
Nano Communication Networks 18 (2018) 62–71

Contents lists available at ScienceDirect

Nano Communication Networks

journal homepage: www.elsevier.com/locate/nanocomnet

Review article

A low-computation-complexity, energy-efficient, and
high-performance linear program solver based on primal–dual
interior point method using memristor crossbars
Ruizhe Cai *, Ao Ren, Sucheta Soundarajan, Yanzhi Wang
College of Engineering and Computer Science, Syracuse University, Syracuse, NY, 13210, United States

a r t i c l e i n f o

Article history:
Received 12 June 2017
Received in revised form 2 October 2017
Accepted 14 January 2018
Available online 31 January 2018

Keywords:
Memristor
Memristor crossbar
Linear programming
Primal–dual interior point method

a b s t r a c t

Linear programming is required in awide variety of application including routing, scheduling, and various
optimization problems. The primal–dual interior point (PDIP) method is state-of-the-art algorithm for
solving linear programs, and can be decomposed to matrix–vector multiplication and solving systems
of linear equations, both of which can be conducted by the emerging memristor crossbar technique
in O(1) time complexity in the analog domain. This work is the first to apply memristor crossbar for
linear program solving based on the PDIP method, which has been reformulated for memristor crossbars
to compute in the analog domain. The proposed linear program solver can overcome limitations of
memristor crossbars such as supporting only non-negative coefficients, and has been extended for higher
scalability. The proposed solver is iterative and achieves O(N) computation complexity in each iteration.
Experimental results demonstrate that reliable performance with high accuracy can be achieved under
process variations.

© 2018 Elsevier B.V. All rights reserved.

Contents

1. Introduction... 62
2. Background.. 63

2.1. Existing methods for linear programming ... 63
2.2. Memristor ... 63
2.3. Memristor crossbar .. 64

3. Memristor crossbar-based solver for linear programs... 64
3.1. The primal–dual interior point (PDIP) method for solving linear programs.. 64
3.2. Memristor crossbar-based linear program solver using PDIP algorithm ... 65
3.3. Writing coefficients in matrices ... 66
3.4. Supporting large-scale matrices in solving linear programs .. 67
3.5. Algorithm complexity comparison ... 68

4. Experiments and analysis... 68
4.1. Hardware process variation... 68
4.2. Experiments setup ... 68
4.3. Accuracy.. 68
4.4. Estimated computation latency and energy efficiency ... 69
4.5. Results analysis... 70

5. Conclusion ... 71
Acknowledgment .. 71
References ... 71

* Corresponding author.
E-mail addresses: rcai100@syr.edu (R. Cai), aren@syr.edu (A. Ren),

susounda@syr.edu (S. Soundarajan), ywang393@syr.edu (Y. Wang).

1. Introduction

Linear programs are common in a wide variety of applications,
including routing, scheduling, and other optimization problems.

https://doi.org/10.1016/j.nancom.2018.01.001
1878-7789/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.nancom.2018.01.001
http://www.elsevier.com/locate/nanocomnet
http://www.elsevier.com/locate/nanocomnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nancom.2018.01.001&domain=pdf
mailto:rcai100@syr.edu
mailto:aren@syr.edu
mailto:susounda@syr.edu
mailto:ywang393@syr.edu
https://doi.org/10.1016/j.nancom.2018.01.001

R. Cai et al. / Nano Communication Networks 18 (2018) 62–71 63

Interior pointmethods are a popular class of algorithms for solving
linear programs. Unlike the well-known simplex algorithm [1],
which traverses vertices of the feasible region to find the optimal
solution, interior pointmethods trace a path through the interior of
the feasible region. The primal–dual interior point (PDIP) method
uses the gap between the current solutions of the primal linear
program and its dual in order to determine the path to follow
within the feasible region. In each iteration, the algorithm involves
calculating matrix–vector product and solving systems of linear
equations. The emerging memristor crossbar technology can be
potentially utilized to achieve significant speed-ups due to its
significant benefits in matrix operations.

Memristor was predicted as the fourth circuit element nearly
half a century ago [2]. It has been investigated formany years for its
switching behavior in memory design field and analog computing
field [3–5]. Non-volatility, low power consumption, and excellent
scalability are some of its promising features. More importantly,
its capability to record historical resistance makes it unique, and
has resulted in heightened interests over the last several years. A
crossbar structure of memristor devices (i.e. a memristor crossbar)
can be utilized to perform matrix–vector multiplication and solve
systems of linear equations in the analog domain in O(1) time
complexity [6–8]. Such advantages in matrix operations make it
ideal candidate for implementing the state-of-the-art PDIPmethod
for solving linear programs given its high usage of matrix–vector
multiplication and solving linear systems. Moreover, experimental
results suggest that the effect of process variations of memristor
devices can be significantly mitigated by the inherent noise toler-
ance of the iterative PDIP algorithm.

Although promising, multiple challenges need to be overcome
when applyingmemristor devices for linear program solving. Since
the memristor crossbar performs matrix operations in the analog
domain, we need to formulate the whole PDIP algorithm using
memristor crossbar in the analog domain in order to avoid the
significant overhead of D/A and A/D conversions. Moreover, some
limitations of memristor crossbars (e.g., only non-negative matrix
coefficients and square matrices when solving a system of linear
equations can be supported) need to be properly addressed.

To the best of our knowledge, this paper provides a compre-
hensive algorithm-hardware framework on memristor crossbar
for linear program solving. The PDIP method is reformulated for
memristor crossbar and analog computations. The proposed solver
can effectively deal with matrices containing negative numbers,
and has been extended for linear program solving with higher
scalability that can overcome size limitations of the memristor
crossbar structure. The proposed solver achieves pseudo-O(N)
computation complexity, i.e., O(N) complexity in each iteration,
which is a significant improvement compared with the software-
based PDIP method of O(N3). Experimental results demonstrate
that the performance of proposed implementation is reliable with
less than 4% inaccuracy on average under 10% process variations.
Based on our estimation, the proposed solver could lead to an
average of 80× improvements in speed and 270× reduction in
energy consumption [9].

The rest of this paper is organized as follows: Section 2describes
the background of linear program solving methods and memris-
tor devices. Section 3 presents a memristor crossbar based linear
program solver as well as extensions to large-scale applications.
Experimental results and discussions are provided in Section 4.
Finally we conclude in Section 5.

2. Background

2.1. Existing methods for linear programming

The simplexmethod of Dantzig was the first efficient algorithm
for solving linear programming problems, and is still popular to-
day [10]. The simplex algorithm considers the feasible region of the

linear program (i.e., the space of points satisfying all constraints),
which is a polytope. The algorithm begins at one vertex of the
polytope, and moves from vertex to vertex in such a way as to
increase the value of the objective function. The simplex algorithm
is extremely efficient in practice, but has exponential running time
in the worst case [11].

