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Abstract

Citations have long been used to character-

ize the state of a scientific field and to iden-

tify influential works. However, writers use

citations for different purposes, and this var-

ied purpose influences uptake by future schol-

ars. Unfortunately, our understanding of how

scholars use and frame citations has been lim-

ited to small-scale manual citation analysis of

individual papers. We perform the largest be-

havioral study of citations to date, analyzing

how scientific works frame their contributions

through different types of citations and how

this framing affects the field as a whole. We

introduce a new dataset of nearly 2,000 cita-

tions annotated for their function, and use it

to develop a state-of-the-art classifier and la-

bel the papers of an entire field: Natural Lan-

guage Processing. We then show how differ-

ences in framing affect scientific uptake and

reveal the evolution of the publication venues

and the field as a whole. We demonstrate that

authors are sensitive to discourse structure and

publication venue when citing, and that how a

paper frames its work through citations is pre-

dictive of the citation count it will receive. Fi-

nally, we use changes in citation framing to

show that the field of NLP is undergoing a sig-

nificant increase in consensus.

1 Introduction

Authors use citations to frame their contributions

and connect to an intellectual lineage (Latour, 1987).

An author’s scientific frame employs citations in

multiple ways (Figure 1) so as to build a strong

Unlike CITE, we use the method of CITE,

which has been used previously for parsing (CITE).

Contrast Use Background

Figure 1: Examples of citation functionality.

and multifaceted argument. These differences in ci-

tations have been examined extensively within the

context of a single paper (Swales, 1986; White,

2004; Ding et al., 2014). However, we know rela-

tively little about how these citation frames develop

over time within a field and what impact they have

on scientific uptake.

Answering these questions has been largely hin-

dered by the lack of a dataset showing how citations

function at the field scale. Here, we perform the

first field-scale study of citation framing by first de-

veloping a state-of-the-art method for automatically

classifying citation function and then applying this

method to an entire field’s literature to quantify the

effects and evolution of framing.

Analyzing large-scale changes in citation fram-

ing requires an accurate method for classifying the

function a citation plays towards furthering an ar-

gument. Due to the difficulty of interpreting ci-

tation intent, many prior works performed manual

analysis (Moravcsik and Murugesan, 1975; Swales,

1990; Harwood, 2009) and only recently have au-

tomated approaches been developed (Teufel et al.,

2006b; Valenzuela et al., 2015). Here, we unify core

aspects of several prior citation annotation schemes

(White, 2004; Ding et al., 2014; Hernández-Alvarez

and Gomez, 2016). Using this scheme, we create



one of the largest annotated corpora of citations and

use it to train a high-accuracy method for automat-

ically labeling a corpus. We apply our method to

label the field of NLP, with over 134,127 citations in

over 20,000 papers from nearly forty years of work.

Our work provides four key contributions for un-

derstanding how authors frame their citations. We

introduce a new large-scale representative corpus of

citation function and state-of-the-art methodology

for classifying citations by function. We demon-

strate that citations reflect the discourse structure of

a paper but that this structure is significantly influ-

enced by publication venue. Third, we show that

differences in a paper’s citation framing have a sig-

nificant and meaningful impact on future scientific

uptake as measured through future citations. Finally,

by examining changes in the usage of citation func-

tions, we show that the scholarly NLP community

has evolved in how its authors frame their work, re-

flecting the maturation and growth of the field as a

rapid discovery science (Collins, 1994). We pub-

licly release our dataset and code to enable future

research.

2 A Corpus for Citation Function

Citations play a key role in supporting authors’ con-

tributions throughout a scientific paper.1 Multi-

ple schemes have been proposed on how to clas-

sify these different roles, ranging from a handful

of classes (Nanba and Okumura, 1999; Pham and

Hoffmann, 2003) to twenty or more (Garfield, 1979;

Garzone and Mercer, 2000). While suitable for ex-

pert manual analysis, many schemes include fine-

grained distinctions that are too rare to reliably iden-

tify or subjective classifications that require detailed

knowledge of the field or author (Ziman, 1968;

Swales, 1990; Harwood, 2009). Motivated by the

desire to automatically examine large-scale trends in

scholarly behavior, we address these issues by uni-

fying the common aspects of multiple approaches in

a single classification.

