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Abstract— The development of effective reduced order mod-
els for soft robots is paving the way toward the development
of a new generation of model based techniques, which leverage
classic rigid robot control. However, several soft robot features
differentiate the soft-bodied case from the rigid-bodied one.
First, soft robots are built to work in the environment, so the
presence of obstacles in their path should always be explicitly
accounted by their control systems. Second, due to the complex
kinematics, the actuation of soft robots is mapped to the
state space nonlinearly resulting in spaces with different sizes.
Moreover, soft robots often include internal constraints and
thus actuation is typically limited in the range of action and it
is often unidirectional. This paper proposes a control pipeline
to tackle the challenge of controlling soft robots with internal
constraints in environments with obstacles. We show how the
constraints on actuation can be propagated and integrated
with geometrical constraints, taking into account physical limits
imposed by the presence of obstacles. We present a hierarchical
control architecture capable of handling these constraints, with
which we are able to regulate the position in space of the tip
of a soft robot with the discussed characteristics.

I. INTRODUCTION

Soft-bodied robots are robotic systems made of contin-
uously deformable elastic elements [1]. Thanks to their
inherently safe behavior, and their ability of changing their
shape in ways not possible for their rigid counterparts, soft
robots promise to strongly expand the range of applicability
of robotic systems.

Given their very innovative nature, the large part of the
research in the field has been devoted to establishing novel
mechanical design principles. Only more recently atten-
tion has been focused on developing effective brains - i.e.
controllers - and the problem have revealed to be a very
challenging one. For an extensive review of current methods
in soft robots control, the interested reader can refer to [2].
A main issue preventing the translation of the many results
already available for the classic rigid bodied case has been
the theoretically infinite dimensionality of the soft body.
This issue has been tackled in the last few years, by the
introduction of several effective finite dimensional models
[3]–[5]. Among them, piecewise constant curvature models
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Fig. 1. An example of application of the proposed framework. A soft
bodied robot is controlled to reach the green area, while avoiding the red
one. The robot is composed of three segments. Each one is actuated with
four chambers, able to produce only negative internal forces - modeling
the behavior of a vacuum actuated robot. The initial position of the robot’s
tip is highlighted with a red cross in the up right of the picture, and the
trajectory followed so far with a dashed gray line. The target is reached in
few seconds.

have affirmed themselves as a simple yet effective way of de-
scribing the behavior of soft robots. Their many applications
range from design [6], to sensing [7], to kinematic control
[8], to dynamic control [9]–[11]. However, the difficulties in
developing reliable models are not the only challenge that
differentiate control of rigid and soft robots. Others include
the necessity of coping with strongly under actuated input
spaces [12], and the need of building controllers that do not
sensibly alter the natural softness of the robot [13].

The purpose of this paper is to tackle another main
challenge setting soft-bodied robots apart from the more clas-
sic rigid-bodied ones. In the latter, actuators are connected
directly to the physical components defining the state - i.e.
the robot’s joints - effectively providing to the controller
direct access to the wrenches acting on the state variables.
This is not the case for soft-bodied robots. Indeed, the
state of a soft robot has no localized counterpart in the
physical system. The challenge is strongly exacerbated by
the physical characteristics of soft actuators. Soft robots are
indeed typically actuated with components that can generate
forces only in a limited range, often even in only one
direction. Fig. 2(c) depicts a classic configuration of actuators
in a fluid actuated systems [11], [14], [15]. Each actuated
segment of the soft robot has a certain number of chambers
embedded into it. Inflating or de-pressurizing one produces a
force acting on the internal walls of the segment, bending it.
However, only positive or negative actions can be produced
in this way for a given system, depending on if the robot is
pressure or vacuum powered. This results into a unilateral
actuation characteristics, connected through non linear non
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Fig. 2. Three views of a piecewise constant curvature robot. Panel (a) shows a schematic representation of a PCC robot composed of three segments. The
frames {Si} are reported, with the corresponding transformations T ii−1. Panel (b) depicts a single segment, and defines the three variables specifying the
configuration, i.e. curvature angle θi, angle of bending φi, and segment length Li = L0,i + δLi. Panel (c) shows a scheme of the actuation mechanism
for a single segment. Four chambers actuate it, generating four independent internal forces fi,1, fi,2, fi,3, fi,4. These elements can only be inflated or
deflated, thus the forces are or all positive or all negative, depending on the design.

square applications to the actual wrenches that a model-based
controller would specify.