Interior point methods for solving linear programs were devel-
oped in response to this inefficiency. Unlike the simplex algorithm,
which moves from vertex to vertex of the feasible region, interior
point methods traverse the interior of this region. Karmarkar’s
projective method was the first interior point algorithm that was
both polynomial time in the worst case as well as fast in prac-
tice [11]. This method first begins at an interior point within the
feasible region. It next applies a projective transformation so that
the current interior point is the center of the projective space, and
then moves in the direction of steepest descent. This is repeated
until convergence.

The primal–dual interior point method uses the above tech-
nique, but incorporates information from the dual of the problem.
Every linear program has a dual program, with the property that
when the primal linear program has an optimal solution, the dual
linear program also has the same optimal solution, and these two
solutions are equal. Theprimal–dual interior pointmethod exploits
this property by simultaneously solving both the primal linear
program as well as its dual, and steadily decreasing the duality gap
(i.e., the difference between the value of the current solution to the
primal and the current solution to the dual).

2.2. Memristor

Introduced as the fourth element of circuit by L.O. Chua in
1971, founded by HP labs in 2008 [2,3], memristor have shown its
advantage and necessitywith itsmemristive features. Amemristor
could memorize its most recent resistance that can be altered
from excitation with voltage greater than a threshold. Given its
memristive property,memristor can be used to design non-volatile
memory. Furthermore, memristor crossbar structure has much
advantage for matrix–vector multiplication.

When Maxwell published his famous theory unified electricity
and magnetism, it was made clear that each of three fundamental
circuit elements(capacitor, resistor, inductor) is a consequences of
differential relation between two of four circuit variables(voltage,
current, charge, flux). However, these 4 variables lead to 6 possible
combinations. With 3 defined elements, current being the deriva-
tive of charge and flux as the integral of voltage, Chua noticed that
one relation remained undefined. In 1971, Chua proposed a fourth
element bridging the relation between charge and flux, for the sake
of completeness. The new element, memristor is defined as:

M (q) =
dΦ
dq

(1)

which is equal to:

M (q (t)) =

dΦ
dt
dq
dt

=
V (t)
I (t)

(2)

The above equation looks like a nonlinear version of ohm’s law. It
was generalized to memristive systems by Chua in 1976 and can
be written as:

V (t) = M(x, t) · I(t) (3)

where memristance is a time dependent and state dependent
variable. This property of time dependence provides the memory
of the system.

64 R. Cai et al. / Nano Communication Networks 18 (2018) 62–71

Fig. 1. Structure of memristor crossbar.

In 2008, HP labs announced that they have developed memris-
tor based on titanium dioxide thin film and modeled the newly
discovered element as follow:

M(q(t)) = ROFF · (1 −
µυ · RON

D2 q(t)) (4)

ROFF represents high resistance state, RON represents low resis-
tance state,D represents film thickness andµυ representsmobility
if dopants [12–15].

2.3. Memristor crossbar

Asmentioned above, the state of amemristor will changewhen
certain voltage higher than the threshold voltage, i.e., |Vm| > |Vth|,
is applied at its two terminals for a small time period. Otherwise,
the memristor behaves like a resistor. Such memristive property
makes it an ideal candidate for non-volatile memory and matrix
computations [6,7].

With its high degree of parallelism, the memristor crossbar
array is attractive for matrix computations (which can often be
performed with O(1) time complexity). A typical structure of an
N ×N memristor crossbar is shown in Fig. 1, in which a memristor
is connected between each pair of horizontal word-line (WL) and
vertical bit-line (BL). This structure could provide large number of
signal connectionswithin a small footprint. In addition, it is capable
of reprogramming eachmemristor to different resistance states by
properly applying biasing voltages at its two terminals [8,16,17].

For multiplications, a vector of input voltages VI is applied on
WLs and the current through each BL can be collected by measur-
ing the voltage across resistor Rs with conductance of gs. Assume
that the memristor at the connection between WLi and BLj has a
conductance of g(i,j). Then the output voltages are represented by
VO = C · VI, where the connection matrix C is constructed by a
programmed crossbar array, which transfers the input vector VI
to the output vector VO. C is determined by the conductance of
memristors as follows:

C = D · GT
= diag(d1, . . . , dN) ·

⎡⎢⎣g1,1 . . . g1,N
...

. . .
...

gN,1 . . . gN,N

⎤⎥⎦ (5)

where di = 1/(gs +
∑N

k=1gk,i).
In reverse, the memristor crossbar structure can also be used to

solve a linear systemof equations, bymapping the linear equations
to the memristor crossbar structure. A voltage vector VO is applied

on each Rs of BL, so the current flowing through each BL can
be approximated as Io,j = gsVo,j. On the other hand, current Io,j
through BLj can also be calculated as Io,j =

∑
jVI,igi,j. Hence,

for each BLj, equation 1
gs

∑
jVI,igi,j = Vo,j is mapped. Therefore,

the system of linear equations C · VI = VO is mapped to the
memristor crossbar structure, and solution VI can be determined
by measuring voltages on the WLs. Please note that, elements of
matrix C should be non-negative in order to be mapped to mem-
ristor crossbar, because resistance cannot reach negative values. It
is worth mentioning that the matrix calculation process with the
memristor crossbar just has a negligible effect on memristance of
each memristor, because the time period that current go through
a memristor is short enough during the calculation process.

It is proved in [8] that a fast and simple approximation can be
adopted for mapping above matrix onto the memristor crossbar
(gmax is the largest value in G). Therefore for matrix–vector multi-
plication Ax = b, and b = gsVO; for the solution of linear system
Ax = b, and x =

gs
gmax

VI.

3. Memristor crossbar-based solver for linear programs

We present a memristor crossbar based linear program solver
based on the PDIP algorithm, which overcomes hardware limita-
tions of memristor crossbar while taking its advantages on matrix
operations. The presented solver could handle the vastly used
matrix operations in PDIP algorithm efficiently with significantly
reduced computation complexity (to pseudo-O(N)), power con-
sumption, and latency. Moreover, the proposed solver can deal
withmatrices containing negative numbers that cannot be directly
mapped on to memristor crossbars. In addition, we introduce an
extension for linear program solving with higher scalability that
can overcome size limitations of the memristor crossbar structure.

This section is organized in five parts: The PDIP algorithm is dis-
cussed in part 3.1; The proposed memristor crossbar-based linear
program solver is introduced in part 3.2; Part 3.3 discusses writing
coefficients in memristor crossbar, and the proposed solutions for
representing and computing large-scalematrices are introduced in
part 3.4. Part 3.5 investigates computation complexity of proposed
memristor crossbar-based solvers.