2.1 Classification Scheme

Our classification captures the broad thematic func-

tions a citation can serve in the discourse, e.g., pro-

1For notational clarity, we use the term reference for the

work that is cited and citation for the mention of it in the text.

viding background or serving as contrast (Oppen-

heim and Renn, 1978; Spiegel-Rüsing, 1977; Teufel

et al., 2006a; Garfield, 1979; Garzone and Mercer,

2000; Abu-Jbara et al., 2013).2 Citation function re-

flects the specific purpose a citation plays with re-

spect to the current paper’s contributions. We unify

the functional roles common in several classifica-

tions, e.g., (Spiegel-Rüsing, 1977; Garfield, 1979;

Peritz, 1983; Teufel et al., 2006a; Harwood, 2009;

Dong and Schäfer, 2011), into the six classes shown

in Table 1, along with their description and example.

Our annotation scheme is similar to the six classes

of Abu-Jbara et al. (2013) and the twelve-class

scheme of Teufel (2000). The former has separate

classes for comparison and for contrast, whereas the

latter has multiple finer-grained distinctions for dif-

ferent kinds of comparison and contrasts. Here, we

collapse these distinctions into a single class, COM-

PARISON AND CONTRAST, that signals the author is

making some form of alignment between their work

and another. In practice, we found that many cita-

tion contexts with alignments—such as this one—

contain signals of both comparison and contrast;

for our intended analyses, we considered this align-

ment signalling more important than whether the au-

thor was comparing or contrasting. Additionally,

we introduce the FUTURE class to indicate that au-

thors have forward-looking references for how their

work might be applied later; these references are im-

portant for establishing a temporal lineage between

works, and as we show later in §4, are the most fre-

quent citation type in papers’ Conclusion sections.

Our adapted scheme enables us to conduct detailed

analyses of the narrative structure of papers, venue

citation pattern and evolution, and modeling the evo-

lution of the whole field.

2.2 Annotation Process and Dataset

Annotation guidelines were created using a pilot

study of 10 papers sampled from the ACL Anthol-

ogy Reference Corpus (ARC) (Bird et al., 2008).

2Another potential theme is citation sentiment (Athar, 2014;

Kumar, 2016), but we omit this theme from our field-scale anal-

ysis because researchers have shown that negative sentiment is

rare in practice (Chubin and Moitra, 1975; Vinkler, 1998; Case

and Higgins, 2000) and can be quite subjective to classify due

to textual mixtures of praise and criticism (Peritz, 1983; Swales,

1986; Brooks, 1986; Teufel, 2000).



Class Description Example

BACKGROUND P provides relevant information

for this domain.

This is often referred to as incorporating deterministic closure (Dörre,

1993).

MOTIVATION P illustrates need for data, goals,

methods, etc.

As shown in Meurers (1994), this is a well-motivated convention [...]

USES Uses data, methods, etc., from P . The head words can be automatically extracted [...] in the manner de-

scribed by Magerman (1994).

EXTENSION Extends P ’s data, methods, etc. [...] we improve a two-dimensional multimodal version of LDA (An-

drews et al, 2009) [...]

COMPARISON

OR CONTRAST

Expresses similarity/differences

to P .

Other approaches use less deep linguistic resources (e.g., POS-tags

Stymne (2008)) [...]

FUTURE P is a potential avenue for future

work.

[...] but we plan to do so in the near future using the algorithm of Little-

stone and Warmuth (1992).

Table 1: Our set of six functions a citation may serve with respect to a cited paper P .

Annotators completed two rounds of pre-annotation

to discuss their process and design guidelines. All

citations were then doubly-annotated by two trained

annotators with expertise in NLP using the Brat tool

(Stenetorp et al., 2012) and then fully adjudicated to

ensure quality. Following best practices for anno-

tating citations (Athar, 2014), annotators saw an ex-

tended context before and after the citing sentence,

provided from the output of ParsCit. Annotators

were instructed to skip any instances whose context

was corrupted or whose citance text did not match

the regular citation style for ACL venues.3

The citation scheme was applied to a random sam-

ple of 52 papers drawn from the ARC. Each paper

was processed using ParsCit (Councill et al., 2008)