We propose here a control pipeline solving this challenge
in the piecewise constant curvature case. Using the proposed
framework, a soft robot with the discussed characteristics can
reach areas of interest with its tip, by exploiting its ability
of continuously deforming to avoid obstacles, and always
remaining into configurations that can be sustained by its
actuation system. See Fig. 1 for an example of application.
More specifically, the main contributions of this work are
• A strategy for propagating constraints on the actuation,

and integrating them with constrains on configuration;
• A control architecture dealing with these constrains;
• The definition and analytical solution of the optimal

control allocation problem;
• A planning algorithm, regulating the tip position while

guaranteeing the feasibility of the solution;
• Simulations validating the theoretical results.

II. SOFT ROBOT WITH PIECEWISE CONSTANT CURVATURE
AND VARIABLE LENGTH

A Piecewise Constant Curvature (PCC) soft robot, is a
mechanical system composed by a sequence of continuously
deformable segments, with curvature constant in space (CC)
but variable in time, merged so that the resulting curve is
everywhere differentiable. Fig. 2(a) presents an example of a
soft robot composed by three CC segments. We consider here
PCC soft robots for which also the length of each segment
can change independently. Given the discussed importance
in the soft robotics literature, it is beyond the scope of the
present paper to further discuss the ability of PCC models to
describe soft robots’ behavior. See instead [6]–[11], just to
cite a few. Note that of the following subsections, only the
one about kinematics describes state of the art results. The
rest are a novel contribution of this work.

A. Kinematics

Consider a PCC robot composed by n CC segments
connected in series. We introduce n reference frames
{S1}, . . . , {Sn} attached at the ends of each segment, plus
one fixed base frame {S0}. The pair {Si−1} and {Si} fully
defines the configuration of the i−th segment. Fig. 2(b)

shows the kinematics of a single CC segment. The con-
figuration of the segment can be described through three
variables; i) the angle φi between the plane n̂i−1 − ôi−1

and the plane on which the bending occurs, ii) the relative
rotation θi between the two reference systems expressed on
that plane, iii) and the change in length δL of the central
arch.

We call T ii−1 the homogeneous transformations mapping
Si−1 into Si, It can be evaluated using geometrical consid-
erations to be

T ii−1(φi, θi, δLi) =

[
Rii−1(φi, θi) tii−1(φi, θi, δLi)[

0 0 0
]

1

]
,

where

Rii−1 =

c2
φi
(cθi − 1) + 1 sφicφi(cθi − 1) −cφisθi

sφicφi(cθi − 1) c2
φi
(1− cθi) + cθi −sφisθi

cφisθi sφisθi cθi


tii−1 =

L0,i + δLi
θi

[cφi(cθi − 1) sφi(cθi − 1) sθi ]
T ,

with cφi , sφi , cθi , sθi being cos(φi), sin(φi), cos(θi),
sin(θi) respectively. In the following we refer to qi =
[φi θi δLi]

T ∈ R3 as configuration of the i−th segment,
and to L0,i as its rest length. q ∈ Rn is the configuration of
the soft robot, and it collects qi for all the segments.

