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Abstract - A memristor crossbar, which is constructed with
memristor devices, has the unique ability to change and memorize
the state of each of its memristor elements. It also has other highly
desirable features such as high density, low power operation and
excellent scalability. Hence the memristor crossbar technology
can potentially be utilized for developing low-complexity and
high-scalability solution frameworks for solving a large class of
convex optimization problems, which involve extensive matrix
operations and have critical applications in multiple disciplines.
This paper, as the first attempt towards this direction, proposes a
novel memristor crossbar-based framework for solving two
important convex optimization problems, i.e., second-order cone
programming (SOCP) and homogeneous quadratically
constrained quadratic programming (QCQP) problems. In this
paper, the alternating direction method of multipliers (ADMM) is
adopted. It splits the SOCP and homogeneous QCQP problems
into sub-problems that involve the solution of linear systems,
which could be effectively solved using the memristor crossbar in
O(1) time complexity. The proposed algorithm is an iterative
procedure that iterates a constant number of times. Therefore,
algorithms to solve SOCP and homogeneous QCQP problems
have pseudo-O(/N) complexity, which is a significant reduction
compared to the state-of-the-art software solvers (O(/V*®) - O(NVY)).

1. Introduction

Convex optimization is a research field that aims to find the
optimal solution for the problem of minimizing a convex objective
function subject to some convex constraints. The utility of convex
optimization has been shown extensively in various applications such
as signal processing, communications, smart grid, machine learning,
circuit design, and other applications [1][2]. It is especially required in
state-of-the-art large-scale applications in machine learning (e.g., the
support vector machine [3]) and compressed sensing techniques [4].

There does not exist a common solution for general convex
optimization problems [5]. But for a number of important types of
convex optimization problems, such as semidefinite programming
(SDP), quadratically constrained quadratic programming (QCQP) and
second-order cone programming (SOCP), optimal software-based
solutions exist that use effective algorithms such as extensions of the
primal-dual interior point (PDIP) method [8]. However, in the era of
data deluge, software-based optimization solvers suffer from limited
scalability in high-dimensional data regimes. For example, solving a
SDP problem has an O(N%) complexity using state-of-the-art software-
based solvers [20]. This complexity is prohibitive for problems with
large volumes of data. Therefore, it is imperative to develop new
techniques and new solvers that overcome these limitations.

The recently invented memristor crossbar can potentially resolve
the limitations efficiently. Because the memristor device, invented by
HP Lab [13], has the unique property that its state (memristance) can
be changed when the voltage drop at its two terminals is higher than a
threshold voltage. Thus, a single memristor device can be readily
utilized to represent a matrix element. Moreover, its promising
features of non-volatility, excellent scalability, high density and low
power operation make it a candidate to be arranged in a crossbar
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structure to represent matrices and perform matrix computations
efficiently (often in O(1) time complexity). As many convex
optimization problems, such as SOCP problems, need to perform a
large number of matrix operations (matrix-vector multiplications and
solving linear systems, etc.), they can potentially be solved by using
memristor crossbar technology that provides low computational
complexity, high speed and energy efficiency.

Despite the fact that memristor devices have the potential to be
utilized to solve certain important convex optimization problems,
there are multiple challenges and limitations from both algorithm side
and hardware side. From the algorithm side, the algorithms proven to
be successful in solving SOCP problems with software-based solvers
may not be appropriate for hardware implementations. With respect to
the hardware side, the memristor crossbar can only deal with square
matrix computations and the matrix elements can only be non-negative
numbers because memristance cannot be negative. Consequently, an
algorithm-hardware co-design and co-optimization framework is
required to overcome these limitations with high efficiency and low
computational complexity.

For ease of hardware implementation, we use an operator splitting
method, the alternating direction method of multipliers (ADMM)), to
solve SOCP problems. The major advantage of ADMM is that it can
split the original problem into a set of problems that involve the
solution of linear systems. Additionally, a large number of problems
can be formulated in the form of SOCP or be formulated as problems
with second-order cone constraints, such as homogeneous QCQP
problems [5]. Hence, a large number of convex optimization problems
can be solved efficiently with the memristor crossbar and ADMM
algorithm.

To the best of our knowledge, this paper presents the first
framework for solving SOCP and homogeneous QCQP problems
using memristor crossbar techniques. This is expected to be an
important step towards the solution of more general convex
optimization problems. The proposed solution procedure is an iterative
procedure with O(N) complexity in each iteration, and the procedure
does not need to update the conductance matrix of memristor crossbar
during iterations, thereby significantly reducing the solution
complexity. Besides, the procedure only iterates a constant number of
times, thus the solution framework can achieve pseudo-O(N)
computational complexity. Compared with software-based solvers of
SOCP and homogeneous QCQP problems (the CVX tool), the
proposed memristor crossbar-based solution framework achieves
significant speedup and energy efficiency improvement up to 1.57 X
105X and 1.32 X 107X, respectively. Finally, extensive experimental
results demonstrate excellent reliability of the proposed solution
framework under process variations.

