

Research Article

www.acsami.org

Effect of Al₂O₃ Seed-Layer on the Dielectric and Electrical Properties of Ultrathin MgO Films Fabricated Using *In Situ* Atomic Layer Deposition

- 4 Jagaran Acharya,**,† ® Ryan Goul,† Devon Romine,‡ Ridwan Sakidja,‡ and Judy Wu*,†
- s [†]Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
- 6 [‡]Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri 65897, United States
- 7 Supporting Information

8

9

10

11

12

13

14

15

16 17

18

19

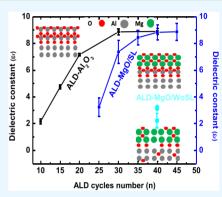
20

21

22

23

24


25

26

27

28

ABSTRACT: Metal/insulator/metal (M/I/M) trilayers of Al/MgO/Al with ultrathin MgO in the thickness range of 2.20–4.40 nm were fabricated using *in vacuo* sputtering and atomic layer deposition (ALD). In order to achieve a high-quality metal/insulator (M/I) interface and hence high-quality dielectric ALD-MgO films, a 5 cycles (\sim 0.55 nm) thick ALD-Al₂O₃ seed layer (SL) was employed to demonstrate the dielectric constant (ε_r) is \sim 8.82–9.38 in 3.30–4.95 nm thick ALD-MgO/SL films, which is close to that of single-crystal MgO $\varepsilon_r \sim$ 9.80. In contrast, a low ε_r of 3.55–4.66 for the ALD-MgO films of a similar thickness without a SL was observed. The effective oxide thickness (EOT) of \sim 1.40 nm has therefore been achieved in the ultrathin ALD-MgO films, which are comparable to the EOTs of high-K dielectrics such as HfO₂. In addition, the leakage current through the M/I/M structure is reduced by more than 1 order of magnitude with implementation of the SL. The high leakage current in the samples without a SL can

be attributed to the nonuniform nucleation of the ALD-MgO on the Al surface with a significant portion of the Al surface remaining conductive as confirmed using *in vacuo* scanning tunneling spectroscopy (STS). With the SL, the STS study has confirmed a tunnel barrier height of 1.50 eV on 0.55 nm MgO with 0.55 nm Al₂O₃ SL with almost 100% coverage. In addition, molecular dynamics simulations point out the importance of deposition of ultrathin SL that has a significant effect on the initial nucleation of the Mg precursor. This result not only illustrates the critical importance of controlling the M/I interface to obtain high-quality dielectric properties of ultrathin ALD films but also provides an approach to engineering incompatible M/I interfaces using a SL for a high-quality dielectric required for applications in M/I/M tunnel junctions and complementary metal oxide semiconductors.

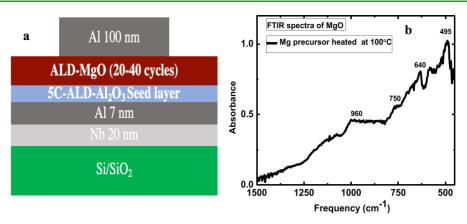
KEYWORDS: in situ atomic layer deposition, ultrathin film, dielectric properties, metal/insulator interface, seed layer, capacitors, in vacuo

31 INTRODUCTION

32 Following Moore's law, the further advancement of micro-33 electronics toward reduced dimensions demands leak-free and 34 defect-free ultrathin dielectric films with thickness in the range 35 comparable or less than 5 nm dielectric films. Applications 36 requiring such ultrathin dielectrics include metal/insulator/ metal (M/I/M) tunnel junctions¹⁻⁶ and gate dielectrics in 38 complementary metal-oxide-semiconductor (CMOS) technol-39 ogy.^{7–9} Both physical vapor deposition such as magnetron 40 sputtering, 10,11 molecular beam epitaxy, 2 and chemical vapor 41 deposition (CVD) including atomic layer deposition 42 (ALD)^{1,3,4,6,11} are used for deposition of ultrathin dielectrics 43 such as Al₂O₃, HfO₂, ZrO₂, MgO, etc. Among others, ALD is 44 particularly suitable due to several unique advantages including 45 low defect density through a well-controlled ligand-exchange 46 mechanism on the sample surface with high conformality over 47 surfaces with large aspect ratios and atomic-scale thickness 48 control. 5-8,11-16 However, dielectric properties of ALD films 49 are often considerably degraded with respect to their singlecrystal bulk counterparts. $^{8,14-18}$ For example, in the M/I/M $_{50}$ trilayers, the defective interfacial layer at the M/I interface, $_{51}$ which may form during either ex situ growth of the "I" layers or $_{52}$ in vacuo growth of the "M/I" bilayer under nonoptimal $_{53}$ conditions, has been found to be detrimental to their dielectric $_{54}$ properties. 12,13 Consequently, significantly lower dielectric $_{55}$ constants ($_{\epsilon_r}$) than the single-crystal bulk values were reported $_{56}$ on ALD dielectric ultrathin films. $^{8,14-18}$ Specifically, a $_{57}$ monotonic decreasing of $_{\epsilon_r}$ with decreasing the film thickness $_{58}$ from tens of nanometers to the ultrathin regime has been $_{59}$ observed. 17,18 These results indicate that the defective insulator $_{60}$ layer (IL) must be eliminated in order to achieve high-quality $_{61}$ films.

Magnesium oxide (MgO), with its wide band gap of 7.80 eV, $_{63}$ $_{\epsilon_{\rm r}}$ of 9.80, $_{19,20}^{19,20}$ low refractive index, and high stability, is an $_{64}$

Received: April 2, 2019 Accepted: July 29, 2019 Published: July 29, 2019


65 interesting dielectric for (M/I/M) tunnel junctions and other 66 devices. 19-23 Specifically, MgO is the best tunnel barrier 67 material for magnetic tunnel junctions (MTJs) to allow 68 coherent tunneling of the spin current, which leads to 69 significantly higher tunneling magnetoresistance up to 200%² 70 in contrast to 70% in MTJs with Al₂O₃ as the tunnel barrier.²⁴ 71 MgO has been deposited using CVD, 25 pulsed laser 72 deposition, 26 homogeneous precipitation, sol-gel processes, 23 73 and ALD. 21,22 This has further motivated research in the 74 growth of ultrathin ALD-MgO films. However, the inves-75 tigation of the interface for ultrathin ALD-MgO films directly 76 on the metal show formation of an interfacial layer with 77 oxidation of the electrode. 27 A systematic study on the 78 dielectric properties of ALD-MgO for MIM devices is lacking, 79 which is possibly due to the difficulties to obtain leak-free 80 ultrathin ALD-MgO films. However, the study of ALD-MgO in 81 the thickness range of 4.6-11 nm on Si for metal oxide 82 semiconductor capacitors shows an $\varepsilon_{\rm r}$ close to single-crystal 83 bulk MgO.²⁷ Previously reported results suggest that the MgO 84 dielectric is expected to have more defects and pinholes 85 compared to Al₂O₃ characterized using scanning tunneling 86 spectroscopy (STS) and structural analysis. ^{28–30} In order to 87 prevent the formation of an IL between the metal/insulator 88 (M/I) interface, a recent approach employs a Mg interlayer or 89 graphene. Despite this effort, the oxidation of the 90 electrode is still a potential cause for IL formation, resulting 91 in defective dielectric films. 33,34

