In these two
versions, both analog and digital synaptic arrays with their
periphery circuit modules are supported. Various devices such as
RRAM, PCM, STT-MRAM, FeFET, and SRAM are benchmarked
for their performance in on-chip learning and on-chip inference.
While these devices achieve good performance for on-chip
inference, challenges occurs for on-chip learning. The main reason
is that the nonlinear and asymmetric weight update curve of analog
synapses prevents it from achieving high learning accuracy because
of the inaccurate weight update. Although digital synapses based
on eNVMs or SRAM offers good learning accuracy, the drawbacks

of them are also obvious. For eNVMs based digital synaptic arrays,
the row-by-row read is time-inefficient for partial sum calculation.
For SRAM based synaptic arrays, although it features of high
read/write speed, the high leakage power, volatility and high area
cost limit its applications in large scale neural network accelerators.

In this paper, device-to-algorithm level optimizations are pursued
to address the aforementioned challenges. In section 2, the methods
to improve the on-chip learning accuracy of the analog synapses
based synaptic array are illustrated. In general, hybrid precision
synapses and advanced training algorithms such as adaptive
momentum estimation (Adam) are utilized. In section 3, the high
read latency of digital synaptic arrays is reduced by parallelizing
the partial sum read-out. In section 4, the new features of
MLP+NeuroSimV3.0 are summarized and a benchmark table of
state-of-the-art synaptic devices is presented. The key factors to
achieve high on-chip learning accuracy is discussed. In section 5,
conclusions are drawn and a blueprint for the future design
automation tool development plan is presented.

2) Improving Online Learning Accuracy for
Analog Synapse Based Accelerator

In analog synapse based accelerators, the multi-bit weight is stored
in one memory cell, where RRAMs and PCMs with either crossbar
or 1-transistor and 1-resistor (1T1R) cell structure are usually used.
With analog synapses, each partial sum value is obtained in parallel
from one column of the array. It is more time-efficient compared
with digital synapses, where the partial sums corresponding to
different weight bits need to be sequentially added up with an adder
at the edge of the array. However, as described previously, the on-
chip learning accuracy is degraded due to the nonlinear/asymmetric
weight update curve of eNVMs based analog synapses. In this
section, hybrid precision synapse and advanced learning algorithms
are applied to improve the on-chip learning accuracy.

2.1 Hybrid Precision Synapse

As is known, the nonlinear and asymmetric weight update curve
(conductance vs. # programming pulse) prevents the analog
synapses from achieving high on-chip learning accuracy. Besides,
the relatively longer programming pulse width (~tens of
nanoseconds or above) of eNVMs limits the training speed.
Recently, capacitor based analog synapse such as 3-transistor-1-
capacitor (3T1C) cell [10] is proposed to alleviate these problems.
Although capacitor based analog synapse offers good linearity and
fast programming speed, it suffers from the volatility and small
dynamic range.

To leverage the good linearity, fast programming speed of capacitor
and the non-volatility, abundant conductance states of eNVMs, the
weight stored in a synapse can be divided into 2 parts and stored
into different devices. The first part of the weight has a lower
numerical significance and is stored in the capacitor devices, which
is termed low significance weight (LSW, Wisw). The other part of
the weight with higher numerical significance is stored in the



eNVMs, which is termed high significance weight (HSW, Wusw).
During training, only the LSW is frequently updated due to the fast
programming speed of capacitor. A significance factor F is defined
to represent the numerical significance of the HSW. Therefore, the
weight stored can be represented as W = F x Wusw + Wisw, as
shown in Figure 3. A synapse that is capable to store the volatile
LSW and non-volatile HSW is termed as hybrid precision synapse
in this paper.

An example: decimal weight = 82

01010010 01010010

Wisw = (0101); = 549 Whisw = (01); = 149
Wisw = (0010); = 259 Wisw = (010010); = 18y
F=16 F=64

Wiotal = 16-5+2=82 Wiotal = 64-1+18=82

- HSW (non-volatile)
- LSW (non-volatile)

Figure 3: an illustration of the weight storage in a hybrid
precision synapse

At present, two types of hybrid precision synapses are proposed, as
shown in Figure 4. One is based on PCMs and capacitor [11)],
which is called 3T1C +2PCM synapse since in the original design
there are 3 transistors, 1 capacitor and 2 PCMs (with 2 selection
transistors) in a synapse. The other one is based on the ferroelectric
transistor [12)], which is called 2T1F synapse since in the original
design, there are 2 CMOS transistors and 1 ferroelectric transistor
in a synapse.

