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Abstract

With the rapid scaling of data centers, understanding their power characteristics and optimizing data
center energy consumption is a critical task. Typically, data centers are provisioned for peak load even
when they are mostly operating at low utilization levels. This results in wasteful energy consumption
requiring smart energy saving strategies. At the same time, latency critical application workloads have
stringent Quality of Service (QoS) constraints that need to be satisfied. Optimizing data center energy
with QoS constraints is challenging since different workloads can have variabilities in job sizes and
distinct system utilization levels. Also, server configuration (e.g., the number of cores per server) can
be different across data centers. Therefore, a single configuration for energy management that works
well across these various scenarios, is not practical.

In this paper, we propose TS-BatPro, a novel framework that judiciously integrates spatial and
temporal job batching to save energy for multi-core data center servers while meeting the QoS constraints
for application workloads. TS-BatPro performs effective global job batching and scheduling by modeling
job performance and power characteristics of multi-core servers without any hardware modifications.
TS-BatPro works on commodity server platforms and comprises two components: 1. a temporal batching
engine that batches incoming jobs such that the servers can continue to reside in low-power states; 2. a
spatial batching engine that prioritizes scheduling job batches to a small subset of servers. We develop
a prototype of TS-BatPro on physical testbed with a cluster of servers and evaluate TS-BatPro on a
variety of workloads. Our results show that TS-BatPro is able to achieve significant amount of energy

savings under various job response time constraints and traffic patterns.

I. INTRODUCTION

Demands for personalized and contextual retrieval of large volumes of data from the users and
the associated computations have strongly driven the growth of data centers. Today’s computer
systems are increasingly power hungry. Data centers now account for about 2% of the US
domestic energy consumption [1], [2]. Most server farms are provisioned for peak demand, and

configured to operate at capacities much higher than necessary. Studies by Barroso et al. [3]



have shown that the servers in data center environments are typically utilized at only 30% of
their potential while drawing almost 60% of the power. The lack of server energy proportionality
has significantly undermined data center energy efficiency and incurred considerable wasteful
energy spent every year.

Two major issues contribute to the disproportionality between server utilization and energy
consumption: ineffective use of idle power modes in servers that waste a considerable amount
of energy by keeping excessive number of servers in standby mode (consumes 30% to 60% of
server peak power) when they are idle; over-provisioning of servers which keeps CPUs in high
power-consuming active state during the periods they are not processing any jobs.

Prior works that address data center energy issues can be broadly classified into three cat-
egories: (1) cluster-level power management techniques that dynamically size data centers by
dispatching workloads to a subset of servers and put the rest of the servers in system low
power states or just turn them off [4], [5], [6], [7]; (ii) server dynamic power management that
leverage Dynamic Voltage and Frequency Scaling (DVES) to achieve trade-offs between data
center energy and application performance [8], [9], [10], [11]; (iii) recent works on server idle
power management that take advantage of processor low power mode (e.g., C State) to conserve
energy at low processor utilization levels while meeting the response time constraints [12], [13],
[14].

While cluster-level energy optimization strategies can potentially save a large amount of energy
by eliminating server platform power [14], they tend to be less effective for latency-critical
workloads due to the long wakeup latencies (typically in minutes or tens of seconds). DVFS
is shown to be effective in saving data center energy for ultra-short latency jobs with sub-
millisecond service times [9], However, using DVFS, only CPU dynamic processor power can
be addressed. Finally, energy savings could be obtained through smart control of core level low
power states [12], [14]. However, merely achieving core level power saving can be sub-optimal.
This is because, a significant amount of base power is drawn by the multi-core processor package
when active [15]. To further improve energy efficiency, reducing the base processor power by
putting the whole package to low power idle state is necessary. Unfortunately, entering processor-
level idle state requires all of the cores to be in idle state at the same time, which is difficult to
achieve as idle periods of individual cores rarely align [16].

In this article, we present TS-BatPro, an energy optimization framework that judiciously

integrates temporal batching and spatial batching to improve data center energy efficiency. To



create chances for processor-level low power states, the temporal batching engine accumulates
just the right amount of jobs before dispatching them to an individual server. To effectively
bound the response latencies, our temporal batching engine uses a job performance model, that
considers wakeup latencies from low power states and available parallelisms (number of cores in
multi-core processor). Instead of simply balancing the workloads just by uniformly dispatching
the workloads, our spatial batching engine maintains a server status list, and estimates the times
when server will become idle. The spatial batching engine then dispatches the ready-to-execute
job batch in a first-fit order to a server that is estimated to be idle. This further saves energy by
packing the workloads onto a subset of processors.

TS-BatPro offers new technical contributions over our prior work [17] that leverages job
batching to achieve processor-level energy savings in three major aspects: First, TS-BatPro uses
a more rigorous statistical queuing model to estimate the right amount of tasks to batch for
various system and workload configurations. Second, we implement a runtime load predictor
module for system utilization that is used for determining the batching parameters dynamically.
TS-BatPro adjusts its batching strategy to avoid deterioration of job tail latencies in cases of
high load prediction errors. Third, TS-BatPro is evaluated on a variety of applications including
workloads with real world traffic traces. TS-BatPro is shown to be adaptive under different
workloads in term of job sizes and arrival patterns.

In summary, the contributions of our work are:

1) We highlight the necessity to understanding low power states and their power characteristics
incorporated into modern multi-core processors in order to judiciously improve data center energy
efficiency.

2) We propose and build TS-BatPro, a novel framework that performs temporal and spatial
batching to optimize processor package-level sleep state residency that results in higher energy
savings. We develop an effective analytical model that determines batching parameters with
theoretical guarantees.

3) We implement a proof-of-concept system of TS-BatPro on a testbed with a cluster of
servers and evaluate it with different workloads and utilizations levels, including real-world
traffic traces. The results show that TS-BatPro is able to save significant amount of energy while

still maintaining application QoS constraints.



