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Abstract—Due to the concentrated popularity distribution of
video files, caching of popular files on devices, and distributing
them via device-to-device (D2D) communications allows a dra-
matic increase in the throughput of wireless video networks. How-
ever, since the popularity distribution is not static and the caching
policy might be outdated, there is a need for replacement of cache
content. In this work, by exploiting the broadcasting of the base
station (BS), we model the caching content replacement in BS
assisted wireless D2D caching networks and propose a practically
realizable replacement procedure. Subsequently, by introducing
a queuing system, the replacement problem is formulated as
a sequential decision making problem, in which the long term
average service rate is optimized under average cost constraint
and queue stability. We propose a replacement design using
Lyapunov optimization, which effectively solves the problem and
makes decisions. Using simulations, we evaluate the proposed
design. The results clearly indicate that, when dynamics exist,
the systems exploiting replacement can significantly outperform
the systems using merely the static policy.

I. INTRODUCTION

Demand of wireless traffic has increased dramatically during
the past several years and will continue its growth. Among
numerous wireless applications, delivery of video content
accounts for the majority of data traffic; how to support this
application is one of the challenges for 4G and 5G systems
[1]. Conventional throughput-enhancing approaches, such as
massive antenna systems, network densification, and millime-
ter wave systems, all rely on obtaining more physical resources
and/or increasing investment into infrastructure, which are
generally expensive. In contrast, with the rapid development of
semiconductor technology, memory has become the cheapest
hardware resource. This motivates the exploitation of content
caching in both wireline and wireless networks [1], [2]. The
idea is to trade memory for bandwidth by caching files in
the off-peak hours and then using the cached files during the
peak hour. This idea combined with the asynchronous content
reuse and concentrated popularity distribution of video content
renders caching in wireless networks a promising solution for
satisfying video traffic demand [1], [3].

Video caching at the wireless edge for video distribution was
first proposed in [3]. That paper exploits the caching in fem-
tocell base stations (BSs) to enhance the network throughput.
The idea of femtocaching was then generalized to different
types of BSs and to heterogeneous network environments

with multiple antennas [4], [5]. To benefit from the memory
inherently included in user devices and the recent progress
of high performance device-to-device (D2D) communications,
use of content caching in wireless D2D networks was first
proposed in [1], which also suggested to augment the control
(and supply rare video files) through assistance by the BS.
Subsequently, different caching strategies and different aspects
of the networks were then proposed and discussed in the litera-
ture, e.g., [6]-[12]. Results showed that by combining caching
with D2D communications, performance can be improved
significantly when compared with conventional unicasting.

The main challenge in caching networks is deciding which
file should be cached by whom. This is by and large con-
sidered as caching policy design problem. Although there are
many papers investigating different aspects of this problem
using different approaches, the main emphasis generally lies
in the determination of a static policy based on network
statistics, i.e., the same caching policy is used throughout
the whole network and over the whole time horizon without
considering specific dynamics. In contrast to this, benefits
can be obtained by conducting dynamic caching content re-
placement/refreshment. The motivations are: (i) the popularity
distribution can change with time (e.g., emergence of a new
viral video) and space (e.g., recording of different sports teams
are popular in different cities); and (ii) the caching realizations
of the network could be inappropriate (e.g., users do not cache
files according to the designated policy).! Such dynamics of
the network can degrade the performance of the network
that uses a static caching policy, whereas adaptations (cache
replacement) can automatically compensate.

Cache replacement in user devices has its history in the
Computer Science community [13], [14], which generally
considers individual replacement and/or networks with special
properties without considering D2D cooperation. Although the
content caching replacement was implicitly used in [15], its
focus was on joint content delivery and caching design in a
given time slot, which is obviously different from our goal
which is to dynamically refresh the caching content. In [16],
the device cache refreshment is investigated using a Markov

A further source is that mobility of users could result in changes of the
locally available user density and cached files, e.g., due to movement of the
devices, though this is beyond the scope of this paper.



decision process (MDP). However, its focus was on efficient
buffering for a single user, and it ignored the important multi-
user situation and D2D communications of the networks. In
[17], the problem that how users can ‘“reactively” update
their caching content is investigated. This is different from
our aim that we want to “proactively” update the caching
content. To our best knowledge, dynamic content caching and
replacement in wireless D2D caching networks has not been
well investigated yet. This paper aims to close this gap.