It is therefore imperative to address the issue with the IL 93 formation in the development of high-quality ALD ultrathin 94 dielectric films. In a recent work, we have developed a dynamic 95 heating process to reduce the exposure of the metal surface (in 96 high vacuum) before deposition of ALD-Al₂O₃ ultrathin films 97 on Al and Fe using an in vacuo ultrahigh vacuum (UHV) 98 sputtering sputtering/ALD process.⁶ The M/I IL layer has 99 been found to be effectively suppressed in both in vacuo STS 100 studies of the 0.10-1.10 nm thickness ALD-Al₂O₃ layer and ex 101 situ studies of the M/I/M devices. 1 It is particularly worth 102 mentioning that an ε_r within 3% of the Al_2O_3 single-crystal 103 bulk value has been demonstrated in 3.30-4.40 nm thick 104 ALD-Al₂O₃ films by reducing the Al/ALD-Al₂O₃IL effect to a 105 negligible level. 1,3,4 Unfortunately, direct growth of ultrathin 106 ALD-MgO films on Al or Fe using similar in vacuo sputtering/ 107 ALD processes failed to generate high-quality dielectric films, 108 which is attributed to different nucleation mechanisms of ALD- 109 MgO $\,$ and $\,$ ALD- 20 O $_{3}$ on $\,$ metals. 28,29,34 This problem 110 represents a general problem in the growth of ALD-dielectric 111 on metals with an incompatible M/I interface that prevents 112 uniform nucleation of an atomically thin ALD-dielectric film. It should be pointed out that the incubation process in ALD 114 of dielectric films is primarily generating oxides on the surface 115 of metals to assist in a more efficient ligand exchange between 116 precursors on the sample surface. This means the first ALD 117 cycles are used for incubation of native oxides on the metal 118 surface for nucleation of ALD-MgO. 33-35 Unfortunately, the 119 native oxides are typically defective as shown in a recent study 120 by our group.^{3,4} ALD dielectric films grown on native oxides 121 can have much degraded electronic and dielectric proper-122 ties. 1,17,18,33-36 This means that the defective ALD-MgO films 123 will not be suitable as tunnel barriers for MTJ applications. In 124 order to resolve this issue, this work explores a novel seed-layer 125 approach by in situ growth of a subnanometer thick ALD-126 Al₂O₃ seed layer (SL). SL is a high-quality dielectric and hence 127 will have a negligible negative impact on the ALD-MgO

growing on top as compared to the native oxide IL. We show a 128 0.55 nm thick ALD-Al₂O₃ SL enables high-quality ALD-MgO 129 ultrathin (<5 nm) film growth. Remarkably, an ε_r up to 8.82–130 9.38 was achieved in ultrathin ALD-MgO dielectric films of 131 thicknesses ~3.30-4.95 nm, which is in contrast to the leaky 132 ALD-MgO counterpart with significantly lower ε_r of ~3.55– 133 4.60 without the SL. These results are supported with a higher 134 barrier height ~1.50 eV for MgO/SL and dense nucleation 135 with 100% coverage. However, a barrier height reduced to 0.80 136 eV for ALD-MgO without SL and ALD coverage reduced to 137 less than 80%. The molecular dynamics simulation suggests 138 that the SL layer allows for more regularly distributed Al and 139 OH ligands leading to growth of denser and high-quality ALD- 140 MgO dielectric as compared to the case on Al films, which is 141 by its nature not self-terminating and is anticipated to have a 142 relatively rougher terrain for subsequent growth of dielectric 143 films. Thus, the SL approach may be applied to engineering the 144 M/I interface for growth of high-quality ALD-dielectric 145 ultrathin films on metals that would be otherwise incompatible. 146

METHODS

Fabrication of the M/I/M trilayers was carried out using an in vacuo 148 in-house integrated UHV-ALD system.⁶ First, a bilayer bottom 149 electrode with 20 nm thick Nb covered with 7 nm thick Al was 150 deposited using dc magnetron sputtering on a Si/SiO₂ substrate 151 through a shadow mask for definition of an array of three capacitors. 152 The deposition rate for the Nb was 1.70 nm/s and that for the Al was 153 0.50 nm/s. After the bottom metal electrode deposition, the sample 154 was in situ transferred to the ALD chamber for growth of the ALD- 155 Al₂O₃ SL and an ultrathin ALD-MgO dielectric (referred to as ALD- 156 MgO/SL). The thickness of the SL was varied from 0.22 nm (2 ALD 157 cycles) to 0.55 nm (5 ALD cycles), and the latter was found to be 158 optimal based on the measurement of tunnel barrier height and the 159 dielectric constant of the ALD-MgO/SL in the M/I/M trilayers. 160 Figure S1 discuss in detail about the dielectric properties of ALD- 161 MgO with different SL thickness. For a comparison, samples without 162 a SL were fabricated in the same growth conditions. The optimal 163 parameters for ALD preheating and substrate temperature based on 164 our previous work were employed to prevent formation of a defective 165 M/I IL, and the details can be found in our previous papers. 1,4 The 166 trimethylaluminum (TMA, Sigma-Aldrich) was used as the Al 167 precursor, which was maintained at room temperature during the 168 ALD-Al₂O₃ growth. The optimal substrate temperature for the ALD- 169 Al₂O₃ films is in the range of 200-220 °C based on our prior 170 work. 1,3,4 For the ALD-MgO film growth, both substrates and 171 bis(cyclopentadienyl)magnesium (MgCP2, Sigma-Aldrich) Mg pre- 172 cursor were heated. The former was tested in the range of 200-255 173 °C, and the latter was in the range of 50-100 °C. The optimal 174 substrate temperature has been found to be \sim 200 °C for ALD-MgO 175 growth, while the optimal MgCp₂ precursor temperature was found to 176 be at 100 °C, which agrees well with prior reports. 35,36 In the 177 following, all samples were fabricated using the optimal fabrication 178 condition unless otherwise indicated. H₂O (Ultima grade, Fischer 179 Scientific) was used as the oxygen precursor. The growth of the ALD- 180 dielectric films occurs with alternating precursor pulses via a ligand 181 exchange at the heated sample surface. To ensure the formation of 182 monolayer $\mathrm{Al_2O_3}$ (or MgO) on the sample surface, a purge of the 183 ALD system with N_2 gas (5 SCCM) between consecutive ALD 184 precursor pulses was employed. The thickness of ALD-Al₂O₃ (or 185 ALD-MgO) per cycle is well calibrated to be $\sim 1.10-1.20$ Å. 5,6,27,34,36 186 The thickness of the SL is hence approximately 0.55-0.60 nm, while 187 that of the ALD-MgO films is in the range of 2.20-4.40 nm (or 20- 188 40 ALD cycles). Fourier transform infrared spectroscopy (FTIR) was 189 used to characterize the ALD-MgO films grown on the SiO₂ substrate. 190 To obtain M/I/M capacitors, the top Al electrode ${\sim}100~\text{nm}$ in $_{191}$ thickness was sputtered after the ALD-MgO growth. Capacitance- 192 voltage (C-V) and the leakage current vs voltage (I-V) measure**ACS Applied Materials & Interfaces**