II. UNDERSTANDING MULTI-CORE PROCESSOR POWER PROFILE

To better understand the power and performance characteristics of modern server, we quickly
review two critical concepts concerning multi-core processors. (i) A core is an independent
processing unit that contains hardware execution contexts where the Operation System could
schedule processes. (ii) A processor, also referred to as CPU, is a physical integrated circuit
pacakge that may integrate multiple cores. Each core owns some private hardware components
such as ALU and L1 cache. The processor also provides resources to be shared among all cores,

i.e., last level cache and integrated memory controller.

Low-power State = Wake-up latency

Core sleep Cl1 1 us
Core sleep C1-E 10 us
Core sleep C3 59 us
Package sleep C6 I ms

TABLE I: Wakeup latencies for Core- and Package-level Sleep states on Intel Xeon proces-
sor [15], [18].

A. Processor Power Saving Mode

Emerging from embedded devices, low-power states are now an important feature targeted
for power management in modern computer systems. The Advanced Configuration and Power
Interface (ACPI) [19] provides a standardized specification for platform-independent power
management. The ACPI-defined interfaces have been adopted by several major operating system
vendors [19] and supported by various hardware vendors such as Intel and IBM [20], [21]. ACPI
uses global states, Gx, to represent states of the entire system that are visible to the user. Within
each Gx state, there are one or more system sleep states, denoted as Sx. For instance, SO is the
working state and S/ is the low-latency sleep state. Based on the ACPI specification, a processor
core is allowed to be in a set of low-power states, i.e., C states, such as CO, C1, and C6. CO is
the active state, and the others are low-power states. A higher-numbered C state indicates more
aggressive energy savings but also corresponds to longer wake-up latencies.

Modern processors generally provide high parallelism by integrating multiple cores within
one package. Low-power C states are supported at both core level and package level. Core C

state choices and residencies are generally determined by the Operating System (e.g., the menu



CPU-idle governor in Linux) based on applications’ runtime activities. The package C state is
automatically resolved to the shallowest sleep state among all the cores. Waking up from package
C state takes longer time than the same level of core C state since the un-core components have
to be activated before resuming the core execution contexts. Table I shows the wakeup latencies

for various sleep states at core- and package-levels.

B. Multi-core Processor Power Profile

In order to effectively leverage processor low-power states to achieve energy savings, it is
important to understand the power characteristics for multi-core processors under various core
C state configurations. Figure 1 shows the power consumption for a 10-core Xeon E5-2680
processor with certain core C state enabled. We setup a micro benchmark to occupy a fixed
number of cores n from 0 to 10. The idle cores are then allowed to enter a controlled C state, C;.
The processor power is read using Intel’s Runing Average Power Limit (RAPL) interfaces [22].
From the figure we can see that the power proportionality towards number of active cores

increases as deeper level C states are chosen.
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Fig. 1: Power range of a 10-core Xeon processor with different level of C state configurations.'

In the case when low-power C state is not used at all (CO), the power consumption is almost
flat across different numbers of active cores. This indicates that even when all cores are idle, the
processor consumes near-peak power, which is extremely energy inefficient. More importantly,

for deeper C states, such as C3 and C6, besides power reduction with the decrease in the number

'We use a microbenchmark that can occupy a fixed number of cores with raskset. The rest of the idle cores are allowed to
enter a controlled C state. Each power measurement is made using RAPL for a 5-minute run. Intel’s Turbo Boost is disabled
and the performance frequency governor is used to eliminate noise effect due to processor frequency fluctuations.
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Fig. 2: Power efficiency of a 10-core Xeon processor with different level of C state configurations.

of active cores, there is a significant amount of power drop for the processor from having one
core active to all cores idle. This is due to the fact that the processor package has to be in CO
(active) state whenever any of the cores are in CO state. When all the cores are in low-power
state C;, the entire package can enter C; state, which further saves power through power gating
the resources that are shared by the cores. We define power efficiency for a multi-core processor

(Pallfcoresfuclive /N)

as: K where N and n represent the total number of cores and the actual number

Pa—cores—active /1
of active cores respectively.

Figure 2 shows the processor power efficiency with different numbers of active cores. We
can see that the power efficiency increases with higher utilization. This indicates that, to save
energy, two strategies need to be considered together:(i) increase the utilization of the cores in

the multi-core processor so that it is operating in the most energy-efficient mode.(i1) keep all

the cores idle so that a considerable amount of power could be saved using deep sleep state.

III. MOTIVATIONAL EXAMPLE

As discussed earlier, modern multi-core processors consume a considerable amount of base
power to keep the processor package active. Therefore, keeping the processor in package sleep
state for a longer period of time is a straightforward strategy for saving processor energy,
especially during periods when servers are underutilized. In order to reside in package-level
low-power mode, all of the cores within the same processor need to be idle and enter the core

C state first. However, due to the increasing core count in modern multi-core processors, the

>The C state residency is reported using furbostat. Due to limitation of the RAPL implementation on our platform, the Package
CO represents the combined residence for package CO and CI.
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Fig. 3: (a) shows the package C state residency breakdown for an Intel processor running a
web server with an average 10% utilization; (b) illustrates the energy for baseline (without
batching), Batching-5 and Batching-20 that accumulate 5, 10, 15 and 20 jobs respectively. The
95" percentile latencies are shown above each bar.

busy and idle activities for individual cores could hardly synchronize without additional control
at the processor level.