A. Contributions of this paper

In this work, we consider a network with dynamic popular-
ity distribution. Our goal is to develop an approach to decide
whether to conduct a replacement action and which files in
users’ caches to be replaced by what files. We first propose
a network structure to realize the content replacement action
via introducing the file broadcasting and a queuing system.
Since the replacement action incurs a cost and the stability of
the system is necessary, our replacement problem then aims
to maximize the time-average service rate subject to a time-
average cost constraint and queue stability.

The replacement problem includes two parts: deciding
which files to newly cache on devices, and deciding what files
should be replaced, i.e., deleted from the caches. The joint
design of these two problems is extremely challenging. We
thus propose an effective but heuristic procedure for the second
part of the problem, i.e., which files to delete from the caches.
Most of the work concentrates on the first part, i.e., deciding
which file to push into the caches for which we formulate a se-
quential decision-making optimization problem. To solve this
problem, we propose to use Lyapunov optimization [18]. By
introducing a virtual cost queue, the proposed approach makes
decisions to myopically minimize the drifts of the queues.
Such minimization can be implemented with extremely low
complexity, and we can show that the replacement actions
suggested by this approach can stabilize queues and satisfy
the cost constraint. We use simulations to demonstrate the
efficacy of the proposed replacement approaches. Simulations
using our two-step procedure show that compared to algo-
rithms based on the assumption of static popularity, significant
improvement in dynamic environments can be observed. Our
main contributions are:

o We elaborate the replacement problem in wireless D2D
networks and propose to use the BS with broadcasting
and a centrally controlled queueing system to realize the
replacement procedure.

o We propose a fundamental replacement procedure. Based
on this procedure, we formulate the replacement problem
in the form of a sequential decision-making problem with
the time-average cost constraint and queue stability.

o We solve the replacement problem by incorporating ef-
fective heuristics and concepts of Lyapunov optimiza-
tion. This design can appropriately use system state
and historical records to conduct replacement and is
implemented with extremely low complexity. Besides, the

proposed design can satisfy the time-average constraints
asymptotically and stabilize the queuing system.

o« We use computer simulations to validate the proposed
designs and show that the dynamic cache replacement
can significantly improve the networks. We use different
example systems to demonstrate the proposed designs and
obtain insights of the replacement actions.

B. Organization of this paper

The remainder of the paper is organized as follows. In Sec.
II, the system model is elaborated. In Sec. III, we discuss the
dynamic cache replacement and provide the basic replacement
procedure. The replacement design is proposed in Sec. IV. We
numerically evaluate the performance in Sec. V. Conclusions
are provided in Sec. VL.

II. SYSTEM MODEL

In this work, we consider a BS assisted wireless D2D
caching network, in which the BS can broadcast files to
user devices for caching content replacement. To focus on
the performance of D2D caching, we consider users to be
served only via D2D networks and broadcast without using
user-specific BS links, i.e., user requests can only be satisfied
in three ways: files accessible via D2D communications,
files in their own caches, and broadcast files. We consider a
centrally-controlled scheduling for D2D networks, in which
the BS serves as the central controller to collect requests
from users, schedule D2D communications, and make the
decisions for replacement actions.? Besides, we assume the
central controller has the ability to observe all requests. Thus,
even if a request of the user can be immediately satisfied by
self-caching, the controller in the BS can still observe this
request.3

A library consisting of M files is considered. We assume
user devices to be able to cache only a single file of the li-
brary*. We consider a homogeneous request probability model
with a,,(¢) to describe the probability of a user to request file
m at time ¢t. To describe the caching result of the network at
time ¢, we denote by, () as the caching popularity of file m,
defined by
__ Na(®)

Snli Nu(t)’
where N,,(¢) is the number of times the file m is cached in
the D2D network at time ¢. By definition, 0 < b,,(¢) < 1
then indicates the probability of file m being cached in a user
device of the network. We consider both active and inactive
users, in which the active users are defined as the users sending
requests and participating in the D2D communications; the

b (t) ey

2Some additional signaling might be necessary for realizing the replacement
scheme. However, the amount of signaling bits is typically much smaller than
the number of bits in a video file. In any case, signaling overhead could be
included as the cost each time we conduct a replacement action (see. Sec.
I10).

3In [20], we present modifications that eliminate the need for this (slightly
impractical) assumption.

4The extension to networks where each device can cache multiple files will
be discussed in the Journal version [20].



inactive users are defined as the users that do not send any
request but, depending on the scenario assumptions, may or
may not participate in the D2D communications.