In the 3T1C + 2PCM synapse, the LSW is stored in a MOS
capacitor, which tunes the gate voltage of the NMOS transistor
connected. Two access transistors (AG) are used to control the
charging and discharging of the capacitor. The HSW is represented
by the weight difference between a PCM pair, symbolled as G+ and
G., respectively. To increase the HSW, the G+ is programmed by a
series of set pulses. To decrease the HSW, the G. is programmed
by a series of set pulses. For the 2T1F synapse, similarly, the LSW
is stored at the gate capacitor of the FeFET, which is tuned by
charging and discharging the gate node. The HSW is programmed
by the multi-domain polarization switching in the ferroelectric gate
dielectrics [13)], which is non-volatile. It should be noted that the
LSW and HSW are both stored as the channel conductance of the
FeFET but with different programming mechanisms. In such
hybrid synapses, the LSW is volatile and may be lost due to the
leakage in the off-state transistors.
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Figure 4: Schematics of hybrid precision synapses (a).
3T1C+2PCM synapse [11)]. (b). 2T1F synapse [12)].

Array Design To enable the control of individual synapse in an
array, we add two more transistors to control the access to VDD
and GND in a synapse, respectively, as shown in the red dash box
in Figure 4. These two transistors are called power gate (PG) in this
paper. The array level architecture design is shown in Figure 5 (a)
and (b) respectively. In both designs, switch matrices are used to
manipulate the control lines. A reference column is added to
represent negative partial sum values, which is obtained by
subtracting the partial sum digits of the reference column from the
partial sum digits of regular columns. In the periphery circuits,
analog to digital converter (ADC) based on multilevel sense
amplifiers is used to convert the analog partial sum current to digital
values. Specifically, for the synaptic array with 3T1C + 2 PCM
synapse, it is assumed that the partial sum current corresponding to
LSW and HSW are first converted to digital values and then added
up to obtain the total weight, although in [11)], an analog
summation of the partial sum current is conducted and followed by
digital conversion. To reduce the overhead of periphery circuits, a
mux is used to share periphery circuit modules among different
columns.
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Figure 5: synaptic arrays with (a) 3T1C+2PCM synapse and
(b) 2T1F synapse

Partial Sum Read The partial sum read operation in 3T1C +
2PCM is conducted in 3 steps as follows.

1. Read the partial sum corresponding to HSW (HSW Psum). It
is a 2-step process. First, the partial sum corresponding to the
G- synapses (G+ Psum) is read-out. Then, it is subtracted by
the partial sum corresponding to G. synapses (G- Psum). The
2-1 mux will forward the G+ Psum to subtractor from register
during subtraction.

2. The HSW Psum is shifted to left by log2(F), where the
significance factor F is defined as an integer power of 2 to
make the shift amount integer.

3. Read the partial sum corresponding to the LSW (LSW psum)
and then adding it up with the HSW Psum. To get LSW psum,
the 2-1 mux will be configured to deliver the partial sum of
the reference column to the subtractor.



The partial sum read in 2T1F based synaptic cell is similar except
that it does not need to read the LSW and HSW separately as they
are both encoded as the channel conductance of FeFET.

LSW Write In both synapses, the weight update is conducted by
programming the capacitor row-by-row during training.

1. Turn on the PGs of the selected synapse

2. If weight update AW > 0, pulses with high voltage are applied
to AG1 to charge the gate node. Otherwise, if AW < 0, pulses

with low voltage are applied to AG2 to discharge the gate node.

HSW Write (Weight Transfer) For the capacitor node, if its
voltage is too low or too high, the NMOS may operate out of linear
region, and also the gate voltage may decay over time due to
leakage current. Therefore, after certain amount of training batch,
the LSW is read out and transferred to HSW by programming
eNVMs. The weight transfer for 3T1C+ 2PCM based synapse can
be conducted as follows.