To demonstrate the package C state residencies, we setup a web application running Apache on
the same Xeon-based server (also studied in Section II-B). The web application has an average
service time of Sms. We use 95" percentile latency for QoS analysis, which is common for
latency critical workloads studies [23], [10]. We assume that the QoS constraint for the web
application is 50ms. Also, we consider a baseline algorithm that performs load balancing evenly
across different cores and processors without explicit job batching. Figure 3a demonstrates the
time spent in various package C states for the baseline algorithm under utilization of 10%. The
plot shows that, even at the low utilization levels when the cores are supposed to be mostly
idle, the processor spends very minimal time in the ultra power-saving package sleep (C6) state.
To study the effect of batching, we develop a batching algorithm that simply batches a fixed
number of web requests in the front end before dispatching the jobs to the server. Figure 3b

shows the energy consumption for the baseline and two batching configurations that batches a
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Fig. 4: An illustration of temporal job batching procedure assuming that the server is equipped
with a 4-core processor. (a) shows that jobs are batched together before they are dispatched; (b)
demonstrates that how the batched jobs are serviced at local server. Note that the first 4 jobs
are processed simultaneously while the other jobs are queued.

range of jobs from 5 to 20.

The 95" percentile latency is shown on top of each bar. Specifically, we could observe a
tradeoff between energy reduction and the increase in tail latencies. For example, Batching-5
achieves around 13% energy reduction compared to the baseline, and Batching-20 yields almost
43% energy savings than the baseline. We note that with judicious batching, higher energy
savings can be obtained at reasonable latencies: conservative batching policies only attain sub-
optimal energy saving and leave considerable latency slack between the actual tail latency and
the targeted tail latency (as in Batching-5); aggressive batching policies, though capable of
saving substantial amount of energy, may significantly violate the QoS constraints due to the

job queuing effect (as in Batching-20).

IV. SYSTEM DESIGN

In this section, we present the system design of TS-BatPro. TS-BatPro first performs temporal
batching in the front end. Specifically, instead of dispatching job requests immediately to the
individual servers, the temporal batching engine accumulates a certain amount of jobs and
distributes the entire batch to a back end server. Essentially, this creates opportunities for the
multi-core processors to use all of the cores at the same time (when the job batch arrives),
thus improving the energy efficiency. As discussed in III, batching job requests aggressively

can adversely impact the job response time. To maintain the Quality-of-Service for the jobs,



TS-BatPro integrates a two-stage queuing model that determines the maximum number of jobs
to batch without violating the target latency constraints.

To further save energy, TS-BatPro incorporates a spatial batching engine that maintains esti-
mated fo-be idle time for each of the servers. TS-BatPro then schedules the job batch (from the
temporal batching engine) to the first available server in a specific search order. Through spatial
batching, jobs are concentrated on a small subset of servers such that the processors from the
rest of the servers could stay in deep package sleep state without being unnecessarily woken up.
The combined temporal and spatial batching make sure that significant processor energy could

be saved while still maintaining the job QoS constraints.

A. Design of Temporal Batching

A large number of applications running on data center platforms (e.g., web service) are latency
critical. The service providers for latency-critical applications will specify a target tail latency
(e.g., 95" percentile response time) as QoS guarantees. Typically, there is a latency slack between
the application’s average job service time and the target tail latency. As a result, we could take
advantage of the latency slack by accumulating jobs such that processors can effectively utilize
idle (low-power) states. We note that, as long as the tail latency constraints are satisfied, it is
acceptable to delay executing the jobs. In our work, we assume a multi-server infrastructure
where each server has parallelism due to the existence of multiple cores. We assume a FIFO job
dispatching model where job requests arrive and get assigned in a first-in first-out order. Note
that such queuing has been shown to be optimal for tail latency [24].

The challenging task of temporal batching is to determine the right number of jobs to batch
based on the application workload and QoS requirements. In order to derive this batching
parameter, we need to understand the various delays in the critical path of batched job processing.
Figure 4 illustrates an example for such process. Specifically, Figure 4a shows the job batching
at the front end. In this example, 6 jobs are batched before they are scheduled onto a server. For
each job, it experiences a batching delay which starts from the time it arrives (7y;,iyq) to the
time the entire batch gets dispatched. Figure 4b demonstrates the procedure for job processing
on the local server side. Since the server have a 4-core processor, the first 4 jobs would be
serviced concurrently while the rest two jobs will suffer from a queuing delay. Each core is
working independently and will fetch a new job from the server’s local queue once it finished

its current job.



Determining the number of jobs in a batch. To derive batching parameter, we formalize
the problem as the following: let K be the maximum number of jobs that would be batched

temporally, ji, jo2,..., jx are the K jobs, the total delay for job j;, D; could be represented as:
D;=B;+N;+o0. (D)

where B; and N; are the batching delay and queuing delay for job j; respectively and o is a
constant that represents the overhead of job dispatching, including overhead of batching operation
and latency to wakeup a server that is currently in package sleep state.

Let a;,i =1,--- ,K denote the arrival time for each job. Then the batching delay for job i is
defined as B; = ag —a;. We use [; to denote the interarrival time between job i and i+ 1, that is

to say, I; = aj+1 —a;. Then the batching delay for job i is the sum of K —i interarrival times:
B; = Z I;. ()

Assume that the job arrivals to the system follow a Poisson distribution with arrival rate, A. Then
the interarrival times / between jobs are independent and identically distributed (i.i.d.) random
variables with a common exponential distribution F(x) = P(I <x) = 1—e ** x <0 with mean
1/A. The sum of n i.i.d exponentially distributed random variables (r.v.s.) follows a gamma(n, )

distribution with the following probability density function:

An. xn—] i
Thus we can get the probability density function for B; as a gamma(K —i,A) distribution, and
the mean is:

E(B) = (K—i)/A. )

We use C to denote the total number of cores in a server. The K jobs will be dispatched
to the cores. Assume that S is the job service time with an exponential distribution of rate
w. Obviously, the first C jobs can be directly assigned to the cores without waiting, thus we
have N;=0, i=1,---,C. For job C+ 1, we have N¢;; = min(Sy,---,S¢), which follows an
exponential distribution with rate Cu. As exponential distribution is memoryless, for job C+ 2,
we have Nci2 = Ny +min(Sy,---,S¢) which is the sum of two i.i.d. exponentially distributed

r.v.s with a common rate Cu.. Thus N follows a gamma(2,Cu) distribution. Similarly, for job



C+ j, Nc4j follows a gamma(j,Cp) distribution. The mean queueing delay for jobs i, i > C is

| —C
E(N;) = lCu . )

The total response time for a job i is D; +S;. To satisfy the QoS constraint, the 95/ percentile
response time of a job should meet the target tail latency. Assume S is the 95 percentile
service time based on the exponential distribution with rate p. Thus, for each i, we need to
have:

BP + NP +o+5" < 0%, (6)

where Q% is the target tail latency. As a result, K would be the maximum value that Vi € [1 : K],

Equation 6 is satisfied.