A queuing system at the BS with M queues, where queue
m stores requests for file m, is adopted to help identifying
a historical record and making replacement decisions. Denote
Qm(t) as the number of requests in queue m at time ¢. The
update of queue m is described as

Qm(t+1) = max{Qm(t) + 7m(t) — sm(t) — s (t), 0}, (2)

where 7,,(t) > 0 is the requests for file m arrived at time ¢,
Sm(t) > 0 is the number of users served by the D2D network
for file m at time ¢, and s2'(¢) > 0 is the outage of requests
of file m at time ¢. Note that here outage is defined as a user
to drop the request before being served by the network. It can
be observed that @, (t) 7 (t), sm(t), and s2¥(¢) are random
processes, where r,, (t) is related to the popularity distribution
and the number of users and their modes; s,,(t) is related to
the caching distribution of devices and the number of users in
the network; s2(¢) depends on how patient a user would be
for waiting the service. Obviously, for files not stored by any
of the users, an outage always occurs unless the users can wait
for infinitely long time, which is not possible in practice. With
these interpretations, we identify the following conditions that
enable a large benefit of the replacement scheme, as well as
mathematical tractability:>

I. Time scale decomposition:

1) Popularity distribution varies slowly with respect to the
replacement, i.e., E [Tpop] > E [Trep], where E [Thop] is
the average time period that the popularity distribution
stays invariant and E [Ty,| is the average time between
two replacement actions.

2) User mobility is slow with respect to the replacement,
ie., E[Teen] > E[Tiep), where E [T is the average
time period that a user stays in the cell served by the
same BS.

3) Suppose a user has active and inactive modes. We assume
the user mode changes at a frequency similar to or slower
than the replacement, i.e., F [Tnote] & E [Trep], Where
E [Tiode] is the average minimal time period between
two different modes of users. Here E [Tinqe| indicates
how long a user stays active. Thus, this assumption is
to guarantee a user request to stay in the queue for a
reasonably long period.

II. Monotonicity:

1) Although s,,(t) can be a function of different parameters,
such as queue size (), instant caching distribution
b (t), user locations, user modes, and etc., we assume
that s,,,(¢) is a monotonically increasing function with
respect to the increase of b,,(t). This is a common
behavior of a caching network that the more the network

SViolating these conditions leads to a gradual performance loss - e.g., as
the mobility of the users becomes faster, the performance gain gets gradually
reduced.

caches a file, the higher the service rate for the network
regarding that file could be.

2) We assume the expected outage rate, E [s0°(¢)], is a
monotonically increasing function with respect to the
queue size @, (t). This is also commonly observed since
a larger queue size indicates more users that can cause
congestion in the queue.

The overall procedure in a time slot ¢ is the following: the
users first send requests to the BS. The BS then observes 7., ()
(of course the @,,(t),Vm, are already known). Then the BS
makes the decision on the replacement action and conducts
the replacement procedure according to the decision. After the
action, the network then serves the users through D2D commu-
nications and/or self-caching by the pre-determined scheduling
mechanism and decides s,,(t). Finally, the transition of user
modes is conducted leading to s"(¢), and then we finish
time slot ¢ and the network transitions to time slot ¢ + 1.
We emphasize that our model is very general so that there is
no need to specify a file request and content delivery model
for the D2D links, i.e., any file request and content delivery
model that can be described by (2) is feasible for using our
design (of course, we need a specific file request and content
delivery model for obtaining the numerical results as we will
demonstrate in Sec. V).

III. DYNAMIC CACHING CONTENT REPLACEMENT

In this section, we describe the procedure of caching content
replacement and introduce the replacement problem.