Figure 1. (a) Schematic of MIM trilayers fabricated with a SL for engineering the M/I interface and (b) FTIR absorbance spectrum taken on an ALD-MgO (20 C) film on the Si/SiO₂ substrate deposited at optimal conditions with a substrate temperature of 200 °C and source heated to 100 °C. The peaks are indexed to ALD-MgO.

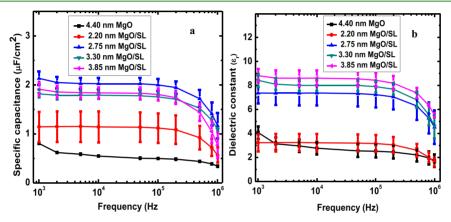


Figure 2. Variation of (a) specific capacitance and (b) dielectric constant with frequency for Al/MgO(2.20–3.85 nm)/SL(0.55 nm)/Al and Al/MgO(4.40) nm/Al MIM capacitor and three different junction areas, 400×100 , 300×100 , and $200 \times 100 \ \mu m^2$, fabricated using the previous method of a shadow mask.¹

194 ments were carried out on the M/I/M devices using tungsten probes (25 µm in diameter, Lakeshore) in a probe station and an Agilent 196 semiconductor analyzer. In vacuo scanning tunneling spectroscopy 197 (STS) spectra were taken on three half-cell (M/I) samples with the "I" layer of a total of 10 ALD cycles (10 C) of Al₂O₃ (10 C), Al₂O₃(5 199 C) + MgO (5 C), and MgO (10 C) to extract the effect of the SL on 200 the dielectric properties and uniformity of the "I" layer. 1,3,4,37 A 201 mechanically cleaved Pt-Ir tip was used for all STS studies at room 202 temperature. IV and dI/dV spectra were taken simultaneously using a 203 lock-in amplifier with a voltage modulation of 30 mV at 5 kHz, with a 204 set point bias of 2.00 V and current of 200 pA to ensure the tip would 205 not crash. The CBM, denoted as barrier height $E_{\rm b}$, was estimated by 206 the intersection of two bisquare-method linear fits to $\ln(dI/dV)$ similar to the method previously reported.³⁸ One line fits the band gap regime and the other the conduction band. These two regions are 209 roughly linear in log scale. This $\ln(dI/dV)$ linear fit method was 210 chosen over I-V or (dI/dV)/(I/V) fit methods for its insensitivity to 211 high noise in the STS spectra. ^{39–41} Spectra were recorded in constant 212 height mode, and the bias was sequentially ramped up and down 20 213 times, but no spectra averaging was used due to hysteresis from high 214 local fields causing dielectric breakdown occasionally in later spectra 215 of the set of 20. In order to shed light on the role of the SL, reactive 216 molecular dynamics simulations were carried out using the ReaxFF 217 interatomic potentials developed by Van Duin's group⁴² as 218 implemented in the LAMMPS MD code. 43,44 The use of ReaxFF 219 interatomic potentials as the reactive force field approach 45,46 is 220 necessary, as it gives an accurate depiction of the bond order and 221 bond distance relationship and the dependency of the 3- and 4-body 222 interactions toward the bond-order. This gives the capability to assess

the bond breaking and bond forming mechanisms on the sample 223 surface at the level of accuracy comparable to that from the density 224 function theory (DFT) calculations⁴⁵ and is critical for the surface 225 analysis.

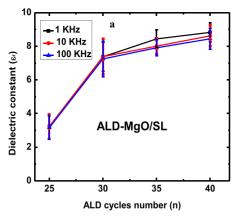

■ RESULTS AND DISCUSSION

Figure 1a illustrates schematically the fabricated M/I/M 228 f1 trilayers. Figure 1b exhibits the FTIR spectrum taken on 229 ALD-MgO (20 C) films deposited at optimal conditions with a 230 substrate temperature of 200 °C and source heated to 100 °C. 231 The appearance of absorption peaks at 495, 640, 750, and 960 232 cm $^{-1}$ are indexed to MgO. 36,47 The intensity of peaks is low in 233 our case as compared to previously reported results, which is 234 most probably due to the fact that ZrO $_2$ nanoparticles in a 235 photoetched tungsten screen were used for an enhancement of 236 MgO peaks in prior studies. 36

Figure 2a shows variation of specific capacitance (C_0) with 238 t2 frequency in the range from 1 kHz to 1 MHz measured on M/ 239 I/M capacitors with different "I" layers of ALD-MgO of 240 thickness of 2.20, 2.75, 3.30, and 3.85 nm on the SL (colored 241 curves). In addition, a device with 4.4 nm thick ALD-MgO 242 without a SL is also included for comparison (black). The 243 specific capacitance C_0 is defined from $C_0 = C/A = \varepsilon_0 \varepsilon_r / t$ for 244 different M/I/M devices and the dielectric thickness (t) in 245 regards to the total thickness of the SL and the ALD-MgO 246 thickness. The error bars were calculated using the three 247 devices fabricated on the same sample with different capacitor 248

227

ACS Applied Materials & Interfaces

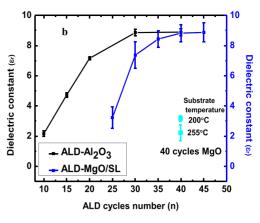


Figure 3. Variation of (a) dielectric constant for ALD-MgO/SL with ALD cycle numbers at different frequencies (1, 10, and 100 kHz) and (b) comparison of ALD-Al₂O₃ previously reported ALD-Al₂O₃ dielectric¹ (black) with ALD-MgO with SL (ALD-MgO/SL) (blue) and ALD-MgO without SL (ALD-MgO/Wo-SL) (cyan) deposited at substrate temperatures 200 and 255 °C

