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Abstract—Caching of video files at the wireless edge, i.e., at the
base stations or on user devices, is a key method for improving
wireless video delivery. While global popularity distributions of
video content have been investigated in the past, and used in a
variety of caching algorithms, this paper investigates the statistical
modeling of the individual user preferences. With individual
preferences being represented by probabilities, we identify their
critical features and parameters and propose a novel modeling
framework by using a genre-based hierarchical structure as well
as a parameterization of the framework based on an extensive
real-world data set. Besides, correlation analysis between param-
eters and critical statistics of the framework is conducted. With
the framework, an implementation recipe for generating practical
individual preference probabilities is proposed. By comparing
with the underlying real data, we show that the proposed models
and generation approach can effectively characterize individual
preferences of users for video content.

I. INTRODUCTION

Data traffic generated by the demand for video content in
wireless networks has approximately doubled every year and is
expected to continue to grow in the next several years [1]. Con-
ventional approaches, such as using more efficient transceivers,
densifying infrastructure, and/or using more spectrum, for
supporting the increasing traffic are deemed insufficient or too
expensive [2]–[4]. An important alternative that has emerged in
the past years is video caching at the wireless edge. Leveraging
unique features of video popularity and the low cost of storage
resources, video caching has shown its potential and drawn
wide attention [2]–[5].

Video content caching has been discussed in different net-
works with different equipments serving as storage resources
[2]–[5]. Femtocaching was first proposed in [6] in which
storage resources in low-cost helper nodes are exploited for
content caching. This idea is then generalized to exploiting
base stations (BSs) in heterogeneous networks in which stor-
age resources of all types of BSs are used to cache video
contents and provide the immediate service to users with-
out using backhaul [7]–[9]. The combinations of BS-caching
and femtocaching with other techniques, such as scheduling
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[10], multicasting [11], and multi-antenna processing [12],
were also investigated. By exploiting storage resources in
cellphones, tablets and laptops, video content caching in
devices provides a more direct caching apporach [13], [14].
In this context, self-caching naturally offers video contents
in users’ own storages without consuming any resources [13],
[14]. Moreover, when device-to-device (D2D) communications
become widely available [15], D2D-caching, allowing the
content accesses from neighboring devices, was first discussed
in [16], and subsequently explored in many papers, e.g., [13],
[14], [16]–[25]. In particular, the scaling laws of D2D-caching
were investigated in [17], [18]. The trade-off between different
parameters were investigated in [13], [18], [21], [22]. The
influences of user mobility and uncertainty were discussed in
[24]. The combination of storage on user devices together with
coded multicast has been proposed [25].

While algorithms for wireless video content caching have
been widely explored, most of the literature adopts a homoge-
neous popularity model, i.e., assumes all users have the same
file popularity distribution for deciding the caching policy.
Clearly this assumption violates the intuition that different
users have different tastes and preferences, and the fact that
different users have different preferences has been validated
in various works [29]–[32]. Thus, designs adopting the ho-
mogeneous popularity model are restricted to some extent
due to lack of considering the individual user preference.
Some approaches exploiting individual preferences for caching
or delivering contents in wireless caching networks have
recently been discussed and gradually drawn attention [33]–
[38]. Moreover, analyses of the individual preferences have
demonstrated their capability of offering fundamental insights
that might further enhance the system or strategy designs [29],
[30].

Although recent literature starts to take individual prefer-
ences into consideration, the focus is basically on the pol-
icy design and network analysis based on certain abstract
mathematical models without the support of real data. In
fact, to our best knowledge, the statistical modeling for the
individual user preferences based on real-world data has not
been well investigated. This paper thus aims to fill this gap.
Note that modeling the individual preference of a particular
user for recommendation systems, also known as the “Netflix
challenge”, has been investigated intensely by using learning
methods [30]–[32]. However, this is different from the need
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to find statistics of individual user distributions.1

Our model uses hierarchies of probabilities to represent
preferences of users. Empirically, video files can be cate-
gorized into genres according to their features, and users
might have strong preferences toward a few genres [30].
The overall request probability of a user for a file is then
modeled as the probability that a user wants a specific genre,
and the popularity of a file within this genre. Since the
individual preference probabilities of users can be described by
the individual popularity distributions and individual ranking
orders, statistics of them are respectively investigated using the
genre-based structure. We note that, in this paper, we implicitly
denote the distribution as the rank-frequency distribution when
we use the term: popularity distribution. We aim to extract the
models and parameterization for these different statistics.

Such modeling and parameterization has to be based on
real-world data to be meaningful. We are thus using data
from an extensive dataset collected in the U.K. in 2014,
namely the usage of the BBC iPlayer [27]–[30].2 By observ-
ing the real data, we identify several important aspects of
characterizing individual preferences, and propose a modeling
framework for individual preference probabilities. Besides,
parameterization of the proposed framework is provided via
understanding and modeling the distributions of parameters
in the framework. Moreover, to enhance the parameterization,
correlations between different parameters and statistics used by
the framework are also investigated. By following the model-
ing framework, an individual preference probability generation
approach is proposed via judiciously linking the parameters
and models together. We validate the proposed modeling and
generation approach using real-world data. The validation
results demonstrate that the proposed modeling and generation
approach can effectively reproduce important features and
statistics of the individual preference probabilities. Therefore
the results can be helpful for designing, optimizing, analyzing,
modeling, and simulating systems exploiting content caching
and delivery as well as for studies of file popularities and
user preferences. To be more specific, we have the following
contributions:

• We propose a genre-based hierarchical modeling frame-
work to enable the statistical descriptions of the individual
preference probabilities. Specifically, we first identify
that, instead of using the element-wise description, the
individual preference probabilities of a user can be jointly
described by the individual popularity distribution and
individual ranking order. The genre-based hierarchical
modeling approach is then applied to both of them.
The corresponding statistical models for the individual

1The Netflix challenge focuses on the per-user perspective while the
statistical modeling in this work aims to statistically represent the preferences
of the whole user set in the network.

2Though not being presented in the main part of this paper, the proposed
modeling framework has been used to analyze another dataset in which the
data is collected from social media. The results show that the general structure
of our modeling framework, and the functional shape of the different curves,
carry over very well. The specific parameterizations are, of course, different
between the two data sets, since they describe different types of video services.
The results of this additional dataset are provided with details in Appendix F.

popularity distribution and individual ranking order are
thus proposed, respectively.

• Since each user owns a parameter set for describing their
preference probabilities, the number of parameters for
the whole user set is so large that they can only be
numerically handled and gradually become impossible to
handle when the number of users increases. To resolve
this issue, a statistical parameterization is conducted for
every parameter in the framework drastically condensing
the description. Such statistical parameterization not only
simplifies the representation of individual preferences but
also enables the proposition of the individual preference
generation without a huge parameter set.

• Correlation analyses between parameters in the frame-
work is conducted. The results reveal the critical corre-
lation features of individual preferences and enhance the
parameterization.

• By exploiting the framework, modeling, parameterization,
and correlation analysis in this work, a complete im-
plementation recipe of individual preference probability
generation approach is proposed.3

• All results need to be based on real-world data to be
meaningful. Thus an extensive dataset from the BBC
iPlayer is used for our investigations and validations of
all propositions.

The remainder of the paper is organized as follows. Sec.
II introduces the basic modeling concepts and describes the
necessary tools for manipulating the dataset. The main mod-
eling framework is presented in Secs. III and IV. In Sec.
V, parameterization approaches and results are provided. Sec.
VI offers the correlation analysis. We propose the individual
preference probability generation recipe and conduct the cor-
responding numerical validations in Sec. VII. We summarize
insights and discuss applications of our work in Sec. VIII. Sec.
IX concludes this work. Various detail aspects are presented
in the appendices.

II. INDIVIDUAL PREFERENCE PROBABILITY MODELING
AND DATASET PREPARATIONS

A. Modeling on Individual Preference Probability

In this work, we represent the individual preference by the
individual user probability, which is defined as the probability
that a specific user will in the future request a specific file for
watching; multiple views by the same user are thus ignored
(i.e., treated the same as single viewing). Since different
users can have different preferences, preference probabilities
of different users for the same file could be different. We
assume that each file can be uniquely assigned to a genre,
and there are G genres in the library. Therefore denoting Mg

as the number of files in genre g, the total number of files
in the library is given by

∑G
g=1Mg . Given this library, we

denote the preference probability of the file m in genre g
for user k as pkg,m. Then the following properties must hold:
0 ≤ pkg,m ≤ 1, ∀g,m, k and

∑G
g=1

∑Mg

m=1 p
k
g,m = 1, ∀k. We

3A complete code for the generation of the individual preference probabil-
ities of users according to the data can be found in [50].
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note that, when considering only probability representation for
the individual preferences, the impact of loading of users on
the system preference, i.e., the global popularity distribution,
cannot be modeled. Therefore, the statistical modeling of
loading of users is independently investigated as a constituent
of system parameters in Sec. V.D, and the loading distribution
is used when generating the global popularity. We also note
that, roughly, the loading of a user is its number of accesses
to the files in the dataset, and the precise definition will later
be provided in Sec. V.D.

To characterize individual preference probabilities of users,
two important features need to be characterized: individual
popularity distributions of files and individual ranking orders
of files. Different individual popularity distributions represent
different concentration rates of popularity distributions that
different users might have, and different individual ranking
orders represent different preferences for files by ranking files
differently. To clarify these concepts, we provide a simple
example. We consider two users with different preferences.
Suppose that G = 1 and M1 = 3. Therefore there are
three files in the library. Then suppose we have p11,1 = 0.5,
p11,2 = 0.3, p11,3 = 0.2; and p21,1 = 0.05, p21,2 = 0.7,
p21,3 = 0.25. Then note that these six popularity values
are a complete description, but obviously such a description
becomes impossible to handle when considering thousands
of files and millions of users. From the description, it can
be observed that their popularity distributions are somewhat
different, i.e., 0.5, 0.3, 0.2 and 0.7, 0.25, 0.05, respectively,
so that the second user has a stronger concentration than the
first. In addition, the ranking orders are different, namely 1,
2, 3 and 2, 3, 1, respectively. It can thus be observed that the
differences between preferences of users can be fully described
by the differences of individual popularity distributions and
individual ranking orders. While the above example gives
deterministic descriptions, in the following we will aim for
stochastic descriptions of these quantities.

To avoid confusions, in the following sections, we use
global popularity/probability of genres/files to denote the
popularity/probability of genres/files computed by taking all
users into consideration. Conversely, the individual popular-
ity/probability of genres/files is used to denote the popular-
ity/probability computed by considering only a single specific
user. In addition, without loss of generality, we consider the
indices of genres to follow the descending order of the global
popularities of genres, i.e., the global popularity of genre g
is larger than the global popularity of genre g + 1 for all
1 ≤ g ≤ G.

B. Dataset Descriptions and Preprocessing

This work uses an extensive set of real-world data, namely
the dataset of the BBC iPlayer [29], [30]. The BBC iPlayer
is a video streaming service provided by BBC (British Broad-
casting Corporation) that provides video and radio content

for a number of BBC channels without charge.4 Content
on the BBC iPlayer is basically available for 30 days after
its first appearance [29]. We consider the two datasets cov-
ering June and July 2014, which include 192,120,311 and
190,500,463 recorded access sessions, respectively.5 In each
record, access information of the video content contains two
important columns: user id and content id. user id is based on
the long-term cookies that unqiuely (in an anonymized way)
identify users. content id is the specific identity that uniquely
identifies each video content separately. Although there are
certain exceptions, user id and content id can generally help
identify the user and the video content of each access. In
addition to access identifications, video files in the BBC
iPlayer are annotated with one or more genres.6 More detailed
descriptions of the BBC iPlayer dataset can be found in [29],
[30].