We consider the BS can broadcast a single file at a time.®
Suppose we want to increase b, (t) by d(t), where 0 < d(t) <
1—b,,,(t) is the replacement step-size, i.e., we want to replace
other files by file m with a targeted number/ratio d(¢). To
do this, in addition to broadcasting file m, the BS needs to
decide which files should be replaced. Here our policy is to
first replace those files with lower pressure on their queues. To
be specific, we construct a file replacement order by assigning
the file with the smaller queue size a smaller index and
selecting files with lowest index to be replaced first, and then
following the order of the indices to drop files until the desired
number/ratio of files, i.e., d(t), is achieved. Note that the
user that should drop the file is selected randomly, e.g., when
deciding to drop file 3 and cache file 1, the users that should
perform this operation are selected randomly from the set of
users having cached file 3. To provide a concrete example,
suppose we have 3 files with by(t) = 0.3, ba(t) = 0.3,
bs(t) = 0.4 and Q1(t) = 8, Q2(t) = 4, Q3(t) = 2, and want
to increase file 1 by d(¢) = 0.05. The BS broadcasts file 1 and
selects file 3 to be replaced by the ratio of 0.05, resulting in
b1(t) = 0.35, ba(t) = 0.3, b3(t) = 0.35 after the replacement.
Thus, a randomly chosen 1/8 of all users that have file 3
cached replace it with file 1. Consider another example that we
want to increase file 1 by d(¢) = 0.5. Then we again broadcast
file 1 and replace files, leading to by (t) = 0.8, b2(t) = 0.2,

5The extension to broadcasting multiple files at a time is subject to future
work. Having said that, broadcasting multiple files within a consecutive short
period is not too different from broadcasting only a single file at a time.



bs(t) = 0O after the replacement. Thus, all users that have
cached file 3 replace it by file 1, and a randomly chosen 1/3 of
users that have cached file 2 replace it with file 1. The intuition
of this replacement procedure is that the file with a lower
pressure, i.e., smallest queue size, likely are cached on devices
more frequently than is necessary to serve the user requests.
It is obvious the considered replacement procedure can be
further optimized by considering more flexible strategies so
that, instead of dropping all files with the smallest index
first and then the second (see the second example), we can
flexibly switch between dropping different files. However, this
flexibility complicates the problem. Thus, in this work, we
focus on deciding when and which file should be broadcast
and what step-size to take, and leave the flexible assignment
for future work. We note that by observations and empirical
results, this sub-optimal replacement procedure is sufficiently
effective if the file to be broadcast and the step-size are
carefully decided.

In this work, our goal is to decide when and which file to
be broadcast and what step-size to take using the provided
replacement procedure. The goal of the decisions is to maxi-
mize the number of users served by the D2D network subject
to some cost constraint due to replacement and to guarantee
the queue stability. This is mathematically formulated as

A%, P T Z E[R A Ga)
1 A
s.t. Jim Z E [ o } C (3b)
il AW ] —
Th—I>r<l>o [Q (r )} =0,Ym,  (3c)

where A(t) is the action we take at time ¢ and A(t),t =
1,2,... constitute an action policy; A is the action space
including broadcasting files 1,2, ..., M and being silent with-
out broadcasting; P(t) is the system parameter set at time
t; R(t,P(t), A(t)) is the reward function expressed as the

number of users in the network served at time ¢;’ mb(tt)( t) is
the cost of action A(t); C' is the cost constraint; Qin )( t) is the
size of queue m under a sequence of decisions A(0), ..., A(t—

1).8 In the problem formulation, (3a) indicates our goal is to
maximize the number of users to be served by the network;
(3b) indicates there is a cost constraint we need to follow, and
therefore we cannot always broadcast; (3c) indicates we need
to mean-rate stabilize every queue [18] so that all requests can
be possibly served as long as they stay in the system.’

IV. MYOPIC DRIFT MINIMIZATION REPLACEMENT

Solving (3) is a sequential decision-making problem, which
is very challenging under general conditions and with large

"The formulation can also be extend to use other units, such as bit.

8We use Q. (t) for the general purpose, while use Q;i(t) (t) to stress out
that the results is under the policy {A(0), A(1),..., A(t — 1)}

9We actually can show a stronger result that the queue size is upper bounded
for our design (see Theorem 1).

dimension. In this section, we will propose an approach
that effectively maximizes the reward while subject to the
required constraints via exploiting the concepts of Lyapunov
optimization [18].

The idea of the Lyapunov optimization is to minimize the
drift of queues [18]. To define the drift, we introduce a virtual
cost queue:

Z(t + 1) = max (Z( )+ 20w — ¢, o) . @

nst

where 0 < Z(0) < oo is the initial condition. Then by (2)

and (4), we can have the inequality in (5) on top of the

next page, where 2B > Zi\f:l (rm (£) — sm (1) — s2(£))* +
2

(C.A(t)(t)—C) > 0 is a constant. We define L(t) =

nst
i Zf‘le (Qum(1))* + (Z(t))? and assume that the arrival rate
is bounded, i.e., r,,,(t) < oo,¥m. The drifts of the queues
L(t+1) — L(t) = A(t,P(t), A(t)) are then bounded as

(t P(t), A(t))

M
=3 Qusat) + Z() (n () - C) + X + B
m=1

® At)

< —QuB)sm(t) + 2(t) (en(t) = C) + X + B,vm,

(6)
where X > Ziv{:l Qm (t)rm (t) > 0 is a constant bound when

Qm(t),Vm, are upper bounded, and we assume this bound

exists. Note that (a) is because Q. (t)s%(¢t) > 0,Vm, and

(b) is because Qu,(t)sm(t) > 0,Vm.