B. Dynamics

We introduce the following model to describe the dynam-
ics of a PCC robot with non constant length

B(q)q̈ + C(q, q̇)q̇ +G(q) +Kq +D(q)q̇ = τ ,

τ = g(q)f ,

f ∈ If ,
(1)

where q ∈ Rn is the configuration of the robot, with its time
derivatives q̇, q̈. B(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈
Rn×n collects Coriolis and centrifugal terms, G(q) ∈ Rn is
the gravity force, Kq is the elastic force, with K ∈ Rn×n
stiffness matrix, and D(q)q̇ is the friction force, with D(q)
damping. For the sake of space, we do not go into the details
of the analytical derivation of these terms. Since the robot
has not constant length the necessary steps differ from the
ones we presented in previous publications. However, they
can be obtained by using the augmented formulation in [11],



Fig. 3. Scheme summarizing the proposed control pipeline. The bottom of the figure presents the control architecture as a block scheme. The planning
algorithm produces a trajectory qref producing the desired end effector position xkref . The controller generates the ideal control action τ necessary to
converge on qref , and the control allocation translates this action in the actual inputs f . The upper part depicts instead the propagation and integration
of the constraints, from the actuation f towards the reference xkref . The dashed lines highlight this flow. Blue arrows indicate propagation, orange arrows
indicate integration, and red arrows underline which part of the control architecture is taking care of guaranteeing the fulfillment of the constraint.

and by substituting L0,i + δLi to any initial occurrence of
the there constant length Li.

We instead discuss more in the details the actuation model
- i.e. the second and the third equations in (1) - which is at
the core of the present paper. τ ∈ Rn is an hypothetical input
that would produce a direct acceleration in the space of the
configuration variables. We call τi ∈ R3 the vector collecting
the 3 i−2, 3 i−1, 3 i-th elements of τ . We do not have direct
access to τ for the reasons discussed in the introduction.
We instead can access f ∈ If ⊂ Rh, mapped in τ through
g(q) ∈ Rn×h. If is a set with interval geometry, describing
the constraints on the actuation. More specifically, it contains
only vectors with positive elements for pressure actuated
systems, and with only negative ones for vacuum actuated
systems. As discussed in the introduction, the presence of
these constraints, together with g(q), strongly increases the
complexity of the control problem.

We introduce now some assumptions on the actuation
system. It is worth underlying that they are not vital to
build a solution, and the results can be easily generalized
to the general case. They are instead made for the sake of
conciseness and clarity. We assume each segment to have its
set of chambers, that actuates it separately from the other
segments, as in Fig. 2(c). We consider four chambers per
segment. We call fi ∈ R4 the vector collecting the 4 i − 3,
4 i− 2, 4 i− 1, 4 i-th elements of f . As a consequence, g(q)
is block diagonal, with blocks gi(qi) ∈ R3×4. Its general
form is gi(qi) = JT

i (q)Ri0(q)−JT
i−1(q)Ri−1

0 (q), where Ji is
the Jacobian matrix mapping q̇i into linear velocities aligned
to the directions of the forces fi. Ri0 is the rotation matrix
mapping {Si} to {S0}. Interestingly, it can be shown that gi
depends only on the configuration of the i−th segment qi.

C. Constraints on configuration
Since the main application of soft robots is to act into

the environment, we introduce a set of constraints on the
configuration modeling the presence of areas in which the
robot can and cannot move. We call Ti ⊆ R3 with i ∈
{1, . . . , Ntarget} the target sets. We want at least one point
of each target set to be reachable by the robot with its tip.
O ⊆ R3 is the set of points that the robot must avoid,

i.e. the obstacles. Iq ⊆ Rn is the interval set of admitted
configurations.

III. PROPOSED SOLUTION

To solve the control problem we propose a framework
based on two main components; a control architecture,
and a procedure for integrating the constraints so that the
architecture can manage them. Fig. 3 graphically represents
both the flows.

The control architecture starts with planning. The role of
this algorithm is to produce a path in configuration space
qref ∈ Rn moving the tip of the soft robot from xk−1

ref ∈ R3

to xkref ∈ R3, while always satisfying the constraints. The
controller has the role of generating an action τ ∈ Rn such
that the state q, q̇ converges to the desired one qref , q̇ref . This
part of the architecture works as if a set of inputs directly
acting on the states were available - see (1). This latter
level of abstraction is implemented by the control allocation,
which evaluates on-line the forces f necessary to obtain τ ,
while always satisfying the constraints.

