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Abstract: 

Emerging technologies of production and processing of functionalized nanoparticles (NP) 

require advanced methods of NP characterization and separation. While various methods are 

available for NP separation by size, there are no efficient methods for NP separation by surface 

chemistry. Using extensive dissipative particle dynamics simulations, this work investigates the 

mechanisms of NP adhesion and flow in polymer brush (PB)-grafted pore channels searching for 

the conditions for size-independent separation of NPs that are similar to the critical conditions of 

liquid chromatography of polymers. We consider interactions of NPs functionalized by 

hydrophilic and hydrophobic ligands with PBs, in which conformation and adhesion properties 

are controlled by the solvent quality varied with the composition of thermodynamically good and 

poor solvent components. The NP-PB adhesion is characterized by the free energy landscape 
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calculated by the ghost tweezers simulation method that mimics the experimental technique of 

optical tweezers. The NP Henry constant and the respective partition coefficient are calculated 

depending on the NP size and ligand composition at varying solvent quality.  Our findings 

demonstrate that with the decrease of solvent quality, the NP elution undergoes a transition from 

the size-exclusion mode with larger NPs having shorter retention time to the adsorption mode 

with the reverse order of elution. This transition, which occurs in a narrow range of solvent 

composition, signifies the so-called “critical” point of adsorption that strongly depends on the NP 

functionalization. The dynamics of NP axial dispersion in the isocratic and gradient elution 

modes is characterized employing a convective-diffusion model. We show that the NPs can be 

effectively separated by surface chemistry at the critical points of adsorption, using the gradient 

mode of interaction NP chromatography with controlled variation of the solvent composition.  
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I. Introduction  
 

Nanoparticles (NPs) find numerous applications in biosensing,1-2 imaging,3 supercapacitors,4 

light emitting diodes (LEDs),5-6 solar cells,7-8 and nanoelectronic devices.9 NPs functionalized 

with specific molecules are used in diagnostics and therapeutics,10-11 as drug carriers, and 

nanoporous biomaterials.12  Engineering and functional properties of NPs are sensitive to their 

size, shape, and surface chemistry, and advanced methods of NP characterization and separation 

are required for the quality control during NP production and processing. While various methods 

are available for NP separation by size and shape,13-20 there are no efficient methods for NP 

separation by surface properties, such as the degree of hydrophobicity and surface heterogeneity,  

that  are  especially important in case of NPs modified by specific functional molecules or 

ligands.21-23 It is highly desirable to develop techniques for NP chromatography based on the 

specifics of NP interactions with the stationary phase, reminiscent to the established techniques 

of interaction polymer chromatography.24-26 Most beneficial would be a method capable of size-

independent separation of NPs by surface chemistry similar to the method of liquid 

chromatography at critical conditions (LCCC) for molecular weight independent separation of 

polymers by their composition and microstructure.27-32 

The first advance in this direction was made in our recent work,33 which explored the 

conditions of chromatographic separation of NPs on porous substrates grafted with polymer 

brushes in a binary mixture of thermodynamically “good” and “poor” solvents using dissipative 

particle dynamics (DPD) simulations. In this system, the PB played a role of a stationary phase 

to which NP may adhere and be retained. We showed that the NP adhesion depends on the PB 

conformation that is controlled by the solvent quality. For a particular system, it was 
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demonstrated that by varying the solvent composition it is possible to realize different separation 

modes with the transition from the size exclusion mode with larger particles having shorter 

retention time, which is  characteristic to conventional separation techniques of size exclusion 

(SEC)17 and hydrodynamic (HDC)18 chromatography, to the adsorption mode with the reverse 

sequence of elution. In the present paper, we consider separation of NPs functionalized by 

different types of ligands and show that the crossover between the size exclusion and adsorption 

modes occurs for NPs of given surface chemistry in a narrow range of solvent compositions with 

approximately size-independent elution, similarly to the critical conditions of adsorption 

observed in polymer separation by LCCC. These findings lay out a foundation for the interaction 

NP chromatography at critical conditions (INPCC) and inform the design of chromatographic 

columns and solvent selection for efficient separation of NPs by surface chemistry.  

The specifics of  NP-PB interactions play the central role in the process of NP separation 

on polymer grafted substrates, as well as in various applications of NP-PB systems such as PBs 

doped by NPs used in sensors and biomedical devices,34 fabrication of nanocomposites,35-37 

lubrication,38 stabilization of colloids,39-41 and manipulation of nanoobjects on surfaces.42 

Utilization of PB-grafted substrates in NP separation in the SEC has been investigated recently.43 

NP adhesion to PBs can be controlled by varying the solvent composition44-45 that affects the PB 

conformation. Upon worsening of solvent quality and respective PB contraction, the free energy 

of NP-PB adhesion generally decreases and adhesion becomes stronger, as a result of competing 

effects of enthalpic attraction between polymer and NP ligands and entropic repulsion due to NP 

immersion into PB. The entropic effects dominate when PB is expanded in good solvent, while 

the enthalpic effects dominate when PB is collapsed in bad solvent. As shown in ref. 33, the NP 

elution in a PB grafted channel undergoes a transition from the completely repulsive size 
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exclusion mode in the good solvent to an adsorption mode upon addition of the poor solvent 

component. This observation suggested a possibility of existence of so-called critical point of 

adsorption (CPA),24 at which the entropic and enthalpic effects are compensated and the NP 

elution is size-independent as in the LCCC. In this work, we confirm this hypothesis and show 

that the CPA of functionalized NP to PB in binary solvent can be defined as a particular solvent 

composition, which corresponds to the transition between the size exclusion and adsorption 

modes and depends on the NP surface chemistry. Note that in contrast to polymer adsorption, the 

introduced CPA of NP adhesion to PB is not related to any critical phenomenon, but it rather 

indicates a condition of the observed sharp transition from the entropy-dominated to enthalpy-

dominated regimes leading to the reversal of the size-dependent sequence of elution. 

In search for the CPA conditions of size independent elusion, we perform extensive DPD 

simulations to investigate the effects of the NP surface chemistry on NP adhesion and flow in 

PB-grafted pore channels in a binary solvent at different solvent composition. We consider NPs 

functionalized by two different kinds of ligands, which are modeled as short hydrophobic and 

hydrophilic chains grafted on the NP surface. By varying the ligand composition, we mimic 

different surface chemistries and control the NP-PB adhesion interaction. We analyze the 

specifics of solvent flow through PB-grafted channels and quantify the morphology and sorption 

capacity of the PB stationary phase depending on the solvent composition by introducing the 

hydrodynamic PB thickness as the stationary phase boundary. The NP-PB adhesion is quantified 

in terms of the free energy landscape, calculated using the Ghost Tweezers (GT) method,45 

which determines the Henry constant of NP adsorption, the partition coefficient, and ultimately 

the NP retention time, depending on the solvent and ligand compositions. The NP retention time 

distribution is analyzed using the convective-diffusion model. For NP of different surface 
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chemistry, we identified the CPA solvent composition that corresponds to a transition between 

the size exclusion to adsorption modes.  The relationship is established between the solvent 

composition at CPA and the NP ligand composition that points toward a possibility of efficient 

NP separation by surface chemistry in the solvent gradient regime by varying the solvent 

composition as it is done in the gradient elution regime of interaction polymer 

chromatography.29-30 

The following text is structured as follows. Section II discusses the simulation models 

and methods which include a brief description of the DPD method, system set up, coarse-

graining scheme, parameterization of the model, the ghost tweezer method and solvent flow 

simulations.  Section III discuses our theoretical models and results from  the simulations: the 

calculation of free energy of NP adhesion to PB using the ghost tweezers technique from which 

the Henry constant and partition coefficient of NPs are derived, and the prediction of NP motion 

through PB-grafted channels and NP retention times based on the calculated polymer density 

profiles, thermodynamics calculation, and the solvent velocity profiles obtained in separate 

simulations. This section also discusses a macroscopic model for NP elution in a cylindrical 

channel in the isocratic (no solvent gradient) mode, in terms of “first passage time” distributions 

based on a convective-diffusion model, and the  prediction of separation of our model NPs in 

solvent gradient elution mode of NP chromatography, utilizing the results of free energy profiles 

and flow calculation, along with discussion of some practical aspects of our findings.  Section IV 

concludes our work.   

 

II. Models and Methods  
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II. I. Dissipative Particle Dynamics. DPD46-48 employs a coarse-grained (CG) scheme where 

atoms are lumped together into beads that interact with soft-core repulsive potentials allowing 

for possible overlap between the beads.  In DPD simulations, the beads move according to 

Newton’s equations of motion governed by the pairwise interaction potentials; the total force 𝑭௜ 

on the ith particle is presented as,  

 𝐅௜ = ෍(𝐅௜௝
(େ)

+ 𝐅௜௝
(୆)

+ 𝐅௜௝
(ୈ)

+ 𝐅௜௝
(ୖ)

)           

௝ஷ௜

 (1) 

Here,   𝐅௜௝
(େ)

= 𝑎௜௝൫1 − 𝑟௜௝/𝑅ୡ ൯𝒓ො௜௝ for 𝑟௜௝ = ห𝐫௜ − 𝐫௝ห ≤ 𝑅ୡ, is the conservative force between 

beads i and j, where 𝑎௜௝ is the  repulsion parameter and 𝑅௖ is the interaction range beyond which 

the conservative force vanishes; 𝑅ୡ represents the effective diameter of the beads. The drag 

forces 𝑭௜௝
(ୈ) and the random forces 𝑭௜௝

(ୖ),  

 𝐅௜௝
(ୈ)

= −𝛾 𝑤(ୈ)൫𝑟௜௝൯൫𝐫ො௜௝. 𝐯௜௝  ൯𝐫ො௜௝;        𝐅௜௝
(ୖ)

=  𝜎𝑤(ୖ)൫𝑟௜௝൯𝜃௜௝𝐫ො௜௝ (2) 

constitute the Langevin thermostat; 𝛾 is the friction coefficient, 𝜎ଶ = 2𝛾𝑘𝑇 and  𝐯௜௝ = 𝐯௜ − 𝐯௝ is 

the relative velocity between ith and jth beads. The weight functions 𝑤(ୈ) and 𝑤(ୖ) are related48 

as 𝑤(ୈ) = (𝑤(ୖ))ଶ with 𝑤(ୖ)(𝑟௜௝) = ൫1 − 𝑟௜௝/𝑅௖൯ 46 for 𝑟௜௝ ≤ 𝑅ୡ  and zero for 𝑟௜௝ > 𝑅ୡ .  𝜃௜௝  is a 

random variable with Gaussian statistics.  In addition, the bonded beads interact via harmonic 

bond forces  𝐅௜௝
(୆)

= −𝑘ୠ୭୬ୢ൫𝑟௜௝ − 𝑟 ൯𝐫ො௜௝ where 𝑘ୠ୭୬ୢ is the effective bond rigidity and 𝑟  is the 

equilibrium bond length.  