To minimize the drift, we should minimize the upper bounds
in the first inequality in (6). However, when the D2D scheduler
is complicated, s,,(t) might not have an analytical expression
that is easy to compute or estimate under different actions.
We thus use the second inequality in (6) and develop a
simplification that is based on the following observation: if
we choose to broadcast file m at time ¢, we can immediately
know s, (t) = Qu(t) + 7 (t) since all requests for file m at
time ¢ can be satisfied by the broadcast. Besides, assuming no
cost when silence, we also know that a sufficient condition to
chose to be silent is:

—Qum(®)sm(t) + Z(H) D (1) > 0,Vm. 7

nst
We denote A,, € A as the action to broadcast file m. By pre-
vious observations, we thus solve the following optimization
problem for making the decision:

A(t) = arg miy ga(t), (®)

where g.a(t) = = Y 00_1 Laza,y-Qm(8)si () + Z(0)cay (1)
and ljs—4,) is an indicator function whose value is 1
only if the system broadcasts file m. We note that when
A = A guu(t) = 0 and When A = Ap, ga, (t) =
—Qm (1) (Qm(t) + rm(t)) + Z(t ) Cinet (£). Solving (8) is sim-
ple. Since g4(t) = 0 when A = A%, we only need to evaluate
ga(t),VA = A, € A* and compare the resulting values with
zero. If there is no value lower than zero, the system remains
silent; otherwise, the system broadcasts the file providing the



Qult 4 D+ 120+ D < 3 [Qul®) +rn(t) — sut) — s3] + [2) + 20 (1)~ €]

<> Qut +ZOF 42| D Qul®) (rmlt) = sm(t) = s34()) + 2(8) (et (1) = ©)

minimal objective value. The intuition of (8) and the resulting
approach is basically to broadcast the file with highest pressure
on the queue when there exists a real (file) queue whose
pressure is higher than the pressure of the virtual (cost) queue.

The complete replacement approach is to solve (8) at every
time slot and decide the actions. The overall algorithm is
summarized in Alg. 1. Since (8) can be easily solved, the
complexity of the approach is extremely low. Also since the
proposed approach exploits the history record (queue sizes)
and the current system state without using any potential future
information, this approach is named myopic drift minimization
(MyDM) replacement. Finally, since MyDM uses a constant
step-size for conducting the replacement procedure, the step-
size should be carefully selected. The proposed MyDM ap-
proach can guarantee the time-average cost constraint and
stabilize the queues asymptotically, according to the following
theorems:

Theorem 1: Suppose M < oo is upper bounded, Z(0) is
finite, and r,,, < B is upper bounded. Consider Q,,(0),Vm,
is finite and bounded; C' > 0 and cii,,VA € A is finite and
bounded. Under MyDM, an,(t)(t),Vm7 are mean-rate stable,
finite, and upper bounded.

Theorem 2: Consider the same conditions as in Theorem 1,
MyDM can satisfy the time-average cost constraint, i.e., the
proposed algorithm satisfies almost surely

T—1
1 A#)

iS00 se o

Proof. Refer the proofs to the Journal version [20]. O

V. PERFORMANCE EVALUATIONS AND DISCUSSIONS

Here we evaluate the proposed design using computer
simulations. We will first evaluate the performance and discuss
the insights using an idealized model to point out insights, and
then provide evaluations using a more practical network con-
figuration. In all the simulations, unless otherwise indicated,
we consider M = 100, C' = 1, and step-size d = 0.05, and
evaluate the average number of requests to be satisfied. The
number of time slots 7" used for each simulations might be
different, but they are large enough for the proposed design to
converge to satisfy the average cost constraint.