The procedure for constraints integration and propagation
works instead backward. First the interval constraints f ∈
If are propagated back, into polyhedral constraints on τxyz.
Then these constraints are integrated with constraints on q
and x, resulting in a lower bound of the feasible region with
interval geometry Iref .

We describe in details each component of the framework
in the following sections.

IV. OPTIMAL CONTROL ALLOCATION

A. Allocation problem and proposed solution
We perform this analysis for If = {f s.t. f ≤ 0}. As

discussed above, this is the case typically encountered when
the robot is vacuum actuated, since a de-pressurization can
only produce inward forces (see Fig. 2(c)). This will allow a
direct inspection of the results which would not be possible
in the general case. The solution for If = {f s.t. f ≥ 0}
- i.e. pressure powered system - is discussed at the end of
the section. Upper and lower bounds can also be considered
with similar results, that we can not report for the sake of
space.



Fig. 4. To solve the optimal allocation problem, we introduce an
intermediate representation τi,xyz ∈ R3 of the control action - on the right
of the figure. It stays in between fi ∈ R4 - left of the figure - and τi ∈ R3.
The latter is not shown in figure since it does not have a direct physical
interpretation due to the complex parametrization of the soft robot. The
components of τxyz are the torque around the local x axis τi,x, around
the local y axis τi,y, and the force in the direction of the local z axis. A
constant matrix Mi ∈ R3×4 maps fi into τi,xyz.

The proposed optimal control allocation problem is

min
fi
||fi||2 s.t.fi ≤ 0 and τi = gi(φi, θi, δLi)fi . (2)

Solving it assures at the same time that fi satisfies the
constraints - i.e. it generates the desired wrench τi and it is
physically achievable - and that unnecessary internal forces
are never produced. The direct analytical solution of (2) is
hard due to the complex dependency of the problem from
fi and φi, θi, δLi. To deal with this issue we introduce an
intermediate representation of the actuation, presented in Fig.
4. In this way the mapping gi(φi, θi, δLi)fi is expressed as
cascade combination of two simpler maps

τi = αi(φi, θi, δLi)τxyz,i and τxyz,i = Mifi , (3)

where τxyz,i = [τx,i, τy,i, τz,i]
T ∈ R3, the first two elements

begin the torque around the local x and y axes, and the third
being the force in the direction of the local z axis. Mi is

Mi =

 0 0 ∆i −∆i

−∆i ∆i 0 0
1 1 1 1

 , (4)

where ∆i ∈ R+ is the distance of center of each chamber
from the central axis. αi(φi, θi, δLi) is kinematic dependent,
and can be evaluated for a generic CC segment as

αi =


−cφi sθi −sφi sθi 0

−sφi cφi (L0 + δLi)
θi − sθi
θi

2

0 0
sθi
θi

 . (5)

Note that the limit in θi → 0 is always well defined. So we
complete Ai in θi = 0 with the limit value

αi(φi, 0, δLi) =

 0 0 0
−sφi cφi 0

0 0 1

 . (6)

In this way, the control allocation problem is clearly split in
two sub-problems. The mapping from τ to τxyz is square but
state dependent. The mapping from τxyz to f is not square,
but state independent. This enables a neat two-steps solution
of (2), that we describe in the next subsections.

B. Step 1: square inversion

The first equation of (3) can be inverted by using the
following generalized inverse matrix

α−1
i

.
=




− cφi
sθi
−sφi

sφi (θi−sθi) (L0+δLi)

θi sθi

− sφi
sθi

cφi −
cφ1 (θi−sθi) (L0+δLi)

θi sθi

0 0 θi
sθi

 if θi 6= 0

0 −sφi 0
0 cφi 0

0 0 1

 otherwise.

(7)

Note that a generalized inverse so defined assures that
αi α

−1
i = I - with I identity matrix - for all θi 6= 0.