As an instructive example, we consider a model polymer - binary solvent system 

consisting of polyisoprene natural rubber (PINR), benzene as a good solvent and acetone as a 

poor solvent that was parameterized and studied  in our previous works.33, 44-45 We employ the 

most common implementation of DPD46 with the all beads having the same effective diameter Rc 

= 0.71 nm. Because the persistence length of PINR in acetone-benzene solutions is very short,  



8 
 

about 2Rc,44 introduction of additional bond and angle potentials is not necessary. DPD 

simulations are performed in reduced units with 𝑅ୡ as the unit of length and 𝑘୆𝑇 as the unit of 

energy with friction coefficient 𝛾 = 4.5 at a time step of 0.02 𝜏஽௉஽, where 𝜏஽௉஽ is the unit of 

DPD time. Since conversion of the DPD time unit 𝜏஽௉஽ into physical units is not unequivocal, 

we used the experimental benzene self-diffusion coefficient (2.21 × 10ିହ 𝑐𝑚ଶ/𝑠 49 ) as a 

reference property. Comparing the simulated value of the benzene diffusion coefficient in pure 

benzene (0.22 𝑅௖
ଶ/𝜏஽௉஽) with the experimental, we get 𝜏஽௉஽ ≈ 50𝑝𝑠. It should be noted that the 

conversion between the reduced and the real time units does not affect the elution time 

calculations (Section III.I) 

Simulations were performed with LAMMPS50 software package. The systems contained  

0.3 to 0.4 million particles, and these massive parallel simulations consumed about 200000 CPU 

hours altogether. Configuration snapshots were created using the Visual Molecular Dynamics 

(VMD) program.51  

II. II. System set up.  PB is composed by linear chains of length 𝑛ୱୣ୥ composed by P beads 

representing PINR monomer, which are connected by harmonic bonds. The good and poor 

solvent components are modeled as single beads, G and B (see Fig. 1a). G bead corresponds to 

one hydrophobic benzene molecule, and B bead corresponds to one polar acetone molecule. NPs 

are built as spherical aggregates of radius 𝑅୒୔, consisting of beads close-packed on an HCP 

lattice and connected by strong harmonic bonds holding the structure intact with the number 

density close to 3Rc
-3.  NPs have a core-shell structure with the shell consisting of two layers of 

surface 𝑵-beads that interact with solvent, ligand, and polymer beads and the core consisting of 

C-beads that strongly repel all other beads except for surface beads (Fig. 1b).  The core-shell NP 

structure prevents penetration of mobile beads inside the NP. We consider NPs of three different 
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sizes with radii, 𝑅୒୔ = 4 𝑅ୡ , 6 𝑅ୡ and 8 𝑅ୡ, which correspond to the NP diameters of 5.68, 8.52, 

and 11.36 nm, consisting of total number of beads 𝑛୒୔ = 740, 2496, and 5917, respectively.    

The surface chemistry is modeled with “ligands”, short 6-bead long chains attached 

uniformly to the NP surface with strong harmonic bonds. We consider two types of ligands 

having distinct interaction properties, denoted as L (hydrophobic, favorably interacting with the 

polymer) and 𝑲 (hydrophilic, unfavorably interacting with the polymer), and control the NP 

surface chemistry by varying the ligand composition; the degree of NP hydrophilicity is 

 

Figure 1. (a) The coarse-graining scheme of polymer (PINR) and good (benzene) and poor (acetone) solvent 
components. (b) NPs of different size consisting of core beads C and surface beads N functionalized by 
hydrophobic 𝑳 (red) and hydrophilic 𝑲 (blue) short chain ligands; degree of hydrophilicity is characterized by 
the fraction 𝑥௄   of K ligands. (c) Simulation set-up for calculating the free energy landscapes using the GT 
method.   PB chains (pink) are grafted on the substrate (yellow) surface and NP is restrained by the GT (not 
shown). (d) Simulation set-up for modeling NP flow in a slit-like channel with PB-grafted walls. The steady 
flow of solvent beads (not shown) has a Poiseuille-like velocity profile  𝑣௦(𝑧) in the X-direction. 
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characterized by the fraction 𝑥𝐊 = 𝑛𝑲/(𝑛𝑳 + 𝑛𝑲)  of 𝑲 ligands, where 𝑛𝑳 and 𝑛𝑲 are 

respectively the number of 𝑳 and 𝑲 ligands on the NP surface.  

To construct PB, polymer chains are grafted on a solid substrate that consists of densely 

packed immobile 𝑺-beads with density of 19 𝑅ୡ
ିଷ, forming a flat surface of area 40 × 40 𝑅ୡ

ଶ in 

the X-Y plane as shown in Fig.1c.  In most of the simulations in this work, PB is comprised of 

chains containing 𝑛ୱୣ୥ = 90 P-beads that are grafted to the substrate uniformly with the surface 

density of Γ = 0.3025 𝑅ୡ
ିଶ(0.6 nmିଶ), which corresponds to 484 chains in total (this system is 

denoted below as PB1). A few selected simulations are also performed with the reduced PB 

density Γ = 0.1806 𝑅ୡ
ିଶ = 0.36 nmିଶ and longer chain length 𝑛ୱୣ୥ = 160 (PB2) and with the 

same PB density and 𝑛ୱୣ୥ = 200 (PB3). The system is kept at constant density equal to the bulk 

solvent density 𝜌ୠ = 𝜌଴ = 3 𝑅ୡ
ିଷ. The solvent quality is controlled by the fraction of the good 

solvent G-beads in the solvent,𝑥𝑮 = 𝑛𝑮/(𝑛𝑩 + 𝑛𝑮) which varies in the simulations from 1 to 

99%. On average, simulation systems for free energy calculations contain about 0.3 million 

particles while the systems of solvent flow contain about 0.4 million particles.  Altogether, we 

performed 1,700+ simulations of ≥1 million simulation steps. 

 

II. III. Interaction parameters. The interaction parameters for solvent and polymer are taken 

from our previous works33, 44-45  and are presented in Table I.  The intracomponent  repulsion 

parameter 𝑎௜௜ = 42 𝑘஻𝑇/𝑅௖ for all beads, that effectively reproduces the solvent 

compressibility.44  NP core 𝑪-beads strongly repel all other beads: 𝑎𝐂௜ = 60 𝑘୆𝑇/𝑅ୡ. NP surface 

𝑵-beads effectively attract polymer 𝑷-beads, as Δ𝑎𝑵𝑷 = 𝑎𝑵𝑷 − 𝑎𝑵𝑵 = −3.5 𝑘୆𝑇/𝑅ୡ (𝑎௜௝ < 𝑎௜௜ 

leads to an effective attraction between 𝑖 and 𝑗 bead types). The polymer 𝑷-beads interact with 

good solvent 𝑮-beads with very weak repulsion Δ𝑎𝑷𝑮 = 1.5 𝑘୆𝑇/𝑅ୡ and are repelling poor 
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solvent 𝑩-beads with Δ𝑎𝑷𝑩 = 7.0 𝑘୆𝑇.  Hydrophobic 𝑳-bead is similar to polymer P-bead with 

the same interaction parameters with the solvent components.  Hydrophilic K-beads repel P-

beads with Δ𝑎𝑲𝑷 = 4.0 𝑘୆𝑇/𝑅ୡ, and interact with solvent beads in the opposite manner strongly 

repulsive to good solvent G-beads, Δ𝑎𝑲𝑮 = 5.5 𝑘୆𝑇, and weakly repulsive to bad solvent B-

beads, Δ𝑎𝑲𝑩 = 1.5 𝑘୆𝑇.  Note that the mismatch parameter between the good and poor solvents 

𝛥𝑎ீ஻  = 1.5 𝑘஻𝑇 is chosen to reflect the fact that the acetone and benzene are miscible and do 

not phase separate to form an interface. The total density of ligands on NPs is fixed to 

0.198 𝑅ୡ
ିଶ (0.39 nmିଶ). To control the surface properties, the fraction of ligand 𝑲,  𝑥𝑲 is varied 

from 0 to 100%. All the interaction parameters are listed in Table 1. 

 

II. IV. The Ghost Tweezer Method. In order to analyze the specifics of NP adhesion to PB and 

calculate the Henry constant and partition coefficient between mobile and stationary phases, we 

determine the free energy landscape of NP adhesion to PB by the ghost tweezers method,45 

which in silico mimics optical or magnetic tweezers experiments. In the GT method, NP is 

Table 1. List of repulsion and bond parameters of the DPD beads in the simulations. 

Repulsion parameter 𝒂𝒊𝒋 
𝒊/𝒋 𝑪 𝑵 𝑳  𝑲 𝑨  𝑷 𝑮 𝑩 𝑺 
𝑪 42.0 60.0 60.0 60.0 0.0 60.0 60.0 60.0 60.0 
𝑵  42.0 42.0 42.0 0.0 38.5 43.5 43.5 42.0 
𝑳   42.0 42.0 0.0 42.0 43.5 49.0 42.0 
𝑲    42.0 0.0 46.0 47.5 43.5 42.0 
𝑨     0.0 0.0 0.0 0.0 0.0 
𝑷      42.0 43.5 49.0 42.0 
𝑮       42.0 43.5 42.0 
𝑩        42.0 42.0 
𝑺         42.0 

Bond parameters 
Bond 𝑘ୠ୭୬ୢ (kBT/Rc

2) re (Rc) 
𝑪 − 𝑪, 𝑵 − 𝑵, 𝑵 − 𝑪, 𝑳 − 𝑳, 
𝑳 − 𝑵, 𝑲 − 𝑲, 𝑲 − 𝑳, 𝑷 − 𝑷 

120 0.8 

NP-GT 0.01 0.0 
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tethered at given position using its immobile identical twin (called the ‘ghost tweezers particle’) 

which is pinned at this point and does not interact with any other beads.  NP composed of 𝑛୒୔ 

beads is linked to GT by 𝑛୒୔ inter-bead harmonic bonds connecting each NP bead with the 

corresponding bead in GT. GT beads are denoted as A-beads, which do not interact with any 

system component, 𝑎𝑨𝑨 = 𝑎𝑨௜ = 0. The NP-GT inter-bead harmonic potential is weak, of 

strength 𝑘ୋ୘ = 0.01 𝑘୆𝑇/𝑅ୡ
ଶ (see Table 1) and equilibrium position 𝑟 = 0,  yet multiple inter-

bead bonds control NP fluctuations and prevent its rotation. Far from PB, in the absence of 

external forces, NP fluctuates around GT.  