Algorithm 1: Derive Param. K Algorithm 2: Tmp. Bat. Runtime
Input: Service time distribution: S; Control
job arrival: A, processor core count: C; Input: System utilization history: U;
QoS: Q, batching overhead: o; load prediction window size: [;
Output: Batching param: K predicted load at time t: F;;
1 let J; be the i* job in the batch; load prediction error threshold: thd;

let L; be the tail latency of J;;

-

let S’ be the sampled service time distribution;
if 7 <[ then

K + 1;

sample job service time and update §';

derive batching delay distribution B; for J;;

R + 0;
i+ 0
7 /lcheck satisfiability of Equation 6 -

s while R < Q do while ¢ < ¢t,,; do
7 P =AVGU[t—1:t-1));

2
3
4 derive queuing delay distribution N; for J;;
5
6

N R W N

use K; for Tmp. Bat. in window t;

=)

9 i++;

. . . ,
10 calculate tail latency L;; 8 get K; with Algorithm 1 using F;, S';
" R« L; 9 //batching backoff

. 10 if |U;—1 — P_1| > thd then
12 K+ i—1; " tKM—l;
13 return K;
12 use K; for Tmp. Bat. in window t;

The service time distribution could be monitored at runtime. Since the distribution typically
does not change for a specific application, ¢ only needs to be profiled once (for example, in
the warming up period of every workload). The value K could then be derived by repetitively
incrementing K until Equation 6 is no longer satisfied. Algorithm 1 illustrates the routine of
temporal batching that determines the batching parameter, K. We note that if the job arrival

A and the service time distribution S are known, K could be pre-computed. Particularly, it is



possible to compute various values of K for different QoS targets as a lookup table which can
be looked up by the TS-BatPro runtime to avoid repetitive calculation. We also note that, when
o is sufficiently less than the job service time, the value of K can be independent of average job
service time. Such observation can further be leveraged to reduce runtime computation overhead.

Our analytical framework models workloads with exponentially distributed service times and
Poisson arrival process. Similar models have been used in several prior works [12], [25]. We
observe that several realistic workloads evaluated in our work do not necessarily follow this
distribution. In fact, these workloads have exhibited uniform distribution patterns. Therefore, our
analytical model of Equation 6 would be too conservative for these workloads. Since it’s too
complicated to get closed-form system model with uniform distributed service times, we relax

the constraints as the following:
E(B:)+E(N;)+0+5 < 0%, (7

Section VII has demonstrated the validations of our accurate analytical model for workloads
with exponentially distributed service times as well as the evaluation results for real workloads

with the relaxed model.

Runtime control for temporal batching. When the system arrival rate is relatively stable at a
certain level, TS-BatPro can take advantage of the same batching parameter for a long period
of time according to Algorithm 1. However, real world traffic loads to data centers can exhibit
fluctuations and even high burstiness. Therefore, using the same K is problematic as TS-BatPro
may batch jobs too aggressively that results in violations of QoS, or too conservatively that ends
with suboptimal energy savings. To overcome this issue, TS-BatPro integrates a runtime temporal
batching controller that performs runtime system utilization prediction and batching adaptation.
The algorithm for the runtime controller is listed in Algorithm 2. Specifically, the controller
maintains the history of system loads. The load predictor computes the moving average with
a length of [ to predict next system utilization. Once the load is predicted, a new K value is
computed and is used in the next epoch. Note that if the error of load prediction is high (e.g.,
in the presence of abrupt load changes), the batching parameter may not be accurate, which
can lead to undesirable performance. TS-BatPro adjusts its batching strategy when it observes
a high prediction error in the last sample. Specifically, the K value is reset back to 1 (i.e., no

batching) when the error of prediction exceeds a threshold thd. TS-BatPro will later resume
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Fig. 5: Overview of Temporal and Spatial Batching mechanisms. ¢#; is the estimated processor
idle time for server i. t{, t, and t3 > f.,, (pink-colored servers), which means these servers are
currently busy processing the batched jobs; 14, #5 and 75 < ., (blue-colored servers), indicating
these three servers are idle.

batching when the load prediction error is low. Note that / and thd are also tunable parameters

that can be adjusted based on the needs of the users and specific applications.

B. Spatial Batching

When a batch of jobs is generated by the temporal batching engine, the front end needs
to find a server to process it. One possible way is to evenly distribute the loads to all the
working servers. However, this approach is energy inefficient for the following reason: randomly
dispatching job batches can create frequent active phases for all servers and not enough sleep
periods. Since Operating System makes C state decisions based on server activity, it is possible
that only shallow sleep state would be chosen because of insufficient opportunities for idleness.
The spatial batching engine maintains a list that shows estimation times of when each of the
servers would become idle. It then scans the list and find the first server which is supposed to
be idle: fyprens > t; for server i. It then updates the server’s estimated idle time as Z¢,rens + 1p,
where 7}, is the estimated job batching time, which can be represented as {%W «$%. Figure 5

shows the overview of our combined spatial and temporal batching approach.