3.1. The primal–dual interior point (PDIP) method for solving linear
programs

Linear programsor linear programmingproblems [18] are prob-
lems that can be expressed as:

Maximize cTx subject to: Ax ⪯ b(A ∈ Rm×n), x ⪰ 0
where Ax ⪯ b means that every element in the vector Ax is

smaller than or equal to the corresponding element in vector b.
Every linear program can be converted into a symmetrical dual
problem:

Minimize bTy subject to: ATy ⪰ c(A ∈ Rm×n), y ⪰ 0
By Introducing two additional variables, inequality constraints

can be transformed into equality constraints. The above problem
can be reformulated as follows [19]:

Maximize cTx subject to:

Ax + w = b x,w ⪰ 0 (6a)

and its dual:
Minimize bTy subject to:

ATy + z = c y, z ⪰ 0 (6b)

with complementary conditions:

∀i ∈ N ∩ [1, n] ∧ ∀j ∈ N ∩ [1,m] : xizi = 0, yjwj = 0

R. Cai et al. / Nano Communication Networks 18 (2018) 62–71 65

which can be represented using the following matrix notations:

XZe = 0 ,YWe = 0 (6c)

In the above equation, uppercase notations are utilized to de-
note diagonal matrices, e.g.,

X = diag (x1, . . . , xn) ,

wherex = [x1, . . . , xn]T, and the subscript e stands for the reverse
operation, that is

Xe = [X11, . . . , Xii, . . . , Xnn]
T.

Due to nonlinearity characteristics in (6c), the above problem
is difficult to solve directly. The interior point algorithm [18,19]
is introduced to solve this problem effectively. In this algorithm,
x, y,w, z are initialized as arbitrary vectors and updated iteratively
until Eqs. (6a)–(6c) are (sufficiently) satisfied. In each iteration,
a set of vectors ∆x, ∆y, ∆w, ∆z, which are referred to as step
direction vectors, are derived from solving the following system
of equations:

A (x + ∆x) + (w + ∆w) = b (7a)

AT (y + ∆y) − (z + ∆z) = c (7b)

(X + ∆X) (Z + ∆Z)e = µ (7c)

(Y + ∆Y) (W + ∆W)e = µ (7d)

where µ is a small value vector, values of all of its elements are
equal toµ.µ is a important parameter to guarantee that every step
of iteration does follow the correct path to the optimal solution. If
chosen too large, then the sequence could converge to the center of
feasible region. However, a too small µ could force algorithm jam
into the boundary of feasible region. It has been suggested that:

µ = δ
zTx + yTw
n + m

(8)

where δ is a number between zero and one
Since x, y,w, z are nonnegative vectors, the complementary

conditions in (6c) are replaced with µ-complementary conditions
(7c) and (7d). Ignoring the second-order elements in (7c) and (7d),
the above system of equations can be represented as a system of
linear equations of ∆x, ∆y, ∆w, ∆z, denoted by:

A∆x + ∆w = b − Ax − w (9a)

AT∆y − ∆z = c − ATy + z (9b)

Z∆x + X∆z = µ − XZe (9c)

W∆y + Y∆w = µ − YWe (9d)

The unknown vectors ∆x, ∆y, ∆w, ∆z, or step directions, can
be solved from solving the system of linear equations (9a)–(9d)
and applied to update x, y,w, z. For each iteration, x, y,w, z are
updatedwith step directions determined from solving (9a)–(9d). In
order to guarantee the positive property of every primal and dual
variable, a step length parameter θ is used to limit the impact of
step directions.

x = x + θ∆x (10a)

y = y + θ∆y (10b)

w = w + θ∆w (10c)

z = z + θ∆z (10d)

Fig. 2. Control flow graph for proposed memristor crossbar-based PDIP linear
program solver.

and θ must satisfy θ ≤ maxi,j
(
−

∆xj
xj

, −
∆yi
yi

, −
∆wj
wj

, −
∆zj
zj

)
. In

addition, solution of (10a)–(10d) are determine under the assump-
tion that the step length direction is equal to one, hence, θ ≤ 1.
Therefore, we have:

θ = r · min(max
i,j

(
−

∆xj
xj

, −
∆yi
yi

, −
∆wj

wj
, −

∆zj
zj

)−1

, 1) (11)

where r , a parameter whose value is less than but close to 1, is
introduced to guarantee strict inequality. Above steps are repeated
until primal infeasibility (Ax+w−b), dual infeasibility (ATy−z−c)
and duality gap (zTx + yTw) are small enough. It is proven that
unbound dual indicates primal being infeasible and vice versa,
therefore, constraints are infeasible if the element with the largest
absolute value in x, y is greater than a certain enough large num-
ber, such property could applies to each iteration.

3.2. Memristor crossbar-based linear program solver using PDIP algo-
rithm

The memristor crossbar array structure has high potential for
implementing PDIP algorithms due to its advantages in matrix
operations. However, the memristor crossbar array structure has
some limitations, which necessitate the adjustment of PDIP al-
gorithm for effective memristor crossbar based implementations.
Since the matrix elements are represented as non-negative mem-
ristance values in the memristor crossbar, a novel mechanism is
required for representing negative matrix coefficients. In addition,
the linear system to be solved should have a square coefficients
matrix. Next, we propose a memristor crossbar based linear pro-
gram solver using PDIP algorithm through effectively resolving the
above mentioned issues. (See Fig. 2.)

For facilitatingmemristor-based implementations, linear equa-
tions in (9a)–(9b) can be rewritten as a linear systemwith 2(n+m)
variables, as shown in (12):⎡⎢⎢⎣

A 0 I 0
0 AT 0 −I
Z 0 0 X
0 W Y 0

⎤⎥⎥⎦
⎡⎢⎢⎣

∆x
∆y
∆w
∆z

⎤⎥⎥⎦ =

⎡⎢⎢⎣
b − Ax − w
c − ATy + z

µ − XZe

µ − YWe

⎤⎥⎥⎦ (12)

66 R. Cai et al. / Nano Communication Networks 18 (2018) 62–71

where I represents the identity matrix with diagonal values equal
to 1.

In order to make the matrix representable in memristor cross-
bar structure, new variables have to be introduced to eliminate
negative elements. Consider a linear system Ax = b, in which
Ai,j is negative element. It can be transformed into a non-negative
matrix by introducing a compensation variable xc = −xj. Hence,
the above linear system is equivalent to:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 . . . A1,j . . . A1,n 0
...

... 0
Ai,1 . . . 0 . . . Ai,n −Ai,j
...