In the course of simulation, NP is towed by GT in Z-direction towards the substrate in 

small increments allowing for the system equilibration at each incremental step. When GT is 

placed close enough to the substrate, NP interacts with PB, the force acting on NP from PB is 

counterbalanced by the force exerted on NP by the GT through its 𝑛୒୔ inter-bead harmonic 

bonds. Since the PB is symmetric in X and Y directions, the average force in these directions is 

zero, and the force exerted by GT in normal direction, 𝐹ୋ୘ = −𝑘ୋ୘ ∑ (𝑧୒୔
௜ − 𝑧ୋ୘

௜௡ొౌ
௜ୀଵ ), where 𝑧௜ 

is the distance of the ith bead from the substrate surface.  Thus, one can measure the strength of 

NP-PB interaction by averaging the GT force,  𝐹തୋ୘(𝑧̅) = −𝐾ୋ୘(𝑧̅ − 𝑍ୋ୘) = −𝐾ୋ୘Δ𝑧, where 𝑧̅ 

and 𝑍ୋ୘ are, respectively, the average center of mass Z-coordinates of NP and its GT twin, Δ𝑧 =

(𝑧̅ − 𝑍ୋ୘) and 𝐾ୋ୘ = 𝑛୒୔𝑘ୋ୘, is the cumulative spring constant. Initially, when the GT is placed 

in the bulk solvent far enough from PB, NP fluctuates about the GT position with Δ𝑧 = 0 and 

average NP-GT force 𝐹തୋ୘ = 0.  Then, NP is pulled towards the substrate by displacing GT in 

successive incremental steps of ΔZୋ୘ = 0.5 𝑅ୡ.  The system is equilibrated at each step to 

measure the average NP position 𝑧̅ and, respectively, the average force exerted by PB on NP, 
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𝐹തୋ୘(𝑧̅). The free energy 𝐴(𝑧) of NP-PB interaction is the mechanical work that is required to 

bring the NP to the point 𝑧 above the substrate from the bulk, obtained by integrating  𝐹തୋ୘(𝑧̅)   

 𝐴(𝑧) = න 𝐹തୋ୘(𝑧̅)𝑑 𝑧̅ 
௭

௭బ

 (3) 

The NP location 𝑧଴ far from the substrate serves as a reference point where A = 0.   

The system set up for free energy calculation is shown in Fig. 1c, where the NP that is 

functionalized with short ligands is placed above PB grafted on a solid substrate. The normal 

dimension of the simulation box is chosen in the range of 50 – 56 𝑅ୡ to prevent overlapping of 

PBs on the opposite channel walls and provide NPs with enough space in the channel center to 

equilibrate in the bulk solvent, without hinders arising from the periodic boundary conditions.  

Mainly, four sets of systems corresponding to NPs having hydrophilic  𝑲 ligand fraction or the 

degree of hydrophilicity, 𝑥𝑲 =0.25, 0.5, 0.75 and 1.00 are simulated. The case of NPs with 

entirely hydrophobic (attractive to polymer) ligands L,  corresponding to 𝑥𝑲 = 0, was studied in 

our previous work.33 In each system, the free energy landscape is calculated for NPs of 3 

different radii  𝑅୒୔ of  4𝑅ୡ (2.84 nm), 6 𝑅ୡ(4.26 nm) and 8 𝑅ୡ (5.68 nm), in solvents of different 

quality characterized by the fraction 𝑥𝑮 of the good solvent component. Most simulations are 

performed with PB grafting density 0.6 nmିଶ (system PB1).  A few additional simulations with 

PBs of grafting density 0.36 nmିଶ and polymer lengths 𝑛ୱୣ୥ =160 (PB2) and 200 (PB3) are also 

performed to demonstrate the specifics of NP-PB interactions at poor solvent conditions (low 

𝑥𝑮). The free energy landscape 𝐴(𝑧) is calculated at a spatial resolution of 0.5 𝑅ୡ.  Altogether, a 

total of approximately 1100 simulations of 1 million timesteps with 0.28 to 0.31 million 

particles are performed.   
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II. V. Solvent flow simulations. Simulations of the solvent flow are performed in the slit 

channel between two identical PB-grafted walls with Z being the normal and X (direction of 

flow) and Y being lateral directions (Fig.1d). The size of the simulation cell is 40 × 40 × 70 𝑅ୡ
ଷ, 

which corresponds to the channel width  2𝑤 ≈ 66.75 𝑅ୡ = 47.4 nm  (subtracting the wall 

thickness on both sides).  A steady flow is created by applying a constant force g (of magnitude g 

= 0.002 𝑘୆𝑇/𝑅ୡ) to the solvent particles, at different good solvent fraction ranging from 1 to 

99%. The solvent velocity profile across the channel 𝑣ୱ(𝑧) is obtained by averaging over 

100,000 steps after the system equilibration for 500,000 steps. 

 

III. Results and Discussion 
 

III. I. Solvent flow Through Polymer Brush-grafted Channels. We perform simulations of 

flow of binary solvent through PB-grafted slit-like channels between two identical PB-grafted 

walls at different solvent compositions. The simulations help to understand how the flow is 

affected by the conformation of PB which is determined by the solvent quality. Fig. 2a shows the 

respective density profiles of PB (system PB1) and solvent at different good solvent fractions 

within the entire range of solvent quality from 𝑥𝑮= 0.01 to 0.99. As the solvent quality worsens, 

the PB layer contracts and gradually becomes denser and thinner, expelling the solvent from its 

interior; the PB density profile, 𝜌୔୆(𝑧), becomes sharper. The solvent density outside PB equals 

the bulk density 𝜌ୠ, while inside it is 𝜌ୱ(𝑧) = 𝜌ୠ − 𝜌୔୆(𝑧). Note that if an interfacial region is 

defined between PB and the bulk solvent, then the width of this interfacial region reduces as 𝑥𝑮 

decreases and becomes very narrow in the completely collapsed state at 𝑥𝑮 = 0.01.  

The simulated velocity profiles 𝑣ୱ(𝑧) at various solvent compositions are shown in Fig. 

2b as dashed lines. The flow does not penetrate into PB with the solvent inside PB being 
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effectively stagnant. In all our simulations, the same force is applied to the solvent particles. As 

the result, as the solvent quality 𝑥𝑮 decreases and the PB contracts, the resistance to the flow 

reduces and the velocity increases. As such, the computed total flux depends on the solvent 

composition. However, comparison of the effect of the solvent composition on the flow and NP 

retention has to be done at the condition of the constancy of the total flux. This is ensured by 

using the normalized velocities, which secure this condition. As shown in the previous work,33 

the simulated solvent velocity 𝑣ୱ(𝑧)  is similar to the Poiseuille flow with no-slip conditions set 

at the outer boundary of PB. The solvent velocity may be approximated as a parabola, 𝑣ୱ
୔୅ (𝑧) =

𝑣௠ ቀ1 −
(௪ି௭)మ

(௪ି௪ౌా)మ
ቁ, where 𝑣௠ is the maximum solvent velocity observed at the channel center at 

𝑧 = 𝑤 and 𝑤୔୆ is the hydrodynamic thickness of PB, which is determined from the condition of 

equality of the solvent flux, 

 

Figure 2. (a) The PB (solid lines) and binary solvent (dashed lines) density profiles along 𝑧 at different solvent 
composition: xG= 0.01 (red), 0.20 (green), 0.40 (blue), 0.60 (magenta), 0.80 (black) and 0.99 (cyan).  PB 
contracts as the solvent quality worsens. (b) Normalized (solid lines) and simulated (dashed lines) solvent 
velocity profiles across  the channel along with PB density profiles (diamonds) at different solvent composition: 
xG=0.05 (red), 0.10 (green), 0.50 (blue), 0.70 (magenta) and 0.90 (black). Solvent flow does not penetrate PB 
and is similar to the Poiseuille flow confined to the mobile phase with no-slip conditions set at the outer 
boundary of PB determined by the PB hydrodynamic thickness 𝑤௉஻. Simulations are at the same applied force g 
= 0.002 𝑘஻𝑇/𝑅௖ and the simulated velocity magnitude increases as the solvent quality worsens and the PB 
contracts. The normalized velocities represent the predicted solvent flows at the condition of the constant solvent 
flux. The magnitude of the normalized velocity decreases as the PB contracts and mobile phase volume 
increases. (c) The variation of the PB hydrodynamic thickness 𝑤௉஻ with the good solvent fraction 𝑥𝑮. The PB 
hydrodynamic thickness 𝑤௉஻ represents the extension of the stationary phase. 
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 𝐽 = ∫ 𝜌ୱ(𝑧)
௪

଴
𝑣ୱ(𝑧) 𝑑𝑧 = ∫ 𝜌ୱ(𝑧) 𝑣୫ ቀ1 −

(௪ି௭)మ

(௪ି௪ౌా)మ
ቁ

௪

௪ౌా
 𝑑𝑧, (4) 

where 𝜌ୱ(𝑧) is the solvent density profile. 

 Introduction of the hydrodynamic thickness 𝑤௉஻ allows one to define the stationary 

(inside PB at 𝑧 < 𝑤୔୆) and mobile (outside PB at 𝑧 > 𝑤୔୆) phases within the channel and to use 

the mobile phase volume as the reference volume for the definition of the excess NP adsorption 

and, respectively, the Henry constant and the partition coefficient, as it is described  below.   