Furthermore, it prevents the production of torques around
φ when θi = 0, being

αi(φi, 0, δLi)α
−1
i (φi, 0, δLi) =

0 0 0
0 1 0
0 0 1

 . (8)

This is consistent with the fact that the robot has null inertia
around φi in this configuration. We thus define τxyz =
α−1(q)τ , where α−1 ∈ Rn×n is the block diagonal matrix
having as i−th block α−1

i . This action is implemented by
sub-map 1 in Fig. 3.

C. Step 2: explicit solution of the allocation problem

Using (3) and (7), Eq. (2) can be reformulated as follows

min
fi
||fi||2 s.t. fi ≤ 0 and τxyz,i = Mifi (9)

The problem can be further simplified by explicitly solving
the equality constraints[

fi,1
fi,2
fi,3

]
=

Mi

1 0 0
0 1 0
0 0 1
0 0 0

−1τxyz,i −Mi

 0
0
0
fi,4

 . (10)

Through (10), standard algebraic transformations yield to the
equivalent optimization problem

min
zi

1

2
z2
i s.t. Gzi ≤ Siτxyz,i (11)

where zi = fi,4 − τz,i
4 +

τx,i
2∆ , G =

[
−1 −1 1 1

]T
, and

Si =


0 1

2 ∆i
− 1

4

0 − 1
2 ∆i

− 1
4

− 1
2 ∆i

0 − 1
4

1
2 ∆i

0 − 1
4

 . (12)

The Karush-Kuhn-Tucker optimality conditions for (11) are

zi +GTλ = 0 , Λ(Gzi − Siτxyz,i) = 0 ,

λ ≥ 0 , Gzi ≤ Siτxyz,i

(13)

where λ ∈ R4 are the Lagrange multipliers, and Λ ∈ R4×4

is the diagonal matrix having λ as diagonal elements. The
first equation in (13) directly yields zi = −GTλ, which in
turn allows to rewrite the optimality conditions as

Λ(GGTλ+ Siτxyz,i) = 0

λ ≥ 0 GGTλ+ Siτxyz,i ≥ 0 .
(14)



Fig. 5. Three examples of candidate interval sets that could be produced
by lines 4 and 5 of algorithm 1. Iout is outside the feasible set, so it is
rejected by lines 7 and 8. The other two intervals would instead pass the
check. Among the two, Iopt would be maintained, while Iin discarded,
since the first has a larger perimeter.

The solution of (14) can be found explicitly by solving the
first equation for all the possible combinations of active and
inactive constrains, i.e. for all the possible combinations of
null and not null elements of λ. The results are in the form
fi,4 = G̃RS̃iτxyz,i where G̃, S̃ are the matrices obtained
by selecting the rows of G, S corresponding the non null
elements of λ, and G̃R is the right inverse of G̃. The active set
of this solution can be evaluated by substituting fi,4 into the
second and third equations in (14). For more details on this
latter step please refer to [16, Sec. 4.1], where the solution
of a problem in the form of (14) is derived for being used
in explicit linear model predictive control.

Combining (10) and fi,4 leads - through some simple
algebraic derivations - to the piece-wise linear closed form
solution of the problem (9)

fi = Ija(∆i)τxyz,i , where j s.t. Aj(∆i)τxyz,i ≤ 0 , (15)

with Aj and Ija defined in (21) and (22). The subscript j ∈
{0, 1, . . . , 4} refers to the constraint which is active. Indeed,
when j = 0 all four forces are used to generate actuation, i.e.
only strictly negative forces are produced. It is worth noticing
that in this case the mapping is very straightforward; a torque
around x is produced through a pair of equal and opposite
forces applied on y, and vice versa for a torque around y. The
vertical force is equally distributed to all the four chambers.
When an inequality with j 6= 0 holds, it means that the j−th
constraint is active, and fi,j = 0. This is clearly reflected by
the null rows in (22).

