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Abstract— This paper presents a new Model Predictive
Control (MPC) framework for controlling various dynamic
movements of a quadrupedal robot. System dynamics are
represented by linearizing single rigid body dynamics in three-
dimensional (3D) space. Our formulation linearizes rotation ma-
trices without resorting to parameterizations like Euler angles
and quaternions, avoiding issues of singularity and unwinding
phenomenon, respectively. With a carefully chosen configura-
tion error function, the MPC control law is transcribed into a
Quadratic Program (QP) which can be solved efficiently in real-
time. Our formulation can stabilize a wide range of periodic
quadrupedal gaits and acrobatic maneuvers. We show various
simulation as well as experimental results to validate our control
strategy. Experiments prove the application of this framework
with a custom QP solver could reach execution rates of 160 Hz
on embedded platforms.

I. INTRODUCTION

Legged animals have shown their versatile mobility to
traverse challenging terrains via a variety of well-coordinated
dynamic motions. This remarkable mobility of legged ani-
mals inspired the development of many legged robots and as-
sociated research works seeking for dynamic legged locomo-
tion in robots. However, designing and controlling a legged
robot to achieve similar mobility to that of legged animals
remains a difficult problem. Enabling this versatile capability
of animals in legged robot systems requires the control
design to make good use of its inherent dynamics while
dealing with constraints due to hardware limitations as well
as interactions with the environment. In the field of legged
robots, Model Predictive Control (MPC) recently became
a widespread control method due to recent advancements
in computing hardware and optimization algorithms, which
enabled real-time execution of MPC controller in embedded
systems. Based on a model prediction, the MPC frame-
work easily incorporates system dynamics and constraints
by transcribing the control law as a constrained optimization
problem. Recent applications of MPC on humanoids [1], [2]
and quadrupeds [3] have shown the capability of MPC in
planning and controlling complex dynamic motions while
embracing system dynamics and constraints arising from
friction and motor saturation.

Despite the widespread adaptation of MPC, its direct
implementation on a high degree-of-freedom (DoF) system
requires heavy computational resources, hindering the ap-
plication on embedded platforms. To tackle this problem,
simpler models or templates [4] that capture the dominant
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system dynamics were used to predict the behavior of the
system. Previous MPC schemes [1], [5] worked on simplified
dynamics models like Linear Inverted Pendulum [6] (LIPM)
which enabled online execution. The planar rigid body
model is used in [7] to plan online jumping trajectories
for MIT Cheetah 2 with different obstacle heights. The
spring-mass model is used in [8] to achieve jumping and
landing. Centroidal dynamics [9] model links the linear and
angular momentum of the robot with the external wrench.
This model is used in [10], [11] to capture the major
dynamic effect of the complex full body dynamics model
of the humanoid robot Atlas. Recent work such as [12]
uses centroidal dynamics for the policy regularized nonlinear
MPC (PR-MPC), which takes simple heuristics as reference
trajectories for state and control to condition the optimization
formulation.

Regarding the use of a simple dynamic model for MPC
framework, there has been an increasing number of work
utilizing a dynamic model based on a single rigid body
in three-dimensional (3D) space. In this model, robot’s
body and legs are lumped into a single rigid body. Ground
reaction forces (GRF) are applied as inputs to control the
position and orientation of the body. Even in its simple
form, this model efficiently captures the effect of net external
wrench on the evolution of CoM motion and orientation.
Utilizing this model, [13] could simultaneously optimize
for gait and trajectory through phase-based parametrization;
[14] achieved various quadrupedal gaits in experiment; [15]
obtained high-speed bounding with MIT Cheetah 2.

Although the single rigid body model originally represents
the orientation of the robot in 3D space with a rotation
matrix, most of the works using this model handled 3D
orientation by replacing the rotation matrix with its local co-
ordinates such as Euler angles [13]. However, representation
of dynamics using Euler angle is not properly invariant under
the action of rigid transformations, so a control design based
on such models will provide inconsistent behaviors across
different operating configurations. Moreover, Euler angles
suffer from singularities [16] that occur in certain config-
urations. Quaternions representation could cause unwinding
issue [17] arising from ambiguities due to multiple spanning
of configuration space. In previous works, these problems
arising from using local coordinates were not a critical issue
as they assume small deviations in roll and pitch angles [12]
or only deal with planar motions [15] to represent robot’s
orientation in a simpler form.