... 0
An,1 . . . An,j . . . An,n 0
0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xj
...

xn
xc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

bj
...

bn

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

As shown in Eq. (12), the matrix on left hand-side consists of
a sub-matrix −I introduced by ∆z in Eq. (7b). A new variable
vector, ∆v = −∆z, has to be introduced. Besides, a compensation
variable vector ∆u = −∆w is required for maintaining a square
matrix. In addition,A andAT are the onlymatrices thatmay contain
negative elements. Processes like Eq. (13) are needed to eliminate
all negative elements in A and AT. Therefore the left hand side of
the linear system to be mapped can be written as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

A′ 0 I 0 0 0 0 or A′′

0 AT′

0 0 0 I 0 or AT′′

Z 0 0 X 0 0 0
0 W Y 0 0 0 0
0 0 I 0 I 0 0
0 0 0 I 0 I 0

0 or AI 0 or ATI 0 0 0 0 0 or I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∆x
∆y
∆w
∆z
∆u
∆v
∆p

⎤⎥⎥⎥⎥⎥⎥⎦ (14a)

where ∆p comprises ∆pi =

{
−∆xj if Aα,j < 0 for some α

−∆yk if ATβ,k < 0 for some β
. A′ and AT′

arematrices that change the negative elements in A and AT to zero.
A′′ and AT′′

are matrices whose elements are the absolute values of
negative elements in A and AT. AI and ATI are matrices consisting
of 1 and 0’s. Locations of 1’s depend on the locations of negative
elements in A and AT (please refer to Eq. (13) as an example).

The equation with above left hand size can be denoted as:

M∆s = r (14b)

where M can be implemented and variable vector ∆s can be
derived using memristor crossbar.

In the PDIP algorithm, once ∆x, ∆y, ∆w, ∆z (all in the de-
rived vector ∆s) are derived, we will update x, y, w, z, which can
be performed using summing amplifiers. We will further update
the left-hand side matrix M and the right hand-side vector r of
Eq. (14b). Updating matrix M is relatively straightforward since
we only need to update X, Y, Z, and W in M, using the memristor
writing technology as shall be discussed in part C. On the other
hand, r can be viewed as the difference of two vectors:

r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b − Ax − w
c − ATy + z

µ − XZe

µ − YWe

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
c
µ

µ

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax + w
ATy − z
XZe

YWe

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15a)

The subtraction could be implemented using summing ampli-
fiers [12]. Next, we will discuss the calculation of the last vector in

Eq. (14a). Note that

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
w
z
u
v
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax + w
ATy − z
2XZe

2YWe

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15b)

where u = −w, v = −z, and p consists of elements whose
value are negative of some elements of x and y, depending on the
location of negative elements in A and AT. The result of Eq. (15b) is
only slightly different from the last vector in Eq. (15a) on the 3rd
and 4th elements. Since the matrix–vector product in memristor
crossbar is represented as voltage, we can first calculate (15b) by
performing matrix–vector multiplication using the updated mem-
ristor crossbarM, and then acquire the last vector in Eq. (15a), using
a simple dividing-by-2 procedure on corresponding elements. r
can be updated accordingly.

Unlike PDIP method under ideal conditions, implementation
usingmemristor crossbar could suffer fromhardware process vari-
ation, which could alter actual resistance of each memristor (will
be explained briefly in chapter 4). In some cases, process variation
could severely affect constraints and feasible region accordingly.
Thus, a more robust feasibility detection technique is required to
guarantee an optimal solution is given. In addition to primal–dual
unbound check, a constraints check should be given to the solution
to determine its feasibility. Theoretically, all optimal solutions
should satisfy Ax ≤ b. However, consider impact form process
variation, there is no strict guarantee that above equation should
stand. Therefore, condition Ax ≤ αb is used to check constraints
satisfaction at the end of the algorithm, where α is a parameter
close but greater than 1.

Our proposed memristor crossbar-based linear program solver
is summarized as follows:

Algorithm 1:Memristor Cross-bar Linear Pram Solver
Input: Matrix M, vectors b, c, constants ϵb, ϵc , ϵg , δ, θ
Output: Vectors x, y, z,w
while Ax + w − b > ϵb or ATy + z − c > ϵc or zTx + yTw > ϵg do

Update coefficient matrixM in matrix crossbar based on A,
x, y, z,w.
Derive r using memristor cross-bar.
Solve M∆s = r using memristor crossbar.
Update s = s+θ∆s.
Update µ.

end
Return x, y, z,w.

3.3. Writing coefficients in matrices

The analog computation requires that memristor arrays
(e.g.,matrixM in (11b)) be programmedprior to execution (solving
linear program), and be updated in each iteration during execution.
Modifying the resistance of a memristor device can be achieved by
applying Vdd or −Vdd (satisfying |Vdd| > |Vth|) to two terminals
of the memristor device [8,16,17]. In a memristor crossbar, the
voltage difference Vdd is applied on the corresponding WL and
BL that are connected to the target memristor device, whereas
other WLs and BLs are biased by Vdd/2, which will have negligible
effect on other memristor devices since |Vdd/2| < |Vth| [2,17]. Pro-
gramming a memristor device to a specific resistance is achieved
by adjusting the amplitude and width of the write pulse (or the
total number of write pulse spikes) [8,17]. The writing circuits of
memristor crossbars and corresponding controlling circuits will be
CMOS based.

R. Cai et al. / Nano Communication Networks 18 (2018) 62–71 67

Fig. 3. NoC structure for large scale computation.

3.4. Supporting large-scale matrices in solving linear programs

Amemristor crossbar has limitation on its size due to manufac-
turing and performance considerations [20], which can potentially
limit its scalability for large-scale and high-data rate applications.
In order to overcome this shortcoming, motivated by [20], we
adopt analog network-on-chip (NoC) communication structures
that effectively coordinate multiple memristor crossbars for sup-
porting large-scale applications. Data transfers within this NoC
structure maintain analog form and are managed by the NoC ar-
biters.

Fig. 3(a) and (b) illustrate two potential analog NoC structures
for multiple memristor crossbars. Fig. 3(a) is a hierarchical struc-
ture of memristor crossbars, in which four crossbar arrays are
grouped and controlled by one arbiter, and four such groups again
form a higher-level group controlled by a higher-level arbiter.
Fig. 3(b) is ameshnetwork-based structure ofmemristor crossbars,
which resembles the mesh network-based NoC structure in multi-
core systems [20]. Analog buffer and switches [21] will be utilized
(in the arbiters) for the proper operation of this structure. The
controller of NoC structure will be implemented in CMOS circuits.