Note that (15) also specifies the set of admissible τxyz,i as⋃
j∈{0,1,...,4}{τxyz,i s.t. Aj(∆i)τxyz,i ≤ 0}. While unions of

convex polyhedrons are not in general convex polyhedrons
themselves, it can be proven that this holds true for our
case by following the arguments in [16, Sec. 4.2]. We call
Ai ∈ R3×3 the matrix such that Aiτxyz,i ≤ 0 identifies the
complete active set for the i−th segment.

Finally the map from τxyz to f is obtained by applying
iteratively (15). This action is implemented by the block sub-
map 2 in Fig. 3.

D. Solutions with positivity constraints

In pressure driven systems the structure of the problem is
the same, but with positive forces, fi ≥ 0. This produces
only an inversion of the inequality sign, yielding

fi = Ija(∆i)τxyz,i , where j s.t. Aj(∆i)τxyz,i ≥ 0 , (16)

where Ija and Aj are defined as in (21) and (22).

V. CONTROLLER

As controller we use the PD with dynamics compensation
that we proposed in [10], [11]

τ = KP(qref − q) +KD(q̇ref − q̇) +Kqref

+D(q)q̇ref +B(q)q̈ref + C(q, q̇)q̇ref +G(q).
(17)

KP,KD ∈ Rn×n are gain matrices. qref ∈ Rn is the
desired state evolution, with its time derivatives q̇ref , q̈ref .
The remaining terms are as in (1). Please see [10] for a
proof of global asymptotic stability in the unconstrained case.
However, τ can be exerted only within certain limits, as
specified by (1). Nonetheless, the asymptotic stability of the
closed loop can still be proven for all the qref internal to the
feasible set (see next section). Indeed, invoking continuity
properties assures that a neighborhood of qref exists, such
that all its elements satisfy the constraints. The region of
asymptotic stability of (17) is always lower bounded by such
neighborhood. This proves the local asymptotic stability of
the equilibrium.

VI. PLANNING

A. Propagation and integration of the constraints

The set of configurations qref compatible with the actu-
ation constraints f ∈ If can be described by propagating
back these constraints, through the control allocation and
the controller, as summarized by Fig. 3. The result is the
following set of inequality constraints

Aα−1(q)(Kq +G(q)) < b , (18)

with A ∈ Rn×n and b ∈ Rn defined as in Sec. IV-D.
τxyz(q) = α−1(q)(Kq + G(q)) is the steady state control
action produced by controller (17) and sub-map 1.

Eq. (18) identifies a set with a complex geometry, which
would be difficult to manage during on-line generation of
trajectories. We solve this issue by considering as approx-
imation a big enough interval set which is fully included
in the actual feasible set. Contextually, we perform also
the integration of (18) with the configuration constraints
discussed in Sec. II-C . We formalize the problem as follows

max
qlb,qub

1

2
||qlb − qub||22

s.t. I(qlb, qub) ⊆ I(q̄lb, q̄ub)

h([I(qlb, qub)]) ∈ Ti ∀i
hc([I(qlb, qub)]) ∩ {O× · · · ×O} = ∅
Aτxyz([I(qlb, qub)]) ≤ b .

(19)

where we use some basic interval analysis notation to
describe sets in a more compact form; i) I(qlb, qub) =
{q s.t. qlb ≤ q ≤ qub}, where the inequalities are to be
intended element-wise; ii) given a function F (·), we call
F ([I]) = {F (x) s.t. x ∈ I}.