To facilitate the investigation, preprocessing is conducted on
the dataset. We first define “unique access”. By observations,
we notice that a user could access the same file multiple
times, possibly due to temporary disconnnections from Internet
and/or due to temporary pauses raised by users when moving
between locations. Since a user is generally unlikely to access
the same video after finishing to watch the video within the
period of a month,7 we assume that each user only needs
to access a video once, and can cache it for any subsequent
views.8 We therefore consider multiple accesses made by the
same user to the same file as a single unique access. We
furthermore define a regular user as a user with more than
30 unique accesses in a month, and restrict our subsequent
investigation to the regular users.9 We note that the number of
unique regular users in June and July are 384,596 and 369,105,
respectively.

As described previously, a file could be annotated with no,
one, or several genres, and the genre-wise classification is the
foundation for characterizing preferences of users in our work.
Hence if a file cannot be classified into any genre, i.e., if no
genre is annotated on the file, the file is filtered out during

4We note that the BBC iPlayer is a massive application, ranked 2 in terms
of the load it imposes on UKs networks. Only YouTube had more load than
the dataset we consider. Thus, learning statistics and optimizing the network
architecture for just this one application is a worthwhile endeavour because
it can lead to huge impact on overall traffic of whole countries.

5Although what period of the dataset to choose should depend on the
specific scenarios and applications, the choice of one-month is reasonable
here since the BBC iPlayer assumes a weekly update and the average valid
time for the files is approximately 30 days [29].

6Notice that there are certain files that are not annotated with any genre.
We simply filter them out, as described in the following paragraph.

7This statement was partly supported by results in [29], [30]. Please refer
to to Secs. III.A and V.A in [30] for details. Besides, by using the real data,
we measure the rate that a user might watch the same video on different days
within the same month, and obtain the result of approximate 6%, i.e., the
combined number of minutes watched for a file from the successive sessions
is usually not more than the total duration of the file.

8Using the approach that users cache on the first view and replay from
local cache for the subsequent views, this can even be applied to any other
dataset since the external access pattern is constructed to be similar to the
one with the unique access property.

9We note that the definition of regular users in this paper is different
from our conference version [45] in which the requirement was 100 unique
accesses. Thus, the results in the conference version can be viewed as the
results for high frequency users while the results here include more ordinary
users.
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the preprocessing. Besides, if a file is annotated with multiple
genres, the file is considered shared by all annotated genres,
i.e., each genre is considered accessed 1

N times when a file
with N annotated genres is accessed. When considering the
dataset constituted by regular users, the number of genres in
the library is 110.

C. Kullback-Leibler Distance Based Parameter Estimation

In Secs. III and IV, we propose models to fit statistics
acquired from the dataset. To find the suitable models and
the parameters that best fit the models to the real data,
the minimum Kullback-Leibler (K-L) distance approach is
adopted and is given by

x̂ = arg min
x
DKL(x) =

∑
m

preal
m log

preal
m

pmodel
m (x)

, (1)

where x is the vector representation of parameters, preal
m is

the probability of outcome m in real data, and pmodel
m (x) is

the probability of outcome m characterized by the proposed
model and x. We note that preal

m log
preal
m

pmodel
m (x)

= 0 if preal
m = 0

by definition;
∑
m p

real
m = 1; and

∑
m p

model
m (x) = 1. To

find a good model of the target statistics, the following
steps are basically used: (I) we choose distributions based on
visual inspection; (II) we confirm the fitness of the chosen
distributions by the above K-L test. Thus, the main justification
for adopting the models and set of functions proposed in
this work is empirical.10 We note that the efficacy of the
K-L distance can be interpreted from the point of view of
information theory. According to [39], the K-L distance is also
known as the relative entropy. Thus the K-L distance between
the model and the data reflects the increase of entropy when
we approximate the distribution of the data by the model. The
value of the K-L distance is the number of additional bits
(nats) on average we need to use when the code designed for
describing the random variable of the modeling distribution is
used to describe the random variable embodied by the data. In
other word, the K-L distance measures the inefficiency of the
model for describing the real data. It should be noted that the
K-L based estimation has pros and cons, and the corresponding
discussions are provided in Appendix A.

D. Genre-Based Structure and Modeling

In this work, a genre-based structure is adopted for the pro-
posed modeling. This structure is adopted both for pragmatic
and fundamental reasons. From a practical point of view, a
direct modeling of individual popularities would involve too
many parameters (a similar reasoning underlies, e.g., cluster-
based modeling of wireless propagation channels). Besides,
according to the analysis in [29], [30] and our results, the
users show strong preferences for a few specific genres. Thus,
the ability to characterizing genre preferences is important for
the model. More fundamentally, it is infeasible to formulate
the statistics of individual user preferences on files by simply
observing the accesses of users: in other words, a user does

10The relevant empirical justifications for the proposed models are provided
in Appendix E.

not have a probability to access a specific file - (s)he either
requests it or does not. Therefore, instead of directly finding
the statistics of file preferences, we first investigate the statis-
tics of genre preferences of users, and then approximate the
file preferences within each genre by using the conditional
non-user-specific statistics of files in each genre.

Since the preference probabilities of a user are fully de-
scribed by its corresponding individual popularity distribution
and ranking order, we investigate statistics of the individual
popularity distribution and ranking order using the genre-based
structure in Secs. III and IV, respectively. To provide a clear
overview of the proposed modeling framework, a simple two-
part summary is provided as follows.

Firstly, to characterize the statistics of the individual pop-
ularity distribution, we use the following distributions and
models:
• Size distribution (Sec. III.A): since each user is only

interested in a small number of genres, we use size
distribution to indicate the statistics of how many genres
a user is watching.

• Individual genre popularity distribution (Sec. III.B): given
the number of desired genres for a user, individual genre
popularity distribution characterizes how concentrated the
preference for specific genres is.

• Genre-based conditional popularity distribution (Sec.
III.C): we use the genre-based conditional popularity dis-
tribution of each genre to approximate the file popularity
distribution within the corresponding genre.

Secondly, to characterize the statistics of the individual
ranking order, we use the following distributions and models:
• Size distribution (Sec. III.A): the size distribution is again

used here because it indicates how many genres we need
to rank for a user.

• Genre appearance probabilities (Sec. IV.A): Since only
the desired genres of a user need to be ranked, for a
given genre, we use genre appearance probabilities to
characterize the possibilities of genres that are desired
by a user.

• Genre ranking distribution (Sec. IV.B): For a genre, its
genre ranking distribution characterizes the probability
distribution in terms of rank for the genre given that the
genre is desired by the user.

• We directly use the global ranking order of files within
each genre to approximate the individual ranking order
for files within the corresponding genre.

Following the description of framework, the parameteriza-
tions and correlation analyses of the framework are provided
in Secs. V and VI, respectively. Then, to generate individual
preference probabilities of a user, a generation approach is
proposed and validated in Sec. VII. Specifically, the proposed
generation approach first generates parameters according to
the parameterization and correlation analysis results. Then
individual popularity distributions and ranking orders are
generated via using models in the framework. Finally, by
linking individual popularity distributions and ranking orders,
the desired preference probabilities are generated. The sketch
of the generation approach is presented in Fig. 1. We note that
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Fig. 1: Sketch of the individual preference probability gener-
ation of a user.

the parameter generations and the complete flow chart of the
generation approach specifically used for the adopted dataset
are further detailed in Sec. VII and Appendix D.

III. PROPOSED MODELING OF INDIVIDUAL POPULARITY
DISTRIBUTIONS

In this section the genre-based structure is adopted and
models for describing individual preference popularity are pro-
posed. To be specific, the relevant statistics of genre popularity
of users are first investigated. Then the genre-based conditional
popularity distributions for files in each genre are investigated.
We note that there are differences between the results here and
in the conference version [45], whose focus was on the high
frequency users.

A. Size Distribution

Here the size distribution is investigated and modeled. By
observations from real data, we found that a user would usually
access a small number of genres even if there are more than
one hundred genres in the library, and even if we consider
users that access the iPlayer more than 30 times per month.
These observations can be intuitively explained by that people
usually have their specific interests which constitute only a
small portion of the whole entertainment palette.
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Fig. 2: Comparisons between the model and real data of size
distributions.

To quantify these observations, the size distribution11 is
modeled as

Pr(Sk = i) =
fi(a

Si, bSi)∑MSi
j=1 fj(a

Si, bSi)
∼ DGamma(aSi, bSi,MSi)

(2)
where i = 1, 2, ...,MSi and MSi is the maximal possible
number of genres accessed by a user in the dataset; Sk is
the number of genres being accessed by user k; aSi and bSi

are parameters that characterize the modeling distribution; and

fi(a, b) = ia−1 exp (−bi) . (3)

When i is a continuous variable instead of discrete, fi(a, b)
follows the basic expression of Gamma distribution. As a
result, (2) is named Discrete Gamma (DGamma) distribution.
The fundamental characteristic of the DGamma distribution
is that it is a hybrid power and exponential function, which
is flexible to represent the cases that increase and decrease
are according to the power law, the exponential law, and their
mix. We compare the proposed model with the real distribution
derived from the dataset in June and July in Figs. 2a and 2b,
respectively. Parameters for the model are provided in Table
IX in Appendix D. It can be observed that the model is able to
well reproduce the size distribution from the real data except
for the regime with very low probabilities.

B. Individual Genre Popularity Distribution

The popularity of a genre for a specific user k is defined as
the ratio between the number of accesses to the genre by user
k and the total number of accesses by the same user. Therefore
characterizing the individual genre popularity distribution is to
characterize the concentration level of individual popularity in
terms of genres, in other words fitting the sorted distribution
of the genre popularities for this user. The proposed model for
this individual genre popularity distribution is the Mandelbrot-
Zipf (MZipf) distribution [40]:

P out
k (i) =

(i+ qout
k )−γ

out
k∑Sk

j=1(j + qout
k )−γ

out
k

, (4)

11We model the number of genres accessed by the user as a random variable
described by size distribution. Therefore although the size distribution is non-
user-specific, different users can have different numbers of accessed genres.
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Fig. 3: Exemplary comparisons between the model and real
data of individual genre popularity distributions in June.
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Fig. 4: Exemplary comparisons between the model and real
data of individual genre popularity distributions in July.

where Sk is the number of genres accessed by user k, P out
k (i)

is the popularity of the ith ranked genre, γout
k is the Zipf

factor, and qout
k is the plateau factor. We note that the MZipf

distribution degenerates to a Zipf distribution when qout
k = 0.

Since a specific user k would have a specific combination of
γout
k and qout

k , this renders the complete description of all γout
k

and qout
k impossible. As a result, to describe γout

k and qout
k for all

k, a statistical modeling for them is necessary and is presented
in Sec. V.A.