1. Read out LSW weight Wirsw row by row.

2. Calculate the amount of weight to be transferred to HSW by
AWusw = Wrsw/F.

3. Program the G+ cell by applying set pulses to its BL if
AWnsw>0. Otherwise, program the G- PCM cell if AWnsw<0.

4.  After weight transfer, program the LSW to an intermediate
level and therefore the original LSW is discarded.

The weight transfer for 2T1F synapse based array is slightly
different. The weight of the whole synapse (W) is read-out row-by-
row. The HSW is reprogrammed to a new weight level of W/F.
Similarly, the LSW is discarded after the weight transfer.

Table 1 list the MLP+NeuroSim benchmark results for synaptic
arrays based on these two hybrid precision synapses. The device
parameters for PCM and FeFET are obtained from [14] and [13],
respectively. An ideal eNVM synapse is selected as the baseline.
Due to the improved linearity, the synaptic arrays with hybrid
precision synapses can achieve comparable on-chip learning
accuracy with ideal device. Slight accuracy degradation is observed
due to the weight loss after weight transfer and the cycle-to-cycle
variations in a real device. However, a significant area overhead is
observed due to two reasons: 1). The multilevel polarization
switching in FeFET is only reported at um scale for FeFET [13] 2).
The relatively large capacitance (100fF) is used in the design [11],
[12].

Table 1 The Benchmark Results for Hybrid Precision Synapse

(32nm Technology Node)
. Ideal
Device 3T1C+2PCM 2T1F eNVMs
PCM: 16 HSW: 2bits
# of conductance Capacitor: 32 LSW: 4 bits 6 bits
states (6 bits in total) (6 bits in total) ”
F=4 F=16
Nonlinearity Capacitor: 0.2/-0.2
(weight PCM: 0.105 (LTP 0.5/0.5 0/0
increase/decrease) only)

PCM: 4.71 KQ
R
oN Capacitor: 25KQ 559.28KQ 200kQ
. PCM: 19.8
ON/OFF ratio Capacitor: 20 45 50
e HSW: 0.7V (ave.) HSW: 2-4V/3ps
Weight increase pulse /6ps LSW: 1V/300ps 2V/10ns
LSW:1V/300ps : P
. - . HSW: 2-4V/3ps
‘Weight decrease pulse Capacitor:1V/300ps LSW: 1V/300ps 2V/10ns
Cycle-to-cycle PCM: 1.5% o o
variation (¢) Capacitor: 0.5% 1.5% 0%
Online learning 93.8% 94.6% 94.7%
accuracy
Area 330,330 um? 334,270pum? 7477 4pm?
3.15s 0.38s
Latency (3.06s for transfer) (0.28s for transfer) 1.36s
Energy 16.69 mJ 7.53 mJ 4.37 mJ
Leakage power 1.66 mW 2.94 mW 105.6 uW

2.2 Training Algorithms

In the previous two versions of MLP + NeuroSim framework,
stochastic gradient descent (SGD) is wused during the
backpropagation stage for on-chip learning. In the V3.0, more
training algorithms are supported to help increase the on-chip
learning accuracy. Here, we briefly talk about the options of
training algorithms in V3.0. More mathematical details about these
algorithms can be found in an online tutorial [15].

Stochastic Gradient Descent (SGD) SGD is the training algorithm
used in V1.0 and V2.0. It calculates the gradient and conduct
weight update after each training image with a pre-defined learning
rate. This feature makes SGD suitable for online learning because
of'the fast execution speed. However, relatively large fluctuation of
the learning accuracy is also observed during training because of
the fixed learning rate.

Momentum Momentum method is a revised weight update scheme
for SGD. The weight update is a linear combination of the gradient
at present time t and the weight update at previous time t-1. It
alleviates the accuracy fluctuation in SGD and offers faster
convergence. Similar to SGD, the learning rate is fixed.

Adaptive Gradient (Adagrad) In Adagrad, the learning rate for
weight wy; is divided by its accumulative gradient update during the
training, i.e. the learning rate undergoes a monotonic decay during
the training and it decays faster if the w;; undergoes a large amount
of weight update in its training history. Therefore, Adagrad
provides good convergence and alleviates the learning accuracy
fluctuation during training.