It is noteworthy that the  PB conformation and its hydrodynamic thickness are 

determined by the solvent composition and do not depend on the magnitude of the force applied 

to the solvent33 to simulate flow and on the channel width (see Supporting Information (SI), 

section I). This independence of the conditions of simulations implies the thermodynamic 

equilibrium between the solvent and PB and allows one to use the results of simulations for the 

channel of given width for predicting the partition coefficient and the retention time at other 

channel widths. The PB density 𝜌୔୆(𝑧, 𝑤୔୆) can be considered as depending solely on the value 

of the hydrodynamic thickness, which is determined by the solvent composition, disregarding of 

the conditions of flow and the channel width. Respectively, provided the channel width w is 

reasonably larger than 𝑤୔୆ and the PBs of the opposite channel walls do not overlap, the solvent 

density can be calculated as 𝜌ୱ(𝑧) = 𝜌଴ − 𝜌୔୆(𝑧, 𝑤୔୆), as the solvent density in the bulk equals  

the overall bead density, 𝜌௕ = 𝜌଴. 

 

The hydrodynamic thickness 𝑤୔୆ of PB obtained from the parabolic approximation 

condition, Eq. (4), is the main parameter characterizing the PB conformation and the solvent 

flow at given solvent composition.  Fig. 2c shows that 𝑤୔୆ is a non-linear function of the good 
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solvent fraction 𝑥𝑮 with the expansion of the brush is becoming progressively pronounced as the 

good solvent fraction increases. 

We have to compare the effects of the PB conformation at different solvent compositions 

on the NP adhesion and the separation at the condition of the constant flux of the solvent (𝐽 = 

const.) to mimic the conditions of chromatographic experiments. Note that regardless of the 

solvent composition and the respective PB conformation, the total amount of solvent in the 

channel cross-section is constant, 𝑁௦ = ∫ 𝜌ୱ(𝑧)𝑑𝑧 
௪

௢
= ∫ 𝑑𝑧

௪

଴
(𝜌ୠ − 𝜌୔୆ (𝑧)) = 𝜌ୠ𝑤 − 𝑁୮ =

const. Therefore, the condition of constant flux implies that the mean solvent velocity ⟨𝑣ୱ⟩ 

remains constant also, 

 ⟨𝑣ୱ⟩ = න 𝜌ୱ(𝑧)
௪

଴

𝑣ୱ(𝑧) 𝑑𝑧 / න 𝜌ୱ(𝑧)𝑑𝑧 
௪

௢

  =  const. (5) 

The simulations at different solvent compositions are performed at the same force 𝑔 =

0.002 𝑘୆𝑇/𝑅ୡ  applied on the solvent particles to create a steady flow. As a result, the simulated 

velocity magnitude and, respectively, the solvent flux increase as the solvent quality worsens, 

since the PB contracts, mobile zone outside PB widens, and the resistance to the flow decreases. 

In order to fulfill the condition of the constant mean solvent velocity and predict the flow at a 

given solvent flux from the simulation performed at a certain applied force, it is convenient to 

operate with the normalized velocity 𝑣୬(𝑧) reduced by the mean flow velocity, 

 𝑣୬(𝑧) = 𝑣ୱ(𝑧)/⟨𝑣ୱ⟩ (6) 

The use of the normalized velocity 𝑣୬(𝑧) secures the equal flux condition Eq. (4) that is 

necessary for comparison of different separation regimes.  

In the parabolic approximation, the normalized velocity 𝑣୬
୔୅(𝑧) is presented in the form, 
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 𝑣୬
୔୅(𝑧) = 𝜒ିଵ ቆ1 −

(𝑤 − 𝑧)ଶ

(𝑤 − 𝑤୔୆)ଶ
ቇ (7) 

 Here, 𝜒 is the ratio of the mean flow velocity to the maximum velocity at given conditions, 

which depends on the PB hydrodynamic width 𝑤୔୆ and the channel width 𝑤 as,  

 𝜒(𝑤୔୆, 𝑤) =
2

3𝑁ୱ
𝜌ୠ୳୪୩(𝑤 − 𝑤୔୆) −

1

𝑁ୱ
න 𝜌୔୆(𝑧, 𝑤௉஻)

௪

௪ౌా

ቆ1 −
(𝑤 − 𝑧)ଶ

(𝑤 − 𝑤୔୆)ଶ
ቇ 𝑑𝑧, (8) 

see SI, section II for derivation. Eq. (7) is suitable for predicting the flow patterns in channels of 

arbitrary width 𝑤 based on the PB density distribution characterized by the PB hydrodynamic 

thickness 𝑤୔୆  determined by the simulation of flow in the channel of a smaller width. The 

normalized velocity profiles are shown in Fig. 2b as solid lines in respective colors.  In contrast 

to the velocities simulated at the same applied force, the magnitude of the normalized velocity 

decreases as the solvent quality worsens and PB contracts, because in order to keep the total flux 

(area under the curve) constant, the velocity needs to be decreased when the mobile zone within 

the channel widens.   

 

III. II. Free energy landscapes of NP-PB adhesion. We determine the free energy landscape of 

NP adhesion to PB by performing free energy calculations using the ghost tweezers method,45  

(section II. IV)  to analyze the specifics of NP adhesion to PB and to calculate the Henry 

constant of NP adsorption and partition coefficient between mobile and stationary phases. The 

free energy landscapes 𝐴(𝑧) of NP- PB interaction at different solvent quality 𝑥𝑮, for NPs of 

different degree of hydrophilicity 𝑥𝑲 with hydrophobic and hydrophilic ligands uniformly 

distributed over the NP surface are shown in Fig. 3a- b and in the SI, Fig.S4a-S4c. To calculate 

the free energy landscape, the force of NP-PB interaction  𝐹ୋ୘  obtained using the GT method is 
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integrated; the simulated force data is given in Figs. S2-S3 of the supporting information (SI, 

section III). The force data points are smoothened using a moving average prior to integration. 

For all degrees of surface hydrophilicity 𝑥𝑲, the free energy landscapes show the same 

pattern and, with the decrease of solvent quality, exhibit a transition from repulsive, entropy-

dominated, regime to adsorptive, enthalpy-dominated, regime with a deep well, of which 

minimum corresponds to the equilibrium adhesion state.  At high 𝑥𝑮, the entropic repulsion 

dominates and is stronger for larger particles. At sufficiently low 𝑥𝑮, NPs are partially immersed 

into PB and enthalpic attraction prevails, being stronger for larger NPs, as the adhesion energy is 

generally proportional to the NP-PB interface area.  This transition is associated with a reversal 

of the NP size dependence of the adhesion energy magnitude (the depth of the well at the 

equilibrium adhesion state) with respect to the NP size. In the case of purely hydrophobic NPs, 

this transition occurs around 𝑥𝑮 = 0.92 (Fig. S4a, ref.33)  

The transition between repulsion and attraction shifts towards a lower solvent 

composition with the NP hydrophilicity, as the overall repulsion between NPs and the PB 

increased further due to the increased presence of the hydrophilic ligands.  The hydrophilic K 

ligands reduce adsorption of the hydrophobic polymer on NP surface and, at the same time, 

facilitate accommodation of poor solvent around NP, strengthening the NP-PB repulsion as 𝑥𝑲 

increases.  In comparison with the free energy landscape of NP with solely hydrophobic ligands, 

(Fig. S4a), it can be inferred that NP adhesion is reduced as the fraction of hydrophilic ligands 

increases (Fig. 3a-b, Fig. S4b-c).  Reduction of the solvent quality facilitates adsorption, but to a 

lower extent in comparison with NPs without hydrophilic ligands. At 𝑥௄ = 0.25 (Fig. 3a), the 
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transition occurs around 𝑥𝑮 = 0.90, and at 𝑥௄ = 0.5 (Fig. S4b), it occurs around 𝑥𝑮 = 0.80. The 

increase of hydrophilicity by grafting 50% 𝑲 ligands on the NP surface causes the transition 

region to shift in the solvent quality 𝑥𝑮 by about 10%.  This shift becomes more pronounced for 

NPs with 75% of 𝑲 ligands, as depicted in Fig. 3b.  In this case, the strong adsorption mode 

occurs at as low as 𝑥𝑮 = 0.4 and the transition around  𝑥𝑮 = 0.5  lower by a 40% compared to 

the case of NPs with no 𝑲 ligands.  

   With the most hydrophilic NPs, the adsorption regime occurs only at very low solvent 

qualities, at 𝑥𝑮 < 10%, see Fig. S4c. Even at 𝑥𝑮 = 0.2, the repulsion dominates and strengthens 

with NP size. At 𝑥𝑮 = 0.01, the lowest solvent quality considered, the strength of adsorption 

does not increase monotonically with NP size. At these low good solvent fractions, the poor 

solvent tends to wrap around the NP due to the solvation by 𝑲 ligands and hinder the contact of 

polymers with NP surface. Additionally, the completely collapsed PBs become impenetrable as 

 

Figure 3.  Free energy landscapes of NP-PB interaction at different good solvent fractions 𝑥𝑮 in systems with 
degree of hydrophilicity (a) 𝑥𝑲 = 0.25, (d) 𝑥𝑲 = 0.75.  The black curve indicates PB density 𝜌௉஻(𝑧) and blue, 
green and red profiles give free energy 𝐴(𝑧) corresponding to 𝑅ே௉ = 4 𝑅௖,  6 𝑅௖ and 8𝑅௖  respectively. 
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the PB density becomes equal to the bulk density with a very sharp interfacial region with the 

bulk solvent.  As a result, larger NPs cannot penetrate into PB and the number of PB-NP contacts 

and, respectively, the strength of adhesion does not increase with the NP size. For these reasons, 

a complete transition from repulsion to attraction regime with the reversal of order is not 

observed. Fig. 3 also shows that the repulsion to attractive transition is sharper for more 

hydrophobic particles: the range of 𝑥𝑮 where the transition occurs widens with increase of 𝑥𝑲.  

 To demonstrate the effects of the PB density and chain length on NP adhesion, selected 

simulations are also performed with two other characteristic PB systems denoted as PB2 

(grafting density of 0.36 nmିଶ and chain length 𝑛ୱୣ୥ =160) and PB3 (same grafting density and 

𝑛ୱୣ୥ = 200). The respective force and free energy profiles of NP adhesion at 𝑥𝑮 = 0.01 with 

𝑥𝑲 = 1.0 are given in SI, section III. The NP size dependence of the adsorption strength is found 

to be non-monotonic for PB2, as in the case of 𝑥𝑲 = 1.0 for the system PB1, and monotonic for 

PB2 within the NP size range under consideration. Since PB2 has the lower grafting density 

compared to PB1 and the shorter chain length than PB3, PB2 should be more flexible and 

penetrable for NPs than PB1 and PB3.      