V. IMPLEMENTATION

We implement a proof-of-concept prototype system including a load generator using httperf [26],
TS-BatPro module and the apache HTTP servers on the back end. Httperf uses a open system

model where the next job arrival is independent of the completion of the previous job. Prior



study has shown that load generators that utilize open system model can more accurately emulate
real system traffic [27]. Httperf is modified so that it is able to generate loads to multiple apache
servers. At the back end, the apache server is configured in the way that it always maintains
exactly the same number of httpd processes as the number of cores. This makes sure that
incoming batched jobs are processed in the queuing model as described in Section IV.

Our TS-BatPro is implemented as a separate module integrated into httperf. Once initialized,
the temporal batching engine samples the services time and job arrivals to determine S and
A. After the two parameters are determined, it further derives K according to the methodology
discussed in Section IV-A. The temporal batching engine then starts to perform job batching.
Note that due to variations in job arrival rates, the temporal batching engine will setup a timer
upon receiving the first job in each batch. The batching is complete either when K jobs are
accumulated or when the timer expires, whichever comes first. This can avoid the cases where
job arrival changes and the first job cannot wait until all K jobs arrive. A is sampled every
t seconds, which is a tunable parameter that controls response to load burstiness. The spatial
batching engine chooses back-end servers based on its estimation of next server idle phase. Note
that, to eliminate the potential of resource wear-out, the spatial batching engine would shuffle
the order of the servers in the list every Tseconds so that all of them are exercised equally in

the long run. We set 7 to 1 second and 7 to 60 seconds in our experiments.

VI. EXPERIMENTAL SETUP

Server platform. We deployed a testbed with a cluster of 18 servers. Two servers are working
on the front end, within which one server generates job requests and the other server collects
power measurements for the back end servers. In the back end, one Intel Xeon E5-2680 based
server is used for fine-grained CPU power measurements (using the RAPL interface) in single-
server experiment; the other 15 Intel Xeon E5650-based servers from the Dell Poweredge M1000e
blade system are used for multi-server system evaluations. All of the back end servers are
configured to run apache web service. These servers are interconnected with a NETGEAR 24-
port Gigabit switch (star topology). We note that with this settings, all the network traffic is
confined within the cluster, which eliminates unnecessary background traffic. Since the blade
servers do not support RAPL interface, we utilize the IPMI interface for system-level power

reading [28]. The server power consumption is queried and saved at every 1 second interval. We



conservatively set the end to end wakeup latency from package sleep state to 1 ms (the actual
transition time is usually shorter than 1 ms [15]).

Benchmark selection and load generation. We run a set of benchmarks that cover a variety
of latency-critical application characteristics in the cloud. We build a generic framework based
on the apache web server. For each user request received, the apache application server runs the
specific benchmark in the back end. We use the PARSEC [29] benchmarks as the back end service
due to the fact that they are designed to represent latency-critical emerging workloads in the cloud
computing environment including image processing, content search, and computer vision [30].
We develop CGI scripts for the Apache servers. The CGI script is flexible in that benchmarks
could be easily integrated to run on the Apache framework. We select five applications: Bodytrack
(108ms), Raytrace (79ms), Vips (42ms), Fluidanimate (33ms) and Ferret (21ms). The data in
each brackets represents the average execution time for the application. Httperf is set to generate
job arrivals based on exponential distribution. We configure httperf to generate three different
levels of utilizations: 10%, 20%, and 30%. Additionally, we also use two real-world traces
characterizing job arrivals patterns for Wikipedia [31] and NLANR [32], which exhibit different
burstiness patterns. We create two synthetic benchmarks running in the backend for the two
traces, with an average execution time of Sms and 110ms respectively.

TS-BatPro parameter configuration. The batching parameter K is determined based on the
algorithm shown in Section IV-A. In our experiment, we observe that the K value derived from
the analytical model may violate the target QoS on a small number of occasions. One potential
reason is that there exists resource contention between concurrent jobs. To sustain the QoS target,
we set the actual value to K — €. We observe that € =2 works practically well for all of our cases.
Additionally, we have explored a variety combinations of / and thd, which denotes the size of
load history and threshold for load prediction error respectively (See Section IV-A). Based on
our observations, we set / to be 5 and thd to be 0.05. Finally, since the target QoS for different
applications may differ, we define QoS as the tail latency normalized to the job’s average service
time. 95" percentile response time is commonly set as the target SLA (service level agreements)
for latency-critical workloads. We observe that most recent studies aim for a single tail latency for
each benchmark [33], [23], [10]. We select two classes of tail latency targets in order to study
the potential of TS-BatPro in energy optimization over both stringent and less-tight latency
bounds. Typically the tail latency values range between 2.5x~10x. Correspondingly, we set 10x

as the relaxed QoS constraint (QoS-relaxed) and 5x as the tight QoS constraint (QoS-tight) to



= Pkg. CO s Pkg. C2 == Pkg. C3 = Pkg. C6 = Pkg. CO = Pkg. C2 == Pkg. C3 = Pkg. C6 = Pkg. CO = Pkg. C2 == Pkg. C3 = Pkg. C6

100% 100% 100%

80% 80% 80%

60% 60% 60%

40% 40% 40%

20% 20% 20%

0%

C States Residency Breakdown
C States Residency Breakdown

C States Residency Breakdown

0%
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s) Time (s)

(a) Bodytrack without T.B. (Util. 10%)  (b) Bodytrack without T.B. (Util. 20%)  (c) Bodytrack without T.B. (Util. 30%)

0%

= Pkg. CO mm Pkg. C2 == Pkg. C3 ™ Pkg. C6 = Pkg. CO = Pkg. C2 == Pkg. C3 ™ Pkg. C6 = Pkg. CO =8 Pkg. C2 == Pkg. C3 ™ Pkg. C6