The NoC structure in Fig. 3(a) will adopt a centralized controller
whereas that in Fig. 3(b) could employ a distributed controller
similar to mesh network-based NoC in multi-core systems [20].

In addition to the NoC structure, we also present a memristor-
based linear program solver with enhanced scalability. They key
motivation is to use an iterative process to reduce the required size
of matrix M in (14b), thereby improving scalability. More specifi-
cally, we treat Eqs. (9a)–(9b) as two systems of linear equations:[
A 0
0 AT

][
∆x
∆y

]
=

[
b − Ax − w
c − ATy + z

]
(16a)

[
X 0
0 Y

][
∆z
∆w

]
=

[
µ − XZe

µ − YWe

]
(16b)

Unlike (14a)which solves all step direction vectors (i.e.,∆x,∆y,
∆w, ∆z) as one linear system, the proposed iterative algorithm for
large-scale operations updates the step directions in an iterative
approach. While updating step directions for vector x, y, vectors
w, z are assumed to be fixed so that we only need to solve Eq. (14a)
using memristor crossbar. After updating x, y, we derive the step
directions for vectorsw, z by solving (14b) using memristor cross-
bar.

However, the coefficient matrix in (16a) is singular if A is not a
square matrix, that is, Eq. (16a) has no solution. In order to make
(16a) solvable, part of the zero elements needs to be transformed to
nonzero elements while causing limited impact to solution. Hence,
following change is made to (16a).[

A RU

RL AT

][
∆x
∆y

]
=

[
b − Ax − w
c − ATy + z

]
(16c)

whereRU is amatrixwhose upper rightm bym sub-matrix is a zero
matrix and RL is a matrix whose lower left n by n sub-matrix is a
zero matrix while the values of the rest of their elements are very
small. Above transformation could change the linear system repre-
sented by previous equations, however, based on our experiments,
minor changes infused in coefficient (e.g. process variation), in very
rare cases, could largely affect the accuracy of final optimal value.
Given limited size of in RU and RL and their small constructing
values, impact from introduction above two balancing matrices is
slight. (See Fig. 4.)

If n > m, RL is used to replace the submatrix containing lower
left zero elements, and if m > n, RU is used to replace submatrix
containing upper right zero elements. Process alike Eq. (9) is still
needed after this step; therefore, the left hand side of Eq. (16a) is
transformed into⎡⎣ A′ RU 0 or A′′

RL AT′

0 or AT′′

0 or AI 0 or ATI 0 or I

⎤⎦⎡⎣∆x
∆y
∆p

⎤⎦ (16d)

On the other hand, the right hand-side vectors of Eqs. (16a) and
(16b) can be calculated as:⎡⎣b − Ax − w

c − ATy + z
0

⎤⎦ =

⎡⎣b − w
c + z
0

⎤⎦
−

⎡⎣ A′ 0 0 or A′′

0 AT′

0 or AT′′

0 or AI 0 or ATI 0 or I

⎤⎦⎡⎣x
y
p

⎤⎦ (17a)

[
µ − XZe

µ − YWe

]
=

[
µ

µ

]
−

[
X 0
0 Y

][
z
w

]
(17b)

Updating µ shall still follow Eq. (8). θ , on the other hand,
were found to be better to be constant to guarantee convergence.

68 R. Cai et al. / Nano Communication Networks 18 (2018) 62–71

Fig. 4. Control flow graph for proposed memristor crossbar-based linear program
solver for large-scale operations.

Even though a constant θ may not strict restraints primal or dual
solution frombeing negative in some cases, optimal results can still
approach acceptable accuracy.

Details of the proposed iterative linear program solver for en-
hancing scalability are described as below:

Algorithm 2:Memristor Crossbar Linear Program Solver for Large-
Scale Operations
Input: MatrixM, vectors b, c, constants ϵb, ϵc , ϵg , δ, θ
Output: Vectors x, y, z,w
Initialize x, y, z,wwith an arbitrary guess.
while Ax + w − b > ϵb or ATy + z − c > ϵc or zTx + yTw > ϵg do

Update coefficient matrixM1 in matrix crossbar based on A,
x, y.
Calculate vector r1 based on M1 and s1 using memristor
crossbar where s1 = [x, y, p]

T.
SolveM1∆s1 = r1 using memristor crossbar.
Update s1 = s1+θ∆s1.
Update coefficient matrixM2 in matrix crossbar based on x, y.
Calculate vector r2 based on M2 and s2 using memristor
crossbar where s2 = [z,w]

T.
SolveM2∆s2 = r2 using memristor crossbar.
Update s2 = s2+θ∆s2.
Update µ.

end
Return x, y, z,w.

3.5. Algorithm complexity comparison

Given the fact that iteration-exiting conditions are same in
software-based PDIP algorithm and the proposed memristor
crossbar-based solver, the difference in iteration times is minimal.
For each iteration step in software-based PDIP algorithm, a set of
2 (n + m) equations needs to be solved. Solving such linear system
could require O

(
N3

)
time complexity with direct method such as

Gaussian Elimination method or LU-Decomposition, and O
(
N2

)

for each iteration by using iterative method such as Gauss–Seidel
method (N = n + m). For the proposed solver, complexity for
updating X, Y,W, Z inmatrixM isO (N) (please note thatmatricesA
andAT donot needupdating), and solving linear system in Eq. (14a)
only costs O (1) time complexity. That is, for each iteration the
complexity for memristor crossbar-based linear program solver
is O (N), while software-based PDIP algorithm could cost at least
pseudo-O

(
N2

)
. As for memristor crossbar-based linear program

solver for large-scale applications, complexity for updating X, Y
in matrix Eq. (16b) is O (N), and complexities for solving (16a)
and (16b) on memristor crossbar are both O (1). Hence, the time
complexity formemristor crossbar-based linear program solver for
large-scale applications is alsoO (N) for each iteration step, and the
overall time complexity is pseudo-O (N).

Please note that the above analysis only applies for the iterative
solution of linear programs. On the other hand, the initialization
time complexity is O

(
N2

)
for dense matrices, and will be lower for

sparse matrices that are common in linear programs.

4. Experiments and analysis

4.1. Hardware process variation

Under ideal condition, proposed two implementations shall
provide accurate and optimized solution. However, hardware pro-
cess variation could alter actual mem-resistance from designated
mem-resistance, thus affect computation complexity and accu-
racy. Because the impact of process variations is too complex to
be expressed by a mathematical closed-form solution, wemodel it
as a uniform distribution with a maximum range.

The actual matrix represented by memristor crossbar is

M′
= M + M ◦ (var · Rd) (18)

where var is the maximum variation percentage, usually range
from5% to 20% [22], andRd is amatrixwhose elements are random
numberwhose absolute values are less than one. All voltage inputs
and outputs are stored with 8-bit precision.