The first three constraints constitute the bounds introduced
in Sec. II-C - i.e. staying into the configuration limits
I(q̄lb, q̄ub), reaching the targets Ti, avoiding the obstacles
O. h(·) is the forward kinematics of the robot’s tip. hc(·) is
the forward kinematics of a set of relevant points along the



(a) Nominal (b) High weight (c) Short robot

Fig. 6. Positions h([Iref ]) that the robot can reach with its tip while remaining in the feasible set Iref . Three soft robots with different physical
characteristics are considered. Panel (a) shows the result for the nominal choice of physical parameters discussed in the text. Panel (b) reports the outcome
when the wight of all the segments is increased of a factor ten. The robot can reach a much smaller area without failing to satisfy the constraints on
actuation f ≤ 0. Panel (c) shows the result for a robots with the same physical characteristics as the robot in panel (a), but with half the rest length.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 7. The blue volumes show the positions h([Iref ]) that the robot can reach with its tip while remaining in the feasible set Iref . Three examples are
shown for three different scenarios. The green rectangles are volumes that the robot must reach with its tip, i.e. Ti in (19). The red rectangles are areas
that the robot body can not interact with, i.e. O in (19).

(a) (b) (c) (d) (e) (f)

Fig. 8. Sequence showing the soft robot sequentially reaching for five targets (red crosses in figure). The robot has three actuated segments. The end
of each segment is highlighted with a red circle. The trajectory followed by the robot tip is depicted as a gray dashed line. In all its motions the robot
configuration q remains in the safe area Iref , where the actuators can sustain the robot despite the strict negativity of the inputs.

(a) (b) (c) (d)

Fig. 9. Sequence showing the soft robot reaching a target (red cross in figure) placed inside an area of interest (green volume), while avoiding with all its
body the obstacles surrounding the goal (red volumes). The robot has three actuated segments. The end of each segment is highlighted with a red circle.
The trajectory followed by the robot tip is depicted as a gray dashed line. In all its movements the configuration q remains in the safe area Iref , where
the actuators can sustain the robot despite the strict negativity of the inputs, and where no contact with the environment can occur.
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(a) Configuration q, square drawing
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(b) Tip position x, square drawing
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(c) Actual input f , square drawing
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(d) Configuration q, reach in the box
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(e) Tip position x, reach in the box
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(f) Actual input f , reach in the box

Fig. 10. Evolution in time of the main quantities describing the behavior of the soft robot and the control architecture during the execution of the square
drawing task - panels (a,b,c) - and the reach in the box task - panels (d,e,f). Panels (b,e) account for the very precise tracking of the trajectory produced by
the planner, and expressed here the end effector (desired positions depicted as black dashed lines). Panel (c,f) show that the actuation f is always strictly
negative, fulfilling the constraints. The spikes in actuation in panel (f) are due to the high acceleration required to the system during the sudden slope
changes.

Algorithm 1 Find large interval included in the feasible set.

1: qopt
lb ← q̄lb . Initialization

2: qopt
ub ← q̄ub

3: for i← 1, Ntrials do
4: q̃lb ← rand(q̄lb, q̄ub) . Uniform random distribution
5: q̃ub ← rand(q̃lb, q̄ub)
6: if ||qopt

lb − q
opt
ub ||22 < ||q̃lb − q̃ub||22 then

7: Included← CheckInclusion(q̃lb, q̃ub)
8: if Included = True then
9: qopt

lb ← q̃lb . New optimum found
10: qopt

lb ← q̃ub

robot that we want not to be in contact with the environment.
In this work we consider them to be the end and the middle
of each segment.

To find a solution for (19) we propose algorithm 1,
implementing a Monte Carlo approach. Fig. 5 shows an
example of some core steps of the algorithm. It is worth
underlying that, while potentially computationally onerous,
this algorithm is executed off-line, and only once for a
given robot and environment. Its output serves then as a
compact representation of the constraints, that we use in
the next subsection to implement a very efficient constrained
kinematic inversion strategy.

B. Constrained inversion algorithm

Given a desired position of the tip xkref , and the feasible
interval set Iref , we evaluate the configuration q̄kref such that
h(q̄kref) = xkref , with h(·) forward kinematics of the tip, as
steady state of the following dynamical system

˙̄qk = J+
seteset + (I − J+

setJset)J
+(xref − h(q̄k)) . (20)

J+ is the Moore-Penrose pseudo-inverse of J . Jset, eset are
the Jacobian and the error of the constraints. Jset is obtained
from the identity matrix by selecting all the i−th columns,

Algorithm 2 Check if the interval is included in the feasible
set.