Root Mean Square Propagation (RMSprop) In RMSprop, the
learning rate of weight wy; is divided by the moving average of its
recent gradients. Therefore, RMSprop avoid the monotonic decay
of learning rate in Adagrad.

Adaptive Moment Estimation (Adam) Adam is a training
algorithm that combines RMSprop and the momentum method.
The learning rate is self-adaptive based on the moving average of
1t and 2" moments of the gradient.

To illustrate the effect of different training algorithms on on-chip
training, the learning accuracy vs. epoch is plotted in Figure 6. Two
devices, Ag:a-Si based RRAM [16] with high non-linearity and



EpiRAM [17] with low non-linearity is selected here for
comparison. It is observed that the on-chip learning accuracy can
be improved by using more advanced training algorithms. It can be
explained that those batch-based training algorithms improve the
equivalent weight precision by accumulating the tiny AW [18].
Besides, for Ag/a-Si, the learning accuracy fluctuation is alleviated
by the training algorithms with self-adaptive learning rate, i.e.
Adagrad, RMSprop and Adam.

However, since those algorithms are batch based, whether they are
still effective when the training images is not abundant in on-chip
learning needs further examination. Besides, the hardware
overhead (such as buffers) is not negligible to implement these
algorithms, which is scheduled in our development plan for future
version. In this version, the algorithms are supported in software
level to examine their effect on improving the on-chip learning
accuracy.
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Figure 6: Training accuracy vs. epochs for Ag:a-Si [16] and
EpiRAM [17] devices.

3) Improving On-chip Learning Efficiency for
Digital Synapse Based Accelerator

Accelerators based on digital synapses feature of the immunity to
device nonlinearity/variability as only “0”s and “1”’s are stored in
each memory cell. However, the partial sum read-out for digital
synaptic array (e.g. STT-MRAM, SRAM) is conducted row by row,
which leads to high latency. In this V3.0, a parallel read-out
architecture for SRAM based synaptic array is proposed in Figure
7 [2],[4]. The WL decoder for the row-by-row read-out array is
replaced with a WL switch matrix to turn on all WLs at a time. The
partial sum of each column is sensed by the multilevel sense
amplifier. A reference generator is used to generate the reference
voltage levels for the multilevel sense amplifier. The adder and
register to accumulate the partial sum of each row after the S.A. in
the row-by-row SRAM array is eliminated.
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Figure 7: SRAM based digital synaptic array with parallel
partial sum read and row-by-row partial sum read

The benchmark results for row-by-row and parallel read-out SRAM
array are listed in Table 2. The area cost for parallel SRAM array
is increased due to the multilevel sense amplifiers and the reference
generator. The read latency of parallel read-out SRAM array is
reduced significantly compared with the row-by-row scheme,
which leads to lower total latency. In the parallel SRAM array, the
total latency is limited by the write latency, which has to be
conducted row-by-row. In Table 2, row-by-row read-out scheme
using STT-MRAM is shown for comparison, which suffers from
longer write latency/energy but benefits from lower leakage power.
The parallel read-out scheme of STT-MRAM is for the future
investigation, as the on/off ratio of STT-MRAM is very limited.

Table 2 Benchmark Results for Digital Synaptic Arrays with Row-by-
Row Read and Parallel Read

Device SRAM SRAM STT-MRAM
(row-by-row) (parallel read) (row-by-row)
# of conductance 6 bits 6 bits 6 bits
states
R - - 3.5kQ
ON/OFF ratio -- -- 2.3
‘Weight increase pulse - - 1V/10ns
Weight decrease pulse - - 1V/10ns
Online learning 949 949 ~94%
accuracy
Area 65,728 um’ 74,699 um’ 66,632 um’
Latency 598s 1.73s 90.1s (row-by
(4.16s for read) (0.11s for read) TOW)
Energy 15.56 mJ 19.1 mJ 146.2 mJ
Leakage power 2.80 mW 2.69 mW 84.0 pW

4) Benchmark Results for State-of-the-art
Synaptic Devices

Besides the features mentioned above, in V3.0, the range of
algorithm weight is changed from (0,1) to (-1,1), which is more
widely in today’s neural network algorithms. To represent the
negative weight, a reference column is added in the array, which
represents the level “0”. In the forward stage, the partial sum
current of a regular column is first read out and converted to digits
by ADC. At the same time, the partial sum digit of the reference
column is obtained. Then, the partial sum of the reference column
is subtracted from that of the regular column by subtractor.