In Fig. 3, we provide exemplary comparisons between the
model and real data in June on a log-log scale. Parameters
of the MZipf distribution are γout

k = 5.5, qout
k = 8.0 and

γout
k = 1.2, qout

k = −0.65 for Figs. 3a and 3b, respectively.
From both figures, it can be observed that the MZipf model
can effectively characterizes the real data. In Fig. 4, we provide
similar exemplary comparisons for July, and the parameters
for Figs. 4a and 4b are γout

k = 1.5, qout
k = −0.5 and

γout
k = 4.1, qout

k = 3.0, respectively. Again we observe the
good fit between the model and real data. From Figs. 3 and
4, we can observe that the curve is concave-like when qout

k

is positive and convex-like when qout
k is negative. Note that

when qout
k = 0 the curve is affine. Also note that the individual

genre popularity distribution only specifies the concentration
rate of the preference and does not specify which genre is the
most popular one for this particular user; this aspect of genre
ranking will be discussed in Sec. IV.
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Fig. 5: Exemplary comparisons between the model and real
data of genre-based conditional popularity distributions.

C. Genre-Based Conditional Popularity Distribution

The genre-based conditional popularity distribution of a
given genre is the conditional probability distribution under
the condition that files are annotated with the given genre. We
use this distribution to approximate the per-user conditional
preference probabilities of files under the condition that the
file is annotated with the desired genre. We emphasize that the
approximation is due to the infeasibility of the direct charac-
terization of user-based file preference statistics as discussed
at the beginning of Sec. II.D. Since genre-based conditional
popularity distributions are non-user-specific distributions, dif-
ferent users are assumed to have the same distribution for the
same genre, though of course the realizations of what different
users download are different.

To model the genre-based conditional popularity distribution
of genre g, we propose to again use the MZipf distribution:

P in
g (i) =

(i+ qin
g )−γ

in
g∑Mg

j=1(j + qin
g )−γ

in
g

, (5)

where P in
g (i) is the popularity of the ith ranked file in genre

g, γin
g is the Zipf factor, qin

g is the plateau factor, and Mg

is the number of files in genre g. We will again provide
the statistical modeling for parameters in (5), and the results
are presented in Sec. V.B. In Fig. 5, the model is compared
with the real distribution of genre “factual”. Parameters of
the MZipf distribution for June and July are γin

g = 2.5,
qin
g = 64, Mg = 5751 and γin

g = 2.8, qin
g = 160, Mg = 6235,

respectively. From the figures, we observe that the MZipf
distribution can effectively model the real distributions.12

IV. PROPOSED MODELING OF INDIVIDUAL RANKING
ORDERS

In this section, the statistical modeling for individual rank-
ing order is investigated. Identical to the individual popularity
distribution case, a genre-based structure is adopted.

A. Genre Appearance Probability

As elaborated in previous sections, the number of genres
that a user might access is usually much smaller than the total
number of genres in the library. Therefore for each user k,

12Of course, the MZipf distribution can effectively model other genres.
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Fig. 6: Comparisons between the model and real data of genre
appearance probabilities.

we can obtain a genre list which collects the genres that are
accessed by user k. The number of genres in the genre list of
user k is by definition Sk.

Since the genre list of a user explicitly indicates the specific
preference of that user on genres, characterizing statistics of
the genre list is necessary. Thus, genre appearance proba-
bilities are used. The appearance probability of genre g is
defined as the probability of genre g to appear in genre lists
of users, and it is the ratio between the number of times that
genre g appears in genre lists of users and the number of
total users. The proposed model13 describing genre appearance
probabilities is

Pap(g) = Nap exp(−γapg), (6)

where Pap(g) is the appearance probability of genre g, γap is
the shaping parameter, and Nap is the scaling parameter. The
comparisons between the model and the real data is provided
in Fig. 6, and the parameters of the model are offered in Table
IX in Appendix D.

B. Genre Ranking Distribution

Given the genre list of a user, the ranking order of genres
in the list characterizes the preference of a user. To investigate
the statistics of the ranking order, we investigate the ranking
distributions of genres. The ranking distribution of a genre g is
defined as the distribution of ranks of genre g in genre lists of
users conditioning on genre g appearing in those genre lists.
By this definition, we denote Pr(Rg = i) as the probability of
genre g to be the ith ranked genre when genre g appears in
a genre list. The proposed model14 for the distribution of this
quantity is a DGamma distribution:

Pr(Rg = i) =
fi(a, b)∑G
j=1 fj(a, b)

∼ DGamma(ark
g , b

rk
g , G). (7)

The DGamma distribution in (7) follows the same expressions
in (2) and (3). We will again provide the statistical modeling
of the parameters in ranking distributions in Sec. V.C.

13The model here is different from the one in the conference version. In
fact, the model in conference version can still be effective after adding an
additional scaling parameter as in (6). However, (6) has a more compact
expression.

14Note that the model for ranking distributions here is again different from
the one in the conference version.
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Fig. 7: Exemplary comparisons between the model and real
data of ranking distributions.

In Fig. 7, exemplary comparisons between the model and
real data are provided, and we again demonstrate the results of
the genre “factual”. Parameters for the model are ark

g = 2.95,
brk
g = 0.8 for June and ark

g = 2.65, brk
g = 0.75 for July, and

G = 110 for both June and July according to the dataset
descriptions in Sec. II.B. The results show the good agreement
between the model and real data.

V. STATISTICAL PARAMETERIZATION OF THE PROPOSED
MODELING FRAMEWORK

By using the framework and models, the individual pref-
erences can be described via using distributions and proba-
bility models in Secs. III and IV, which greatly reduces the
complexity for describing a dataset. However, the parameters
in the proposed framework still need a numerical description
as we have mentioned in our conference version [45], and
this numerical description can gradually become impossible
to handle when the number of users in a dataset increases.
To further reduce the description complexity, in this section,
the statistical representations of parameters in the modeling
framework are proposed. We note that such representations
are expressed either by well-known distributions or by certain
specifically designed distributions.15 Therefore, when deal-
ing with well-known distributions, the standard maximum
likelihood (ML) approach in Matlab (2017) is used to fit
the real data; on the contrary, when dealing with special
distributions, the K-L approach in Sec. II.C is used again.
We note that all parameterization results in this section are
provided quantitatively in Appendix D with complete details,
including the confidence interval calculations. Thus, the details
of the model curves in all figures are referred to Appendix D.

A. Statistical Modeling for Parameters of Individual Genre
Popularity Distributions

In this subsection, the statistical model of the parameters of
individual genre popularity distributions of users, i.e., γout

k and
qout
k , are provided. As indicated in Sec. III.B and in Figs. 3

and 4, the shapes of individual genre popularity distributions
can be categorized into different types according to the sign

15Since our goal is to further reduce the complexity of expressing our
proposed modeling framework, we aim to fit the real data at least to a certain
degree even with some artificially constructed distributions.
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of qout
k . As a result, it is natural to also characterize the

distributions of parameters differently according to the rele-
vant types. Consequently, we provide four distributions which
independently model the two parameters with two types: (i)
γout
k whose relevant qout

k is non-negative, i.e., qout
k ≥ 0; (ii)

qout
k ≥ 0; (iii) γout

k whose relevant qout
k is negative, i.e., qout

k < 0;
and (iv) qout

k < 0. In the remaining article, the short-handed
descriptions are used for them: (i) γout

k with non-negative
type (NNT); (ii) qout

k with NNT; (iii) γout
k with negative type

(NT); and (iv) qout
k with NT. We note that, by the dataset, the

probabilities of having non-negative qout
k , i.e., qout

k ≥ 0, when
randomly picking a user are P out

NNT = 0.795 and P out
NNT = 0.784

in June and July, respectively. Thus the probability of picking
a user who has a negative qout

k is 1− P out
NNT.

Here we provide the statistical models for γout
k and qout

k with
NNT. The model for γout

k with NNT is a mixed distribution
whose probability density function (pdf) is

f out
ga,NNT(x) = cout

1,gafGam(x; aout
1,ga, b

out
1,ga) + (1− cout

1,ga − cout
3,ga)

· funif(x; aout
2,ga, b

out
2,ga) + cout

3,gafGam(x; aout
3,ga, b

out
3,ga),

(8)
where fGam(x; a, b) is a Gamma distribution with pdf

fGam(x; a, b) =


1

baΓ(a)
xa−1 exp

(
− x

b

)
, x ≥ 0;

0, otherwise;
(9)

and funif(x; a, b) is a uniform distribution with pdf

funif(x; a, b) =


1

b− a
, a ≤ x ≤ b;

0, otherwise.
(10)

From (8), we can observe that f out
ga,NNT(x) is a distribution

summed by three different constituent distributions with cout
1,ga,

1 − cout
1,ga − cout

3,ga, and cout
3,ga being their weights, respectively.

Then by carefully selecting parameters aout
1,ga, b

out
1,ga, ..., b

out
3,ga,

the distribution of γout
k with NNT is almost identical to a

mixed distribution of three distributions with non-overlapping
supports. This description can be more clear when observing
Figs. 8 and 9. Similar to γout

k with NNT, the pdf of qout
k with

NNT is also a mixed distribution:

f out
q,NNT(x) = cout

1,qfGam(x; aout
1,q, b

out
1,q)

+ (1− cout
1,q − cout

3,q)funif(x; aout
2,q, b

out
2,q) + cout

3,qfGam(x; aout
3,q, b

out
3,q),
(11)

where fGam and funif are defined in (9) and (10), respectively,
and aout

1,q, b
out
1,q, ..., b

out
3,q, c

out
1,q, c

out
3,q are the modeling parameters.

The proposed models of γout
k and qout

k with NNT are compared
with the real data in the form of cumulative distribution
function (cdf) in Figs. 8 and 9, respectively, for both June
and July. The parameters are given in Table IX in Appendix
D. From the figures we can observe the effectiveness of the
models, and that the cdfs can be regarded as a three-part
function, which gives rise to the idea of using the mixed
distribution. We note that since both γout

k and qout
k with NNT

are modeled using specifically designed distributions, they are
fitted by the K-L approach.
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Fig. 8: Comparisons between the model and real data for the
distribution of γout

k with NNT.
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Fig. 9: Comparisons between the model and real data for the
distribution of qout

k with NNT.

Now we provide the statistical modeling for γout
k and qout

k

with NT. The model for γout
k with NT is Loglogistic distribu-

tion, and the pdf of γout
k with NT is

f out
ga,NT(x) = fLogl(x;µout

ga , σ
out
ga ) =

1

σout
ga

1

x

exp(z)

(1 + exp(z))2
, (12)

where z =
log(x)−µout

ga

σout
ga

. Note that fLogl(x;µ, σ) is the standard
pdf expression of a Loglogistic distribution whose log-mean
and log-scale parameter are µ and σ, respectively. The statisti-
cal model of qout

k with NT is a variant of the Beta distribution,
namely negative Beta distribution. The pdf of qout

k with NT is

f out
q,NT(x) = fBeta(−x; aout

q , bout
q )

=


(−x)a

out
q −1(1 + x)b

out
q −1

B(aout
q , bout

q )
, − 1 < x < 0;

0, otherwise;
(13)

where B(a, b) is the Beta function. Clearly, (13) is a Beta
distribution in which the variable is −x instead of x, and the
domain of x is changed to x ∈ (−1, 0) instead of x ∈ (0, 1)
accordingly. In Figs. 10 and 11, the comparisons between
the models and real data are provided for γout

k and qout
k with

NT, respectively. We note that, different from their NNT
counterparts, γout

k and qout
k with NT are modeled using standard

distributions and their variants. Therefore they are fitted by
using a ML approach.
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Fig. 10: Comparisons between the model and real data for the
distribution of γout

k with NT.