249 areas of 400 \times 100, 300 \times 100, and 200 \times 100 μ m², 250 respectively. The M/I/M devices with the ALD-MgO/SL 251 show an almost constant C_0 in the frequency range from 1 to 252 100 kHz (within 4-6% variation). With a further increase in 253 the frequency, C_0 decreases due to dielectric loss. ^{48,49} 254 Additionally, an almost constant C_0 was observed on the 255 composite devices with the ALD-MgO/SL in the thickness 256 range of 3.30-4.95 nm. At a smaller ALD-MgO/SL thickness of 2.75 nm, C_0 decreases considerably by 35–50% possibly due to the effect of electron tunneling, which will be discussed 259 later. In contrast, the M/I/M ALD-MgO/WoSL devices show 260 an overall lowering of C_0 by a factor >2 and more significant 261 frequency dependence possibly due to defects initiated at the defective M/I interface. So Figure 2b shows variation of ε_r with frequency calculated using $\varepsilon_{\rm r} = C_0 t/\varepsilon_0$ from the data in Figure 2a. The ε_r shows a similar frequency dependence to that of C_0 , which is almost constant in the frequency range of 1-100 kHz with a small decrease of 4-5%. With further increasing frequencies, ε_r shows a larger decrease and this decrease is 268 significantly larger on samples with lower ALD cycles. This ₂₆₉ larger variation of both C_0 and $\varepsilon_{\rm r}$ at higher frequencies can be 270 explained by capacitive response and dielectric loss of the MIM 271 capacitor with fast charging and discharging, since at large 272 frequency all charges or dipoles cannot respond with fast polarity switching. 48,49 Our results indicate that these ALD-274 MgO capacitors are well suited for application in the frequency 275 range up to 100 kHz but are less suitable for applications which requires higher frequency application. It should be noted that the independent measurement of the dielectric constant for the 0.55 nm seed layer of ALD-Al₂O₃ cannot be accomplished using the M/I/M structure since electron tunneling becomes possible as the thickness of the ALD-Al₂O₃ is comparable or below 2 nm and increases exponentially with decreasing ALD-282 Al₂O₃ thickness reported earlier. Considering the comparable 283 single-crystal bulk dielectric constants of Al₂O₃ (~9.2) and 284 MgO (~9.8), negligible electron tunneling would occur at the dielectric thickness exceeding 2 nm and the dielectric constant of the composite ALD-MgO/SL film was calculated using the total thickness of the ALD-MgO and the ALD-Al₂O₃ seed 288 layer.

Figure 3a shows the variation of ε_r with the ALD cycle 290 number for ALD-MgO/SL at 1, 10, and 100 kHz. In the 291 frequency range of 1–100 kHz, the ε_r values are comparable 292 with 4–6% variation and they increase monotonically with the

cycle number (or thickness) of the ALD-MgO. At 30–45 °C 293 (or thickness of 3.30–4.95 nm including the SL), $\varepsilon_{\rm r}$ values of 294 ~8.82–9.38 have been obtained on the ALD-MgO/SL. To the 295 best of our knowledge, this is the first time such a high $\varepsilon_{\rm r}$ 296 approaching the single-crystal MgO's value is obtained in 297 ultrathin ALD-MgO films. The effective oxide thickness or 298 EOT = $t_{\rm HiK}$ ·3.90/ $\varepsilon_{\rm Hik}$ used for evaluating high-K dielectric 299 materials, where $t_{\rm HiK}$ and $\varepsilon_{\rm Hik}$ are the thickness and $\varepsilon_{\rm r}$ of the 300 high-K dielectric materials, for the ALD-MgO/SL is estimated 301 to be ~1.45–2.05 nm. This suggest that the EOT of the 302 ultrathin ALD-MgO/SL films are around 1.1–0.95 nm that is 303 comparable to that for high-K HfO₂ of 3–4.5 nm in thickness 304 and $\varepsilon_{\rm Hik}$ in the range of 10–18.5. 8,14,51

Figure 3b shows a direct comparison of the $\varepsilon_{\rm r}$ values of the 306 ALD-Al₂O₃, ALD-MgO/SL, and ALD-MgO/WoSL ultrathin 307 films, illustrating a similar monotonic increasing trend with 308 increasing ALD cycle numbers. At the optimal fabrication 309 conditions reducing IL to a negligible thickness, $\varepsilon_{\rm r}$ remains 310 constant around 8.90-9.00 for 3.30-4.40 nm thick ALD- 311 Al₂O₃ films, which is comparable to the value for the Al₂O₃ 312 single crystal and is more than double of the best ($\varepsilon_{\rm r} \sim 4.0$) 313 previously reported on 3.00 nm thick Al₂O₃ films.¹⁷ The 314 reduced $\varepsilon_{\rm r}$ values at smaller thicknesses are ascribed to the 315 electron tunneling through the ALD-Al₂O₃ as reported in our 316 previous work. The similar thickness dependent trend on 317 ALD-MgO/SL with $\varepsilon_{\rm r}$ values ~8.82-9.38 for 3.30-4.95 nm 318 and reduced $arepsilon_{
m r}$ values at smaller thicknesses have been 319 observed. In addition, the $\varepsilon_{\rm r}$ values measured on two ALD- 320 MgO/WoSL samples of 4.40 nm (cyan) are also included for 321 comparison. However, 4.40 nm ALD-MgO/WoSL show a 322 significantly lower ε_r of ~3.55–4.60, which is indicative of the 323 formation of a defective dielectric IL between the M/I 324 interface with a possibility of nonuniform nucleation, which 325 agrees with our detailed discussion later with STS. This 326 argument agrees with previously reported results that MgO 327 dielectric is expected to have more defects and pinholes 328 compared to Al₂O₃, ^{28,29} suggesting the possibility of a different 329 growth mechanism for MgO. A similar trend is shown in the $\varepsilon_{\rm r}$ 330 of the ALD-MgO/SL samples (blue) indicating that the defect 331 concentration has been significantly reduced with the adoption 332

It should be mentioned that the ALD-MgO and ALD-Al $_2$ O $_3$ 334 films deposited at low temperatures of \sim 200–220 $^{\circ}$ C are 335 amorphous, 13 which means that no transmission electron 336

ACS Applied Materials & Interfaces

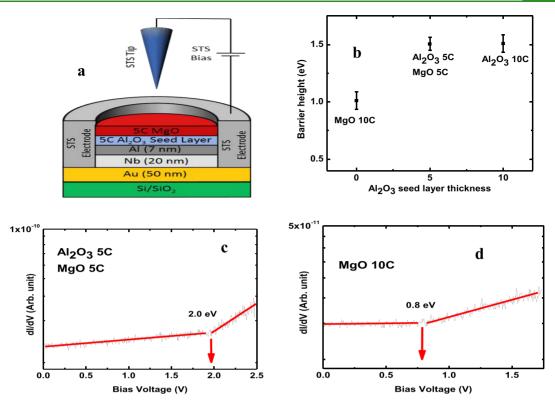


Figure 4. (a) Diagram of *in situ* deposited seed layer and tunnel barrier for STS analysis, (b) comparison of barrier heights for tunnel barriers of a total thickness of 10 C using different amounts of Al_2O_3 in their compositions, (c) representative dI/dV spectrum taken on a 5 C $Al_2O_3/5$ C MgO tunnel barrier, and (d) representative dI/dV spectrum taken on a 10 C MgO tunnel barrier.