to extract citations and their references. As expected

from prior studies (Teufel et al., 2006a; Dong and

3A small number of citation instances in our sample oc-

curred in contexts where the surrounding text was malformed,

which we attribute to being OCR errors, the citation being in

the middle of a math-related context whose symbols were not

converted, or where the citation occurred within a table or fig-

ure whose structure was treated as the surrounding text. In all

cases, we viewed in the instance as unsuitable for use as a train-

ing example since it contained little meaningful context. These

cases accounted for less than 10 instances in our data. A sec-

ond set of instances were excluded when ParsCit mislabeled the

span of a citation, either shortening it or increasing it to mul-

tiple citations’ text. These wrong-spans occurred in less than

10 instances in our sample. A third set of citation instances

were excluded due to citation style difference, where a paper

in an earlier iteration of a conference used numeric citations,

e.g., “[12].” These were excluded to ensure uniformity in the

data and occurred in two papers that were excluded from in our

initial sample. As these errors are sufficiently rare in our sam-

ple (<4%), we do not perform any further correction for these

errors in the larger, un-annotated data.

Citation Function Count

BACKGROUND 1021

USES 365

COMPARES OR CONTRASTS 344

MOTIVATION 98

CONTINUATION 73

FUTURE 68

Table 2: Citation class distribution in our dataset

Schäfer, 2011), some citation functions were infre-

quent. We therefore attempted to oversample the in-

frequent classes FUTURE, EXTENSION, and MOTI-

VATION, by using keywords biased toward extract-

ing citing sentences of a particular class (such as the

word “future” for the FUTURE class). The resulting

citing sentences were then annotated and could po-

tentially be assigned to any class. In total, 1436 cita-

tions in context were annotated for the fully-labeled

52 papers (mean 27.6 citations/paper) and 533 sup-

plemental contexts from 133 papers were added by

targeted sampling, bringing the total number of in-

stances to 1969. Table 2 shows the class distribution

in the final dataset. Consistent with prior work, the

majority of citations are BACKGROUND (Moravcsik

and Murugesan, 1975; Spiegel-Rüsing, 1977; Teufel

et al., 2006b).

3 Automatically Classifying Citations

The structure of a scientific article provides mul-

tiple cues for a citation’s purpose. Our work

draws on multiple approaches (Hernández-Alvarez

and Gomez, 2016) to develop a classifier based on

(1) structural features describing where the citation

is located, (2) lexical and grammatical features for



Structural

section # and remaining # of sections

relative positions in paper, section, subsection

sentence, & clause

# of other citations in subsection, sentence, & clause

canonicalized section title

Lexical, Morphological, and Grammatical

function patterns of Teufel (2000)

topical similarity with cited paper

the presence of each of 23 connective phrases

verb tense

lengths of the containing sentence and clause

whether used inside of a parenthetical statement

† bootstrapped function patterns

† custom function patterns

† citation prototypicality

† citation context topics

† paper topics

† whether used in nominative or parenthetical form,

† whether preceded by a Pascal-cased word

† whether preceded by an all-capital case word

Field

# of years difference in publication dates

whether the cited paper is a self-citation

† citing paper’s venue: journal/conference/workshop

† reference’s venue: journal/conference/workshop

reference’s citation count, and PageRank

(at time of the citation)

† reference’s Hub and Authority scores

and Network Centrality (at time of the citation)

† # of citations in common

Usage

# of indirect citations

# of direct citations

# of indirect citations per section type

# of direct citations per section type

fraction of bibliography used by this reference

Table 3: Features for classifying citations. Novel features

are marked with a †.

how the citation is described, (3) field features that

take into account venue or other external informa-

tion, and (4) usage features on how the reference is

cited throughout the paper. Table 3 shows our fea-

tures, which includes ten novel feature types, in ad-

dition to several drawn from recent systems (Teufel,

2000; Teufel et al., 2006b; Dong and Schäfer, 2011;

Wan and Liu, 2014; Valenzuela et al., 2015; Zhu et

al., 2015).

Function Pattern

COMP. OR CON. @SIMILAR ADJ to @REFERENTIAL @USE

COMP. OR CON. the @RESEARCH NOUN of #N

EXTENDS @CHANGE NOUN of #N ’s

EXTENDS @CHANGE NOUN of citation ’s

MOTIVATION @INSPIRATION by #N

USES @1ST PERSON PRONOUN (NOM) @USE the #N

USES the #N corpus

USES #D #N #N citation

Table 4: Examples of bootstrapped patterns learned and

their associated class where @ denotes a lexical class and

# denotes a part of speech wild card.

3.1 Features

Following, we describe in detail the three main cat-

egories of novel features.