0 0.2 0.4 0.6 0.8 1
-x

0

0.2

0.4

0.6

0.8

1

F(
x)

Empirical CDF
Data
Proposed Model

(a) June.

0 0.2 0.4 0.6 0.8 1
-x

0

0.2

0.4

0.6

0.8

1

F(
x)

Empirical CDF
Data
Proposed Model

(b) July.

Fig. 11: Comparisons between the model and real data for the
distribution of qout

k with NT.

B. Statistical Modeling for Parameters of Genre-Based Con-
ditional Popularity Distribution

We now present the statistical modeling for γin
g and qin

g . We
again consider γin

g and qin
g with NNT and NT, respectively. We

note that, according to the dataset, the probabilities of non-
negative qin

k when randomly picking a genre are P in
NNT = 0.66

and P in
NNT = 0.71 in June and July, respectively.

The γin
g with NNT is modeled by the variant of the Loglogis-

tic distribution, namely, the shifted-and-truncated Loglogistic
distribution. The pdf of γin

g is then given by

f in
ga,NNT(x;µin

ga, σ
in
ga, S

in
ga,, T

in
ga) = fSTLogl(x;µin

ga, σ
in
ga, S

in
ga, T

in
ga)

1

σin
ga

1

x− Sin
ga

exp(z)

(1 + exp(z))2
, S in

ga < x < T in
ga;∫ ∞

T in
ga

1

σin
ga

1

x− Sin
ga

exp(z)dx

(1 + exp(z))2
, x = T in

ga;

0, otherwise,
(14)

where z =
log(x−Sin

ga)−µ
in
ga

σin
ga

, Sin
ga is the shift of the original

Loglogistic distribution, and T in
ga is the truncation parameter

of the Loglogistic distribution. The qin
g with NNT is modeled

by the truncated Loglogistic distribution, i.e., the shifted-and-
truncated Loglogistic distribution with zero shift. Thus the pdf
of qin

g with NNT is

f in
q,NNT(x;µin

q , σ
in
q , T

in
q ) = fSTLogl(x;µin

q , σ
in
q , S

in
q = 0, T in

q ).
(15)

In Figs. 12 and 13, the models of γin
g and qin

g with NNT
are respectively compared with real data. We note that the
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Fig. 12: Comparisons between the model and real data for the
distribution of γin

k with NNT.
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Fig. 13: Comparisons between the model and real data for the
distribution of qin

k with NNT.

model could be made more compact than the expression in
(14) since Sin

ga is close to zero when considering the adopted
dataset. However, we include Sin

ga in the model to preserve the
flexibility when dealing with other potential datasets.16

The γin
g with NT is modeled by Weibull distribution, and its

pdf is

f in
ga,NT(x) = fWB(x; ain

ga, b
in
ga)

=


bin

ga

ain
ga

( x

ain
ga

)bin
ga−1

exp
[
−
( x

ain
ga

)bin
ga
]
, x ≥ 0;

0, otherwise.

(16)

We note that fWB(x; a, b) is the pdf of a Weibull distribution
with scaling parameter a and shaping parameter b. The qin

g

with NT is again modeled using negative Beta distribution in
(13). To be specific, the pdf of qin

g with NT is

f in
q,NT(x) = fBeta(−x; ain

q , b
in
q ). (17)

The proposed modeling for γin
g and qin

g with NT are respec-
tively compared with real data in Figs. 14 and 15.

C. Statistical Modeling for Parameters of Genre Ranking
Distribution

Here the statistical modeling for parameters ark
g and brk

g

in ranking distributions are provided. The model for ark
g is

Weibull distribution, and its pdf is

f rk
a (x) = fWB(x;αrk

a , β
rk
a ), (18)

16We found Sin
ga to be far from zero when we consider a one-week sub-

dataset instead of the complete one-month dataset.
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Fig. 14: Comparisons between the model and real data for the
distribution of γin

k with NT.
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Fig. 15: Comparisons between the model and real data for the
distribution of qin

k with NT.

where fWB(x;αrk
a , β

rk
a ) is described by (16). The model for brk

g

is Gamma distribution, and its pdf is

f rk
b (x) = fGam(x;αrk

b , β
rk
b ), (19)

where fGam(x;αrk
b , β

rk
b ) is described by (9). The comparisons

between the models and the real data for ark
g and brk

g are
provided in Figs. 16 and 17.

D. Statistical Modeling for User Loading

Here the statistical modeling for the distribution of loading
of regular users is provided. Although the loading of users is
irrelevant to the individual preferences of users, for the system
simulations and for the sake of generating the final global
popularity, the characterization of user loading is necessary.
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Fig. 16: Comparisons between the model and real data for the
distribution of ark

g .
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Fig. 17: Comparisons between the model and real data for the
distribution of brk

g .
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Fig. 18: Comparison between the model and real data of the
loading distribution.

Based on the dataset, the loading of a user is given by
the number of unique accesses of the user. Thus, the loading
of users is always greater than or equal to 30 according to
the descriptions in Sec. II.B. The loading distribution is then
modeled by the shifted MZipf distribution:

Pr(Lk = i) =
(i− 29 + qLd)−γ

Ld∑L
j=30(j − 29 + qLd)−γLd

, i ≥ 30, (20)

where Lk is the load of the user k and L is the maximum pos-
sible load; γLd and qLd are the parameters for the distribution.
In Fig. 18, the model is compared with real data.

VI. CORRELATION ANALYSIS FOR PARAMETERS OF
PROPOSED MODELING FRAMEWORK

In this section, we investigate the correlation between pa-
rameters using both the Pearson correlation coefficient, i.e.,
linear correlation coefficient, and the Spearman rank corre-
lation coefficient.17 The reasons for using rank correlation
are: (i) to provide the correlation analysis from a ranking
perspective since ranking order is an important characteristic
in our model; (ii) to allow reconstruction of the correlations
between parameters characterized by arbitrary distributions.
Note that, when parameters are non-Gaussian or not commonly
used multivariate distributions, it is generally impossible to
reconstruct their dependence by using only linear correlation
information [41]. On the contrary, the reconstruction of rank
correlation via copulas can be used generally for almost
any distributions [41], [42]. As a result, knowing the rank

17Note that there are other types of rank correlation coefficient. The
Spearman rank correlation coefficient is one of the most commonly used,
and its definition is directly related to the linear correlation coefficient.
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correlation is important and its properties are exploited by the
proposed individual probability generation in next section.

The Pearson correlation coefficient is defined as

ρLn(x, y) =
Cov(x, y)

σxσy
, (21)

where Cov(x, y) is the covariance of x and y; σx and σy are
standard deviations of x and y, respectively. The Spearman
rank correlation coefficient is defined as [43]

ρRn(x, y) =
Cov(rx, ry)

σrxσry
, (22)

where rx and ry is the corresponding ranking of the original
x and y, respectively; Cov(rx, ry), σrx and σry then are the
covariance and standard deviations of rx and ry , respectively.
We elaborate rx using an example. Suppose we have three
possible values 0.3, 0.5, 0.7 for x. Their corresponding rank-
ing, i.e., values of rx then are 1, 2, and 3, respectively. By
comparing between (21) with (22), it can be observed that (22)
is simply the linear correlation coefficient of the corresponding
ranking values of x and y. We note that since the real data is
used for conducting the correlation analyses, the corresponding
sample-based approaches are then used for finding the results
instead of the true expectations.

Here we discuss the correlations between parameters and
present some insights. We generally aim to explore the cor-
relation between parameters of the same distribution. This
is relevant to determining whether a specific trend of the
distribution (jointly determined by parameters of the same
popularity distribution) appears more frequently for a pop-
ularity distribution. Note that, in this work, parameters are
considered correlated only when their absolute values of linear
and/or rank correlation coefficients are greater than 0.5. We
then focus on the analytical discussions here, and the complete
numerical descriptions are provided in Tables I, II, III, and IV
in Appendix B.

The results are as follows. The γout
k and qout

k with NNT
are correlated positively in terms of both linear and rank
correlation coefficients. In addition, the γout

k and qout
k with NT

are also correlated positively in terms of both linear and rank
correlation coefficients. The results indicate that the γout

k and
qout
k could balance each other so that the case in which user

has a single highly preferred genre with many other extremely
low preferred genres seldom exists. Since a user’s preference
might be related to its loading and the number of genres of
interest, we also explore whether γout

k and qout
k are correlated

to Sk and Lk. The results indicate that there is no significant
correlation between them. Also, we notice that that Sk and Lk
are not correlated with each other. Thus, even if a user only
has a very few number of genres of interest, (s)he can still
impose a very high load on the network and vice versa.

We now consider the parameters of genre-based conditional
popularity distributions. For γin

k and qin
k with NNT, the results

show that there is only a slight correlation between them in
terms of both linear correlation and rank correlation. For the
case of γin

k and qin
k with NT, again only a slight correlation is

observed in terms of both linear and rank correlations. Finally
we consider the parameters of ranking distributions, i.e., ark

g

and brk
g . From the results, we observe that they are correlated

with each other in terms of linear and rank correlations.
Besides, since it is intuitive that a more popular genre (in
terms of global ranking order) should have a higher likelihood
of having a higher rank, we explore the ranking correlation
between ark

g , brk
g , and the global ranking. Specifically, we relate

the global rank of each genre with their ark
g and brk

g and
compute the rank correlation. The result shows that the ark

g and
brk
g are somewhat correlated to the global ranking, indicating

that a genre with a higher global rank is likely to have a higher
rank among the interests of the users.

VII. PROPOSED INDIVIDUAL PREFERENCE PROBABILITY
GENERATION

In this section, we first propose an approach that can
generate individual preference probabilities of users according
to the models, parameterization, and correlation results in
previous sections. Then the effectiveness of the proposed
generation approach is validated by comparisons with real-
world data.

A. Parameter Generation

To generate the individual preference probabilities of users,
the first step is to generate the parameters used by the models
in Secs. III and IV via using the results in Secs. V and VI. The
parameter generation is based on the rank correlation results
and the individual marginal distributions of the parameters.
We therefore define the parameter generation function as

y(x) = Gpara(C
Rn
x , {fx}), (23)

where x is the parameters to be generated, y is the generated
instance of x, CRn

x is the rank covariance matrix of x, and
{fx} is the set of marginal distributions of x. We note that
the implementation recipe of Gpara(C

Rn
x , {fx}) is provided in

Appendix C. Also note that if a parameter in x is not correlated
with other parameters, it is obvious that the parameter instance
of x can be generated simply by its marginal distribution.

There are two types of parameters: (i) library-based param-
eters, and (ii) individual-based parameters. Since library-based
parameters are determined at the beginning of the generation
process of a library and is invariant across users, they either
are directly given from the setup or only need a single
generation for a particular library. By contrast, the individual-
based parameters are generated independently for each user,
and different users generally have their own instances of
parameters. The library-based parameters are: G, Mg, ∀g, aSi,
bSi, MSi, γin

g , qin
g , ark

g , brk
g , ∀g, γap, Nap, L, γLd, and qLd. The

individual-based parameters are: γout
k and qout

k , ∀k.
Finally, we discuss the sensitivity of the statistics of the

parameters with respect to the change of datasets based on
the extensive real-world data in June and July. Indeed, the
parameterization results show that the statistics of dataset of
June and July are quite similar, and most of the fundamental
statistics of the parameters in two datasets are close, including
aSi, bSi, MSi, ark

g , γap, Nap, L, γLd, qLd, γout
k and qout

k . In
addition, the rest of the parameters are only different in part.
Specifically, for γin

g and qin
g , the differences lie only in the cases
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considering their negative types; for brk
g , the difference lies only

at the values of αrk
b . In conclusion, the fundamental statistics of

the parameters in the framework is insensitive to the change of
time in the scale of one month for our dataset.18 This also leads
to similar global popularity distributions, as we will see in Sec.
VII.C. We should note that although their statistics are similar,
they are actually different in many details, including the exact
file and genre orders and the exact popularity distributions of
a genre. We also stress that the conclusion here is only valid
for the dataset adopted in our work, and the extension of this
conclusion to other timeframes, and in particular to other types
of video service such as YouTube or Netflix should undergo
a careful examination.