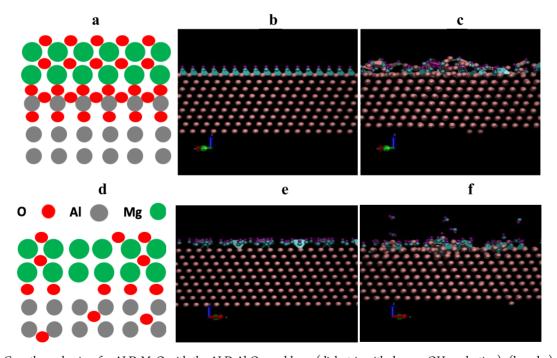


Figure 5. (a) Growth mechanism for ALD-MgO with the ALD-Al $_2O_3$ seed layer (dielectric with dense -OH nucleation); (b and c) side view of the atomic trajectories for the case of "orderly placed" (representing part a) -OH on the Al(111) surface after 0 and 25 000 fs, respectively; and (d) growth mechanism for ALD-MgO directly on Al(111) wetting layer (defective dielectric with poor -OH nucleation); (e and f) side view of the atomic trajectories for the case of "randomly-placed" (representing part d) -OH on the Al(111) wetting layer after 0 and 25 000 fs, respectively.

 $_{337}$ microscopy (TEM) diffraction can be obtained on them and $_{338}$ on their interfaces with the metal electrode with an atomic $_{339}$ resolution. To address this challenge, we recently implemented $_{340}$ ultrahigh-vacuum scanning tunneling spectroscopy (STS) to

study *in vacuo* the morphology and the electronic structure of $_{341}$ the ultrathin ALD dielectric films with the thickness in the $_{342}$ range of 0.1–1.0 nm. To complement the *in vacuo* STS $_{343}$ measurement, devices of tunnel junctions and M/I/M trilayers $_{344}$

345 (like the ones reported in this work) have also been fabricated 346 to characterize the ALD dielectric films using electric transport 347 measurement. The agreement between the in vacuo STS and 348 transport measurements on these devices can be found in our 349 previous work.

In an attempt to further understand the role of Al₂O₃ SL₄ 351 Figure 4a shows a schematic of in vacuo STS analysis carried out on tunnel barriers with a combination of 10 ALD cycles $(10 \text{ C}) \text{ of Al}_2O_3 (10 \text{ C}), \text{Al}_2O_3(5 \text{ C}) + \text{MgO } (5 \text{ C}), \text{ and MgO}$ (10 C). The 5C Al₂O₃/5C MgO and 10 C Al₂O₃ were found to have nearly identical barrier heights of ~1.50 eV as in Figure 356 4b representing tunnel barriers with excellent quality on both 357 samples. This is in drastic contrast to the 10 C MgO grown directly on the Al wetting layer resulting in a poor barrier 359 height of ~0.80 eV. These results illustrate the importance of 360 SL to obtain a high-quality MgO dielectric. This difference 361 may be observed by viewing Figure 4c,d, which illustrate the difference in the dI/dV spectra between the higher quality 363 Al₂O₃/MgO and lower quality MgO barriers. The lower barrier 364 height is due to defects present in the tunnel barrier, and these 365 defects became more obvious while probing the surface since 366 approximately 20% of the spectra were conductive or defective 367 and the rest showed relatively low barrier heights. Further-368 more, at other locations on the surface, there was too much 369 noise for the scanning tip to even settle in order to take dI/dV370 spectra. Meaning that during ALD MgO growth without a SL, 371 a complete layer of MgO is not grown and what is grown is of 372 lower quality due to defects.

The transport and STS studies illustrate that the SL has a critical impact on the quality of the ultrathin ALD-MgO. In order to shed light on the effect of the SL, reactive MD 376 simulations were carried out to compare the ALD-MgO 377 growth on two surfaces with different configurations of OH 378 groups distribution: OH groups distributed in a regular pattern 379 on top of the Al(111) surface, which represents the case of 380 MgO/SL as shown schematically in Figure 5a-c; and OH groups distributed disorderly on an Al(111) wetting layer, 382 which represents the case of MgO/WoSL as shown in Figure 383 5d-f. The simulation results suggest that the OH pattern and 384 density on the sample surface have a direct impact on the 385 number of Mg-O bonds in the subsequent Mg precursor 386 pulse. Figure 5b,c corresponds to the side view of atomic 387 trajectories for "orderly placed" OH deposition after 0 and 388 25 000 fs, respectively. In this case, we barely see any 389 occurrence of water vapor release implying the retention of 390 OH molecules through the OH-OH lateral bonding formation of oxide clusters on the surface, presumably creating 392 a denser dielectric film. Figure 5d shows a schematic of the proposed growth of MgO directly on an Al (111) surface, 394 resulting in OH not self-terminating and consequently a defective IL in series with MgO dielectric. To support our argument, Figure 5e,f depicts the side view trajectories with 'randomly-placed" OH groups on the Al(111) surface after 0 398 and 25 000 fs, respectively. Instead of forming a continuous OH layer as a result of the reaction between the adsorbed water molecules, some are deprotonated, releasing hydrogen and leaving oxygen on the Al surface. This leads to a low surface density and coverage of adsorbed OH on the Al surface 403 and hence defective ALD-MgO in subsequent ALD growth. 404 Therefore, the SL allows for dense and ordered OH ligands to 405 assist ALD-MgO dielectric growth (see more simulation details 406 in the Supporting Information).

The proposed ALD-MgO nucleation mechanism enabled by 407 the SL is supported by comparison of leakage current density 408 (J) measured on M/I/M capacitors with an "I" layer of 4.40 409 nm thick ALD-Al₂O₃, ALD-MgO/SL, and ALD-MgO/WoSL, 410 respectively (Figure 6). This result indicates that the $J \sim 10^{-7}$ 411 fG

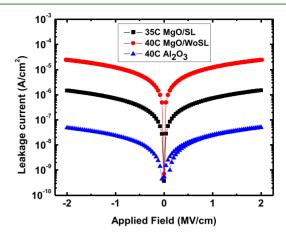


Figure 6. Comparison of leakage current for a total 4.40 nm ultrathin ALD dielectric films with ALD-Al2O3, ALD-MgO/SL, and ALD-MgO/WoSL for MIM capacitors using a log plot.