4.2. Experiments setup

Experiments were given in Matlab 2015a a on a PC (Intel i7-
6700, 16 GB RAM, Windows 10 Pro). Since size of the matrix could
affect results, linear problemswith different number of constraints
were tested. The number of constraints varies from 256 to 1024
exponentially while the number of variables is one third of the
number of constraints. 100 randomly generated feasible tests and
100 randomly generated infeasible tests were given for both two
implementations under no process variation, up to 5% process vari-
ation, up to 10% process variation and up to 20% process variation.
Results in optimal value and latency were compared to the results
obtained from using Matlab linprog function. Following aspects
were taken into consideration: Relative error, number of iterations,
and number of iterations for detecting infeasibility, speed and
energy efficiency.

4.3. Accuracy

Under ideal condition, matrix operations on memristor cross-
bar-based design should be accurate given Kirchhoff’s law [11].
However, asmentioned above, due to process variations, the actual
memristancematrix of amemristor crossbarmay be different from
the theoretical values. Optimal values are used to compare with
results from Matlab function to calculate relative errors. Accuracy
tests results are shown in Fig. 5.

For tested process variation the inaccuracy range is 0.2% to 9.9%
for Memristor Crossbar-based Linear Program Solver and 0.8% to

R. Cai et al. / Nano Communication Networks 18 (2018) 62–71 69

8.5% forMemristor Crossbar-based Linear Program Solver for Large
Scale Operation. Inaccuracy decreases with increasing of numbers
of constraints. Both implementations have shown reliable and ac-
curate performance. Even for up to 20% process variation, relative
error can be as low as 1%.

Relative error being immune to evenup to 20%process variation
is a surprising result. To investigate this, we tested Matlab linprog
function with matrices with process variation. To our surprise,
relative error is similar towhatwe get fromPDIP solver simulation.
It can be concluded that, linear program are not affected by process
variation too much, the larger the size, the less impact process
variation could result.

Another observation is that memristor crossbar-based linear
program solver for large-scale operations is very reliable in terms
of accuracy. However, due to the constant step length and non-
singular system by introducing noise, implementation for large-
scale operations may fail to converge in some rare cases. We be-
lieve that some singular matrices induced by process variations in
the intermediate steps may cause such steep drop. While memris-
tance is altered under the impact of process variation, its mapping
matrix might be changed from a non-singular matrix to closer to a
singular matrix (with determinant equal to 0), which could lead
to zero solution or less accurate solution for the linear system.
Since the coefficient size is relatively small, it could be more easily
affected by some elements change and turn into a singular matrix.

Apart from singular matrix, matrix whose determinant is close
to zero could be more vulnerable to process variations. Recall that
each unknown in the solution of a linear system can be formulated
as the division between determinants of a sub-matrix of coefficient
matrix and coefficient matrix according to the Crammer’s rule; the
solution is inversely proportional to the determinant of coefficient
matrix. Hence, matrices whose determinant values are close to
zero could lead to massive change in values of solution under the
impact of process variation. The accuracy for above two circum-
stances could be easily affected by process variation.

However, based on our randomly generated experiments, the
above two circumstances are not common, and are very rare for
large-scale matrices. Besides, based on our experiments, solver for
large-scale operations could always converge if a checking scheme
is added, that is, solve the problem again if fail to converge. Since
process variation differs from each time of writing, actual matrix
represented by memristor crossbar is not same as the previous
time, thereby, could guarantee convergence.

4.4. Estimated computation latency and energy efficiency

Our experiments based on memristor model from [23] show
significant improvement in speed of memristor crossbar based
implementation. For instance, the measured delay for Matlab lin-
prog if the number of constraints is 1024 is 6.23 s; the estimated
delay for memristor-crossbar based solver is 239 ms with 20%
process variation, 195 ms with 10% process variation, 155 ms
with 5% variation and, though under ideal condition, 78 ms if no
process variation. That would be at least 26×improvements in
speed. Improvements for infeasibility detection ismore significant,
an infeasible system with 1024 constraints could cost Matlab lin-
prog around 30 s to detect while estimated delay on memristor
crossbar-based solver is 265 ms with 20% process variation, which
is at least 113×speed up.

Our estimation is based on (i) actual simulation results iteration
times for convergence, and (ii) the amount of coefficients updating
in each iteration is 2.7N(the number of variables is one third of
the number of constraints) where N is the number of optimization
constraints. A maximum of 110×estimated improvement in speed
is achieved compared with PDIP algorithm implemented in MAT-
LAB executed on an Intel I7 server (when the number of constraints

(a) Accuracy simulation results of memristor crossbar-based linear program
solver. Results are compared to Matlab linprog function. Number of constraints
varies from 4 to 1024.

(b) Accuracy simulation results of memristor crossbar-based linear program
solver for large scale operations. Results are compared to Matlab linprog func-
tion. Number of constraints varies from 4 to 1024.

Fig. 5. Simulated accuracy.

is 1024). This significant improvement is because of reduction in
computational complexity and speedupdue to dedicatedhardware
implementation. Detailed comparison results are shown in Fig. 6.

For proposed memristor crossbar-based linear program solver
for large scale operations, speed up overMatlab linprog is also vast.
A linear programwith 1024 constraints can be solved by proposed
structure in less than 80 ms(with 20% process variation) while it
could cost Matlab linprog function 6234 ms to derive a solution.
However, unlike memristor crossbar-based linear program solver,
estimated computation latency does not increase with process
variation increment. It can be explained by its constant step length
and number of iterations tests results.

As for energy efficiency, our experiments based on memris-
tor model from [23] show significant improvement in energy
efficiency of memristor crossbar based implementation. For in-
stance, the estimated energy consumption for Matlab linprog if
the number of constraints is 1024 is 218.1 J; the estimated delay
for memristor-crossbar based solver is 12.1 J with 20% process
variation, 8.9 J with 10% process variation, 6.2 J with 5% variation

70 R. Cai et al. / Nano Communication Networks 18 (2018) 62–71

(a) Estimated computation latency ofmemristor crossbar-based linear program
solver comparedwithMatlab linprog function and PDIP implemented inMatlab
. Number of constraints varies from 4 to 1024.

(b) Estimated computation latency ofmemristor crossbar-based linear program
solver for large scale operations. compared withMatlab linprog function. Num-
ber of constraints varies from 4 to 1024.