100% 100% 100%

80% 80% 80%

60% 60% 60%

40% 40% 40%

20% 20% 20%

C States Residency Breakdown

C States Residency Breakdown
C States Residency Breakdown

0% 0%
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s) Time (s)

(d) Tmp. Bat. with QoS-tight (Util. 10%) (e) Tmp. Bat. with QoS-tight (Util. 20%) (f) Tmp. Bat. with QoS-tight (Util. 30%)

0%

== Pkg. CO = Pkg. C2 == Pkg. C3 == Pkg. C6 == Pkg. CO = Pkg. C2 == Pkg. C3 = Pkg. C6 == Pkg. CO = Pkg. C2 == Pkg. C3 = Pkg. C6

o
3
*
=
5]
)
®
=
5]
)
&

80% 80% 80%

60% 60% 60%

40% 40% 40%

20% 20% 20%

C States Residency Breakdown

C States Residency Breakdown
C States Residency Breakdown

0%
150 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s) Time (s)

(g) Tmp. Bat. with QoS-relaxed (Util. 10%)(h) Tmp. Bat. with QoS-relaxed (Util. 20%)(i) Tmp. Bat. with QoS-relaxed (Util. 30%)

0%

0%
0 200 250 300 0 50 100

50 100

Fig. 6: Package C state residency breakdown for Bodytrack benchmark. Figure (a), (b) and (c)
correspond to the residency breakdown with baseline configuration (no batching) under 10%,
20% and 30% system utilization respectively. Figure (d) (e) and (f) are for the same plots under
Temporal Batching with tight Qos; Figure (g) (h) and (i) are for the same plots under Temporal
Batching with relaxed QoS.

understand the implications of energy-latency tradeoffs with different user preferences for QoS.

VII. EVALUATION OF TS-BATPRO

We evaluate TS-BatPro in two steps. Specifically, we first demonstrate the energy savings and
job performance using just temporal batching on the Intel Xeon E5-2680 server. Then we enable
both temporal and spatial batching engines on the blade system and illustrate the potential energy
savings.

1) Temporal Batching Effectiveness: To evaluate the effect of temporal batching, we use

a single Apache HTTP server. Httperf generates three different levels of system utilization
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Fig. 7: Package C state residency breakdown for Vips benchmark. Figure (a), (b) and (c)
correspond to the residency breakdown with baseline configuration (no batching) under 10%,
20% and 30% system utilization respectively. Figure (d) (e) and (f) are for the same plots under
Temporal Batching with tight QoS; Figure (g) (h) and (i) are for the same plots under Temporal
Batching with relaxed QoS.

levels:10%, 20% and 30%. For this experiment, we run the five PARSEC benchmarks. Note that
the target tail latency (QoS) has to be provided to the temporal batching engine. The two QoS
constraints are set in the temporal batching engine. For example, for Bodytrack, the two target
latencies are 540ms (QoS-tight) and 1080ms (QoS-relaxed). Figure 6 shows the package C state
residency for Bodytrack with and without temporal batching under the three system utilization
levels using the two different QoS constraints. We can see that without batching, the processor
spent less than 20% in the package C6 sleep state under 10% utilization (Figure 6a), which is

significantly lower than the ideal residency of 90% under ideal energy proportionality. Server
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Fig. 8: Latency CDF for Bodytrack under 10%, 20% and 30% utilization using TS-BatPro’s
temporal batching.

residency in the power-saving states almost diminishes as the load increases to 20% and 30%
(Figure 6b and Figure 6c¢). This clearly indicates the inefficiency of low power state management
in under default OS settings. On the other hand, with temporal batching with TS-BatPro, the
Package C6 residency is significantly improved compared to the baseline without batching.
For instance, the processor spent 41% more time in package C6 state under 10% utilization
(Figure 6d), and spent 29% more time at 30% system utilization (Figure 6f). Meanwhile, we
observe that the package C6 state residency increases as the target latency changes from QoS-tight
to QoS-relaxed. This is because, since longer target latency allows for more aggressive batching,
we observe higher chances of entering deep sleep state. Finally, the low-power state residency
decreases much slower as the utilization level increases, compared to the baseline. Figure 7
illustrates the C state residency for the Vips benchmark. Similarly, the percentage of package
C6 state residency is greatly increased under different system utilization levels. Moreover, we
can see that, compared to Bodytrack, the C6 state residency is slightly less. We note that the
job execution time of Vips is much shorter than that of Bodytrack. Therefore, under the same
utilization, the inter-arrival times for job batches are relatively longer for Bodytrack, which favors
entering of deep sleep state such as C6. Regardless, we can see considerable improvement in

low power residency that will eventually reflect as energy savings.
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Fig. 9: Latency CDF for Vips under 10%, 20% and 30% utilization using TS-BatPro’s temporal
batching.

Figure 8 and Figure 9 demonstrate the response time CDF for Bodytrack and Vips. We
find that the temporal batching engine is able to meet the target constraint. For example, the
actual tail latencies for Bodytrack (with average service time of 108ms) are 557ms and 986ms
under 20% system utilization for QoS-tight and QoS-relaxed receptively. For Vips (with average
service time of 42ms), the achieved tail latencies are 211ms and 358ms under 20% utilization
using QoS-tight and QoS-relaxed. Notably, TS-BatPro can effectively shift the response time for
various workloads regardless of the actual loads. We note that TS-BatPro’s batching algorithm
can successfully bound the target latency through batching for all the benchmarks.