B. Procedure of the Proposed Individual Preference Probabil-
ity Generation Approach

Here the general procedure of the individual preference
probability generation is elaborated. Note that the sketch of
the generation approach has already been provided in Fig. 1.
To generate the individual preference probabilities of users, we
first prepare all the library-specific parameters. Then the genre-
based conditional popularity distributions P in

g (.), ∀g, genre
appearance probabilities Pap(g), ∀g, and ranking distributions
{Pr(Rg)}, ∀g, are generated according to (5), (6), and (7),
respectively. Note that these distributions are library-specific
and are invariant when generating individual preference prob-
abilities of different users.

We next generate the individual popularity distribution of
user k. The number of genres in the genre list of user
k, i.e., Sk, is first generated according to (2). Then we
generate γout

k and qout
k according to the results in Sec. V.A and

(23). Subsequently, the individual genre popularity distribution
P out
k (.) is generated according to (4). The genre list and the

individual ranking order of user k are generated according
to the proposed ranking order generation approach in Alg. 1.
The output of the ranking order generation process is the genre
index vector rk of user k, where rk contains the indices of
genres that appear in the genre list. Besides, the order of the
indices in rk is exactly the ranking order of corresponding
genres. Therefore rk uniquely specifies the genre list and the
ranking order of user k. For example, suppose we have G = 5,
Sk = 3, and rk = [3, 2, 5]. We know that the genre 2, 3, and
5 are genres in the genre list of user k; genre 3 is ranked
1st; genre 2 is ranked 2nd; and genre 5 is ranked 3rd for user
k. For Alg. 1, we provide the following remarks: (i) ‖r‖0 is
equal to the number of non-zero entries in r, where ‖ · ‖0 is
the L0 norm; (ii) step 4 is to randomize the filling order of
genres at each round; (iii) step 7 is to check whether the genre
has already been filled into the genre list; (iv) step 10 is to
check whether the selected genre should appear in the genre
list, whether the ranking value R is less or equal to the size of
the genre list, and whether the genre list is full; and (v) step
16 is to generate the final order of genres in the list according
to the generated ranking values. For example, suppose G = 5,

18We note that all descriptions here can be quantified by comparing the
values in the Tables in Appendix D.

Sk = 3, and r = [0, 2, 1, 0, 2]. We would have rk = [3, 2, 5]
according to step 16 in Alg. 1.

Equipped with genre-based conditional probability distri-
butions P in

g (.) and after the generations of the individual
preference popularity P out

k (.) and the genre index vector rk,
individual preference probabilities of user k can then be
generated by19

pkg,m = f out
k,g × P in

g (m), (24)

where
f out
k,g =

{
P out
k (i), entry i of rk = g

0, otherwise
. (25)

Eq. (25) indicates that only genres indexed in rk have non-
zero preference probabilities, and the preference order is given
by the order of indices in rk. For example, suppose that we
have G = 5, Sk = 3, P out

k (1) = 0.5455, P out
k (2) = 0.2727,

P out
k (3) = 0.1818, and rk = [3, 2, 5]. Then f out

k,1 = f out
k,4 = 0,

f out
k,3 = P out

k (1) = 0.5455, f out
k,2 = P out

k (2) = 0.2727,
and f out

k,5 = P out
k (3) = 0.1818. We note that, without loss

of generality (for the proposed modeling framework), (24)
assumes the indices of files within each genre to follow the
descending order of the global popularities of files within the
genre, i.e., pkg,m ≥ pkg,m+1, ∀k. By combining (24) with (25),
the individual preference probabilities pkg,m, ∀g,m of user k
can be obtained. By repeating the procedures in this section,
individual preference probabilities of different users can be
generated. We note that although Lk is not used for generating
the individual preference of a user, it is used when generating
the global preference of users since it indicates the traffic
generated by each user. The global popularity distribution is
generated by

pGb
g,m =

∑K
k=1 p

k
g,m × Lk∑

g,m

∑K
k=1 p

k
g,m × Lk

, (26)

where pGl
g,m is the global preference probability of file m in

genre g, K is the total number of users, and Lk is the loading
of user k generated according to (20).

C. Numerical Validations

Here the generation approach is validated by comparing
generated results to the underlying real data. To set up the
generation approach, basic parameters of models used by the
approach need to be specified and are provided in Table IX
in Appendix D. We note that since the proposed modeling
assumes each file has only one annotated genre while the files
could indeed have more than a single annotated genre in the
real data, there exists a mismatch for the number of files in
each genre between the generation approach and the real data
when considering they have the same number of total files. To
calibrate, we conduct an adjustment on the numbers of files in
genres of the generation approach so that the influences of the

19It can be observed that, with the proposed modeling and generator, the
file m in genre g is ranked at the mth position in the genre-based conditional
popularity distribution of genre g. This is because the non-user-specific genre-
based conditional popularity distribution is used to approximate the user
preferences of files within the genre, and this index arrangement is used for
convenience and without loss of the generality.
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Algorithm 1 Proposed Ranking Order Genreation Approach
1: Input: Sk

2: Init: a zero vector r = 0
3: while ‖r‖0 < Sk do
4: Create a random permutaion vector Pv with entries being

2, 3, ..., G and create an augmented vector P = [1|Pv]
5: for i = 1→ G do
6: g = P(i)
7: if r(g) = 0 then
8: t v binomial(1, Pap(g))
9: R v DGamma(ark

g , b
rk
g , G)

10: if t = 1 and R ≤ Sk and ‖r‖0 < Sk then
11: r(g) = R
12: end if
13: end if
14: end for
15: end while
16: rk = arrangement of indices of sort(r, ascend). Break tie by

putting the lower index at the lower order. Ignore indices with
corresponding values being zero in r.

17: return rk

multi-genre files are accommodated. To clarify the concept
used for the calibration, the following example is provided.
Suppose we have 1000 files in genre 1 and 2000 files in
genre 2 according to real data, but the number of total files
is only 2400 because there are 600 files annotated with both
genres 1 and 2. This indicates we want M1 +M2 = 2400 for
the generation approach. Then since there are 600 files to be
shared by genres 1 and 2, we consider these files contribute 1

2
to each genre, i.e., a file with 2 annotated genres is counted as
1
2 file in each genre. Therefore after the calibration, we have
M1 = 400 + 300 = 700 and M2 = 1400 + 300 = 1700.20

Note that all the numbers of files Mg, ∀g, after calibration are
provided in Tables XI and XII in Appendix D.

In addition to the calibration issue, since the global popular-
ity distribution is highly sensitive to the parameters of genre-
based conditional popularity distributions, i.e., γin

g , ∀g and
qin
g , ∀g, to have a highly accurate generation for comparison

purpose, in addition to providing the results generated purely
by the statistical models in Sec. V.B, we also provide the
results for which the numerical values directly derived from
the dataset are used for the top 30 ranked genres, i.e., for
γin
g , g = 1, ..., 30 and qin

g , g = 1, ..., 30. Their values are
provided in Table X in Appendix D. To clarify the sensitivity
problem and the reason of using the numerical values, we
stress that the real-world data is actually one of all possible
instances that can be generated by the proposed generation
approach. In other words, when using the statistical approach
for generating certain parameters, we are comparing one
particular realization of the file popularities with another
realization (the measured data). Also, since the conditional
genre-based popularity distributions whose corresponding gen-
res are popular generally cover a wide range of files, the
change of parameters of those popularity distributions indeed
influences the final popularity significantly. Moreover, because
the generation approach is non-linear, taking the average of the
differently generated global popularity distributions does not

20If there exist fractional numbers after the calibration, they are simply
rounded to the nearest integer.
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Fig. 19: Comparison between global popularity distributions
from proposed generation approach and real data in June.
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Fig. 20: Comparison between global popularity distributions
from proposed generation approach and real data in July.

actually give the equivalent result generated by the average of
parameters.

The validation of the individual components of the model
has been provided in previous sections throughout the paper.
Hence, as a validation of the complete model, we inves-
tigate whether averaging over the obtained individual user
distributions provides the total popularity distribution that was
independently extracted from the observed data. We note that
the complete flow of the generation approach is provided in
Fig. 31 in Appendix D, and it is particularly used for the
validations in this work. Thus it is also a demonstration of
how to use the proposed framework and generation approach
to generate the individual preference probabilities and their
corresponding global popularity distribution. Fig. 19 compares
the global popularity of files of the dataset of June with the
global popularity of files constructed by realizations generated
by the generator; the same comparison for July is in Fig. 20.
The results show good agreement between the model and the
data in both figures when the numerical values of γin

g and qin
g

are used for the top 30 ranked genres. We note that the global
popularity distributions in Figs. 19 and 20 are close because
the statistics of parameters are insensitive to the monthly
change as we discussed at the end of Sec. VII.A.

VIII. SUMMARY OF INSIGHTS AND APPLICATIONS

To finish our discussions, here we first summarize insights
of this work and then discuss possible applications. To model
the popularity distributions, we introduce the MZipf distri-
bution, which is commonly used for modeling popularity
distributions. For most cases of the results, the plateau factor
of the MZipf distribution is positive, leading to a flat head
followed by a steep tail. The flat head indicates that there is
a group of popular files/genres with almost equal popularity
and the steep tail represents a group of progressively less
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popular files/genres. This implies that the requests are mainly
from the group of popular files/genres, and the requests spread
out evenly within such group. The results of the size and
ranking distributions indicate that each person usually has
only a handful of genres of interest. Besides, the genres
of interests and the corresponding orders of preferences are
different between different individuals. From the statistics
of parameters, the positive correlation between parameters
of individual genre popularity distributions indicates that the
cases that a user has a single highly preferred genre with many
other extremely low preferred genres seldom exists. Besides,
we observe that the individual genre popularity distribution
is not correlated to the number of genres of interest and the
loading a user imposes on the network. Furthermore, we did
not find obvious correlations between the number of genres
of interest and the loading, indicating that even if a user only
has a very small number of genres of interest, (s)he can still
impose a very high load on the network and vice versa. Finally,
we notice that the shape of a ranking distribution is slightly
related to the global ranking of that genre. Specifically, when
a genre has a higher global rank, it is more likely that its has
a higher rank among the interests of the users.

The improved modeling of the popularity distribution, i.e.,
the modeling involving individual preferences, allows the
following applications:
• Adjust the cached content individually to maximize the

utility according to the estimated individual preferences
of users [29], [30], [33], [46].

• Improve system performance by grouping users with
similar preferences to enhance cooperation between users
[34], [35], [47].

• Optimize the caching policy by considering the individual
preferences of users [36]–[38].

• Decide where and how to store content in intermediate
routers by considering the aggregates of interests at the
edges of the network adopting an information-centric
architecture [48].