This work presents a novel MPC formulation for control-
ling legged robots in 3D environment without use of local
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Fig. 1: Sequential snapshots of the robot in a bounding
experiment

coordinates to represent rotation matrices. This MPC scheme
is formulated into QP which can be solved efficiently in
an embedded computer satisfying real-time constraints. To
derive this formulation, a linearization technique in [18],
[19] which directly works on equations of motion with
rotation matrix are applied in this work. We also adopted a
configuration error function on SO(3) from [20] to obtain a
cost function in a quadratic form. This application of the lin-
earization technique and use of a configuration error function
on SO(3) leads to the a singularity-free MPC formulation
with consistent performance even when executing motions
that involve complex 3D rotations such as acrobatic motions
in gymnastics.

The paper is organized as follows: Section II presents
the template dynamic model and introduces the linearization
scheme together with the modification on the cost function
that enables the formulation in QP; Section III shows the
simulation and experimental results; Section IV provides the
concluding remark with an outlook for future work.

II. TECHNICAL APPROACH

Our goal is to formulate the quadruped dynamic locomo-
tion problem as a MPC scheme that is real-time executable
on a mobile embedded computer and uses a global param-
eterization of orientation with rotation matrix. To meet the
real-time constraint, single rigid body model is adopted to
characterize the main dynamics of the robot, which is a close
approximation of the robot model since the mass of all legs
combined is less than 10% of the total mass. In addition, an
MPC formulation is transcribed into a real-time conceivable
QP, which directly works on representation of the orientation
with rotation matrices.

A. 3D Single Rigid Body Dynamics

In this work, the dynamic model of the robot is approxi-
mated as a single rigid body with fixed moment of inertia.
Then, the state of the robot is,

x := [p ṗ R Bω] (1)

where p ∈ R3 is the position of the body Center of Mass
(CoM); ṗ is the CoM velocity; R ∈ SO(3) = {R ∈
R3×3|RTR = I, detR = 1} is the rotation matrix of the
body frame {B} expressed in the inertial frame {S}; Bω
indicates the angular velocity vector expressed in the body
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Fig. 2: Illustration of coordinate system and 3D rigid-body
model. {S} is the inertia frame while {B} is the body
attached frame. ri is the position vector from center of mass
to each foot in {S}, while ui is the ground reaction force
of ith contact foot in {S}

frame {B}. Variables without superscript on the upper-left
corner are assumed to be expressed in the inertial frame.

The input to the system is the external wrench, which
is created by the ground reaction force (GRF) ui ∈ R3 at
contact foot locations pfi ∈ R3. The foot positions pfi relative
to CoM are denoted as ri = pfi − p. Therefore, the net
external wrench exerted on the body is:[

f
τ

]
=

4∑
i=1

[
I
r̂i

]
ui (2)

where the hat map (̂·) : R3 → so(3) is defined as x̂y =
x×y, ∀x, y ∈ R3, and so(3) is the space of skew-symmetric
matrices; I is the 3-by-3 identity matrix. The full dynamics
of the rigid body can be written as

ẋ = f(x,u) =


ṗ
p̈

Ṙ
Bω̇

 =


ṗ

1
M f − ag
R · Bω̂

BI−1(RT τ − ω̂BIω)

 (3)

where x ∈ Rn represents the state and Rm 3 u =
[uT1 ,u

T
2 ,u

T
3 ,u

T
4 ]T the control; M is the mass of the rigid

body; ag ∈ R3 is the gravitational acceleration; BI ∈ R3×3

is the fixed moment of inertia tensor in the body frame.

B. Nonlinear MPC Formulation

The equation of motion in (3) includes nonlinear dynamics
in R and Bω, thereby leading to a nonlinear MPC for-
mulation. Utilizing a direct collocation technique [21], we
formulated the nonlinear MPC as an optimization problem.
The rigid-body dynamics is discretized and imposed on the
sequences of predicted states {xk} and control (GRF) {uk}
as equality constraints,

minimize
N−1∑
k=1

`(xk,uk) + `T (xN )

subject to xk+1 = g(xk,uk),x1 = xop

xk ∈ X, k = 1, 2, · · · , N
uk ∈ U, k = 1, 2, · · · , N − 1

(4)

where ` : Rn × Rm → R is the stage cost function; `T :
Rn → R is the terminal cost function; N is the prediction
horizon; X,U are the feasible sets for the state and control.
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The stage cost function penalizes deviation of the predicted
states and control inputs from the corresponding reference
trajectories of the states and control inputs. The definition of
the stage cost is as follows