A/cm² for the 4.40 nm ALD-Al₂O₃ sample is the lowest among 412 the three samples. The higher J values in the two ALD-MgO 413 samples may be ascribed to the higher defect concentrations in 414 these samples as compared to that of ALD-Al₂O₃. However, 415 the implementation of a SL can effectively reduce the leakage 416 by more than 1 order of magnitude compared to the ALD- 417 MgO/WoSL. The detailed direct comparison of the I-V 418 curves between ALD-Al $_2$ O $_3$ and ALD-MgO/SL for the M/I/M $_{\mbox{\scriptsize 419}}$ capacitors is shown in the Supporting Information. However, 420 direct ALD growth of MgO ultrathin films on Al and Fe has 421 been found difficult. The ALD-MgO growth on metals shows 422 that a large incubation period is necessary for complete 423 hydroxylation that promotes the formation of native oxides on 424 the metal surface. 33–35 We have attempted in situ ALD-MgO 425 growth on Al and Fe but found the M/I/M structures are leaky 426 even when the MgO film thickness is 4.4 nm. This is in 427 contrast to high-quality ALD-Al₂O₃ ultrathin films of thickness 428 as small as 0.1 nm on Al and Fe. 3,4 In order to resolve this issue 429 in ALD growth of MgO on metals, this work develops a seed- 430 layer approach to bypass the difficulty of ALD-MgO directly 431 on metals. It should be pointed out that the ALD-Al₂O₃ seed 432 layer differs fundamentally from native oxides on metal 433 surfaces. As we have shown in our previous work with a direct 434 comparison between ALD-Al₂O₃ and native AlO_x on an Al 435 surface,3 the former has a significantly reduced defect 436 concentration.

CONCLUSIONS

In summary, an ALD-Al₂O₃ SL of 0.55 nm thickness has been 439 employed to grow M/I/M devices with ultrathin ALD-MgO 440 dielectric films with thicknesses of 2.20-4.40 nm. The goal is 441 to address critical issues in the nucleation of ALD-MgO 442 directly on incompatible metals to form a sharp M/I interface. 443 Our results indicate that the SL can convert such an 444 incompatible metal surface to compatible by regulating the 445 surface OH density/pattern and hence facilitating high-quality 446 ALD-MgO growth. The ALD-MgO/SL films at 3.30-4.95 nm 447

438

448 thickness exhibit $\varepsilon_r \sim 8.82-9.40$, approaching the $\varepsilon_r \sim 9.80$ of 449 the single-crystal MgO. STS demonstrates the ALD-MgO/SL 450 with a barrier height of 1.50 eV with almost 100% coverage. In 451 addition, our MD simulations indicate that the ALD-MgO/SL 452 layer allows regularly distributed Al and OH ligands leading to 453 growth of denser and high-quality MgO dielectric. In contrast, 454 the ALD-MgO/WoSL of comparable thickness is defective 455 with a low ε_r of 3.55–4.66 along with nonuniform nucleation 456 on the Al surface with a significant portion of the Al surface 457 remaining conductive as confirmed using the in vacuo STS. 458 The reactive MD simulations on MgO growth directly on Al 459 provide insights showing a nonself-terminating surface with 460 rougher terrain for subsequent growth of a defective dielectric 461 film. These results illustrate that the SL approach is promising 462 to engineer otherwise incompatible M/I interfaces to enable in 463 vacuo growth of M/I/M trilayers of an ultrathin leak-free 464 dielectric with a low defect concentration required in a large 465 variety of microelectronic and memory applications.

ASSOCIATED CONTENT

167 S Supporting Information

468 The Supporting Information is available free of charge on the 469 ACS Publications website at DOI: 10.1021/acsami.9b05601.

- Effect of Al_2O_3 seed-layer on the dielectric and electrical properties of ultrathin MgO fabricated using *in situ* atomic layer deposition (PDF)
- Video of the reactive molecular dynamics simulations showing the side view of the atomic trajectories for ALD-MgO/SL (MP4)
- Video of the reactive molecular dynamics simulations showing the side view of the atomic trajectories for ALD-MgO/WoSL (MP4)

79 AUTHOR INFORMATION

480 Corresponding Authors

- 481 *E-mail: jagaran@ku.edu. 482 *E-mail: jwu@ku.edu/
- 483 **ORCID** ©
- 484 Jagaran Acharya: 0000-0003-1129-0974

485 Author Contributions

486 J.A. and J.W. designed the experiment. J.A. prepared the 487 samples for MIM and performed the dielectric properties 488 characterization and most of the analysis. R.G. helped with 489 STS sample fabrication and measurement. D.R. and R.S. 490 contributed to the molecular dynamics simulations. All authors 491 contributed for the discussion of results. J.A. and J.W. led the 492 effort in the development of the manuscript.

493 Notes

494 The authors declare no competing financial interest.

495 **ACKNOWLEDGMENTS**

496 This research was supported in part by NSF Contract Nos. 497 NSF-DMR-1508494 and NSF-ECCS-1809293/1809284 and 498 ARO Contract No. W911NF-16-1-0029.

499 REFERENCES

500 (1) Acharya, J.; Wilt, J.; Liu, B.; Wu, J. Probing the Dielectric 501 Properties of Ultrathin Al/Al2o3/Al Trilayers Fabricated Using in 502 Situ Sputtering and Atomic Layer Deposition. ACS Appl. Mater. 503 Interfaces 2018, 10, 3112–3120.