• Adjust advertising campaigns to appeal better to con-
sumers of such TV shows.

• Offer foundation of more accurate network analysis.
Recent literature has demonstrated that exploiting the infor-
mation of individual preferences can further improve different
aspects of the systems, while they either offered evaluations
using simple individual preference modeling without support
by real-world data or spent significant efforts on obtaining
the data. Note that since collecting data is very challenging,
sometimes, even if a research group spends significant efforts,
the volume of the collected data might still be insufficient
for providing reliable results. Our work can help in this
situation. Based on the real-world data, the proposed modeling
framework and parameterization can be used to generate
the practical pseudo individual preference probabilities for
verifying the investigations considering individual preferences.
A demonstration of applying our work is provided in [37].

IX. CONCLUSIONS

This paper proposed what is to the best of our knowledge
the first modeling framework and corresponding statistical

models for individual preference probabilities of users for
video content based on real-world data, and following the
framework, parameterizations and correlation analyses are
conducted. The parameterized model is able to reproduce
critical statistics of the individual preferences, and therefore
an individual probability generation approach is proposed by
judiciously linking those statistics together. The modeling
framework is based on, and parameterized by, extensive real-
world data sets. The effectiveness of the proposed models and
the generation approach was validated.

The framework and methodology presented in this work
are capable of being used for other datasets, and the analysis
methods and approaches adopted throughout the paper are
extensible. Also, the flexibility of the proposed generation
approach allows to replace particular fitting distributions if
other data sets might indicate a need for such a replacement.
In other words, any part of the models can be replaced if
necessary, and the generation approach can still be effective
as long as the logical flow and critical implementation steps
are preserved. On the other hand, parameterization and corre-
lation analysis results depend on the dataset, and there is no
guarantee for extending those results to other datasets. Thus,
careful examinations should be conducted when considering
other datasets.
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less content caching for small cell and D2D networks,” IEEE J. Sel.
Area Commun., vol. 34, no. 5, pp. 1222-1234, May 2016.

[20] D. Malak, M. Al-Shalash, and J. G. Andrews, ”Optimizing content
caching to maximize the density of successful receptions in device-to-
device networking,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4365-
4380, Oct. 2016.

[21] M. Ji, G. Gaire, and A. F. Molisch, ”The throughput-outage tradeoff of
wireless one-hop caching networks,” IEEE Trans. Inf. Theory, vol. 61,
no. 12, pp. 6833-6859, Dec. 2015.

[22] B. Chen, C. Yang, and A. F. Molisch, ”Cache-enabled device-to-device
communications: Offloading gain and energy cost,” IEEE Trans. Wireless
Commun., vol. 17, no. 7, pp. 4519-4536, Jul. 2017.

[23] B. Chen, C. Yang, G. Wang, ”High-Throughput opportunistic coopera-
tive device-to-device communications with caching,” IEEE Trans. Veh.
Technol., vol. 66, no. 8, pp. 7527-7539, Aug. 2017.

[24] R. Wang, J. Zhang, S. H. Song, and K. B. Letaief, ”Mobility-Aware
Caching in D2D Networks,” IEEE Trans. Wireless Commun., vol. 16,
no. 8, pp. 5001-5015, Aug. 2017.

[25] M. A. Maddah-Ali and U. Niessen, ”Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[26] Y. Guo, L. Duan, and R. Zhang, ”Cooperative local caching under
heterogeneous file preferences,” IEEE Trans. Commun., vol. 65, no. 1,
pp. 444-457, Jan. 2017.

[27] D. Karamshuk, N. Sastry, A. Secker, and J. Chandaria, “ISP-friendly
peer-assisted on-demand streaming of long duration content in BBC
iPlayer,” IEEE INFOCOM, 2015.

[28] D. Karamshuk, N. Sastry, A. Secker, and J. Chandaria, “On factors
affecting the usage and adoption of a nation-wide TV streaming service,”
IEEE INFOCOM, 2015.

[29] G. Nencioni, N. Sastry, G. Tyson, and et. al., ”SCORE: Exploiting global
broadcasts to create offline personal channels for on-demand access,”
IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2429-2442, Aug. 2016.

[30] D. Karamshuk, N. Sastry, M. Al-Bassam, A. Secker, and J. Chandaria,
”Take-Away TV: Recharging wok commutes with predictive preloading
of catch-up TV content,” IEEE J. Sel Commun., vol. 34, no. 8, pp.
2091-2101, Aug. 2016.

[31] C. A. Gomez-Uribe and N. Hunt, ”The netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Management
Inf. Syst., vol. 6, no. 4, pp. 13:113:19, 2016.

[32] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos,
”Caching-aware recommendations: Nudging user preferences towards
better caching performance,” in Proc. INFOCOM, May 2017.

[33] W. Hoiles, O. N. Gharehshiran, V. Krishnamurthy, N.-D. Dáo, and H.
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APPENDIX A
CHALLENGES, LIMITATIONS, AND DRAWBACKS OF

KULLBACK-LEIBLER DISTANCE BASED PARAMETER
ESTIMATION

When dealing with a dataset with a large amount of raw
data and without much understanding of the properties of the
dataset, the estimation of the critical parameters is challenging.
This is either because the exact properties are unclear or even
because we do not know what parameter is most suitable one
to estimate. In such a case, the K-L based estimation is useful
because it is simple to implement and is intuitively relevant to
the fundamental property of statistics, i.e., the K-L distance.

K-L based estimation also has its limitations and draw-
backs. First of all, it could be subject to overfitting, and
thus sometimes provides non-smooth results. For example,
it can be observed from Figs. 12 and 13 that the tails of
the curves are non-smooth. Besides, the performance of the
estimation is difficult to analyze. In fact, we need to resort
to a numerical approach, such as bootstrapping, to find the
confidence intervals as presented in Appendix D. Moreover,
it cannot provide any insight for choosing between different
models. To be specific, if we keep adding more parameters
into the modeling distribution, the K-L distance results of the
K-L based estimation might keep improving, which indicates
that the additional parameters can provide the better model.
However, this might not be true because the increase of
number of parameters in a model can have adverse impacts
on other aspects, such as complexity and overfitting effect.
From these discussions, it can be understood that there are
non-trivial issues that can be more profoundly investigated
for refining the framework. However, since our focus is to
provide a complete modeling, parameterization, and preference
generation framework based on the real-world data, treatments
of those issues remain topics for future works.

APPENDIX B
DETAILS OF THE CORRELATION ANALYSIS RESULTS

Here the results of correlation analysis are reported in
detail. To be specific, we provide several tables to present
the correlation coefficients between different parameters and
their corresponding 95% confidence intervals.

In Tables I and II, the linear correlation results, i.e., the
Pearson correlation coefficients of parameters, are presented
for June and July, respectively. Note that the confidence
intervals in the tables are computed by using the standard
tool in Matlab (2017). From the tables, we can observe that
the confidence intervals regarding parameters of genre-based
conditional popularity and genre ranking distributions are
wide. The main reason could be that we do not have sufficient
samples for them. In fact, we can only get around 50 to 110
samples for them because we only have G = 110 genres.

In Tables III and IV, the rank correlation results, i.e., the
Spearman correlation coefficients of parameters, are presented
for June and July, respectively. We note that the correlation
coefficient and confidence intervals here are computed by fol-
lowing the definition in (22), i.e., we first convert the original
values into their corresponding ranks, and then conduct the
linear correlation computation.

TABLE I: Linear Correlation Results of June

Parameters Correlation Confidence Interval
γout
k NNT vs. qout

k NNT 0.806 [0.805, 0.807]
γout
k NNT vs. Sk NNT −0.080 [−0.076,−0.072]
γout
k NNT vs. Lk NNT 0.015 [0.011, 0.019]
qout
k NNT vs. Sk NNT −0.037 [−0.041,−0.033]
qout
k NNT vs. Lk NNT −0.003 [−0.007,−0.001]
Sk NNT vs. Lk NNT 0.236 [0.232, 0.240]
γout
k NT vs. qout

k NT 0.578 [0.573, 0.583]
γout
k NT vs. Sk NT −0.008 [−0.016, 0.000]
γout
k NT vs. Lk NT 0.036 [0.029, 0.044]
qout
k NT vs. Sk NT 0.038 [0.030, 0.046]
qout
k NT vs. Lk NT 0.016 [0.008, 0.024]
Sk NT vs. Lk NT 0.215 [0.207, 0.222]

γin
g NNT vs. qin

g NNT 0.281 [0.006, 0.517]

γin
g NT vs. qin

g NT 0.366 [0.032, 0.627]

ark
g vs. brk

g 0.570 [0.406, 0.698]

TABLE II: Linear Correlation Results of July

Parameters Correlation Confidence Interval
γout
k NNT vs. qout

k NNT 0.812 [0.811, 0.813]
γout
k NNT vs. Sk NNT −0.345 [−0.349,−0.341]
γout
k NNT vs. Lk NNT 0.091 [0.087, 0.095]
qout
k NNT vs. Sk NNT −0.166 [−0.170,−0.162]
qout
k NNT vs. Lk NNT 0.067 [0.063, 0.071]
Sk NNT vs. Lk NNT 0.281 [0.277, 0.285]
γout
k NT vs. qout

k NT 0.605 [0.600, 0.610]
γout
k NT vs. Sk NT −0.030 [−0.037,−0.022]
γout
k NT vs. Lk NT 0.063 [0.055, 0.070]
qout
k NT vs. Sk NT 0.188 [0.180, 0.195]
qout
k NT vs. Lk NT 0.068 [0.060, 0.075]
Sk NT vs. Lk NT 0.266 [0.260, 0.274]

γin
g NNT vs. qin

g NNT 0.301 [0.044, 0.521]

γin
g NT vs. qin

g NT 0.286 [−0.076, 0.581]

ark
g vs. brk

g 0.605 [0.453, 0.723]

TABLE III: Rank Correlation Results of June

Parameters Correlation Confidence Interval
γout
k NNT vs. qout

k NNT 0.714 [0.712, 0.716]
γout
k NNT vs. Sk NNT −0.074 [−0.078,−0.070]
γout
k NNT vs. Lk NNT 0.022 [0.018, 0.026]
qout
k NNT vs. Sk NNT −0.024 [−0.028,−0.020]
qout
k NNT vs. Lk NNT −0.002 [−0.006, 0.002]
Sk NNT vs. Lk NNT 0.171 [0.167, 0.175]
γout
k NT vs. qout

k NT 0.666 [0.662, 0.671]
γout
k NT vs. Sk NT 0.011 [0.003, 0.019]
γout
k NT vs. Lk NT 0.060 [0.053, 0.068]
qout
k NT vs. Sk NT 0.044 [0.036, 0.052]
qout
k NT vs. Lk NT 0.021 [0.013, 0.029]
Sk NT vs. Lk NT 0.155 [0.147, 0.162]

γin
g NNT vs. qin

g NNT 0.386 [0.123, 0.598]

γin
g NT vs. qin

g NT 0.341 [0.003, 0.609]

ark
g vs. brk

g 0.625 [0.475, 0.739]

ark
g vs. Global Rank 0.268 [0.059, 0.455]

brk
g vs. Global Rank −0.303 [−0.485,−0.096]
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TABLE IV: Rank Correlation Results of July

Parameters Correlation Confidence Interval
γout
k NNT vs. qout

k NNT 0.748 [0.746, 0.749]
γout
k NNT vs. Sk NNT −0.345 [−0.349,−0.342]
γout
k NNT vs. Lk NNT 0.128 [0.124, 0.132]
qout
k NNT vs. Sk NNT −0.125 [−0.129,−0.121]
qout
k NNT vs. Lk NNT 0.082 [0.078, 0.086]
Sk NNT vs. Lk NNT 0.249 [0.245, 0.252]
γout
k NT vs. qout

k NT 0.702 [0.698, 0.706]
γout
k NT vs. Sk NT 0.050 [0.042, 0.058]
γout
k NT vs. Lk NT 0.115 [0.108, 0.123]
qout
k NT vs. Sk NT 0.210 [0.202, 0.217]
qout
k NT vs. Lk NT 0.099 [0.092, 0.107]
Sk NT vs. Lk NT 0.274 [0.267, 0.281]

γin
g NNT vs. qin

g NNT 0.503 [0.279, 0.675]

γin
g NT vs. qin

g NT 0.301 [−0.060, 0.592]

ark
g vs. brk

g 0.610 [0.459, 0.726]

ark
g vs. Global Rank 0.146 [−0.069, 0.345]

brk
g vs. Global Rank −0.385 [−0.550,−0.190]

APPENDIX C
GENERATION OF CORRELATED RANDOM SAMPLES WITH
ARBITRARY DISTRIBUTIONS USING RANK CORRELATION

Here the implementation recipe of the rank-based parameter
generation defined in (23) is provided. The generation is
based on the Gaussian copula and rank correlation and can
be realized by ”Statistics and Machine Learning” toolbox in
Matlab (2017).