`(xk,uk) = eTuk
Rueuk

+ eTpkQpepk + eTṗkQṗeṗk+

eTωk
Qωeωk

+ eTRk
QReRk

(5)

where Ru,Qp,Qṗ,Qω,QR are positive definite weighting
matrices; euk

, epk , eṗk are the error terms for deviations
from the corresponding desired trajectories udk,p

d
k, ṗ

d
k, which

could be constructed from simple heuristics. The error terms
of angular velocity and rotation matrix are given by [20] as

eωk
= ωk −RT

kRd,kωd,k (6)

eRk
= log(RT

d,k ·Rk)∨ (7)

where log(·) : SO(3) → so(3) is the logarithm map [22]
of rotation matrices; the Vee map (·)∨ : so(3) → R3 is the
inverse of the hat map. The terminal cost function is similarly
defined.

While the translational part in (3) is linear, the rotational
part evolves nonlinearly following the discrete equation,

ωk+1 = ωk + BI−1(RT
k τk − ω̂kBIωk)∆t

Rk+1 = Rkexp(ω̂k∆t)
(8)

where ∆t is the time step; exp(·) : so(3) → SO(3) is the
matrix exponential map that makes sure that Rk stays on the
SO(3) manifold.

Although, in principle, nonlinear MPC (NMPC) can be
solved to obtain control input, the nonlinearities complicates
the solving process for the presence of local minima. More-
over, the severe restrictions on computational time hinder
the application of NMPC on hardware. To obtain MPC
formulation that can be solved with convex optimization,
we linearize nonlinear dynamic constraints in (8) using a
variation-based linearization scheme.

C. Variation-based Linearization

Although linearization around the reference trajectory
gives provable local controllability [26] [18], the obtained
linear dynamics differs from the robot’s current dynamics
when the operating point is not close to the reference
trajectory. Hence, linearization is performed around the cur-
rent state and control (operating point), which is known as
successive linearizaiton [23] [24] [25]. To meet the real-
time constraint, we employed a element-wise, forward-Euler
linearization scheme for the rotation matrix. Linearization is
performed by taking variation δ(·) with respect to the operat-
ing point, which is treated here as a linear approximation of
the distance of two points on a manifold [27]. Assuming that
the predicted variables are close to the operating point, which
could be guaranteed by having small time step, the variation
of the rotation matrix on so(3) will be approximated using
the derivative of the error function on SO(3) from [20], [28],

δRk ≈
1

2
(RT

opRk −RT
kRop) (9)

where the subscripts (·)op and (·)k indicate variables at the
operating point and the kth prediction step, respectively. The
rotation matrix at the kth prediction step is also approximated
using the first-order Taylor expansion of matrix exponential
map,

Rk ≈ Ropexp(δRk) ≈ Rop(I + δRk). (10)

Similarly, the variation of angular velocity δωk is

δωk = ωk −RT
kRopωop (11)

Using equations (10), (11), the dynamics of rotation matrix
Ṙk = Rkω̂k is linearized around the operating point Rop

as
Ṙk = Ropω̂op +Ropω̂opδRk +Ropδ̂ωk (12)

where terms containing higher order variation are eliminated.
The dynamics of angular velocity ω̇k is linearized around

the operating point as

BIω̇k =RT
opτop + δRT

k τop +RT
opδτk+

− ω̂opBIωop − ˆδωk
BIωop − ω̂opBIδωk,

(13)

in which δτk is the variation of torque,

δτk = (
4∑
i=1

ûi,op)δpk + (
4∑
i=1

r̂i,op · δui,k), (14)

where uop is GRF applied at the current step, δu is the
variation of GRF from uop.

D. Vectorization

Even though the dynamics of rotation matrix R and
angular velocity ω are linearized, there are matrix variables
in (12) and (13) which are difficult to handle in conventional
QP solvers. To tackle the problem, this section proposes
a vectorization technique which uses Kronecker product
[29] to transform matrix-matrix product into matrix-vector
product. Each term of (12) is vectorized as

vec(RopδRkω̂op) = (ω̂Top ⊗Rop)Lvec(Rk)

vec(RopδR
T
k ω̂op) = (ω̂Top ⊗Rop)PLvec(Rk)

vec(Ropω̂opδRk) = (I⊗Ropω̂op)Lvec(Rk)

vec(Ropδ̂ωk) = −(I⊗Rop)N(I⊗ (Ropωop)
T )vec(Rk)+

(I⊗Rop)Nωk

(15)

where vec(·) is the vectorization operator for a matrix; ⊗
is the Kronecker tensor operator; N is a constant matrix
such that Nω = vec(ω̂) for any vector ω ∈ R3; P is a
constant permutation matrix such that P ·vec(A) = vec(AT )
for an arbitrary matrix A ∈ R3×3; L is used to simplify
the expression L := 1