A new benchmark table in V3.0 is presented in Table 3 while the
benchmark results in V2.0 [19] is presented in Table 4 for
comparison. Both tables are obtained at 32nm node. From the
benchmark table, a few remarks can be made.

1. In V3.0, both the latency and energy consumption are reduced
for synaptic devices with relatively good linearity but long
write pulse width (e.g. EpiRAM, TaOx/HfOx, PCM). It can be
explained by the weight range change from (0,1) to (-1,1),
where the number of programming pulses is reduced by half
to change the weight by AW in V3.0. As a result, both the write
latency and energy consumption due to synapse programming
decrease.



2. For PCMO, which has poor linearity, both latency and energy
consumption are increased since its learning accuracy is
slightly increased from 10% to 20%, which leads to more
write pulses applied.

3. The area cost for all the devices is increased due to the
hardware overhead to support the negative weight.

4. In V3.0, for digital synaptic arrays, row-by-row read-out
SRAM shows much lower latency and energy consumption
than STT-MRAM due to the relatively large write pulse width
and the large write current for STT-MRAM. By parallelizing
the partial sum current read-out, the latency of SRAM can be
further reduced.

5. In general, analog synapses provides better area efficiency but
they suffers from low learning accuracy due to the non-ideal
weight update. Both the eNVM-based digital synapses and
hybrid precision synapses shows good learning accuracy with
additional area cost. SRAM-based digital synapses is good for
on-chip learning due to its low latency and high learning
accuracy. However, due to its volatility, the weights are stored
off-chip and weight load is needed before inference.

From the benchmark table, the key factors to achieve high on-chip
learning accuracy can be concluded. First, good linearity and
symmetry in the weight update curve is required. Relatively low
cycle-to-cycle variation is also necessary. For example, even
though the linearity of TaOx/HfOx is comparable with EpiRAM, it
shows lower on-chip learning accuracy due to its large cycle-to-
cycle variation. Besides, for analog synapses, abundant
conductance levels are also needed to provide sufficient precision
for weight update.

Conclusions

In this paper, new features of the MLP + NeuroSimV3.0 are
introduced. For analog synapses, hybrid precision synapse and
advanced learning algorithms are added to increase the on-chip
learning accuracy. For digital synapses, the parallel partial sum
read-out scheme is supported to reduce the read latency for SRAM
array. For future versions, the spiking neural network is to be
supported. The hardware modules to support on-chip learning will
be added.
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Table 3. The Benchmark Table in NeuroSimV3.0 (at 32nm node)