- (2) Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. 504 Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/ 505 Mgo/Fe Magnetic Tunnel Junctions. *Nat. Mater.* **2004**, *3*, 868–871. 506
- (3) Wilt, J.; Sakidja, R.; Goul, R.; Wu, J. Z. Effect of an Interfacial 507 Layer on Electron Tunneling through Atomically Thin Al2o3 Tunnel 508 Barriers. ACS Appl. Mater. Interfaces 2017, 9, 37468–37475.
- (4) Wilt, J.; Gong, Y.; Gong, M.; Su, F.; Xu, H.; Sakidja, R.; Elliot, 510 A.; Lu, R.; Zhao, S.; Han, S.; Wu, J. Z. Atomically Thin Al 2 O 3 Films 511 for Tunnel Junctions. *Phys. Rev. Appl.* **2017**, *7*, 064022.
- (5) Elliot, A. J.; Malek, G.; Wille, L.; Lu, R.; Han, S.; Wu, J. Z.; 513 Talvacchio, J.; Lewis, R. M. Probing the Nucleation of in Atomic 514 Layer Deposition on Aluminum for Ultrathin Tunneling Barriers in 515 Josephson Junctions. *IEEE Trans. Appl. Supercond.* **2013**, 23, 516 1101405–1101405.
- (6) Elliot, A. J.; Malek, G. A.; Lu, R.; Han, S.; Yu, H.; Zhao, S.; Wu, 518 J. Z. Integrating Atomic Layer Deposition and Ultra-High Vacuum 519 Physical Vapor Deposition for in Situ Fabrication of Tunnel 520 Junctions. *Rev. Sci. Instrum.* **2014**, *85*, 073904.
- (7) Robertson, J.; Wallace, R. M. High-K Materials and Metal Gates 522 for Cmos Applications. *Mater. Sci. Eng., R* **2015**, 88, 1–41.
- (8) Kim, S.; Woo, S.; Kim, H.; Kim, I.; Lee, K.; Jeong, W.; Park, T.; 524 Jeon, H. Atomic Layer Deposition of Hfo2 Thin Films on Ultrathin 525 Sio2 Formed by Remote Plasma Oxidation. *J. Korean Phys. Soc.* **2008**, 526 52, 1103.
- (9) Wilk, G. D.; Wallace, R. M.; Anthony, J. High-K Gate 528 Dielectrics: Current Status and Materials Properties Considerations. 529 *J. Appl. Phys.* **2001**, *89*, 5243–5275.
- (10) Dietrich, C.; Boyen, H.-G.; Koslowski, B. Characterization of 531 Ultrathin Insulating Al2o3 Films Grown on Nb (110)/Sapphire 532 (0001) by Tunneling Spectroscopy and Microscopy. *J. Appl. Phys.* 533 **2003**, 94, 1478–1484.
- (11) Lu, R.; Elliot, A. J.; Wille, L.; Mao, B.; Han, S.; Wu, J. Z.; 535 Talvacchio, J.; Schulze, H. M.; Lewis, R. M.; Ewing, D. J.; Yu, H. F.; 536 Xue, G. M.; Zhao, S. P. Fabrication of Josephson Junctions Using in 537 Situ Magnetron Sputtering and Atomic Layer Deposition. *IEEE Trans.* 538 Appl. Supercond. 2013, 23, 1100705–1100705.
- (12) Elliott, S. D. Atomic-Scale Simulation of Ald Chemistry. 540 Semicond. Sci. Technol. 2012, 27, 074008.
- (13) George, S. M. Atomic Layer Deposition: An Overview. Chem. 542 Rev. 2010, 110, 111–131.
- (14) Lee, K.; Lee, Y.; Chang, P.; Huang, M.; Chang, Y.; Hong, M.; 544 Kwo, J. Achieving 1 Nm Capacitive Effective Thickness in Atomic 545 Layer Deposited Hf O 2 on in 0.53 Ga 0.47 As. *Appl. Phys. Lett.* **2008**, 546 92, 252908.
- (15) Kim, H.; McIntyre, P. C. Atomic Layer Deposition of Ultrathin 548 Metal-Oxide Films for Nano-Scale Device Applications. *J. Korean* 549 *Phys. Soc.* **2006**, 48, 5–17.
- (16) Martin, D.; Grube, M.; Weinreich, W.; Müller, J.; Weber, W. 551 M.; Schröder, U.; Riechert, H.; Mikolajick, T. Mesoscopic Analysis of 552 Leakage Current Suppression in Zro2/Al2o3/Zro2 Nano-Laminates. 553 *J. Appl. Phys.* 2013, 113, 194103.
- (17) Groner, M.; Elam, J.; Fabreguette, F.; George, S. M. Electrical 555 Characterization of Thin Al 2 O 3 Films Grown by Atomic Layer 556 Deposition on Silicon and Various Metal Substrates. *Thin Solid Films* 557 **2002**, 413, 186–197.
- (18) Birey, H. Thickness Dependence of the Dielectric Constant and 559 Resistance of Al2o3 Films. *J. Appl. Phys.* **1977**, *48*, 5209–5212.
- (19) Krupka, J.; Geyer, R. G.; Kuhn, M.; Hinken, J. H. Dielectric 561 Properties of Single Crystals of Al2o3, Laalo3, Ndgao3, Srtio3, and 562 Mgo at Cryogenic Temperatures. *IEEE Trans. Microwave Theory Tech.* 563 1994, 42, 1886–1890.
- (20) Raj, A. M. E.; Jayachandran, M.; Sanjeeviraja, C. Fabrication 565 Techniques and Material Properties of Dielectric Mgo Thin Films—a 566 Status Review. CIRP Journal of Manufacturing Science and Technology 567 2010, 2, 92–113.
- (21) Mantovan, R.; Vangelista, S.; Kutrzeba-Kotowska, B.; Lamperti, 569 A.; Manca, N.; Pellegrino, L.; Fanciulli, M. Fe $3-\Delta o4$ /Mgo/Co 570 Magnetic Tunnel Junctions Synthesized by Full in Situ Atomic Layer 571