 

III. III. Excess NP adsorption and Henry constant. The free energy landscape 𝐴(𝑧) 

determines the probability of NP to be at a specific distance 𝑧 from the substrate that is 

proportional to the Boltzmann factor exp(− 𝐴(𝑧) 𝑘୆𝑇⁄ ). Respectively, the NP density 

distribution is presented as, 

 𝜌୒୔(𝑧) = 𝜌୒୔
ୠ exp(− 𝐴(𝑧) 𝑘୆𝑇⁄ ), (9) 
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where 𝜌୒୔
ୠ  is the NP density in the bulk solvent. As shown above, 𝐴(𝑧) depends on the PB 

conformation that is determined by the solvent composition and is independent of the solvent 

flow and the channel width provided that the latter sufficiently exceeds the PB width. Eq. (9) 

allows one to calculate the Henry constant and the partition coefficient between the mobile and 

stationary phases. The stationary phase boundary is defined by the PB hydrodynamic thickness, 

𝑤୔୆.   

 Division of the pore volume using the PB hydrodynamic thickness 𝑤୔୆ into stationary 

(inside PB at 𝑧 < 𝑤୔୆)  and mobile (outside PB at 𝑧 > 𝑤୔୆) phases allows us to unambiguously 

introduce the NP excess adsorption, 𝑁ୣ୶, as the difference between the total amount of NPs per 

unit substrate surface area, 𝑁୲୭୲, and the amount of NPs in the reference volume of bulk solution 

equal to the volume of the mobile phase:33 

  𝑁ୣ୶ = 𝑁୲୭୲ − 𝜌୒୔
ୠ (𝑤 − 𝑤୔୆) = 𝜌୒୔

ୠ න 𝑒
ି 

஺(௭)
௞ా் 𝑑𝑧 − 𝜌୒୔

ୠ (𝑤 − 𝑤୔୆)
௪

଴

    (10) 

Accordingly, the Henry constant of excess adsorption is given by  

 

Figure 4. Logarithm of Henry constants of excess adsorption of NPs with different sizes and degree of  
hydrophilicity. (a) 𝑥𝑲 = 0 (ref. 33) (b) 𝑥𝑲 = 0.25 (c) 𝑥𝑲 = 0.5 and (d) 𝑥𝑲 = 0.75 at different solvent 
composition 𝑥𝑮. To avoid log of negative values of 𝐾ு

௘௫ (in nm units) a constant of 10 𝑛𝑚 is added. Inset shows 
Henry constant values in the size exclusion mode and the transition region. The red curves indicate NPs of 
radius 8𝑅௖, while green and blue indicate 𝑅ே௉ = 6 𝑅௖ and 4𝑅௖ respectively. 
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 𝐾ୌ
ୣ୶ =

𝑁ୣ୶

𝜌୒୔
ୠ

= න 𝑒
ି 

஺(௭)
௞ా் 𝑑𝑧 − (𝑤 − 𝑤୔୆) = 𝑤୔୆ + න ቆ𝑒

ି 
஺(௭)
௞ా் − 1ቇ 𝑑𝑧.

௪

଴

௪

଴

 (11) 

The above definition of the NP excess adsorption implies that in the case of 

hydrodynamic chromatography (HDC) in the channels with hard walls in the absence of PB 

(𝑤୔୆ = 0), the excess adsorption is negative reflecting the exclusion of NPs from the near-

surface layer of thickness equaled the NP radius 𝑅୒୔. Respectively, the Henry constant, 𝐾ୌ
ୣ୶, is 

negative and equal to the NP radius,  𝐾ୌ
ୣ୶ = −𝑅୒୔, that reflects stronger repulsion of larger NPs.  

 The dependence of the excess adsorption Henry constant, 𝐾ୌ
ୣ୶, on the solvent quality for 

NPs of different size (𝑅୒୔ = 4𝑅ୡ, 6𝑅ୡ and 8𝑅ୡ) and degree of hydrophilicity 𝑥𝑲 = 0, 0.25, 0.5 

and 0.75 is given in Fig. 4a-d. For convenience, logarithms of  𝐾ୌ
ୣ୶ with addition of a constant 

=10 nm are plotted, to avoid negative values at the repulsive good solvent conditions. While 𝐾ୌ
ୣ୶ 

is relatively small and negative (≈ −𝑅ே௉) when the NP-PB interaction is repulsive, it increases 

exponentially as the NP adsorption becomes stronger. At the solvent compositions where NP-

adsorption is weak, 𝐾ୌ
ୣ୶ tend to decrease with NP size, while as the solvent quality worsens and 

NPs adsorb strongly to PB, the Henry constant increases with the NP size.  For all systems 

considered, a transition is observed, as the solvent quality worsens, from the size exclusion mode 

of negative excess adsorption with larger particles repelled stronger to the adsorption mode with 

larger particles attracted stronger. As the NP hydrophilicity increases, this transition occurs at 

lower solvent quality, as discussed above (Fig. 3). As shown in the insets where 𝐾ୌ
ୣ୶ near the 

transition and the size exclusion regime are depicted, this transition takes place in a narrow range 

of 𝑥𝑮, for NPs of given surface hydrophilicity regardless of their size, and one can identify the 

characteristic “critical” condition reminiscent to the critical point of adsorption (CPA) in 

polymer chromatography. The dependence of such critical transition solvent quality on the NP 

hydrophilicity is discussed below.  
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III. IV. Absolute adsorption and partition coefficient. While the excess adsorption allows for 

a rigorous thermodynamic consideration of NP adhesion, in order to analyze the NP separation in 

the solvent flow, one needs to identify the amount of retained or immobile NPs, or, in other 

words to define the absolute adsorption. Following the conventional assumption of the 

hydrodynamics chromatography and assuming that NPs, which are located within distance z < 

𝑤୔୆ + 𝑅୒୔ from the substrate and partially immersed into PB, are immobile, the absolute 

adsorption is defined as  

 𝑁ୟୠୱ = 𝜌୒୔
ୠ න 𝑒

ି 
஺(௭)
௞ా் 𝑑𝑧

௪ౌాାோొౌ

଴

 (12) 

Respectively, the Henry constant of absolute adsorption is defined as the ratio of the number NPs 

retained in the PB stationary phase (at z < 𝑤୔୆ + 𝑅୒୔) per substrate unit area to the NP bulk 

concentration, 

 

𝐾ୌ = න  exp(− 𝐴(𝑧) 𝑘୆𝑇⁄ ) 𝑑𝑧
௪ౌాାோొౌ

଴

= න  [exp(− 𝐴(𝑧) 𝑘୆𝑇⁄ ) − 1]𝑑𝑧
௪ುಳାோಿು

଴

+ 𝑤୔୆ + 𝑅୒୔ 

(13) 

The Henry constant of absolute adsorption 𝐾ୌ differs from the Henry constant of excess 

adsorption 𝐾ୌ
ୣ୶ and is always non-negative. In the size exclusion mode, 𝐾ୌ ≈ 𝐾ୌ

ୣ୶ + 𝑅୒୔. This 

approximate equality holds when the PB has a sharp boundary at 𝑤୔୆, so that 𝐴(𝑧) is negligibly 

small beyond 𝑤୔୆ + 𝑅୒୔.  Note that in the case of hydrodynamic chromatography in hard wall 

channels without PB coating,  𝐴(𝑧) = ∞ at 𝑧 < 𝑅୒୔ and the absolute adsorption Henry constant 

vanishes, 𝐾ୌ = 0,  in contrast to the excess adsorption Henry constant being negative, 𝐾ୌ
ୣ୶ =
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−𝑅୒୔. The difference between absolute and excess NP adsorption is discussed in detail in 

Supporting Information, Section IV.  

Although the Henry constant (Eq. 13) is determined in the free energy simulations 

performed in the channel of a particular width, this thermodynamic quantity does not depend on 

the system size provided that it is larger than the simulated system.  

The partition coefficient in liquid chromatography is generally defined as the ratio of the 

solute concentration in the immobile stationary phase to the solute concentration in the mobile 

bulk phase, However, in the system considered here with the PB stationary phase and highly 

inhomogeneous NP distribution at the PB-solvent interphase, it is more practical to define the 

apparent partition coefficient 𝐾୒୔ as the ratio of the total amount of NPs retained in the PB 

stationary phase at 𝑧 <  𝑤୔୆ + 𝑅୒୔ and the amount of NP in the bulk mobile phase of width 

(𝑤 − 𝑤୔୆ − 𝑅୒୔), 

  𝐾୒୔ = 𝐾ୌ/(𝑤 − 𝑤୔୆ − 𝑅୒୔) (14) 

 

Figure 5. The partition coefficient 𝐾ே௉ of the nanoparticles as a function of the good solvent fraction 𝑥𝑮 at 
different fraction of K ligands on NP surfaces. (a) 𝑥𝑲 = 0.0, (b) 𝑥𝑲 = 0.25, (c) 𝑥𝑲 = 0.5 and (d) 𝑥𝑲 = 0.75. 
Colors: red, green and blue data correspond to NP sizes 𝑅ே௉ = 8𝑅௖, 6𝑅௖ and 4𝑅௖ respectively.  The channel half 
width 𝑤 is 70.43 𝑅௖.   
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(see SI, section IV). In contrast to the Henry constant 𝐾ୌ that has the dimension of length, the 

partition coefficient 𝐾୒୔ is dimensionless. 𝐾୒୔ characterizes the fraction of retained NPs in the 

pore of given width 𝑤. 

The partition coefficient defined by Eq. (14) is calculated as a function of the good 

solvent fraction for NPs of different sizes and surface hydrophilicities characterized by 𝑥𝑲. The 

results are shown in Fig. 5a-d, which present the logarithm of  𝐾୒୔ as a function of the solvent 

quality 𝑥𝑮 for NPs of different hydrophilicity (𝑥𝑲 = 0.0, 0.25, 0.5 and 0.75) and size  (𝑅୒୔ =

4 𝑅ୡ,  6 𝑅ୡ  and 8𝑅ୡ) in the channel of 𝑤 = 70.43 𝑅ୡ = 50 nm.  In all cases, the partition 

coefficient monotonically decreases with the increase of the solvent quality from adsorption 

mode to size exclusion mode. The transition from one mode to the other occurs at different 

solvent composition for NPs with different surface hydrophilicity.  This should be expected 

given the 𝐴(𝑧) and 𝐾ୌ
ୣ୶ depicted in Figs. 3-4. However, the partition coefficient depends on the 

channel width 𝑤, while the Henry constant is independent of it. The CPAs obtained from values 

of 𝐾୒୔ corresponding to the transition shown in Fig. 5 are discussed below.   