Pattern-based Features Patterns provide a pow-

erful mechanisms for capturing regularity in citation

usage (Dong and Schäfer, 2011). Our patterns are a

sequence of cue phrases, parts of speech, or lexical

categories, like positive-sentiment words or specific

categories that allow generalizations across phrases

like “we extend” and “we build upon.” We began

with the largest publicly-available list of citation pat-

terns (Teufel, 2000) and extended it with 132 new

patterns and 13 new lexical categories based on a

manual analysis of the corpus.

We then used bootstrapping to automatically iden-

tify new patterns as follows: Each annotated con-

text was converted into fixed-length patterns using

(a) our 42 lexical categories, (b) part of speech wild

cards, or (c) the tokens directly. To avoid semantic

drift (Riloff and Jones, 1999), a bootstrapped pat-

tern was only included as a feature if the majority

of its occurrences were with a single citation func-

tion.4 Table 4 shows examples of these bootstrapped

patterns.

Previous patterns primarily use cues from the

same sentence as the citation (Teufel, 2000). How-

ever, authors often use multiple sentences to indicate

a citation’s purpose (Abu-Jbara and Radev, 2012;

Ritchie et al., 2008; He et al., 2011; Kataria et al.,

2011). For example, authors may first introduce a

work positively, only to contrast with it in later sen-

4For computational efficiency, patterns were restricted to

having between 3 and 8 tokens and at most two part of speech

wild cards. Due to its high frequency, patterns for BACK-

GROUND were required to occur in at least 100 contexts.



1) algorithm parameter model training method clustering

2) measure score metric information similarity distance

3) % result accuracy report achieve performance system

4) training weight feature och model set algorithm error

5) work related previous paper problem approach present

Table 5: The most probable words from five example top-

ics learned from citation contexts.

tences (Peritz, 1983; Brooks, 1986; Mercer et al.,

2004). Indeed the average text pertaining to a cita-

tion spans 1.6 sentences in the ARC (Small, 2011).

We therefore induce bootstrapped patterns spe-

cific to the citation sentence as well as the preceding

and following sentences. Ultimately, 805 new boot-

strapped patterns were added for the citing sentence,

669 for the preceding context, and 1159 for the fol-

lowing context, a total of over four times the number

of manually curated patterns.

Topic-based Features A context’s thematic fram-

ing can point to the purpose of a citation even in

the absence of explicit cues. For example, a citation

in a context describing system performances and re-

sults is likely to be a COMPARE OR CONTRAST,

whereas one describing methodology is more likely

to be USES. We quantify this thematic framing by

using features based on topic models, computed over

the sentence containing the citation and also over

the paragraph containing the citing sentence. For

each type of context, a topic model is trained over

321,129 respective contexts from the ARC. Table 5

shows example topics.

Prototypical Argument Features We also ex-

plored richer grammatical features, drawing on

selectional preferences reflecting expectations for

predicate arguments (Erk, 2007). We construct a

prototype for each citation function by identifying

the frequent arguments seen in different syntactic

positions. For example, EXTENDS citations occur

frequently as objects of verbs such as “follow” and

“use”, whereas USES citations have techniques or

artifact words as dependents; Table 6 shows more

examples. Each class’s selectional preferences are

represented using a vector for the argument at each

relation type, constructed by summing the vectors

of all words appearing in it. Each function is rep-

resented as a separate feature whose value is the

Function Path Arguments

MOTIVATION nmod−1 inspire, work, show

MOTIVATION nmod−1, nmod−1 exemplify, direction, inspire

MOTIVATION nsubj−1 show, use, suggest

USES nmod−1 use, describe, propose

USES dobj use, follow, see

USES dep−1 system, algorithm, mechanism

COMP. OR CONT. nmod−1, nmod−1 similar, related, use

COMP. OR CONT. dep−1 system, method, approach

COMP. OR CONT. nsubj−1, dobj approach, technique, rule

EXTENDS amod previous, prior, unsupervised

EXTENDS nmod−1, nmod−1 base, version, extension

EXTENDS dobj−1 follow, extend, unfold

Table 6: Examples of citation function selectional pref-

erences with the most-frequent arguments seen for each

paths. Each dependency path feature value reflects the

similarity of (i) the average word vector for that path’s

arguments with (ii) the vector of the path’s argument in a

given context, if the path is present.

average similarity of an instance’s arguments with

the class’s preferences for all observed syntactic re-

lationships (i.e., how similar are the syntactically-

related words to the function’s preferences). Our

work differs from dependency-based features from

prior work that use separate features for each unique

dependency path and argument (Athar and Teufel,

2012; Abu-Jbara et al., 2013); in contrast, we use

a single feature for each path with distributed rep-

resentation for its arguments, which allows our fea-

tures to generalize to similar words that are unseen

in the training data.