A. Evaluations with Ideal Network Configurations
We first evaluate the proposed MyDM replacement in the

idealized environment in which 7,,(t) = fn(f), sm(t) =
b (t), sS24(t) = 0,Vm, and ci’ﬁs(tt) = 10,VA(t) € A. We note

that f,,,(t) is the request probability of file m at time ¢, in

®)

Algorithm 1 Myopic Drift Minimization Replacement

1: Init: Start at ¢ = 0, Q,,(0) > 0,Ym, Z(0) > 0. Set
step-size d(t) = d.

2: fort=0,1,... do

3 Evaluate g4, (t) =
Z(t)ci‘:s’f(t),Vm

4: if min,,—1,.. M 9a,, (t) < 0 then

—Qm(t) (Qm(t) +7m(t) +

5: Broadcast the file m, where m =
arg min ga,(t)

6: Conduct the replacement procedure in Sec. III

7: else

8: Keep silence, i.e., A(t) = At

9: end if

10: Update the real queues Q.,(t),Vm, and the virtual
queue Z(t)

11: end for

which Zn]\le fm(t) =1 and {f,,(¢)} varies from time to time
according to some model. The intuition of this environment is
that the request and service rates are linearly proportional to
the request and caching distributions, respectively. Also, we
can clearly see that the requests generated in each time slot
can be perfectly served if the caching distribution is perfectly
aligned with the request distribution. We first consider the
request distribution to vary between different Zipf distributions
with Zipf parameters v = 0.2 + 0.5(k — 1), where k €
{1,2...,25}, according to a Markov process whose transition
probability matrix is Py = 0.95, P 41 = 0.025, Py -1 =
0.025, where 2 < k < 24; Py 1 = 0.95, P12 = 0.05, Pa5,25 =
0.95, Po5 24 = 0.05; Py, = 0, otherwise. We then compare the
proposed design with the non-replacement designs. To obtain
more insights, we also compare to the non-replacement design
with periodic broadcasting and the proposed design excluding
the benefit of broadcasting, i.e., the queues for file m are not
flushed out when file m is broadcast.

The results are shown in table I, in which “Self” indicates
the selfish approach, i.e., b1(¢) = 1 and b,,(t) = 0,Vm > 2;
“Zipf-0.8” indicates the Zipf distribution based time-invariant
caching policy [6] whose parameter is 0.8 (the value 0.8 is an
optimized selection);'? and “brod” indicates the involvement
of broadcasting. Although not shown here, the MyDM replace-
ment can offer almost identical performance with respect to
different initial caching policies, showing the ability to correct
inappropriate caching policies. Besides, the cost and queuing

10The optimization is conducted by first quantizing the Zipf parameter and
then selecting the one providing the best reward in Monte-Carlo simulations.



TABLE I: Evaluations with Zipf Request Distribution

TABLE II: Evaluations with Practical Request Distribution

Scheme Self Zipf-0.8 MyDM no Brod Scheme Self Zipf-0.6 MyDM no Brod
Service Rate 0.101 0.892 0.990 Service Rate 0.026 0.686 0.998

Scheme Self + brod | Zipf-0.8 + brod MyDM Scheme Self + brod | Zipf-0.6 + brod MyDM
Service Rate 0.989 0.994 0.994 Service Rate 0.985 0.995 0.999

Number of Requests

102k —Zipf-0.8
—Zipf-0.8 + Brod
MyDM
[—MyDM without Brod|
. I I I I I I i T ,
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Iteration x10*

Fig. 1: Maximum queue size comparisons.

constraints are satisfied in all cases. We also observe that the
selfish design provides poor performance while the Zipf-based
scheme can provide good performance. However, such good
performance needs the optimized Zipf parameter, based on (i)
knowledge of the request distribution in the future; and (ii) the
effectiveness of optimization. In contrast, the proposed design
can adjust the caching results dynamically without knowing
the future. In addition, we can observe that all schemes with
broadcasting can offer performance close to perfect request-
caching alignment because the content in the queues are never
dropped. However, we will later see that different schemes
can have different behaviors regarding the maximum queue
sizes. Finally, the proposed design can be effective even if
we exclude the benefit of broadcasting, indicating that it
can appropriately adjust the caching realizations. In Fig. 1,
we compare between the maximum queue sizes of different
designs. Note that a large queue size might be inferior due
to large delay and/or potential outage after the expirations of
requests. From the figure, we can see that the proposed design
can maintain a small maximum queue size while the other
schemes cannot even when their average performance is close
to the proposed design.