We consider the x whose dimension is N , i.e., we consider
N parameters. We suppose the rank correlation of x, i.e., CRn

x ,
and their marginal distributions {fx} are given. To generate
the dependent M instances of N parameters, the first step is
to generate M samples of each parameter vx1

, ...,vxN
using

their marginal distributions fx1
, ..., fxN

, where xn is the nth
parameter in x and each vxn

is a vector with dimension M .
This can be implemented using randsrc in Matlab. Then step 2
is to convert the CRn

x into its corresponding linear correlation
coefficient CLn

x by exploiting properties of Gaussian copula.
This can be implemented by using copulaparam in Matlab.
Step 3 is to generate the Gaussian copula random numbers
ux1

,ux2
, ...,uxN

using CLn
x , where the dimension of each

uxn is M . This step can be implemented using copularnd in
Matlab. Step 4 is to find the orders of each uxn in ascending
order and record the indices of the orders using in. Step 5
is to rearrange the order of each vxn

by using in, and the
rearrangement is to let vxn

follow the order of uxn
. The

psudocode of the generation approach is provided in Alg. 2
with the corresponding implementation functions in Matlab.
Note that the final yn in Alg. 2 is the samples for paramter xn,
∀n, and the collection of a n-tuple (y1(m),y2(m), ...,yN (m))
is a dependent instance of x. We note that a simple but
representative example for this generation approach can be
found in [42].

APPENDIX D
DETAILS OF THE PARAMETERIZTION RESULTS AND

INDIVIDUAL PREFERENCE PROBABILITY GENERATION
APPROACH

In this appendix, the complete parameterization results of
the models are first provided. Then the complete implemen-

Algorithm 2 Implementation Recipe of the Rank-Based Pa-
rameter Generation

1: vxn = randsrc(M, fxn), ∀n; implemented using randsrc in
Matlab.

2: CLn
x = copulaparam(Gaussian,CRn

x , type, Spearman), ∀n;
implemented using copulaparam in Matlab.

3: uxn = copularnd(Gaussian,CLn
x ,M), ∀n; implemented us-

ing copularnd in Matlab.
4: in = sort(uxn), ∀n; implemented using sort in Matlab.
5: yn(in) = sort(vxn), ∀n.

tation flow chart of the generation approach specifically used
for the numerical results in Section VII.C is presented. This
implementation can be regarded as an example of using the
modeling framework and generation approach. Finally, we
offer the additional details for generating the numerical results.

The complete parameterization results and their correspond-
ing 95% confidence intervals are provided in Table IX at the
end of the appendices. We note that when a parameterization
is conducted by using ML approach, the confidence inter-
val is provided simply by standard approach (from Matlab
toolbox). However, when considering parameterization using
K-L approach, the confidence interval calculation is via the
bootstrapping [44], which is a Monte-Carlo based approach,
with 1000 bootstrapping samples. Note that the bootstrapping
confidence interval calculations can be implemented by using
the function bootci in the ”Statistics and Machine Learning”
toolbox in Matlab (2017). The results are shown in Table
IX for June and July, respectively. We note that since the
parameters directly given by the setup or environment do not
have confidence intervals, we note their confidence intervals
as ”None” in the tables.

With those fundamental parameters being specified, we then
can generate the individual preference probabilities of users
via using the modeling framework and generation approach.
Therefore we provide a complete flow diagram of the im-
plementation recipe of the generation approach in Fig. 31 at
the end of the paper. In the figure, the rectangular blocks
whose corners are sharp, i.e., the red blocks, correspond to
the steps of the parameter generation; the rectangular blocks
whose corners are round, i.e., the blue blocks, correspond to
the steps of the main modeling framework; and the ellipse
blocks, i.e., the green blocks, correspond to the final generated
results. We note that the flow in Fig. 31 somehow corresponds
to the adopted dataset in this work in the sense that the detailed
structure of parameter generation is constructed according to
the parameterization and correlation analysis results of the
adopted dataset, i.e., we jointly generate those parameters
that are correlated with one another. This also implies that
if the parameterization and/or correlation results are different
(when another dataset is used), the structure of the parameter
generations needs to be fine-tuned accordingly. We also note
that the Mg, ∀g, i.e., the numbers of files of each genre, are
parameters determined by the emulation setup.

Finally, as mentioned in Sec. VII.C, the numerical vali-
dations in Figs. 19 and 20 require the specifically provided
numerical values of γin

g , q
in
g , g = 1, ..., 30, and the calibrated

numerical values of Mg, ∀g, of the dataset. Their values are
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TABLE V: K-L Distance Results of Proposed Models in Secs.
III and VI, and loading distribution

Modeling Target Dataset K-L Distance
Individual genre popularity June 0.0277
Individual genre popularity July 0.0279

Genre-based conditional popularity June 0.0731
Genre-based conditional popularity July 0.0770

Size distribution June 0.0067
Size distribution July 0.0070

Genre appearance probability June 0.0701
Genre appearance probability July 0.0832

Ranking distribution June 0.0311
Ranking distribution July 0.0321
Loading distribution June 0.0015
Loading distribution July 0.0021

respectively provided in Tables X, XI and XII at the end of
the appendices.

APPENDIX E
EMPIRICAL JUSTIFICATIONS FOR THE PROPOSED

MODELING

Here we report the K-L distance and K-S test results of
our models. We first report the average K-L distance for
models in Secs. III and IV, and the loading distribution in
Table V. From the Table, we can see that the K-L distances
are all small, indicating the effectiveness of the proposed
models. For the statistical representation provided in Sec.
V, our goal is to reduce the description complexity of the
parameter set. We thus express the parameterization either by
well-known distributions or by certain specifically designed
distributions. For the specifically designed distributions, we
provide the K-L distance to show that our representation is
effective; for the well-known distributions, we conduct the K-
S test at the standard significance level of 0.05 to show that
our representations are effective. Note that when a K-S test
cannot reject the null hypothesis, it indicates we cannot say
the proposed modeling distribution is not equivalent to the
statistics of the real data. The K-L distance results are shown
in Table VI; and the K-S test results are shown in Table VII.
All results show that our statistical representations are effective
except for the γout

k NT and qout
k NT. This is because, in these

cases, we compare the quantized real data with continuous
distributions, and the K-S test is conducted with a large
number of samples (more than 70000 samples). Note that the
parameterization of the real data is quantized because it is not
possible to exhaustively search for the best parameters located
in a real domain without quantization. However, although they
did not pass the K-S test, we can still see from the Figs. 10 and
11 that the statistical representations fit the real data very well.
To make the above statement more concrete, we compare γout

k

NT and qout
k NT with their corresponding quantized modeling

distribution and show the results using K-L distance in Table
VIII. We can see that the K-L distances are small, indicating
good fit between the proposed modeling and real data.

TABLE VI: K-L Distance Results of the Specifically Designed
Distributions in Sec. V

Modeling Target Dataset K-L Distance
γout
k NNT June 0.0865
γout
k NNT July 0.0808
qout
k NNT June 0.0352
qout
k NNT July 0.0361

TABLE VII: K-S Test Results of the Well-Known Distribu-
tions in Sec. V

Modeling Target Dataset K-S Test
γout
k NT June The test reject the null hypothesis
γout
k NT July The test reject the null hypothesis
qout
k NT June The test reject the null hypothesis
qout
k NT July The test reject the null hypothesis

γin
g NNT June The test cannot reject the null hypothesis
γin
g NNT July The test cannot reject the null hypothesis
qin
g NNT June The test cannot reject the null hypothesis
qin
g NNT July The test cannot reject the null hypothesis
ark
g June The test cannot reject the null hypothesis
ark
g July The test cannot reject the null hypothesis
brk
g June The test cannot reject the null hypothesis
brk
g July The test cannot reject the null hypothesis

APPENDIX F
INDIVIDUAL PREFERENCE MODELING OF FACEBOOK

DATASET

Here we use another dataset, which is from the records of
Facebook, to validate our proposed modeling framework and
show the generality and extensibility. In particular, we will
see that the general structure of our modeling framework, and
the functional shape of the different curves, carry over very
well. The specific parameterizations are, of course, different
between the two data sets, since they describe different types
of video services.

The Facebook dataset contains records from the on-demand
video accesses, which are firstly generated in the form of
live videos in a live social broadcast platform, Facebook
Live [49], and then change to on-demand videos after the
conclusion of the live broadcast. We collected a large-scale
dataset comprising of interactions from users during eight
months. As a part of the crawl, we collect all the comments
made during the eight months for the videos that were made
available after the live broadcast. Since comments are one of
the major forms of the user interaction with the video, we use
the records of comments as the indications of accesses from
the users. While we realize that the commenters are only a
subset of the viewers, this was the only way data could be
obtained. Since we are interested in the genre of the user-
access, we focus on the page videos, which are typically
maintained by various organizations, e.g., political parties,

TABLE VIII: K-L Distance Results of the Quantized Well-
Known Distributions in Sec. V

Modeling Target Dataset K-L Distance
γout
k NT June 0.0188
γout
k NT July 0.0192
qout
k NT June 0.0572
qout
k NT July 0.0527
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Fig. 21: Exemplary comparisons between the model and real
data of individual genre popularity distributions.

news channels, and sports teams, as the videos published
from a page are usually tagged with the categories. Note that
the number of genres in this dataset is 35. To this end, we
have collected 3.8M users accessing 123K categorized videos,
which we will use for the analysis of individual preference
modeling.21 While the amount of data is not as much as the
BBC iPlayer and might not be able to provide reliable results,
we believe it includes a significant proportion from a new and
widely accessed live medium to indicate that our modeling
approach is applicable to more scenarios than the BBC iPlayer.
We emphasize that collecting data is very challenging, due to
privacy considerations. We also note that although both the
BBC iPlayer and Facebook datasets contain on-demand video
streaming, they indeed feature different types of contents.