Table II summarizes the energy savings of temporal batching for all five of PARSEC bench-
marks in our study. Consistently, the energy saving increases as the QoS constraint is relaxed (e.g.,
from QoS-tight to QoS-relaxed) as we have observed before. As the utilization level increases,
the energy saving reduces under all QoS settings in general. This is due to the fact to the
processor idle intervals tend to be shortened with higher utilizations. It is also observed that
batching can be more beneficial for applications with relatively larger job sizes (e.g. Bodytrack).
Interestingly, when changing the system load from 10% to 20%, for each benchmark, TS-BatPro
achieves more relative energy savings under QoS-tight than under QoS-relaxed. This is because

under QoS-tight, the amount of batching is constrained by the target job latency especially at
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Utilization 10% Utilization 20% Utilization 30%
QoS-tight | QoS-relaxed | QoS-tight | QoS-relaxed | QoS-tight | QoS-relaxed
bodytrack (108ms) 31.9% 48.2% 33.4% 34.3% 20.3% 24.7%
fluidanimate (33ms) 13.5% 41.1% 18.2% 22.9% 8.7% 11.8%
vips (42ms) 21.0% 44.3% 27.6% 30.3% 16.0% 20.6%
ferret (21ms) 13.0% 41.9% 25.7% 32.2% 12.9% 22.6%
raytrace (79ms) 25.5% 46.7% 32.8% 34.8% 20.5% 26.4%

TABLE II: Power savings for all benchmarks using TS-BatPro’s temporal batching. Energy
savings are normalized to the baseline (OS default C state management) energy consumption.

Utilization 10% Utilization 20% Utilization 30%
QoS-tight | QoS-relaxed | QoS-tight | QoS-relaxed | QoS-tight | QoS-relaxed
energy saving 10.2% 29.3% 7.1% 30% 6.6% 21.3%
performance 4.19x 7.55x 4.05x 7.33x 4.61x 8.35x

TABLE III: Power savings and performance using parameters derived from analytical model.
Energy savings are normalized to the baseline energy consumption. Performances are normalized
to mean service time.

lower utilization levels. Under QoS-relaxed, job batching is constrained by the higher job arrivals
especially at the higher system utilization. Overall, we can see that temporal batching can save
between 8.7% and 48% CPU energy depending on the workloads, server utilization levels and
QoS constraints.

We also evaluate our analytical model in Equation 6 by applying the temporal batching to
a synthetic workload whose service time is exponentially distributed with mean of 50ms. K
values are obtained from Equation 6 and Algorithm 1 for different QoS and utilization levels.
Table III summarizes the energy savings and performance of temporal batching for the synthetic
workload. Consistently, the energy saving increases as the QoS constraint is relaxed (e.g., from
QoS-tight to QoS-relaxed). We can also see that the performance constraints (in terms of 95"
percentile latency) were satisfied. Our analytical model finds appropriate K’s to save energy

without violating the QoS constraints.

A. TS-BatPro with Real World Traffic Traces

In the prior section, we have demonstrated the performance of temporal batching in TS-BatPro
using a fixed job arrival rate with exponential inter-arrival time distribution. It is worth noting
that in real world cases, system load is typically not known ahead of time. More importantly,
the actual load may fluctuate over time. To evaluate the temporal batching performance of TS-

BatPro, we build two workloads using two real world traffic traces. Each trace records the job
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Fig. 10: System utilization for two traffic traces for one hour: NLANR (Left) shows high level
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Fig. 11: TS-BatPro’s predictions on NLANR traffic

request arrival timestamps that can be used to replay the network traffic. Figure 10 demonstrates
the traces of utilizations for two workloads: the bursty NLANR workload [32] (Figure 10a),
and the non-bursty Wikipedia workload [31] (Figure 10b) over one hour duration. As shown
in our experiments, NLANR exhibits relatively high load fluctuations with a dynamic range of
29.0%. Differently, the Wikipedia trace only shows a few short spikes with most of the system
utilization centered around 11.5%.

As discussed in Section IV, TS-BatPro incorporates a runtime load predictor to estimate
the system utilization in the next time window in order to determine the batching size K.
Figure 11 illustrate the original load and the predicted load over time. We can see with a moving
average of 5 history samples, TS-BatPro is able to predict the system utilization with very high
accuracy. Specifically, the average prediction error (i.e., difference between the actual loads and
the predicated load levels) are less than 2% in terms of utilization. We note that TS-BatPro’s
predictions on workloads are performed at a much finer granularity (seconds), in comparison to
peak/oft-peak transition times (typically several minutes to hours). As a result, we observe very

minimal changes of prediction error over long-period of traces. Additionally, inaccuracies in
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Fig. 13: C-state residency for Wikipedia for the baseline and TS-BatPro’s temporal batching

load prediction would not introduce application performance violations as TS-BatPro cautiously
disables batching when a high prediction error is observed.

We modified httperf so that the load generator can generate job arrivals by replaying the two
traffic traces. We run the two trace-based workloads using the apache framework and set the
target latency for both workloads to QoS-long. Figure 12 and Figure 13 illustrate the package
C-state residency breakdown for the two workloads over a representative 12-minute interval. As
expected, for NLANR, the baseline has very low C6 state residency (Figure 12a). TS-BatPro,
on the other hand, creates over 60% C6 residency. Note that we can observe a sharp dip of C6
residency curve in Figure 12b and Figure 13b. This corresponds to the warming up period when
the temporal batching engine monitors the job service times and collects samples of utilization
history for further load prediction. Due to the burstiness of job arrivals in NLANR, we observe
higher fluctuations of the C6 state residences as compared to Wikipedia. Moreover, as mentioned
in Section IV, TS-BatPro dynamically halts job batching when the load prediction error is higher
than a certain threshold (5% in our experiments). In our experiments, we see that only around

1.2% of time intervals in NLANR are subject to disabling of temporal batching (i.e., reset K
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to 1) due to high load prediction errors while no K value reset is performed for Wikipedia.
The energy savings and actual tail latency for these two workloads are shown in Figure 14.
Overall, TS-BatPro has 22% energy saving on Wikipedia and 33% energy saving on NLANR

while satisfying QoS constraints.