Now we provide the evaluations adopting a time-varying
request distribution varing between 100 different request dis-
tributions, in which each request distribution is constructed
by averaging 100 different preference probabilities, generated
by using the practical generator in [19], of different users.!!
The model for the transition of the request distribution at each
time slot is: the probability to be invariant is 0.95; otherwise
transit to other distributions with equal probability. The results
are shown in Table II. It can be observed that the proposed
design is again very effective. Besides, we can see that the
performance of the Zipf-based scheme is less effective (even
with the optimized parameter 0.6) owing to less effectiveness
when considering the practically generated distributions.

"IThe motivation of using this model is to evaluate the proposed design
using distributions based on real data. Details of the generating procedure are
omitted here for space reasons.

B. Evaluations with Practical Network Configurations

We now evaluate our design considering a more practi-
cal network configuration. We consider the prioritized-push
network in [12] without the use of BS links and consider
1000 users to move within a square cell whose side length is
D = 500m. The prioritized-push network adopts clustering,
where only devices in the same cluster can communicate
with each other, and employ a spatial reuse scheme to reuse
resources and avoid interference. Thus, the size of a clus-
ter, denoted as cooperation distance, can greatly affect the
throughput and outage performance (for more details see
[12].). A BS covering the whole cell serves as the central
controller and conducts replacement. A user can be active or
inactive. When an active user is served by the network, the
user immediately transits to inactive after the service. Each
user could change their modes at the end of each time slot.
When a user changes from active to inactive, the request of
the user drops off from the queuing system, causing outage;
when a user changes from inactive to active, a request of the
user is generated according to the request distribution at that
time, and then sent to the BS at the beginning of the next
time slot. After the transitions of user modes, the transition
of the request distribution is conducted and the locations of
users are changed. We consider each user to randomly move
to any location in the cell with equal probability. In the
following simulations, the probability of changing mode is
0.05. Besides, we consider ci’:s(f) = 10,VA(t). We note that
although locations of users might change at each time slot,
this network is still considered slowly-varying because users
remain in the same cell.'

In our first evaluation, we consider the request probability
to vary according to a special pattern: all users request the
same popular file, and such preference changes every 100
time-slots in a round-robin manner, e.g., at the first 100 slots,
every user requests file 1, and starting from slot 101, users
request file 2. This scenario is to represent the sudden change
of the popularity distribution due to the happening of some big
events. With this pattern, the optimal hindsight replacement is
simply to replace all cached files by the one that would start to
be requested in the next time slot. We compare the proposed
design to other schemes in Fig. 2. From the figure, we can
observe that the proposed design outperforms the Zipf-based
scheme and is near-optimal. We then provide the evaluation in
the network adopting the same setup as in Table II except that
now d = 0.01, and show the results in Fig. 3. From the figure,

12Note that there are still some impractical considerations in the adopted
network. Evaluations using even more practical network configurations and
request distributions will be provided in the journal version. That being said,
evaluations in this paper still provide strong support for the benefits of the
proposed replacement design.
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Fig. 2: Performance comparisons between different schemes.
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Fig. 3: Performance comparisons between different schemes.

we can see that the proposed design can again outperform
other schemes, especially when the non-replacement design
adopts a bad caching policy. This indicates that the proposed
replacement design can correct a bad initial caching policy
and significantly improve the performance. We stress that the
performance of the proposed design is basically independent
of the initial caching policy, and cost and queuing constraints
are satisfied in all simulations. We also note that although
the Zipf-based scheme performs well in this case, it requires
perfect knowledge of the request distributions in the future and
is subject to the necessity of an effective optimization. As a
counter-example, we can see from Fig. 2 that the Zipf-based
scheme works poorly while our design still performs well.

VI. CONCLUSIONS

To deal with issues caused by time-varying popularity
distribution and inappropriate static caching policy, a caching
content replacement problem is formulated and investigated.
We propose a network structure able to conduct replacement
along with a replacement procedure. We propose the replace-
ment design and offer theorems to show that the proposed
design can generate feasible solutions to the problem. By
using simulations, we validate that the system can be improved
by the proposed design when compared with static policies,
and the improvement is especially significant when the static
policy performs poorly under varying popularity distribution.
Besides, the robust performance of the proposed design with
respect to different initial caching policies indicate that our
design can correct inappropriate caching policies effectively.

The proposed replacement approach here does not exploit
the potential future information, i.e., knowledge about future
changes in the popularity distribution and the corresponding
payoff. The extension to including such knowledge will be
discussed in our Journal version [20].
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