It is worth noting, that for NPs functionalized solely by hydrophilic ligands, 𝑥𝑲 = 1, the 

NP-PB the partition coefficient 𝐾୒୔ may be non-monotonic with respect to the NP size at certain 

PB density and chain length. As shown in SI, section III, such non-monotonic dependence is 

related to the fact that adsorption of hydrophilic NPs may take place only at very low solvent 

qualities (Fig. 3e) due to PB-ligand repulsion and solvation of 𝑲-ligands by the poor solvent. 

This shows that critical conditions may not be observed in all systems.    

 

III. V. Critical conditions of size-independent NP elution. The introduction of the PB 

hydrodynamic thickness 𝑤୔୆ that identifies the boundary between the stationary and mobile 
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phases makes it possible to model NP adhesion and flow in wider channels based on the 

simulation data obtained in a channel of a particular width. To this end, we employ the 

approximate model of NP transport accepted in the hydrodynamic chromatography.52-54 The 

velocity of NPs located in the mobile phase beyond the exclusion volume boundary 𝑤୔୆ + 𝑅୒୔ 

is assumed equal to the solvent velocity, while the velocity of NPs located inside this boundary is 

zero. Within the parabolic approximation (Eq. (7)), the normalized (with respect to the mean 

solvent velocity) velocity of the NP located at the distance z from the substrate, 𝑣୮(𝑧), is 

presented as 

 𝑣୮(𝑧) = 𝑣୬
୔୅(𝑧), for 𝑤୔୆ + 𝑅୒୔ < 𝑧 ≤ 𝑤 and 0  𝑓𝑜𝑟 0 ≤  𝑧 ≤ 𝑤୔୆ + 𝑅୒୔      (15) 

The hydrodynamic approximation implies that NP is effectively adsorbed and immobile if it is 

immersed into PB even partially with its center located at z < 𝑤୔୆ + 𝑅୒୔ that is in line with the 

definition of the absolute adsorption and the Henry constant given by Eq. (13). 

For a comparative analysis, the solvent retention time 𝑡ୱ = 𝐿/⟨𝑣୬⟩ that is kept constant, 

where 𝐿 is the length of the chromatographic column, is taken as the reference and the NP 

retention time 𝑡୮ is presented in dimensionless units, 

 𝜏୮ = 𝑡୮ /𝑡ୱ = 1/⟨𝑣୮ ⟩ (16) 

Here,  ൻ𝑣୮ൿ is the mean normalized velocity of NPs that is given by the convolution of the NP 

normalized velocity 𝑣୮(𝑧) and the probability of the NP location at distance 𝑧 from the substrate,  

 ൻ𝑣௣ൿ =  
∫ exp(− 𝐴(𝑧) 𝑘୆𝑇⁄ ) 𝑣୮(𝑧)

௪

௪ౌాାோొౌ
𝑑𝑧 

∫ exp(− 𝐴(𝑧) 𝑘୆𝑇⁄ ) 𝑑𝑧 
௪

଴

 (17) 

Eq. (17) can be simplified further assuming that 𝐴(𝑧) ≈ 0 in the whole region of mobile 

phase at 𝑧 > 𝑤୔୆ + 𝑅୒୔, and respectively, the concentration of NP in the mobile phase can be 

substituted by the bulk concentration. In this case, 
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 ൻ𝑣௣ൿ  ≈     
∫  𝑣୮(𝑧)

௪

௪ౌాାோొౌ
𝑑𝑧

𝐾ୌ + (𝑤 − 𝑤୔୆ − 𝑅୒୔)
=   

𝑣ఒ

1 + 𝐾୒୔
 (18) 

Here, 𝑣ఒ is the normalized mean velocity in the limiting hydrodynamic regime of purely 

repulsive (i. e, with 𝐾ୌ = 0) NPs, that is related to the ratio 𝜆 = 𝑅୒୔/(𝑤 − 𝑤୔୆) of the NP 

radius 𝑅୒୔ to the half width of the mobile phase, as  

 𝑣ఒ = 𝜒ିଵ
2

3
ቆ1 + 𝜆 −

𝜆ଶ

2
ቇ (19) 

where the factor 𝜒 is defined by Eq. (8). Detailed derivation of the above equation is given in SI, 

section V. 

Eqs. (16-19) provide the sought relationship between the retention time and the NP size 

and partition coefficient for given solvent composition: 

 𝜏୮ = 1/⟨𝑣୮ ⟩ = (1 + 𝐾୒୔ )𝜏ఒ (20) 

where 𝜏ఒ = 1/𝑣ఒ is the minimum retention time of purely repulsive NPs in the hydrodynamic 

regime. This relationship combines the size exclusion effects characterized by 𝜏ఒ and the NP- PB 

interaction effects characterized by the partition coefficient 𝐾୒୔. 

Fig. 6a presents the mean NP velocity  in a slit-like channel, normalized with respect to 

the volumetric solvent flow, assuming parabolic approximation within a channel of width 100 

nm (𝑤 = 70.43 𝑅௖), as a function of the solvent quality for NPs of different size (𝑅୒୔ =

4 𝑅ୡ, 6𝑅ୡ and 8𝑅ୡ) and degree of hydrophilicity, 𝑥𝑲 of 0.0, 0.25, 0.5 and 0.75.   ൻ𝑣୮ൿ values are 

calculated using Eq. (18) for a range of 𝑥𝑮 with a resolution of 0.001, by interpolating and 

extrapolating the 𝐾ு values between and beyond the simulated data points. For 𝑥𝑲 = 0, the 𝐾ு 

values are further smoothed. In all cases, the NP velocity ⟨𝑣୔⟩ decreases as 𝑥𝑮 decreases starting 

from the hydrodynamic limit, first, rather slowly at high solvent quality and then more sharply 

near the CPA transition point.  In all the four  cases, ⟨𝑣୔⟩  reverses the order of its dependence on 
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NP size as 𝑥𝑮 decreases, while going from a size-exclusion mode, where ⟨𝑣୔⟩ increases with NP 

size, to the adsorption mode, where ⟨𝑣୔⟩ decreases with NP size and eventually diminishes to 

zero due to strong adsorption.  Note that the transition becomes sharper as NP size increases. 

This reversal occurs in compliance with the reversal of the thermodynamic partition coefficient 

at the CPA transition conditions.  

Note that in the size exclusion mode, the mean NP velocity is always larger than the 

mean solvent velocity (that is used as the reference unit for normalization) due to two factors 

accounted in Eq. (18).  Firstly, similarly to the hydrodynamic chromatography, NPs are excluded 

from the low velocity region of width 𝑅ே௉ at the PB boundary. Secondly, solvent partially 

penetrates into the PB stationary phase and its average velocity is smaller the mobile phase 

velocity as characterized by the factor 𝜒, Eq. (8). In Fig. 6a, with 𝑤 = 70.43 𝑅ୡ, the NP velocity 

in the size-exclusion mode is ~1.45 for the largest NP, while in the simulations with  𝑤 =

Figure 6. (a) Variation of mean nanoparticle velocity ⟨𝑣௣⟩ with solvent quality in systems containing NPs with 
different K ligand densities 𝑥𝑲. (b) The ratio of NP retention time to the solvent retention time (𝜏௣) 
corresponding to (a). Inserts show variation of 𝜏௣ near the transition point and the size exclusion regime. 
Colors indicate NP size, 𝑅ே௉; red-8𝑅௖, green - 6𝑅௖ and blue - 4𝑅௖.   
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33.38 𝑅ୡ, the NP velocity is ~2.8 (see SI, section V). Consequently, the NP retention time is 

shorter than the solvent retention time.  

Fig. 6b presents the relative retention time 𝜏௣ as a function of the solvent quality 𝑥𝑮 for 

NPs of different hydrophilicity, 𝑥𝑲 = 0.0, 0.25, 0.5 and 0,75.  The relative retention time 

decreases with the increase of solvent quality and undergoes a transition from adsorption to size-

exclusion mode with the reversal of the sequence of elution. While in the adsorption mode (poor 

solvent quality)  𝜏୮ ≫ 1 due to adsorption effects, in the size-exclusion mode (good solvent 

quality),  𝜏୮ < 1, since the NP mean velocity exceeds that of the solvent.  The inserts zoom-in the 

region around 𝜏୮~1 where the CPA transition, at which the elution time is independent of the 

NP size, takes place.   

The above analysis presents critical conditions of NP adsorption and separation, in three 

ways: (1) the thermodynamic definition of the CPA based on the reversal of the NP size 

 

Figure 7. The NP critical point of adsorption calculated by three definitions: From the equality of 
thermodynamic Henry constant of excess adsorption 𝐾ு

௘௫(red), from the NP partition coefficient (𝐾ே௉) in  
a channel of half width 50 nm (blue) and the equality of mean NP velocities (green).     