3.2 Experimental Setup

Models All models were trained using a Random

Forest classifier, which is robust to overfitting even

with large numbers of features (Fernández-Delgado

et al., 2014). After limited grid search over possible

configurations,5 we set parameter values as follows.

The number of random trees is 2500 and we required

each leaf to match at least 5 instances. To over-

come the class imbalance, we use SMOTE (Chawla

et al., 2002) to generate synthetic examples in the

training fold using the 5 nearest neighbors. The

5The grid search was performed using the following param-

eter ranges: number of trees [100, 500, 1000, 2500]; maximum

number of depth of the decision tree as n

10
or

√

n, where n

is the number of features; minimum leaf size in decision tree

[2, . . . , 10]; number of topics [50, 100, 250, 500]; and whether

to use Smote (Chawla et al., 2002).



classifier is implemented using SciKit (Pedregosa et

al., 2011) and syntactic processing was done using

CoreNLP (Manning et al., 2014). Selectional prefer-

ences used pretrained 300-dimensional GloVe vec-

tors from the 840B token Common Crawl (Penning-

ton et al., 2014). The topic model features used an

LDA with 100 topics.

Data Annotated data is crucial for developing

high accuracy for rare citation classes. There-

fore, we integrate portions of the dataset of Teufel

(2010),6 which has fine-grained citation function la-

beled for ACL-related documents using the anno-

tation scheme of Teufel et al. (2006b). We map

their 12 function classes into our six classes (See

Appendix A). When combining the two datasets,

we omit the data labeled with their BACKGROUND-

equivalent class to reduce the effects of a large ma-

jority class and because instances of the FUTURE

class are merged into BACKGROUND according to

their scheme. The resulting citation function dataset

contains 3083 instances.

Evaluation Evaluation is performed using cross-

validation where each fold leaves out all citations of

a single paper. Stratifying by paper instead of in-

stance is critical: since multiple citations may ap-

pear in the same sentence, instance-based stratifica-

tion would leak information between training and

test. We also note that when performing cross-

validation, we compute the bootstrapped patterns

and prototypical argument features using only con-

texts from the training data. We report macro-

averaged F1 scores across the six function classes.

Comparison Systems We compare against three

state-of-the-art systems which all use similar cita-

tion function classifications. Abu-Jbara et al. (2013)

use a combination of lexicons, structural, and syn-

tactic features for classification. Instances are clas-

sified using a linear kernel SVM. Their described

method also uses a second CRF-based classifier to

include neighboring sentences in the citation con-

text. As the dataset for this citation-span classifier

is not public, we are unable to reproduce this part

of their system. However, the authors note that us-

6Their original data may be obtained at http://www.

cl.cam.ac.uk/˜sht25/CFC.html and we distribute a

re-annotated version of this with our data.

System Macro F1

This work 0.530

without topic features 0.502

without selectional prefs. 0.464

without bootstrapped pats. 0.457

without any novel features 0.474

Abu-Jbara et al. (2013) 0.410

Teufel (2000) 0.273

Dong and Schäfer (2011) 0.233

Majority-Class 0.092

Random 0.138

Table 7: Classifier performances.

ing the citing sentence alone is the correct context

in 80% of the instances, so we view our implemen-

tation as a close approximation. Dong and Schäfer

(2011) classify citations using a small set of lexi-

cons and discourse features, which includes regular

expressions on sentence parts of speech for captur-

ing syntactic cues. Their model uses a naive bayes

classifier, which was shown to work well for their

data. Teufel (2000) is the most similar model to

ours as it uses a subset of our lexical features and

lexicons; the model uses a k-nearest neighbor clas-

sifier. We note that the original implementation used

a custom syntactic tool for identifying aspects like

verb tense, which we replaced with CoreNLP. We

compare against the system Teufel (2000) instead of

the system Teufel et al. (2006b) because the latter in-

cludes pattern-based features that are not fully spec-

ified or publicly available; however, the two systems

are similar in their description. For all three com-

pared systems, we use identical parameter values as

reported in the papers.