Analog eNVM synapses ‘
EpiRAM
Device type Ag:a-Sif16] | TROYHIO PCMO AIOYHIO: | Gorpem 4] | (Ag:SiGe) HZO FeFET
[20] [21] 22] 117] [13]
# of conductance states 97 128 50 40 100-120 64 32
Nonlincarity (weight 2.4/-4.88 0.04/-0.63 3.68/-6.76 1.94/-0.61 0.105/2.4 0.5/-0.5 1.75/1.46
increase/decrease)
Ron 26 MQ 100 KQ 23 MQ 16.9 KQ 4.71 KQ 81 KQ 559.28 KQ
ON/OFF ratio 12.5 10 6.84 4.43 19.8 50.2 45
Weight increase pulse | 3.2V/300ps | 1.6V/50ns | -2V/Ims | 0.9V/100ps 0'7\2;“5"‘5')/ 5V/sus B0V fave
Weight decrease pulse | -2.8V/300ps | 1.6V/50ns 2V/1ms -1V/100us 3V (ave )/ 3V/5us 295V (ave.)/
125ns 75ns
Cyclc"“‘cﬁl)“ variation 3.5% 3.7% <1% 5% 1.5% 2% <0.5%
Online learning ~72% ~80% ~33% ~20% 89% 92% 88%
accuracy
Area 62023 pm® | 8663.1 pm® | 6292.4 pm® | 21,760 pm? 46,565um’ 9144 3um? 7032.6um’
Latency (optimized) 31997s 10.15s 12218s 470.42s 203.0s 229.6s 2.73s
Energy (optimized) 13.44mJ 4.01lmJ 2.53m] 15.26mJ 35.0mJ) 31.01mJ 1.9mJ
Leakage power 105.650W 105.650W 105.650W 105.650W 105.650W 105.650W 105.650W
Digital synapse Hybrid precision synapse
. 6-bit SRAM 6-bit STT-
Device type 6-bit SRAM (parallel) MRAM (row-by- 3T1C+2PCM [11] 2TI1F [12]
(row-by-row) row)
PCM: 16 HSW: 2bits
# of conduct tat - - Capacitor: 32 LSW: 4 bits
ol conductance states (6 bits in total) (6 bits in total)
F=4 F=16
Nonlinearity (weight _ - Cap.: 0.2/-0.2; 0.5/0.5
increase/decrease) PCM: 0.105 (LTP only) o
Ron -- 3.5KQ PCM: 4.71 KQ; Cap. : 25KQ 559.28KQ
ON/OFF ratio - 23 PCM: 19.8; Cap. : 20 45
L HSW: 0.7V (avg.) /6ps HSW: 2-4V/3ps
Weight increase pulse - 1V/10ns LSW:1V/300ps LSW: 1V/300ps
) o LSW: 1V/300ps
Weight decrease pulse - 1V/10ns Capacitor:1V/300ps HSW: 2-4V/3us
Cyclc"“{f:)c variation - - PCM: 1.5%, Cap.: 0.5% 1.5%
Online learning ~94% ~94% ~94% 93.8% 94.6%
accuracy
Area 65,728 pm? 74,699um> 66,632 pm’ 330,330 um? 334,270pum?
. 1.73s 3.15s8 0.38s
Latency (optimized) 398 (0.11s for read) 90.1s (3.06s for transfer) (0.28s for transfer)
Energy (optimized) 15.56 mJ 19.1 mJ 146.2 mJ 16.69 mJ 7.53 mJ
Leakage power 2.80 mW 2.69 mW 84.0 uW 1.66 mW 2.94 mW

Table 4. The Benchmark Table in NeuroSimV2.0 (at 32nm node)

Digital synapse
Analog eNVM synapses
Device type Ag:a-Si TaOx/HfOy PCMO AlO/HfO: GST PCM EpiRAM HZO FeFET 6-bit SRAM
(row-by-row)
# of conductance states 97 128 50 40 100-120 64 32
Nonlinearity (weight 2.4/-4.88 0.04-0.63 | 3.68-6.76 | 1.94-0.61 | 0.1052.4 0.5/-0.5 1.75/1.46
increase/decrease)
Ron 26 MQ 100 KQ 23 MQ 16.9 kQ 4.71kQ 81 kQ 559.28 kQ
ON/OFF ratio 12.5 10 6.84 4.43 19.8 50.2 45
Lo 0.7V 3.65V (avg.)/
Weight increase pulse 3.2V/300us 1.6V/50ns -2V/1ms 0.9V/100us (ave)/ 6us 5V/5us 75ns
. - 3V (avg.)/ -2.95V (avg.)/
‘Weight decrease pulse 2.8V/300us 1.6V/50ns 2V/1ms 1V/100ps 12508 3V/5us 75ms
Cy“‘“‘""“ﬁl)e variation 3.5% 3.7% <1% 5% 1.5% 2% <1%
Online learning accuracy 76.2% 73.7% 10.1% 19.5% 87% 92.6% 90% 94.5%
Area 5594.6um’ 7965.3pum’ 5594.6um’ 14834pm? 45203um’ 8445.9um’ 6334.8um’> 53944um’
Latency (optimized) 68327s 33.3s 1.78s 3161.2s 386.0s 294.36s 3.11s 4.19s
Energy (optimized) 27.65mJ 9.72mJ 0.89mJ 136.03mJ 83.86mJ 45.95mJ 1.19mJ 9.48mJ
Leakage power 93.74uW 93.74pW 93.74pW 93.74uW 93.74pW 93.74uW 93.74pW 2.65mJ