 



31 
 

dependence of the Henry constant 𝐾ୌ
ୣ୶ of excess adsorption (Fig. 4), (2) the chromatographic 

(based on the pore volume partition on mobile and stationary phases) definition using the size- 

independence of the partition coefficient 𝐾୒୔ (Fig. 5), and (3) the hydrodynamic definition using 

the mean NP velocity ⟨𝑣୮⟩ or the retention time 𝜏୮ (Fig. 6). While the thermodynamic definition 

of CPA depends on the PB characteristics and NP surface chemistry and is independent of the 

channel width, the other two CPAs depend on the width of the channel by virtue of Eqs. (14) and 

(18). However, it turns out that the dependence of CPA on channel width is negligible for range 

of channel widths of interest for which 𝜆 ≪ 1.  Fig. 7 shows the differently estimated 

dependencies of the CPA solvent composition 𝑥𝑮
ୡ  as on the NP hydrophilicity 𝑥𝑲. The CPA 

values defined by different methods are practically similar within the accuracy of our 

simulations. CPAs obtained from the equality of 𝐾ୌ
ୣ୶ (red points) are slightly different from that  

of  other two methods for 𝑥𝑲 = 0.25 and 0.5, however, the deviations are small and can be 

attributed to the fact that, unlike in other two cases, 𝐾ୌ
ୣ୶ is calculated not requiring that 𝐴(𝑧) = 0  

for 𝑧 > 𝑤௉஻ + 𝑅ே௉. From the reversal regions of the partition coefficient. 𝑥𝑮
ୡ = 0.90 ± 0.01 for 

the case of 𝑥𝑲 = 0, while with 𝑥𝑲 = 0.25, the transition appears to occur at a solvent 

composition 0.87 ± 0.01.  For higher hydrophilicities, 𝑥𝑮
ୡ = 0.77 ± 0.01  at 50% hydrophilic 

ligand fraction 𝑥, about 13% lower than the completely hydrophobic particles and 𝑥𝑮
ୡ = 0.47 ±

0.015, for 75% K-ligands, which is 48% smaller.  These values remain practically the same as 

the CPAs obtained by the equality of the mean NP velocities.  Regardless of the method, the 

estimated CPA strongly and non-linearly depends on the NP surface chemistry. Although the 

CPA values were estimated just for four distinct fractions of hydrophilic ligands, the interpolated 

𝑥𝑮
௖  - 𝑥𝑲 dependence can be used for predicting the critical adsorption conditions for NP of 

intermediate hydrophilicity. 
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III. VI. Macroscopic model of elution time distribution in the isocratic regime. Our 

simulations suggest that PB conformation characterized by the hydrodynamic width and NP 

adhesion characterized by the Henry constant are determined by the solvent composition and are 

independent of the solvent flow rate and the pore size. Further assumption that the solvent flow 

can be approximated by the parabolic velocity profile beyond the PB hydrodynamic width makes 

possible to predict NP elution in the channels of arbitrary size based on the simulations 

performed in a particular pore geometry with dimensions smaller than those of practical 

chromatographic supports.   

Let’s consider the elution time distributions in PB-grafted channels of cylindrical shape, 

that is a conventional model representation of the pore space geometry in separation media in 

hydrodynamic chromatography.  When the channel radius 𝑤 is sufficiently large, the surface 

curvature effects can be neglected and the PB conformation and NP adhesion can be 

characterized by the same hydrodynamic width 𝑤௉஻ and Henry constant as simulated in the slit-

like channel of a smaller width.  Accordingly, we further assume that in a PB-grafted cylindrical 

channel the solvent flow in the mobile phase (at 𝑟 ≤ 𝑤 − 𝑤௉஻) is approximated by the Poiseuille 

profile in the cylindrical tube of radius 𝑤 − 𝑤௉஻ 

 𝑣ୱ(𝑟) = 2𝑣̅ (1 − 𝑟ଶ (𝑤 − 𝑤୔୆)ଶ⁄ ), (21) 

where  𝑣̅ is the mean velocity of the solvent in the mobile phase, 𝑟 is the radial coordinate.  Like 

in the case of the slit-like channel, we define the mean solvent velocity across the channel, 

 ⟨𝑣௦⟩ =
∫ 𝜌ୱ(𝑟)𝑣ୱ(𝑟)𝑟 𝑑𝑟 

௪ି௪ುಳ

଴

∫ 𝜌ୱ(𝑟)𝑟 𝑑𝑟 
௪

଴

= 2 𝑣̅ 𝜒௥       (22) 
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 Eq. (22) implies the cylindrical symmetry of the distributions of solvent and PB densities, ( 𝜌ୱ =

𝜌ୱ(𝑟); 𝜌୔୆ = 𝜌୔୆(𝑟)). The dimensionless factor 𝜒௥ is given by 

 𝜒௥ =
∫ 𝜌ୱ(𝑟)

௪ି௪ುಳ

଴ 
൬1 −

𝑟ଶ

(𝑤 − 𝑤୔୆)ଶ൰ 𝑟 𝑑𝑟

∫ 𝜌௦(𝑟)𝑟 𝑑𝑟
௪

଴

 (23) 

The normalized velocity of the solvent equals 𝑣୬(𝑟) = 𝑣ୱ(𝑟) ⟨𝑣ୱ⟩⁄ = 𝜒௥
ିଵ(1 − 𝑟ଶ (𝑤 − 𝑤୔୆)ଶ⁄ ), 

which means that the mean normalized solvent velocity ⟨𝑣୬⟩ = 1. As such, 𝜒௥
ିଵ  represents the 

maximum normalized solvent velocity.   

To estimate the distribution of elution time due to axial dispersion of NP along the 

column due to the non-uniform (Poiseuille-like) solvent flow we employ the First Passage Time 

(FPT) distribution model55-57 that implies an equilibrium distribution of NPs between the mobile 

and stationary phases characterized by the apparent partition coefficient 𝐾୒୔ (Eq. (14)), which in 

for cylindrical channel takes the following form, 

 𝐾୒୔ = 𝐾ୌ 𝑆 𝑉௠⁄ = 2𝐾ୌ (𝑤 − 𝑤୔୆ − 𝑅୒୔)⁄ . (24) 

Here, 𝑆 = 2𝜋(𝑤 − 𝑤୔୆ − 𝑅୒୔)𝐿 and 𝑉௠ = 𝜋 (𝑤 − 𝑤୔୆ − 𝑅୒୔)ଶ 𝐿 are the surface area and the 

volume of the core of the channel of radius 𝑧 = 𝑤 − 𝑤୔୆ − 𝑅୒୔ and length 𝐿, available for 

unretained NPs. The FPT model presents the elution time distribution in the form of the inverse 

Gaussian distribution, which in the dimensionless variables of time reduced to the solvent 

retention time 𝑡ୱ and the axial length reduced to column length L, takes the form56-57 

 𝑔(𝜏) =
1

ඥ4𝜋 𝐸ത୒୔𝜏ଷ
exp ൭ −

൫1 − 𝜏/𝜏୮൯
ଶ

4  𝐸ത୒୔𝜏
൱ (25) 

where 𝐸ത୒୔ is the reduced longitudinal (axial) dispersion coefficient, 𝐸ത୒୔ = 𝐸୒୔𝑡ୱ/𝐿ଶ. The 

detailed derivation of Eq. (25) is given in supporting information section VI.  



34 
 

In the purely hydrodynamic limit (𝐴(𝑧) = 0), the mean NP velocity in the channel is found to be 

(see SI, section VII) 

 ൻ𝑣୮ൿ =
ఞೝ

షభ

ଶ
(1 + 2𝜆 − 𝜆ଶ) = 𝑣̅଴ 𝑣ఒ, (26) 

where 𝑣̅଴ = 𝜒௥
ିଵ/2 is the mean velocity of solvent in the mobile phase. Note that 𝑣̅଴ is different 

from mean solvent velocity ⟨𝑣୬⟩ = 1, due to the stagnant solvent inside the PB immobile phase. 

It should be noted that Eq. (26) was suggested for NP flow in channel with solid walls, and the 

existence of the PB may invoke additional effects such as NP rotation that cause them to move 

with a velocity lower than the local solvent velocity.53, 58  These effects however should be 

analyzed, and the existing approximate approaches are limited to solid particles in hard wall 

channels.  In the case when NP adsorption is present, following the existing methodology,59 it 

can be shown that (see SI, section VII) 

 ൻ𝑣୮ൿ = 𝑣̅଴ 𝑣ఒ (1 + 𝐾୒୔)⁄  (27) 

Thus, 

 𝜏୮ = 1 ൻ𝑣୮ൿ⁄ = (1 + 𝐾୒୔) 𝑣̅଴ 𝑣ఒ⁄ = (1 + 𝐾୒୔)𝜏ఒ, (28) 

where 𝜏ఒ is the NP retention time in the hydrodynamic (no adsorption) limit in a cylindrical 

channel of radius 𝑤 − 𝑤୔୆. The major contribution to the NP dispersion comes from the 

convective diffusion characterized by the Taylor-Aris60-61 axial dispersion coefficient 𝐸୒୔. The 

𝐸୒୔ dependence on the NP size and the partition coefficient can be incorporated following the 

works of Brenner and coworkers53,59, 62 (see SI, section VII)  

 𝐸୒୔ =
𝑣̅଴

ଶ

48𝐷୒୔

(𝑤 − 𝑤୔୆)ଶ (1 − 1.862 𝜆 + 9.68 𝜆ଶ)
1 + 6𝐾୒୔ + 11𝐾୒୔

ଶ

(1 + 𝐾୒୔)ଷ
 (29) 

Here, 𝐷୒୔ is the NP diffusion coefficient related to the NP radius through the Stokes-

Einstein equation. In Eq. (29), the  polynomial dependence on  𝜆  was obtained by Brenner and 
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Gaydos53 from considerations of hydrodynamic effects on the particle motion and diffusion in a 

cylindrical pore with smooth hard walls and spherical NPs. A detailed derivation of Eq. (29) is 

given in SI, section VII.   

Fig. 8 presents the calculated isocratic elution time distributions for NP separation in the 

PB-grafted cylindrical channel of radius 𝑤 = 70.43 𝑅ୡ = 50 nm  at different solvent conditions.  

 

Figure 8. Elution time distribution 𝑔(𝜏) of NPs calculated via the first passage convective diffusion model, Eqs. 
(25, 29), in a column of length 𝐿 = 3.34 cm with cylindrical channels of radius 𝑤 = 50 nm. Calculations are 
performed for NPs of size 𝑅ே௉ = 5.68 nm (red), 4.26 nm (green) and 2.84 nm (blue) and hydrophilicity 𝑥𝑲 
equal to (a) 0.0, (b) 0.25, (c) 0.5 and (d) 0.75 at different solvent composition 𝑥𝑮. Transition from the size-
exclusion (central column) and adsorption (right column) regimes with the reversal of the sequence of elution 
occurs as 𝑥𝑮 decreases and the solvent quality worsens. The central column shows the CPA conditions of size-
independent elution.   
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The values of the partition coefficient 𝐾ே௉, the maximum normalized solvent velocity 𝜒௥
ିଵ and 

the PB hydrodynamic thickness 𝑤୔୆ are obtained as functions of the solvent quality 𝑥𝑮 by the 

appropriate interpolation and extrapolation of the data given in Fig. 6. The value of the column 

length 𝐿 = 4.7 × 10଻ 𝑅௖  (3.34 cm) is taken to get the distinct distributions, (see SI, section VII, 

for more detail) Fig. 8a-d shows elution distributions for NP of different hydrophobicity, 𝑥𝑲 =

0.0, 0.25, 0.5 and 0.75. The positions of the peaks correspond to the mean retention times for 

each particular size and type. The size exclusion mode that is observed at relatively high solvent 

quality exhibit distinct retention times, which decrease with the NP size. The reduction of solvent 

quality leads to the CPA conditions where the elution time distributions for NPs of different size 

overlap with insignificant deviation of the retention times.  When the solvent quality is reduced 

further, the retention times increase dramatically in the adsorption mode, with the reversed order 

of elusion. Noteworthy, the CPA conditions of size independent NP elution found at the distinct 

values of solvent composition (0.90, 0.86, 0.77 and 0.47) depending on the NP surface chemistry 

(𝑥𝑲 = 0.25, 0.5 and 0.75, respectively), which within the accuracy of our simulations correspond 

to the same estimates shown in Fig.7.     