2 [(I ⊗RT
op) − (RT

op ⊗ I)P ]. The final
expression for vec(Ṙk) is

vec(Ṙk) = CRvec(Rk) +Cωωk + c0 (16)

where c0 = vec(Ropω̂op), Cω = (I ⊗Rop)N , and CR is
the sum of terms that precede vec(R) in (15).
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The final expression of ω̇k is obtained by plugging (14)
in (13).

ω̇k = Dp(pk−pop)+DRvec(Rk)+Dωωk +Duδuk +d0
(17)

where the coefficients are defined below

d0 =BI
−1
vec(RT

opτop − ω̂opBIωop)

Du =BI−1RT
op(
∑

r̂op)

Dω =BI−1(B̂Iωop − ω̂opBI)

DR =BI−1[(I⊗ τTop)− BIDω(I⊗ (Ropωop)
T )]

Dp =BI−1RT
op(
∑

ûop)

(18)

Letting xk := [pTk ṗTk vec(Rk)T BωTk ]T ∈ Rn be the
state vector, and uk := [δuT1,k δuT2,k δuT3,k δuT4,k]T ∈
Rm be the control vector, the discrete dynamics could be
expressed in the state-space form

xk+1 = Axk +Buk + d (19)

where A ∈ Rn×n,B ∈ Rn×m, and d ∈ Rn are constant
matrices which could be constructed from (16), (17).

E. Cost Function and Inequality Constraints

In the expression of the stage cost function (5), all
the terms are in a quadratic form of the state vector xk
and control vector uk except the cost on orientation error
eTRk

QReRk
due to the expression of eRk

in (7) as the loga-
rithm map of the rotation matrix Rk. To closely approximate
the error term, here we adopt the configuration error function
of Proposition 11.31 in [20],

Ψ(RT
dRk) =

1

2
tr[Gp(I−RT

dRk)] (20)

where Gp := tr(Kp)I−Kp; tr(·) gives the trace of a matrix;
Kp is a symmetric positive definite matrix which will be
selected to incorporate the weight matrix QR. Because this
configuration error function is linear with respect to Rk, the
stage cost function is quadratic with the introduction of this
approximation, penalizing orientation error.

This configuration error function Ψ(X) for X ∈ SO(3) is
smooth with Ψ(I) = 0. This function is also locally positive
definite about I within the region where the rotation angle
of X from I is less than 180◦ which almost covers SO(3).

In order to obtain Kp, we use eR = log(RT
dRk)∨ and

Rodirigues’ Formula [20] to rewrite the configuration error
function (20) as,

Ψ{exp[log(RT
dRk)∨]} =Ψ{exp(eR)}

=
1− cos ||eR||

2||eR||2
eTR[tr(Kp)I +Kp]eR

(21)

where the coefficient term 1−cos ||eR||
2||eR||2 approaches 1

4 as
||eR|| → 0. Comparing (21) and the term eTRk

QReRk
in

(5), the expression for Kp could be calculated from

1

4
[tr(Kp) · I +Kp] = QR (22)

given weighting matrix QR.

TABLE I: System Parameters of the Robot

Parameter Value Unit
M 5.5 kg
Ixx 0.026 kg m2

Iyy 0.112 kg m2

Izz 0.075 kg m2

Body length 0.3 m
Body width 0.2 m
link length 0.14 m

Friction cone is approximated as a linearized friction
pyramid, and the following inequality constraint is imposed∥∥utop + δut

∥∥ ≤ µ(unop + δun) (23)

where µ is the coefficient of friction; superscript (·)t indi-
cates tangential force, and (·)n normal force.

The following box constraints on the GRF are added to
clamp the force within desired ranges.

ui,min ≤ ui,op + δui,k ≤ ui,max (24)

This clamping is used to set the value of GRF to zero for legs
in swing phase by clamping ui,min and ui,max to zero.

III. RESULTS

This section evaluates the MPC controller through simu-
lation and hardware experiments.