Fig. 6. Estimated computation latency.

and, though under ideal condition, 0.9 J if no process variation.
That would be at least 24×improvements in energy efficiency.
Improvements for infeasibility detection is more significant, an
infeasible system with 1024 constraints could cost Matlab linprog
around 1023.1 J to detect while estimated delay on memristor
crossbar-based solver is 10.9 J even with 20% process variation,
which is at least 113×speed up.

An average of 30×estimated improvement in energy efficiency
is achieved comparedwithMATLAB linprog executed on an Intel I7
server (when the number of constraints is 1024). The improvement
is even larger on proposed implementation for large-scale, an
average of 273×. This significant improvement is because of reduc-
tion in computational complexity and speedup due to dedicated
hardware implementation. Detailed comparison results are shown
in Fig. 7.

4.5. Results analysis

Based on our numerous experiments, proposed memristor
crossbar-based linear program solver and memristor crossbar-
based linear program solver for large scale operations are capable

(a) Estimated energy consumption ofmemristor crossbar-based linear program
solver comparedwithMatlab linprog function and PDIP implemented inMatlab
. Number of constraints varies from 4 to 1024.

(b) Estimated energy consumption ofmemristor crossbar-based linear program
solver for large scale operations compared with Matlab linprog function. Num-
ber of constraints varies from 4 to 1024.

Fig. 7. Estimated energy consumption.

of solving linear programs in amuch smaller amount of timewhile
consume less energy. Especially for some large scale infeasible lin-
ear problems, which could be time consuming for Matlab linprog
function, our proposed implementations could detect infeasibility
much faster. Even though process variation could affect number of
iterations, overall speedup is still huge thanks to speed advantages
of memristor crossbar in matrix–vector operations.

Accuracy tests show that evenwith up to 20% process variation,
proposed memristor crossbar-based implementations can always
give a reliable optimal solution. Memristor crossbar-based linear
program solver for large scale operations may not guarantee a
positive solution due to constant step length, which may also
causing converge failure, but it can generate an acceptable optimal
value. Convergence failures can be eliminated by a double check-
ing scheme, which solve the problem for a second time if solver
indicates infeasible.

In brief, proposed memristor crossbar-based linear program
solver and memristor crossbar-based linear program solver for
large scale operations are verified to be reliable in accuracy, speed
and energy efficiency.

R. Cai et al. / Nano Communication Networks 18 (2018) 62–71 71

5. Conclusion

This paper described the design of memristor crossbar-based
linear program solver using primal–dual interior point algorithm.
Two implementations using memristor crossbar have been pre-
sented for effectively trading-off between hardware complexity
and computing speed. We also presented extension schemes to
large-scale applications. Experimental results demonstrate reliable
performance with high accuracy and high efficiency.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grant No. 1637559.

References

[1] K.G. Murty, Linear programming, 1983.
[2] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory

18 (5) (1971) 507–519.
[3] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor

found, Nature 453 (7191) (2008) 80–83.
[4] D.R. Lamb, P.C. Rundle, A non-filamentary switching action in thermally grown

silicon dioxide films, Br. J. Appl. Phys. 18 (1) (1967) 29. URL http://stacks.iop.
org/0508-3443/18/i=1/a=306.

[5] M. Hu, Y. Wang, Q. Qiu, Y. Chen, H. Li, The stochastic modeling of TiO 2 mem-
ristor and its usage in neuromorphic system design, in: Design Automation
Conference (ASP-DAC), 2014 19th Asia and South Pacific, IEEE, 2014, pp. 831–
836.

[6] S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale
memristor device as synapse in neuromorphic systems, Nano Lett. 10 (4)
(2010) 1297–1301 PMID: 20192230. http://dx.doi.org/10.1021/nl904092h.

[7] M.D. Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: Memris-
tors,memcapacitors, andmeminductors, Proc. IEEE 97 (10) (2009) 1717–1724.
http://dx.doi.org/10.1109/JPROC.2009.2021077.

[8] M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, Bsb training scheme implementa-
tion on memristor-based circuit, in: 2013 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, CISDA, 2013, pp. 80–87.
http://dx.doi.org/10.1109/CISDA.2013.6595431.

[9] R. Cai, A Low-Computation-Complexity, Energy-Efficient, and High-Perform-
ance Linear Program Solver Using Memristor Crossbars, 2016.

[10] G.B. Dantzig, M.N. Thapa, Linear Programming 1: Introduction, Springer Sci-
ence & Business Media, 2006.

[11] Á. Rák, G. Cserey, Macromodeling of the memristor in SPICE, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 29 (4) (2010) 632–636.

[12] B. Liu, Y. Chen, B. Wysocki, T. Huang, The circuit realization of a neuromorphic
computing system with memristor-based synapse design, in: Proceedings of
the 19th International Conference on Neural Information Processing - Volume
Part I, ICONIP’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 357–365. http:
//dx.doi.org/10.1007/978-3-642-34475-6.

[13] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing mem-
ristor found, Nature 453 (7191) (2008) 80–83. http://dx.doi.org/10.1038/
nature06932.

[14] Q. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W.
Wu, X. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S.
Williams, MemristorCMOS hybrid integrated circuits for reconfigurable logic,
Nano Lett. 9 (10) (2009) 3640–3645 PMID: 19722537. http://dx.doi.org/10.
1021/nl901874j.

[15] J. Liang, S. Yeh, S.S. Wong, H.-S.P. Wong, Effect of wordline/bitline scaling on
the performance, energy consumption, and reliability of cross-point memory
array, J. Emerg. Technol. Comput. Syst. 9 (1) (2013) 9:1–9:14. http://dx.doi.org/
10.1145/2422094.2422103.

[16] A. Heittmann, T.G. Noll, Limits of writing multivalued resistances in passive
nanoelectronic crossbars used in neuromorphic circuits, in: Proceedings of the
Great Lakes Symposium on VLSI, GLSVLSI ’12, ACM, New York, NY, USA, 2012,
pp. 227–232. http://dx.doi.org/10.1145/2206781.2206836.

[17] D. Kadetotad, Z. Xu, A.Mohanty, P.Y. Chen, B. Lin, J. Ye, S. Vrudhula, S. Yu, Y. Cao,
J.s. Seo, Neurophysics-inspired parallel architecture with resistive crosspoint
array for dictionary learning, in: 2014 IEEE Biomedical Circuits and Systems
Conference (BioCAS) Proceedings, 2014, pp. 536–539. http://dx.doi.org/10.
1109/BioCAS.2014.6981781.

[18] R.O. Ferguson, L.F. Sargent, Linear Programming, McGraw-Hill, 1958.
[19] R.V. Robert, Linear programming: Foundations and extensions, 1996.
[20] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang, M. Barnell, Q.