B. Combined Temporal and Spatial Batching

We perform both temporal and spatial batching on all the benchmarks as mentioned in
Section VI at the system utilization level of 10%. The experiments are conducted on 15 Apache
servers. The target tail latency is set to QoS-tight for all of the benchmarks. Figure 15 shows
the overall energy savings for the entire cluster. Across all the benchmarks, temporal batching is
able to achieve a steady energy savings between 48%-51%. TS-BatPro, with combined temporal
and spatial approaches, can provide an additional upto 16% energy saving and achieves upto
68% saving compared to the baseline. We also observe that as the job size decreases, the relative
energy saving increases. The reason is that with combined temporal and spatial approach, TS-
BatPro is able to pack the loads to a fixed subset of processors, yielding similar system power
among different benchmarks. Differently, in the baseline approach, shorted jobs tend to prevent
processor from entering deep package sleep, significantly increasing the power consumption for

the servers.

VIII. DISCUSSION

Scalability of TS-BatPro. In the evaluation, we use a centralized controller for the temporal

and spatial batching in TS-BatPro. This may cause some scalability issues when the data center
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has thousands of servers. We note that in these large scale data centers, TS-BatPro can be easily
adapted with minimal modification. Specifically, we can divide the data center into multiple
clusters, and each cluster will have its own TS-BatPro controller that coordinates the batching
operation. Such scheme works well with many existing data center application as a lot of data
center service are stateless [6]. That is, one user request can be serviced by any of the application
servers in the pool. Eventually, each server cluster acts as a logical data center that can be
effectively managed by TS-BatPro.

Energy optimization in data center networks. TS-BatPro largely considers energy optimization
and QoS management for data center servers. We note that TS-BatPro can potentially benefit en-
ergy optimization in data center networks as well. Many prior works have proposed active power
management on network devices using techniques such as dynamic link rate adaptation [34],
[35]. However, merely reducing active power alone is not sufficient for network devices as a
large portion of switch power is consumed simply by keeping the major components ON (e.g.,
line cards) [36]. Recent study has demonstrated the promise of using low-power states for both
switches and servers to achieve high energy savings [37]. We note that TS-BatPro essentially
proposes an effective scheduling framework that can be augmented to create idleness in both

servers and network devices to achieve comprehensive energy savings in data centers.

IX. RELATED WORK

Prior works [11], [8] have used DVEFS based mechanisms to conserve server energy. Lo
et al. [9] leverage Running Average Power Limit to dynamically adapt the runtime power of
data center according to job latency feedback. However, at low server utilization, static power

dominates and DVES alone is not effective. Also, due to device scaling, the headroom for
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voltage scaling has largely shrunk. As a result, techniques that address static power and energy
are needed.

Maccio et al. [38] propose an analytical model to determine an optimal policy for on/off
single server systems with FIFO allocation. Gebrehiwot et al. [39] study energy-performance
tradeoff for a single server utilizing multiple sleep states. The server enters a random sleep state
after some idling time, and restarts the server after a number of jobs are gathered in the queue.
The system is modeled as a M/G/1 queue with Poisson job arrivals and general distributions of
service time, setup delay and a timer. Sleepscale [12] jointly utilizes speed scaling and server
sleep states to reduce the average power for single servers while satisfying the QoS constraint
of normalized request latency.

To address energy-performance tradeoff in server farms, cluster level power management is
used in prior works. Gandhi et al. [40], [6] develop mechanisms that reduce power consumption
of the multi-server system by controlling the number of ON servers while satisfying the response
time SLA. Yao et al. [41], [15] have demonstrated the adaptive use of system sleep states and/or
CPU lower power state to tradeoff tail latency for increased energy efficiency. Differently, TS-
BatPro is designed to optimize multi-core processor saving by leveraging low-power package
sleep states. We note that these techniques are essentially complementary to TS-BatPro, and can
be potentially integrated with TS-BatPro for more energy savings.

Knightshift [42] explores more specialized approaches such as exploiting heterogeneity of
processor cores to improve energy. Two execution modes are utilized—one providing high
performance while consuming higher power; the other being an active low power mode for
low-utilization periods to save power. The model is extended by Wong et al. [43] to provide
cluster-wide energy proportionality. However, to preserve generality of our solution and study the
applicability of our techniques on many current warehouse scale systems, we model homogeneous
servers and cores with same capability. We note that further power savings can be obtained at the
application level through carefully tuning them for usage of processor resources [44], [45], load-
balancing tasks across cores to avoid keeping cores unnecessarily active [46], and eliminating
unnecessary cache misses that could potentially cut down power as well [47].

Tibor et al [4] studied the applicability of using multi-mode energy management in multi-
tiered server clusters. A sleep state demotion algorithm is proposed based on analytical models.
Several batching and scheduling mechanisms have been proposed for energy saving in server

systems [48], [49]. Meisner et al. [16] propose architectural support to facilitate sleep state
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management on multi-core servers that include scheduling policies to delay, preempt and execute
requests and artificially create common idle and busy periods across cores of a server. However,
the penalty of delaying and preempting requests are not considered. In our work, a realistic
power model is used and implemented on real systems to evaluate the proposed policies. Finally,
we note that server energy optimization proposed in TS-BatPro, can be integrated with more

energy-efficient data center network topologies [S0] to boost system energy savings.

X. CONCLUSION

In this paper, we propose TS-BatPro, an efficient data center energy optimization framework
that judiciously integrates spatial and temporal job batching to save energy for multi-core data
center servers while meeting the QoS constraints. TS-BatPro performs effective global job
batching and scheduling by modeling job performance and power characteristics on multi-core
servers. We developed a prototype of TS-BatPro on physical testbed with a cluster of servers
and evaluate TS-BatPro on a variety of workloads. Our results show that the pure temporal
batching achieves 49% percentage CPU energy saving compared to the baseline configuration
without batching. Through combining temporal and spatial batching, TS-BatPro achieves upto

68% energy saving under various QoS constraints.
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