1: procedure CHECKINCLUSION(q̃lb, q̃ub)
2: Included← True . initialization
3: DestinationReachedj ← False
4: for i← 1, Ncheck do
5: if Included = True then
6: qtest ← rand(q̃lb, q̃ub) . Random config.
7: τxyz ← α−1(qtest)(Kqtest +G(qtest))
8: for j ← 1, NT do
9: if h(qtest) ∈ T then

10: DestinationReachedj ← True

11: if hc(qtest) ∈ {O× · · · ×O} then
12: Included← False
13: if (Aτxyz < b) = False then
14: Included← False
15: if ∃ j s.t. DestinationReachedj = False then
16: Included← False
17: return Included

such that q̄ki does not satisfy the constraint specified by Iref .
eset is a column vector having as j−th element 1 if the
variable violating the j−th violated constraint is below its
lower bound, and −1 otherwise. Due to space limitations,
we can not go deeper in the details of this algorithm, which
was inspired by results provided in [17]. The convergence of
(20) can be proven with arguments similar to the ones used
in that paper.

Once q̄k is calculated, the trajectory bringing from xk−1
ref

to xkref in a time tfin is qref(t) = tfin−t
tfin

q̄k−1 + t
tfin
q̄k which

is fully contained into Iref , since the set is connected by
construction.

VII. SIMULATIONS

Consider a soft robot composed by three sequentially
connected CC segments, as in Fig. 2(a). Each segment is 1m
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long, and it weights 0.4Kg. Its bending rigidity is 0.1Nm
rad , and

its compression stiffness is 0.1 N
mm . Each segment hosts four

actuators, as in Fig. 2(c). They simulate vacuum chambers,
and thus they can produce only negative forces, f ≤ 0. The
axis of each chamber is ∆i = 0.2m far from the central axis
of the segment. All the segments share the same constraints
on the configuration, φi ∈ [0, 2π], θi ∈ [0, 2π], δLi ∈
[−0.5, 0]m. When q = 0 the robot is in a straight vertical
configuration, with its tip pointing upwards. The gravity
acceleration is the standard one, and points downwards.

As first step we evaluate Iref through algorithm 1. We
used Ntrials = 103 and Ncheck = 103. The outcome of
the algorithm was consistent across multiple executions. The
algorithm has been implemented in MatLab 2018b, and
its execution time on a standard laptop ranges from few
seconds to ten minutes depending on the scenario. Note
that this algorithm is intended to be executed off-line and
just once for a given pair of robot and scenario. We report
the results expressed as the volume of the operational space
that can be reached by moving into the estimated set Iref ,
i.e. h([Iref ]). Fig. 6 shows the case of no obstacles, i.e.
O = ∅. The only target is the straight configuration, i.e.
T1 = {q s.t. θi = 0, ∀i}. The three panels show the results
for different choices of the physical parameters. Fig. 7 reports
instead the outcomes for three different choices of O and Ti.
The first is highlighted as a red volume, the seconds as green
ones.

We thus apply the control architecture to the execution of
two tasks. The first one is the sequential acquisition of five
targets with the tip of the robot, in a free space scenario
(as for Fig. 6(a)). Targets are positioned so that the final tip
trajectory is a square. Fig. 8 shows the resulting behavior.
The second task is to go back and forth between two points,
one in free space and one inside the area of interest contained
in a box. The scenario is the same of Fig. 7(c). Results are
shown in Fig. 9. Note that the robot must fully exploit its
degrees of freedoms to bend around the obstacles and reach
for the target. Fig. 10 shows the evolution in time of salient
quantities for both tasks.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposed a control pipeline able to regulate
the tip position of soft bodied robots, with unidirectional
actuation connected to the state through a non linear char-
acteristics, and constrains in configuration modeling the
environment. Extensive simulations were provided to sup-
port the theoretical results. Future work will be devoted to
experimentally validating the architecture on a real robot.
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