Wu, J. Yang, RENO: A high-efficient reconfigurable neuromorphic computing

accelerator design, in: 2015 52nd ACM/EDAC/IEEE Design Automation Confer-
ence, DAC, 2015, pp. 1–6. http://dx.doi.org/10.1145/2744769.2744900.

[21] J. Steensgaard, Bootstrapped low-voltage analog switches, in: Circuits and Sys-
tems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE International Symposium
on, vol. 2, 1999, pp. 29–32. http://dx.doi.org/10.1109/ISCAS.1999.780611.

[22] M. Hu, H. Li, Y. Chen, X. Wang, R.E. Pino, Geometry variations analysis
of TiO2 thin-film and spintronic memristors, in: Proceedings of the 16th
Asia and South Pacific Design Automation Conference, ASPDAC ’11, IEEE
Press, Piscataway, NJ, USA, 2011, pp. 25–30. http://dl.acm.org/citation.cfm?id=
1950815.1950820.

[23] C. Yakopcic, T.M. Taha, R. Hasan, Hybrid crossbar architecture for a memristor
based memory, in: NAECON 2014 - IEEE National Aerospace and Electron-
ics Conference, 2014, pp. 237–242. http://dx.doi.org/10.1109/NAECON.2014.
7045809.

Ruizhe Cai received the B.S. degree in Integrated Circuit
Design and Integrated System from Dalian University of
Technology, Dalian, Liaoning, China, in 2014, and the M.S.
degree in Computer Engineering from Syracuse Univer-
sity, Syracuse, NY, USA, in 2016. Hewas a research student
in Communication and Computer Engineering at Tokyo In-
stitute of Technology, Tokyo, Japan between 2013 to 2014.
He is currently a Ph.D. student in Computer Engineering
in Syracuse University, Syracuse, NY, USA. His research
interests include neuromorphic computing, deep neural
network acceleration, and low power design.

Ao Ren received the B.S. degree in Integrated Circuit
Design and Integrated System from Dalian University of
Technology, Dalian, Liaoning, China, in 2013, and the M.S.
degree in Computer Engineering from Syracuse Univer-
sity, Syracuse, NY, USA, in 2015.

He is currently a Ph.D. student in Computer Engineer-
ing in Syracuse University, Syracuse, NY, USA. His research
interests include neuromorphic computing, deep neural
network acceleration, and low power design.

Sucheta Soundarajanwas born in Columbus, Ohio, United
States in 1984. She earned her BS in Mathematics and
Computer/Information Science from The Ohio State Uni-
versity in Columbus, Ohio, United States in 2005, and re-
ceived her Ph.D. in Computer Science fromCornell Univer-
sity in Ithaca, New York, United States in 2013.

She was a postdoctoral associate in the Depart-
ment of Computer Science at Rutgers University in New
Brunswick, New Jersey from 2013–2015. Since 2015, she
has been an Assistant Professor in the Department of
Electrical Engineering and Computer Science at Syracuse

University in Syracuse, New York. Her research interests include algorithm devel-
opment and data mining, with a focus on complex networks and large matrices.

She is a member of the ACM and SIAM.

Yanzhi Wang is currently an assistant professor at Syra-
cuse University, starting from August 2015. He received
B.S. degree from Tsinghua University in 2009 and Ph.D.
degree fromUniversity of Southern California in 2014, un-
der supervision of Prof. Massoud Pedram. His research in-
terests include neuromorphic computing, energy-efficient
deep learning systems, deep reinforcement learning, em-
bedded systems andwearable devices, etc. Hehas received
best paper awards from International Symposium on Low
Power Electronics Design 2014, International Symposium
on VLSI Designs 2014, top paper award from IEEE Cloud

Computing Conference 2014, and best paper award and best student presentation
award from ICASSP 2017. He has two popular papers in IEEE Trans. on CAD. He has
received multiple best paper nominations from ACM Great Lakes Symposium on
VLSI, IEEE Trans. on CAD, andAsia and South Pacific Design Automation Conference.,
and International Symposium on Low Power Electronics Design.

http://refhub.elsevier.com/S1878-7789(17)30139-4/sb2
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb2
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb2
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb3
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb3
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb3
http://stacks.iop.org/0508-3443/18/i%3D1/a%3D306
http://stacks.iop.org/0508-3443/18/i%3D1/a%3D306
http://stacks.iop.org/0508-3443/18/i%3D1/a%3D306
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb5
http://dx.doi.org/10.1021/nl904092h
http://dx.doi.org/10.1109/JPROC.2009.2021077
http://dx.doi.org/10.1109/CISDA.2013.6595431
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb10
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb10
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb10
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb11
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb11
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb11
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://dx.doi.org/10.1007/978-3-642-34475-6
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://dx.doi.org/10.1007/978-3-642-34475-6
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb12
http://dx.doi.org/10.1007/978-3-642-34475-6
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1021/nl901874j
http://dx.doi.org/10.1021/nl901874j
http://dx.doi.org/10.1021/nl901874j
http://dx.doi.org/10.1145/2422094.2422103
http://dx.doi.org/10.1145/2422094.2422103
http://dx.doi.org/10.1145/2422094.2422103
http://dx.doi.org/10.1145/2206781.2206836
http://dx.doi.org/10.1109/BioCAS.2014.6981781
http://dx.doi.org/10.1109/BioCAS.2014.6981781
http://dx.doi.org/10.1109/BioCAS.2014.6981781
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb18
http://dx.doi.org/10.1145/2744769.2744900
http://dx.doi.org/10.1109/ISCAS.1999.780611
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://dl.acm.org/citation.cfm%3Fid%3D1950815.1950820
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://dl.acm.org/citation.cfm%3Fid%3D1950815.1950820
http://refhub.elsevier.com/S1878-7789(17)30139-4/sb22
http://dl.acm.org/citation.cfm%3Fid%3D1950815.1950820
http://dx.doi.org/10.1109/NAECON.2014.7045809
http://dx.doi.org/10.1109/NAECON.2014.7045809
http://dx.doi.org/10.1109/NAECON.2014.7045809

	A low-computation-complexity, energy-efficient, and high-performance linear program solver based on primal–dual interior point method using memristor crossbars
	Introduction
	Background
	Existing methods for linear programming
	Memristor
	Memristor crossbar

	Memristor crossbar-based solver for linear programs
	The primal–dual interior point (PDIP) method for solving linear programs
	Memristor crossbar-based linear program solver using PDIP algorithm
	Writing coefficients in matrices
	Supporting large-scale matrices in solving linear programs
	Algorithm complexity comparison

	Experiments and analysis
	Hardware process variation
	Experiments setup
	Accuracy
	Estimated computation latency and energy efficiency
	Results analysis

	Conclusion
	Acknowledgment
	References