Based on the Facebook dataset, we apply the proposed
modeling framework. We again consider the unique access
feature and consider only those users that have at least 10
unique accesses. The genre-based structure is again used,
and the modeling results are demonstrated in the following.
Fig. 21 shows the results of the individual genre popularity
distributions. From the figures, we can observe good matches
between the real data and the proposed model. The results of
the genre-based conditional popularity distributions are shown
in Fig. 22. Again, we see that the proposed model can fit the
real data. We note that considering all the data on hand, the
MZipf distribution can effectively model all the distributions
involving genre popularity.

In Fig. 23, we compare the real data with the proposed
model of the ranking distribution. From the figures, we can
see that all the figures show an excellent match between the
proposed model and real data except for Fig. 23d, which
was specifically chosen to demonstrate one of the few cases
in which the real data does not match the proposed model
so effectively. Rather, the results match the model proposed
in our conference version [45], i.e., the double-sided Zipf
distribution, which corresponds to the case where we consider
only high frequency users; the possible explanation is that the
Facebook dataset on hand might still not be large enough

21Though we collected data from so many users, only approximately seven
thousand of them are useful for analysis, i.e., only few of them can provide
at least 10 identifiable unique accesses.
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Fig. 22: Exemplary comparisons between the model and real
data of genre-based conditional popularity distributions.
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Fig. 23: Exemplary comparisons between the model and real
data of ranking distributions.

to include a sufficient amount of regular users, leading to
the higher emphasis on high frequency users. We compare
the proposed models of the appearance probabilities, size
distribution, and loading distribution with the real data in Figs.
24, 25, and 26, respectively. From all figures, we can again
observe excellent matches between the proposed models and
the real data. Also, it is interesting to mention that, different
from the results of the BBC iPlayer, the Facebook results
demonstrate the concentration on the rank to be equal to one or
two and the size of genre list to be equal to one. In other words,
in the Facebook dataset, most people concentrate merely on
one or two areas of interest.

Finally, we validate the proposed generation approach with-
out considering the statistical representations of parameters
proposed in Sec. V, i.e., we simply using the numerical values
of the models in Secs. III and IV to generate the global
popularity distribution. This is because from the results of the
parameterization, the number of genres, i.e., 35 genres, appears
to be insufficient to obtain the statistical representations of
the parameters. This will be discussed more in the next
paragraph. In Fig. 27, the global popularity distribution of
the real data is compared with the one generated by the
proposed approach. From the figure, we can see that the
proposed approach can generate a result close to the real
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Fig. 24: Comparisons between the model and real data of genre
appearance probabilities.
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Fig. 25: Comparisons between the model and real data of the
size distribution.

data. This validates the effectiveness of the proposed models
and the generation approach. In summary, the above results
validate that the proposed modeling framework is effective
when another dataset is adopted. While of course this is not a
conclusive proof that the framework will work for all possible
datasets, it is at least indicative that two quite different types
of video services can be described well by our model, and
thus might serve for other researchers in the modeling of their
data.

We now turn to the statistical representations of parameters
in the modeling framework for the Facebook dataset, corre-
sponding to Sec. V of the manuscript. In Fig. 28, the statistical
representations of parameters of individual genre popularity
distributions are demonstrated. It can be observed that the
proposed statistical modeling is effective while the specific
values of parameters are different. Also, we can see that the
plot of the real data exhibits some jumps, indicating that the
data volume of the Facebook dataset might not be sufficient. In
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Fig. 26: Comparisons between the model and real data of the
loading distribution.
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Fig. 27: Comparison between global popularity distributions
of files from proposed generation approach and real data.
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Fig. 28: Comparisons between the model and real data.

Fig. 29, the statistical representations of parameters of genre-
based conditional popularity distributions are demonstrated.
From the figures, we can see that the proposed model is
effective, while the amount of data is somewhat insufficient
because we can only have 35 different genres in the Facebook
dataset.

Finally, we present the statistical representations of param-
eters of ranking distributions in Fig. 30. From the figures,
we can see that the proposed model cannot successfully
characterize the negative part of ark

g of the real data. Note
that the proposed model can match the real data if we exclude
the negative values of ark

g in the real data. Although the results
in Figs. 29 and 30 show that the proposed models might be
able to characterize the real data in some cases, the results are
considered unreliable because we only have 35 genres. On
the other hand, since we only have a small number of genres,
the complexity of using the purely numerical values instead
of the statistical representations for these parameters might
be acceptable in this case. Overall, the proposed statistical
representations of parameters are effective in several cases,
while there are some exceptions to handle. That being said,
the parameterization results in terms of the specific shaping
of the statistical representations are different from those in
the BBC iPlayer. This reflects the statement in the main body
of the manuscript that “the conclusion of the specific values
in the modeling is valid only for the adopted dataset, and its
extension of this conclusion to other types of video service
should undergo careful examination.”
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Fig. 29: Comparisons between the model and real data.
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Fig. 30: Comparisons between the model and real data.
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TABLE IX: Parameterization Results

Parameter Value (June) Confidence Interval (June) Value (July) Confidence Interval (July)
G 110 None 110 None
aSi 4.95 [4.93, 4.97] 4.10 [4.10, 4.10]

bSi 0.65 [0.65, 0.65] 0.50 [0.50, 0.50]
MSi 55 None 64 None
Γap 0.10 [0.10, 0.10] 0.10 [0.1, 0.1]
Nap 0.84 [0.84, 0.84] 0.86 [0.86, 0.86]
P out

NNT 0.784 None 0.795 None
aout
1,ga 7.31 [6.70, 8.38] 7.91 [7.31, 9.03]

bout
1,ga 0.35 [0.27, 0.39] 0.34 [0.27, 0.38]

aout
2,ga 4.5 [3.87, 4.82] 4.7 [4.12, 5.00]

bout
2,ga 19.6 [19.55, 19.67] 19.6 19.54, 19.70]

aout
3,ga 24360 [21764, 27952] 25148 [21853, 30849]

bout
3,ga 0.0008 [0.0007, 0.0009] 0.0008 [0.0007, 0.0009]

cout
1,ga 0.31 [0.29, 0.33] 0.33 [0.30, 0.34]

cout
3,ga 0.30 [0.29, 0.31] 0.34 [0.33, 0.35]

aout
1,q 1.20 [1.14, 1.25] 1.24 [1.20, 1.30]

bout
1,q 3.88 [3.41, 4.35] 3.60 [3.06, 3.87]

aout
2,q 16 [14.7, 17.4] 15 [13.5, 15.8]

bout
2,q 39 [39, 39] 39 [39, 39]

aout
3,q 26836 [26109, 27521] 23713 [23027, 24393]

bout
3,q 0.0015 [0.0015, 0.0015] 0.0017 [0.0016, 0.0017]

cout
1,q 0.44 [0.43, 0.45] 0.45 [0.43, 0.46]

cout
3,q 0.24 [0.24, 0.24] 0.18 [0.18, 0.18]

µout
ga −0.034 [−0.037,−0.031] 0.042 [0.039, 0.045]
σout

ga 0.247 [0.246, 0.248] 0.232 [0.230, 0.233]
aout

q 1.080 [1.067, 1.092] 1.099 [1.086, 1.111]
bout

q 0.850 [0.839, 0.861] 0.855 [0.844, 0.867]

P in
NNT 0.71 None 0.66 None
µin

ga 1.27 [0.90, 1.63] 1.26 [0.94, 1.58]

σin
ga 0.80 [0.37, 1.40] 0.72 [0.58, 0.89]

Sin
ga 0.1 None 0.1 None
T in

ga 20 None 20 None
µin

q 3.36 [2.77, 3.96] 3.19 [2.52, 3.87]

σin
q 1.26 [1.00, 1.59] 1.52 [1.21, 1.89]

Sin
q 0.0 None 0.0 None
T in

q 200 None 200 None
ain

ga 0.88 [0.74, 1.07] 1.10 [0.91, 1.35]

bin
ga 1.87 [1.42, 2.47] 1.85 [1.39, 2.46]

ain
q 1.87 [1.18, 2.97] 1.28 [0.61, 2.70]

bin
q 0.72 [0.37, 1.41] 0.68 [0.29, 1.61]

αrk
a 5.13 [4.72, 5.59] 5.18 [4.73, 5.68]

βrk
a 2.66 [2.26, 3.13] 2.43 [2.08, 2.83]

αrk
b 9.26 [6.89, 12.45] 7.59 [5.68, 10.13]

βrk
b 0.063 [0.047, 0.086] 0.072 [0.054, 0.098]

γLd 4.6 [4.54, 4.73] 4.4 [4.34, 4.54]

qLd 64 [62.84, 67.68] 60 [58.86, 62.74]
L 3197 None 3080 None
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TABLE X: Numerical Results of γin
g and qin

g

g γin
g (June) qin

g (June) γin
g (July) qin

g (July)
1 1.9 200 1.9 200
2 5.2 200 2.2 110
3 2.9 146 4.5 200
4 2.5 64 2.8 160
5 2.5 200 2.6 200
6 10.1 200 5.6 200
7 6.1 94 3.7 152
8 4.6 32 5.4 138
9 2.5 16 2.6 50
10 5.4 200 2.3 18
11 4.4 88 2.9 32
12 2.4 6 5.6 54
13 2.4 14 6.5 200
14 17.2 200 18.8 200
15 1.9 14 1.9 6
16 10.8 200 20.0 96
17 9.2 66 17.7 200
18 1.7 4 15.2 166
19 4.3 44 1.6 8
20 20.0 156 8.6 64
21 10.2 48 3.9 42
22 20.0 76 10.0 200
23 12.5 52 2.3 16
24 3.6 26 19.9 76
25 3.5 8 19.6 36
26 1.6 2 5.2 32
27 20.0 88 5.2 54
28 13.0 12 2.6 8
29 9.2 84 13.3 100
30 14.4 146 1.5 4

TABLE XI: Numerical Results of Mg of June

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Mg 2955 996 1103 4548 820 882 842 617 2080 344 1379 1564 3042 223 1694 238 283
g 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Mg 3025 1016 56 203 80 166 787 357 1818 43 16 191 277 604 12 294 56
g 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Mg 58 228 16 244 1565 795 1889 208 57 147 16 367 25 776 202 18 32
g 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
Mg 412 359 12 267 954 5 23 250 39 6 357 7 439 13 208 7 103
g 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
Mg 97 58 34 116 4 131 3 60 58 16 38 34 50 62 25 1 3
g 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
Mg 17 37 12 5 22 11 19 25 18 4 7 12 5 5 4 4 6
g 103 104 105 106 107 108 109 110
Mg 6 6 2 4 1 1 2 1

TABLE XII: Numerical Results of Mg of July

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Mg 2827 1468 1034 5042 865 1004 568 738 1501 2033 3234 617 330 91 3046 160 210
g 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Mg 259 1722 280 889 259 1648 87 33 134 271 829 194 1760 45 331 323 171
g 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Mg 3 58 231 26 1544 1666 19 520 13 34 18 11 46 365 219 44 541
g 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
Mg 60 341 16 3 29 601 297 9 252 40 411 1104 373 309 79 6 227
g 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
Mg 23 9 40 38 200 56 81 3 24 11 120 14 3 16 91 4 16
g 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
Mg 7 46 47 44 7 23 14 5 1 18 9 7 9 4 6 11 4
g 103 104 105 106 107 108 109 110
Mg 5 3 3 4 4 4 1 1
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Fig. 31: Complete flow diagram of the individual preference probability and global popularity distribution generation.