Baselines Two baselines are used for compari-

son: a Random baseline that selects a function at

chance and a Majority-class baseline that labels all

instances with the most frequent citation function

BACKGROUND.

3.3 Results and Discussion

Our methods substantially outperformed the closest

state of the art and both baselines for both classifi-

cation tasks, as shown in Table 7. All improvements

over comparison systems are statistically significant

(McNemar’s, p≤0.01). The closest-performing sys-

tem was that of Abu-Jbara et al. (2013), which also

had a heavily-lexicon based approach.

An ablation test suggests that each of our novel









Baseline with Framing

Intercept −173.334
∗∗∗ −161.375

∗∗∗

# of authors 0.101
∗∗∗

0.101
∗∗∗

# of citations 0.037
∗∗∗

0.036
∗∗∗

year 0.088
∗∗∗

0.082
∗∗∗

topic diversity −0.741
∗∗∗

0.685
∗∗∗

BACKGROUND 0.013
∗∗

COMP. OR CON. 0.025
∗∗∗

EXTENDS 0.021
∗∗

FUTURE 0.016

MOTIVATION 0.014
∗

USES 0.055
∗∗∗

Log Likelihood −17,485.700 −17,416.820

Akaike Inf. Crit. 35,693.400 35,567.630

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ (p < 0.01

Table 8: Regression models for predicting the total num-

ber of citations five years after publication show that a

paper’s citation framing provides a statistically signifi-

cant improvement in model fit and reveals which type of

framing yields more cited papers. Regression coefficients

for venue and topics are omitted for space.

Results Knowledge of how a paper frames its con-

tributions helps improve predicting its future impact,

with a statistically significant improvement in AIC

when the distribution of citation functions is added

(likelihood ratio test, p ≤ 0.01).

Two main insights can been seen through which

types of citations are significantly predictive of

higher impact (p≤0.01), shown in Table 8. First, pa-

pers maximize their future impact when framed as

integrating many other technologies via USES cita-

tions. Second, works that frame their contributions

through COMPARISON OR CONTRAST rather than

BACKGROUND are more likely to have higher im-

pact. Latour (1987, p. 54) has suggested that au-

thors may deflect criticism of their work (improv-

ing its perception) by claiming it as an extension,

rather than comparing it with prior work. However,

we did not observe this effect in how authors frame

tors, we regress out the number of citations from the citation

function counts (Kutner et al., 2004; Obrien, 2007). Finally, we

include the publication venue, using the individual conference

or workshop in which the paper was published to control for

variations in prestige between venues. The resulting model has

a variance inflation factor of < 10 for all variables.

their work as COMPARISON OR CONTRAST or EX-

TENDS, with both having significant positive effects.

8 The Growth of Rapid Discovery Science

As scientific fields evolve, new subfields initially

emerge around methods or technologies which be-

come a focus of collective puzzle-solving and con-

tinual improvement (Moody, 2004). NLP has wit-

nessed the emergence of several such subfields from

the early grammar based approaches in the 1950s-

1970s to the statistical revolution in the 1990s to the

recent deep learning models (Spärck Jones, 2001;

Anderson et al., 2012). Collins (1994) proposed

that a field can undergo a particular shift, to what

he calls rapid discovery science, when the field (a)

reaches high consensus on research topics as well

as methods and technologies, and (b) then devel-

ops genealogies of methods and technologies that

continually improve on one another. Over time,

there is increased consensus on core approaches,

and the field’s periphery is extended to new re-

search puzzles rather than contesting prior efforts.

Collins claims this shift characterizes natural sci-

ences, but not many social sciences, which are in-

stead more likely to engage in continual contest-

ing and turnover of core methods and assumptions

(Evans et al., 2016).

We argue that a shift to rapid discovery science

should be visible in the way citations are used to

frame works in the field as a whole. Specifically, we

expect that as consensus is reached (1) authors are

expected to have fewer comparisons to other works

and instead can simply acknowledge past work as

background and (2) the remaining comparisons con-

centrate on fewer works, reflecting those works sta-

tus as accepted benchmarks of performance. Fur-

ther, we expect that as a methodological lineage de-

velops we should also observe an increased concen-

tration of USES citations on papers describing meth-

ods and data.