A. Simulation

The simulation experiments are setup in the following way.
In each sample time, control input is obtained by solving
the QP transcribed by MPC using quadprog in MATLAB,
and then applied to the continuous model (3) through ode45
to simulate the evolution of nonlinear dynamics. Table I
provides the system parameters used in the simulation.

1) Walking Trot: The walking trot simulation serves as
a baseline test for verifying the tracking capability of the
proposed MPC formulation. The robot is commanded a
forward walking speed of 0.3 m/s. Fig. 3 shows the position
and orientation deviation from the reference point. The gait
pattern is time-based, with the stance time set as 0.4 sec and
swing time 0.2 sec.

2) Bounding: The bounding simulation is presented here
to verify that the proposed MPC formulation is capable of
leveraging full body dynamics. To achieve bounding motion,
a dynamically feasible reference trajectory that preserves
periodicity is designed from the impulse-scaling analysis
[15], where the gain on the pitch motion is set as αθ = 15. In
this experiment, the robot is commanded to follow a forward
trajectory starting from the static nominal pose and accelerate
to 1.0 m/s. Fig. 4 (a) shows that the pitch motion converges
to a periodic orbit; Fig. 4 (b) demonstrates that the robot is
able to closely track the forward reference trajectory. The
gait pattern is also time-based with a stance time of 0.1 sec
and swing time of 0.2 sec.
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Fig. 3: Simulation results of walking trot (a) CoM position
deviation (b) orientation deviation. The reference is 0 for
both position and orientation.
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Fig. 4: Simulation results of bounding are generated with
the robot start from static nominal pose and track a forward
accelerating trajectory (a) pitch angular velocity and pitch
angle converge to a periodic orbit (b) position tracking
performance of the controller

3) Aperiodic Complex Dynamic Maneuver: In addition
to simulation of periodic gait motions, we demonstrate the
performance of our MPC to control a complex acrobatic 3D
maneuver. Fig. 5 shows the reference trajectory of back flip
with twist that are tracked using the MPC. Initially, the robot
stands on an inclined surface with a slope of 45◦. Then, the
robot initiates jump with all the four legs in contact with the
surface until 0.1 sec. When time reaches 0.1 sec, the front
pair of legs are airborne while the hind pair of legs are still in
contact with the ground applying forces to the surface. At 0.2
sec, the hind pair of legs also lift off from the surface. With
the selection of a feed-forward trajectory of ground reaction
forces obtained from separate trajectory optimization, this
jumping creates a back flip with twist, which makes the
robot land at 0.5 sec after an airborne phase in an upright
configuration that faces opposite to the inclined surface. Fig.
5(c)(d) show a comparison between open-loop uncontrolled
back flip with twist and closed-loop back flip with twist
controlled by our MPC controller when the slope of surface
is perturbed to 53.6◦ from 45◦. It can be observed that up to
0.2 sec during the stance phase while the robot has control
authority, orientation errors are better regulated in the MPC
controller compared to the open-loop controller, placing the
landing configuration close to the desired configuration.

(a) (b)

(c) (d)𝑒𝑥
𝑒𝑦
𝑒𝑧

𝑒𝑥
𝑒𝑦
𝑒𝑧

Fig. 5: Simulation results of a complex aperiodic 3D ma-
neuver where the robot performs a twist jump off a sloped
surface. The slope of the surface is deviated from the nominal
45◦ to 53.6◦. (a) reference (blue) and MPC controlled (red)
trajectories, (b) reference (blue) and open-loop (red) trajec-
tories. (c) orientation deviation of MPC controlled trajectory
from the reference, (d) orientation deviation of open-loop
trajectory from the reference. The orientation deviation is
calculated using log map eR = log(RT

dR)∨. (i) is when
four legs are all in contact with the surface; (ii) is when
only hind legs are in contact; (iii) is aerial phase

B. Experiment

1) Platform Description: The hardware platform used
for the experiments is a fully torque controllable, electrical
quadruped that weighs 5.5 kg. Each leg module of the
quadruped robot is equipped with three custom made brush-
less direct current (BLDC) motor units [30]. The body of
the robot is assembled from carbon fiber tubes and plates,
connected by carbon fiber reinforced 3D printed parts. The
foot is cushioned with sorbothane because of its capability to
absorb shock. The electronic system consists of an on-board
computer PC104 with Intel i7-3517UE at 1.70 GHz, Elmo
Gold Twitter amplifiers, RLS-RMB20 magnetic encoders on
each joint, and an inertial measuring unit (IMU).