655

- 572 and Chemical Vapour Deposition. *J. Phys. D: Appl. Phys.* **2014**, 47, 573 102002.
- 574 (22) Mantovan, R.; Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, 575 S.; Lamperti, A.; Tallarida, G.; Mameli, D.; Fanciulli, M. Synthesis of 576 Magnetic Tunnel Junctions with Full in Situ Atomic Layer and 577 Chemical Vapor Deposition Processes. *Thin Solid Films* **2012**, *520*, 578 4820–4822.
- 579 (23) Yoon, J. G.; Kim, K. Growth of (111) Oriented Mgo Film on Si 580 Substrate by the Sol-Gel Method. *Appl. Phys. Lett.* **1995**, *66*, 2661–581 2663.
- 582 (24) Wang, D.; Nordman, C.; Daughton, J. M.; Qian, Z.; Fink, J. 583 70% Tmr at Room Temperature for Sdt Sandwich Junctions with 584 Cofeb as Free and Reference Layers. *IEEE Trans. Magn.* **2004**, *40*, 585 2269–2271.
- 586 (25) Boo, J.-H.; Yu, K.-S.; Koh, W.; Kim, Y. Preparation of Mgo 587 Films on Gaas by Metalorganic Chemical Vapor Deposition. *Mater.* 588 Lett. **1996**, 26, 233–236.
- 589 (26) Fork, D.; Ponce, F.; Tramontana, J.; Geballe, T. Epitaxial Mgo 590 on Si (001) for Y-Ba-Cu-O Thin-Film Growth by Pulsed Laser 591 Deposition. *Appl. Phys. Lett.* **1991**, *58*, 2294–2296.
- 592 (27) Vangelista, S.; Mantovan, R.; Lamperti, A.; Tallarida, G.; 593 Kutrzeba-Kotowska, B.; Spiga, S.; Fanciulli, M. Low-Temperature 594 Atomic Layer Deposition of Mgo Thin Films on Si. *J. Phys. D: Appl.* 595 *Phys.* **2013**, *46*, 485304.
- 596 (28) Kohn, A.; Kovács, A.; Uhrmann, T.; Dimopoulos, T.; Brückl, H. 597 Structural and Electrical Characterization of Sio2/Mgo(001) Barriers 598 on Si for a Magnetic Transistor. *Appl. Phys. Lett.* **2009**, 95, 042506.
- 599 (29) Mather, P.; Read, J.; Buhrman, R. Disorder, Defects, and Band 600 Gaps in Ultrathin (001) Mgo Tunnel Barrier Layers. *Phys. Rev. B:* 601 Condens. Matter Mater. Phys. **2006**, 73, 205412.
- 602 (30) Thomas, A.; Drewello, V.; Schäfers, M.; Weddemann, A.; Reiss, 603 G.; Eilers, G.; Münzenberg, M.; Thiel, K.; Seibt, M. Direct Imaging of 604 the Structural Change Generated by Dielectric Breakdown in Mgo 605 Based Magnetic Tunnel Junctions. *Appl. Phys. Lett.* **2008**, 93, 152508. 606 (31) Martin, M.-B.; Dlubak, B.; Weatherup, R. S.; Yang, H.;
- 606 (S1) Martin, Mr-D.; Diubak, B.; Weatherup, K. S.; Tang, Tr.; 607 Deranlot, C.; Bouzehouane, K.; Petroff, F.; Anane, A.; Hofmann, S.; 608 Robertson, J.; Fert, A.; Seneor, P. Sub-Nanometer Atomic Layer 609 Deposition for Spintronics in Magnetic Tunnel Junctions Based on
- 610 Graphene Spin-Filtering Membranes. ACS Nano 2014, 8, 7890-7895.
 611 (32) Dlubak, B.; Martin, M.-B.; Weatherup, R. S.; Yang, H.;
 612 Deranlot, C.; Blume, R.; Schloegl, R.; Fert, A.; Anane, A.; Hofmann,
- 613 S.; Seneor, P.; Robertson, J. Graphene-Passivated Nickel as an 614 Oxidation-Resistant Electrode for Spintronics. *ACS Nano* **2012**, *6*, 615 10930–10934.
- 616 (33) Ryu, S. W.; Song, J.-G.; Kim, H. G.; Kim, H.; Lee, H.-B.-R. 617 Interlayer-Assisted Atomic Layer Deposition of Mgo as a Magnetic
- 618 Tunneling Junction Insulators. J. Alloys Compd. 2018, 747, 505-510.
- 619 (34) Song, J.-G.; Park, J.; Yoon, J.; Kim, K.; Jang, Y.; Kim, K.; Kim, 620 H. Investigation of Atomic Layer Deposition of Magnesium Oxide on
- 621 a Cofeb Layer for Three-Dimensional Magnetic Tunneling Junctions. 622 *J. Alloys Compd.* **2014**, 588, 716–719.
- 623 (35) Wang, H.; Fu, K. Nucleation and Growth of Mgo Atomic Layer 624 Deposition: A Real-Time Spectroscopic Ellipsometry Study. *J. Vac.*
- 625 Sci. Technol., A 2013, 31, 06F101.
- 626 (36) Burton, B.; Goldstein, D.; George, S. Atomic Layer Deposition 627 of Mgo Using Bis (Ethylcyclopentadienyl) Magnesium and H2o. J. 628 Phys. Chem. C 2009, 113, 1939–1946.
- 629 (37) Wilt, J.; Goul, R.; Acharya, J.; Sakidja, R.; Wu, J. Z. In Situ 630 Atomic Layer Deposition and Electron Tunneling Characterization of 631 Monolayer Al2o3 on Fe for Magnetic Tunnel Junctions. *AIP Adv.* 632 **2018**, *8*, 125218.
- 633 (38) Ugeda, M. M.; Bradley, A. J.; Shi, S.-F.; da Jornada, F. H.; 634 Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S.-K.; Hussain, Z.; Shen, Z.-X.;
- 635 Wang, F.; Louie, S. G.; Crommie, M. F. Giant Bandgap
- 636 Renormalization and Excitonic Effects in a Monolayer Transition
- 637 Metal Dichalcogenide Semiconductor. *Nat. Mater.* **2014**, *13*, 1091–638 1095.

- (39) Feenstra, R. M.; Gaan, S.; Meyer, G.; Rieder, K. Low- 639 Temperature Tunneling Spectroscopy of Ge (111) C (2×8) Surfaces. 640 Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 125316.
- (40) Dorneles, L.; Schaefer, D.; Carara, M.; Schelp, L. The Use of 642 Simmons' Equation to Quantify the Insulating Barrier Parameters in 643 Al/Alo X/Al Tunnel Junctions. *Appl. Phys. Lett.* **2003**, 82, 2832–644 2834
- (41) Ugeda, M. M.; Bradley, A. J.; Shi, S.-F.; da Jornada, F. H.; 646 Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S.-K.; Hussain, Z.; Shen, Z.-X.; 647 Wang, F.; Louie, S. G.; Crommie, M. F. Giant Bandgap 648 Renormalization and Excitonic Effects in a Monolayer Transition 649 Metal Dichalcogenide Semiconductor. *Nat. Mater.* **2014**, *13*, 1091. 650
- (42) Hong, S.; van Duin, A. C. T. Atomistic-Scale Analysis of 651 Carbon Coating and Its Effect on the Oxidation of Aluminum 652 Nanoparticles by Reaxff-Molecular Dynamics Simulations. *J. Phys.* 653 *Chem. C* **2016**, *120*, 9464–9474.
- (43) http://lammps.sandia.gov (accessed January 19, 2019).
- (44) Plimpton, S. Fast Parallel Algorithms for Short-Range 656 Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19.
- (45) Senftle, T.; Hong, S.; Islam, M.; Kylasa, S. B.; Zheng, Y.; Shin, 658 Y. K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M.; Aktulga, H. M.; 659 Verstraelen, T.; Grama, A. Y.; van Duin, A. C. T. The Reaxff Reactive 660 Force-Field: Development, Applications, and Future Directions. *npj* 661 *Comput. Mater.* **2016**, *2*, 15011.
- (46) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. 663 Reaxff: A Reactive Force Field for Hydrocarbons. *J. Phys. Chem. A* 664 **2001**, 105, 9396–9409.
- (47) Gourley, J.; Runciman, W. Multiphonon Infrared Absorption 666 Spectra of Mgo and Cao. J. Phys. C: Solid State Phys. 1973, 6, 583. 667
- (48) Ki Min, B.; Kim, S. K.; Jun Kim, S.; Ho Kim, S.; Kang, M.-A.; 668 Park, C.-Y.; Song, W.; Myung, S.; Lim, J.; An, K.-S. Electrical Double 669 Layer Capacitance in a Graphene-Embedded Al2o3 Gate Dielectric. 670 Sci. Rep. 2015, 5, 16001.
- (49) Srivastava, A.; Mangla, O.; Gupta, V. Study of La-Incorporated 672 Hfo2Mim Structure Fabricated Using Pld System for Analog/Mixed 673 Signal Applications. *IEEE Trans. Nanotechnol.* **2015**, *14*, 612–618. 674
- (50) Ortiz, C. R.; Pantojas, V. M.; Otaño-Rivera, W. Effect of 675 Annealing on the Electrical Properties of Insulating Aluminum Nitride 676 in Mim and Mis Structures. *Solid-State Electron.* **2014**, 91, 106–111. 677 (51) Hu, H.; Zhu, C.; Lu, Y.; Li, M.; Cho, B. J.; Choi, W. A High 678 Performance Mim Capacitor Using Hfo 2 Dielectrics. *IEEE Electron* 679 Device Lett. **2002**, 23, 514–516.