 

III. VII. NP separation in the gradient mode of elution. In interaction polymer 

chromatography,26 the gradient elution with temporal variation of the solvent composition  is 

found more efficient  in separating polymers according to their chemical composition than the 

isocratic elution.30  In the linear gradient mode, 𝑥𝑮 = 𝑥𝑮
଴ + 𝑎𝑡, where 𝑥𝑮

଴ is the initial solvent 

composition at 𝑡 = 0 and  𝑎 = 𝑑𝑥𝑮/𝑑𝑡 is the solvent composition gradient that is kept constant. 

The gradient mode of elution is based on the strong dependence of the elution time 𝑡୮ on the 

solvent composition 𝑥𝑮 in the isocratic mode, 𝑡୮ = 𝑡୮(𝑥𝑮). Let us assume that the solute 
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components of different chemistry can be ranged with respect to the solvent compositions, 𝑥𝐆
௖ , 

corresponding to their CPA conditions in the isocratic mode. This means that the retention time 

𝑡୮ for a particular component sharply reduces in the vicinity of the respective CPA solvent 

composition 𝑥𝑮 = 𝑥𝑮
ୡ  from long retention times in the adsorption regime at 𝑥𝑮 < 𝑥𝑮

ୡ  to much 

shorter times in the size exclusion regime at 𝑥𝑮 > 𝑥𝑮
଴. In the gradient elution mode, one starts 

with a mobile phase composition 𝑥𝑮
଴ in which all solute components are adsorbed strongly to the 

stationary phase so that the retention times are longer than the time of experiment. This implies 

that the initial composition is beyond the range of the CPA solvent compositions of all the 

components, 𝑥𝑮
଴ < 𝑥𝑮

ୡ . Then, the solvent composition is varied keeping the solvent volumetric 

flow constant; 𝑥𝑮 gradually increases and the solute fractions desorb from the stationary phase 

and elute with respect to their CPA solvent compositions. The solute fraction of given chemistry 

desorbs and start moving once 𝑥𝑮 approaches the respective value of 𝑥𝑮
௖  with a small difference 

in “take off” times, 𝑡↑  around (𝑥𝑮
଴ − 𝑥𝑮

ୡ )/𝑎, for the fraction components of different size, which 

eventually elute within a relatively narrow range of retention times. As a result, the fractions of 

different chemistry are separated with a minimal deviation of the retention times which 

necessarily arises due to the difference in size and effects of longitudinal dispersion.  

The theory of the gradient elution63-68 relates the mean retention time 𝑡୮
௚ of a particular 

component in the gradient mode to the isocratic retention time  𝑡୮(𝑥𝑮) that is a known function 

of the solvent composition 𝑥𝑮. Assuming that the solvent composition is varied in time according 

to a certain function 𝑥𝑮(𝑡), with the solvent retention time 𝑡ୱ kept constant, the mean retention 

time 𝑡୮
௚ in the gradient mode is calculated from the following integral equation,68 
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 න
𝑑𝑡

𝑡୮(𝑥𝑮(𝑡)) − 𝑡ୱ
= 1

௧౦
ౝ

ି௧౩

଴

   (30) 

A detailed derivation of Eq. (30) is given in SI, Section VIII.  

Extending the FPT model, the retention time distribution in the gradient mode can be 

estimated by the shifted inverse Gaussian distribution 

 𝑔(𝜏) =
1

ඥ4𝜋 𝐸ത୒୔(𝜏 − 𝜏↑ )ଷ
exp ൭ −

൫1 − (𝜏 − 𝜏↑ )/(𝜏p
𝑔

− 𝜏↑ )൯
ଶ

4  𝐸ത୒୔(𝜏 − 𝜏↑ )
൱ (31) 

Eq. (31) is written using dimensionless time 𝜏 = 𝑡/𝑡ୱ and all temporal parameters are 

reduced respective to the solvent retention time 𝑡ୱ. Here, 𝜏↑ =𝑡↑/𝑡ୱ is the reduced “take-off” time 

and 𝐸ത୒୔ is the reduced dispersion coefficient for given component. Note that the “take-off” time 

𝑡𝑮
↑  is defined from the expert assumption that 𝑥𝑮

↑ = 𝑥𝑮(𝑡𝑮
↑ ) corresponds to the solvent 

 

Figure 9.The NP elution time distributions in the gradient mode. Starting from the initial solvent composition 
at 𝑥௚

଴ = 0.3, NPs of different surface chemistry 𝑥௄  is eluted at different times. The solvent composition is 
varied with time at a constant rate shown as the black line. Red, green and blue respectively represent 
particle sizes 𝑅ே௉ equal to 8𝑅௖. 6𝑅௖ and 4𝑅௖ respectively. 
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composition at which given component desorbs from the stationary phase. The dispersion 

coefficient is calculated according to Eq. (29) at the solvent composition close to 𝑥𝑮
ୡ , 𝐸୒୔ =

𝐸୒୔(𝑥𝑮
ୡ ).  

Fig. 9 depicts the inverse Gaussian distributions given by Eq. (31) during the gradient 

elution of NPs with different sizes and surface chemistry 𝑥𝑲 in a cylindrical channel of radius 

𝑤 = 70.43 𝑅ୡ.  To obtain these profiles, we set  𝑑𝑥𝑮 = 0.0002  and 𝑑𝑡 = 0.02  (rate of 

composition change 
ௗ௫𝑮

ௗ௧
= 0.01) while the elution starts with a solvent composition 𝑥𝑮

଴ = 0.3. 

The black line shows the change in solvent composition in the course of elution. The NPs of 

sizes 𝑅୒୔ = 4 𝑅ୡ, 6 𝑅௖ and 8𝑅ୡ and surface chemistry 𝑥𝑲 = 0.75, 0.5, 0.25 and 0 are in the 

mobile phase in equal proportions.  The take-off composition   for each NPs in each case of 𝑥𝑲 is 

taken according to the velocity curves, at a point where the NP starts moving, different for 

different NPs. The distributions are calculated for NP velocities smaller than the solvent velocity 

(see SI, section VIII). 

As shown in the Fig. 9, the NPs elute with retention times that depends on their degree of 

hydrophilicity in the reverse order.  The retentions times are well-separated according to their 

degree of hydrophobicity, and the NPs of different sizes having the same hydrophilicity elute 

within a small range of solvent composition.  These results clearly indicate that the surface 

chemistry-specific NP separation can be efficiently achieved on PB-grafted substrates employing 

the gradient mode of elution. It is worth noting that the separation efficiency is affected by the 

broadness of the NP size distribution. Here, we model relatively small NPs of several nm in 

diameter within a relatively narrow size range. The quality of separation would worsen if the size 

distribution were broader. NPs considered in this work are functionalized by hydrophobic and 

hydrophilic ligands with relatively weak interaction potentials that do not include any specific 
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intermolecular interactions with polymer and solvent (e.g. dissociation with formation of charged 

groups).  

 

IV. Conclusions  
 

 We considered separation of NPs functionalized by different types of ligands in PB-grafted 

channels, by varying the binary solvent composition and confirmed our hypothesis about the 

existence of critical point of adsorption (CPA) in such system. The CPA is defined as the 

particular solvent composition, which corresponds to the transition between the size exclusion 

and adsorption modes and depends on the NP surface chemistry. Note that in contrast to polymer 

adsorption, the introduced CPA of NP adhesion to PB is not related to any critical phenomenon, 

rather it indicates a condition of the observed sharp transition from the entropy-dominated to the 

enthalpy-dominated regimes leading to the reversal of the size-dependent order of elution. 

Extensive DPD simulations are performed to investigate the effects of the NP surface chemistry 

on NP adhesion and flow in PB-grafted pore channels in binary solvents of different 

composition. We considered NPs functionalized by two different types of ligands, which are 

modeled as short hydrophobic and hydrophilic chains grafted on the NP surface. By varying the 

ligand composition, we mimic different surface chemistries and control the NP-PB adhesion 

interaction. We analyze the specifics of solvent flow through PB-grafted channels and quantify 

the conformation and sorption capacity of the PB stationary phase depending on the solvent 

composition by introducing the hydrodynamic PB thickness as the stationary phase boundary. 

The NP-PB adhesion is quantified in terms of the free energy landscape calculated using the 

ghost tweezers (GT) method, which determines the Henry constant of NP adsorption, the 

partition coefficient, and ultimately the NP retention time, depending on the solvent and ligand 
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compositions. The distributions of NP retention time are analyzed using the convective diffusion 

model, in the isocratic and gradient elution modes. The relationship is established between the 

CPA solvent composition and the NP ligand composition that points toward a possibility of NP 

separation by surface chemistry in the gradient mode of elution by varying the solvent 

composition as it is done in the interaction polymer chromatography. 

Supporting information.  

Supporting information to this manuscript includes the following. Simulations of the PB density 

and solvent flow in slit channels of different width are described in Section I. Dependence of the 

ratio between the mean and maximum solvent velocity of the solvent velocity profiles on solvent 

and polymer brush density, channel width and PB effective height.  Eq. 8 is derived in Section II. 

Dependence of the effective force between the NP and PB on NP location for different systems is 

presented in section III. The excess adsorption of NPs and its relevance to the partition 

coefficient is described in Section IV. Section V contains the derivation the mean velocity of NP 

in a slit-like channel (Eq. 19 of the paper) and gives the mean velocity in different systems. 

Section VI describes the elution time distributions in terms of the first passage time. Section VII 

describes NP transport in cylindrical channels in terms of mean velocity and the mean axial 

dispersion coefficient. Finally, Section VIII relates the NP mobilities in the channel to the 

predicted retention time distributions in the gradient elution NP chromatography. Supporting 

materials are available free of charge at XXX.    
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