2) Computation Setup: The controller is implemented in
Simulink Real-Time (SLRT), which runs on the embedded
system at a base rate of 4 kHz, while the IMU signals are
received at 1 kHz. A custom QP solver based on the interior-
point method with algorithmic details outlined in [31] is
developed to embed the QP solver into SLRT. It exploits
the sparsity structure of the KKT matrix induced by the
MPC formulation to solve QP efficiently, enabling faster
executions. For a prediction horizon of 7, this entails solving
a QP with 210 variables, 168 inequality and 126 equality
constraints. Written in ANSI C, the solver is library-free
while and it interfaces with SLRT through a gateway s-
function. Even with reduced computational resources on
embedded system, the proposed MPC achieves execution
rates of 160 Hz for prediction horizon of 7. Further details
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Fig. 7: Results of a trotting experiment on the hardware. (a)
CoM position deviation from the reference (b) orientation
deviation from the reference. The shaded area indicates when
all four legs are in stance phase. The reference is 0 for both
position and orientation.

about the custom QP solver are out of the scope of this paper.
3) Walking Trot: The walking trot gait is tested to evalu-

ate the performance of the proposed MPC formulation. Fig. 7
shows that the deviations in both position and orientation are
kept small during the trotting experiment. Stance and swing
phases are switched in a fixed time schedule. The swing
foot follows a smooth spline using the PD position control.
Specifically, the foot retracts and re-initiate contact at the
desired foothold, which is designed based on the capture-
point [32]. The gain values in Table II are first tuned in
simulation and then adjusted for experiment as the model
only approximates real physical systems.

4) Bounding: Bounding experiments are conducted to
show that the proposed method could leverage the full system
dynamics. Fig. 1 shows a sequence of snapshots of the
bounding in place experiment. Fig. 8 shows the pitch angle
and pitch angular velocity plots of a bounding experiment
where the robot starts from a static pose. Transition to
stance phase occurs upon a touchdown event detected using
momentum observer [33]. This experiment is preliminary
result where the robot could bound up to 4 steps. Further
experimental test will be conducted.

TABLE II: Cost function weights for simulation and ex-
periments. The values in parenthesis represent weights on
terminal cost.

Sim. Sim. Acro. Exp. Exp.
Bounding Trotting Maneuver Bouding Trotting

Qpx 4e5 (5e5) 5e4 5e6 5e4 2e5 (12e4)
Qpy 4e5 (5e5) 5e4 5e6 5e4 4e5 (4e5)
Qpz 4e5 (5e5) 5e4 5e6 7e4 1.5e5 (2e5)
Qṗx 1e3 (4e3) 2e3 (4e3) 5e3 5e2 50
Qṗy 1e3 (4e3) 2e3 (4e3) 5e3 5e2 200 (150)
Qṗz 1e3 (4e3) 2e3 (4e3) 5e3 5e2 30
QRx 3e4 (5e4) 1e4 (5e4) 1e6 1e3 3e3 (1e3)
QRy 3e4 (5e4) 1e4 (5e4) 1e6 0 4e3 (8e3)
QRz 3e4 (5e4) 1e4 (5e4) 1e6 0 1e3 (3e3)
Qωx 5e2 5e2 5e3 1e2 3 (2)
Qωy 5e2 5e2 5e3 0 6 (2)
Qωz 5e2 5e2 5e3 2e2 5 (8)
Rux 0.1 0.1 0.1 0.1 0.1
Ruy 0.1 0.1 0.1 0.1 0.18
Ruz 0.1 0.1 0.1 0.1 0.2
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Fig. 8: Experiment results of (a) pitch angle and (b) pitch
angular velocity in a bounding experiment

IV. CONCLUSION AND FUTURE WORK

In this work, we present a Model Predictive Control
framework to control various kinds of dynamic maneuvers in
3D space. By directly using linearized models with rotation
matrices, our method could avoid issues arising from use of
local coordinates including singularities (Euler angles) and
unwinding issues (quaternion). Along with this linearization,
the choice of error function on body orientation enables a
QP formulation, which could be efficiently solved to achieve
real-time execution. With the proposed control framework,
a wide range of dynamic gaits both in simulation and
experiments are demonstrated. In the future, we plan to
apply this MPC controller to control more complex dynamic
maneuvers including fast galloping and more acrobatic gym-
nastic motions.
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