We propose that the increased use of shared eval-

uations, and the statistical methodology borrowed

originally from electrical engineering (Hall et al.,

2008; Anderson et al., 2012) has led NLP to undergo

a shift towards rapid discovery science.

Experimental Setup We repeat the setup of previ-

ous experiments and measure the expected citation





ing citations to those works compared against (r=

0.734, p ≤ 0.01) and used (r=0.889, p ≤ 0.01). For

example, in 1991, authors compared with a diffuse

group of parsing papers, e.g., (Shieber, 1988; Pereira

and Warren, 1983; Haas, 1989), with such papers re-

ceiving at most three citations that year; whereas in

2000, most comparisons were to a core set of parsing

papers, e.g., (Collins, 1999; Buchholz et al., 1999;

Collins, 1997), with a much sharper (lower entropy)

distribution of citations. These trends show the in-

creased incorporation of prior work to form a lineage

of method technologies as well as show increased

consensus on which works are sufficient for com-

paring against in order to establish a claim. These

results also empirically confirm the observation of

Spärck Jones (2001) that a major trend in NLP in

the 1990s was an increase in reusable technologies

and evaluations, like the BNC (Leech, 1992) and the

Penn Treebank (Marcus et al., 1993).

More broadly, our work points to the future of

NLP as a quickly moving field of high consensus

and suggests that artifacts that facilitate consensus

such as shared tasks and open source research soft-

ware will be necessary to continue this trend.

9 Conclusion

Authors cite works for different reasons (or func-

tion), so regarding them as equivalent signals is po-

tentially problematic. Many fluff citations exist,

while some less common ones are substantively rel-

evant to the paper’s argument. A careful analysis

of citation reveals that authors cite works for multi-

ple reasons—as background, motivation, extension,

use, contrast, or future. When authors utilize some

forms of citation over others they can significantly

influence how their own work gets perceived and

taken up by others (Latour, 1987). Simply put, ci-

tation functions help frame an article’s reception.

Moreover, a differentiation of citation functions af-

fords a deeper understanding of how scholars de-

velop arguments for different publication venues as

well as how these venues may demand different

forms of knowledge representation and arguments

over time. In fact, these modes of citation help us

understand the state of research efforts and their evo-

lution more broadly for entire scientific fields like

NLP. In this paper, we relate all this using a new cor-

pus annotated with citation function and by devel-

oping a state-of-the-art classifier for revealing scien-

tific framing. In doing so, we demonstrate the im-

portance of novel unsupervised features related to

topic models and argument structure, and label all

the citations for an entire field.

We then show that citation framing reveals salient

behaviors of writers, readers, and the field as a

whole: (1) authors are sensitive to discourse struc-

ture and venue when citing, (2) ACL workshops

have evolved to become more like the mainstream

conferences, with multi-iteration workshops being

quicker to establish conference-like norms, (3) the

way in which an author frames their work aids in

predicting its future impact as the number of ci-

tations its receives, with the community favoring

works that integrate many new technologies and also

relate to prior work through comparison and con-

trast, and (4) the NLP field as a whole has seen in-

creased consensus in what constitutes valid work—

with a reduced need for positioning and excessive

comparison—demonstrating its shift towards rapid

discovery science. All data, materials, and code for

all systems are available at https://github.com/

davidjurgens/citation-function.
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A Conversion of Teufel (2010) Data

As a part of training the classifier, instances from

Teufel (2010) are used to supplement rare classes.

Their data uses the scheme of Teufel et al. (2006b),

which similar to our scheme but has several fine-

grained distinctions. We convert the instances from

their dataset as follows:
Teufel et al. (2006b)

classification Our Label

Weak Comparison or Contrast

CoCoGM Comparison or Contrast

CoCo Comparison or Contrast

CoCoR0 Comparison or Contrast

CoCoXY Background

PBas Extends

PUse Uses

PModi Extends

PMot Motivation

PSim Comparison or Contrast

PSup Comparison or Contrast

Neut Background

CoMetN Comparison or Contrast

CoGoaN Comparison or Contrast

CoMet Comparison or Contrast

CoCoN Comparison or Contrast

CoCoM Comparison or Contrast

CoResN Comparison or Contrast

Note that we omit instances whose converted

class is BACKGROUND in order to reduce the effects

of a large majority class and because instances of

the FUTURE class are merged into BACKGROUND

according to their scheme.