In the rest of this paper, Section II presents the background on
convex optimization and the forms of SOCP and homogeneous QCQP
problems, as well as the memristor crossbar structure and its properties.
Section III describes our memristor-based framework and the
procedures to solve the SOCP and homogeneous QCQP problems
using it. Section IV analyzes and explains our experimental results.
Conclusion is provided in Section V.
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II. Background

A. Convex Optimization

Convex optimization arises in a variety of applications, such as
automatic control, communications, signal processing, and the state-
of-the-art large-scale applications in machine learning and compressed
sensing techniques [3][4]. Convex optimization is attractive since a
local optimum is also a global optimum in convex programs and a
rigorous optimality condition and duality theory exist to verify the
optimal solution. Its standard form consists of three parts: an objective
function which must be a convex function, a set of inequality
constraints which must be convex as well, and a set of equality
constraints which must remain affine. A convex function can be
written as:

filbx + (1 - 60)y) < 0f;(x) + (1 - 0)f;(¥) 1)
where0 < 6 < 1 [5]. Therefore, a convex minimization problem is
written as:

minimize
subject to:

fo(x)
fik) <0G =1,..,m), 2
h(x)=0(@=1..,p)

where the optimization variables x € R™, and fy, fi ,
convex functions: R™ — R [5].

ey fm are

There is no general polynomial-time solution for the most general
type of convex optimization problems [5], but many types of convex
optimization problems, including QCQP, SOCP, and SDP, can be
solved in polynomial-time complexity (generally O(N*3) to O(N®?))
[6][7] using carefully designed algorithms, e.g., variants of the PDIP
method [8].

B. Second-Order Cone Programming (SOCP)

SOCP is a convex program to minimize a linear function over a
set of linear constraints and the product of second-order cones [9]. It
has wide applications in resource allocation in wireless
communication networks, high-performance computing, smart grid,
etc. [10]-[12]. For example, coordinated beamforming in wireless
communication systems [24] yielded a direct SOCP formulation given
as:

minimize  ¢Tx
subjectto:  Ax = b, 3)
||’f1:(n—1)||2 = Xn,

where x is the optimization variable, X;.c,—1) is the vector that
consists of the first (n-1) entries of x, x,, is the n-th entry of x. The last
constraint represents a second-order cone in R™.

C. Homogeneous Quadratically Constrained Quadratic

Programming (QCQP)

If the objective function and the inequality constraints are convex
quadratic, then it is called a quadratically constrained quadratic
problem (QCQP). A QCQP is homogeneous if all quadratic functions
do not have any linear terms. Homogenous QCQPs were commonly
used to solve the problems of resource management in signal
processing, such as optimal power allocation for linear coherent
estimation [25] and optimal spectrum sharing in MIMO cognitive
radio networks [26]. A homogeneous QCQP problem has the form:
xTPyx
xXTPx<r;(i=1,..,m), 4)

A p—

minimize
subject to:

>

which can be converted to an SOCP problem. Hence in this paper, we
mainly focus on the solution of SOCP problems.

D. Memristor Crossbar

The memristor device was invented by HP lab in 2008 [13]. The
most important feature of the memristor device is its unique ability to
record the historical profile of the excitations on the device. More
specifically, when the voltage applied at its two terminals is higher
than a threshold voltage, i.e., [V, | > Vi, the state (memristance) of
a memristor will change. Otherwise, the memristor behaves like a
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resistor. Thus, it is attractive to use memristors for matrix
computations (often with O(1) time complexity) because a memristor
can be used to represent an element of a matrix. In addition, it has
many other promising features, such as non-volatility, low-power
operation, high density, and excellent scalability [13][14]. Hence, the
challenges for software-based convex optimization solvers, such as
limited scalability, excessive overhead of time and energy
consumptions in high dimensional data regimes, can be potentially
resolved by properly using memristor devices.

e L BL

Fig. 1. A typical N X N memristor crossbar

A typical N X N memristor crossbar is illustrated in Fig. 1, in
which a memristor is connected between each pair of horizontal word-
line (WL) and vertical bit-line (BL). By properly applying biasing
voltages at its two terminals, each memristor can be re-programmed to
different resistance states so that the memristor crossbar can be utilized
to represent matrices [15]-[17]. To demonstrate the matrix
computation functionality, we apply a vector of input voltages Vj on
WLs and collect the current through each BL by measuring the voltage
across resistor 75 with conductance of g;. Assume that the memristor
that connects WL; and BL; has a conductance of g; ;, then the output
voltages can be represented by Vo = C X Vy. C is determined by the
conductance of memristors as follows:

J11 - Gin"
C=D-GT=diag(d1,...,dN)-[ P : ] 5)
In1 - INN
where d; = 1/(gs + XR=1 gi.;)- Accordingly, a matrix multiplication
is conducted by the memristor crossbar with the time complexity of
O(1).
In the reverse direction, the memristor crossbar structure can solve
a linear system of equations [18]. By mapping the coefficient matrix
of a set of linear equations, and applying a voltage vector Vg on each
75 of BLs, the current flowing through each BL can be approximated
as I, j = gsV,,j- On the other hand, current I, ; through BL; can also
be calculated as I, ; = ¥;V;;9; ;. Hence, for each BL;, equation

1 : . .
;2 V119, = Vo,j is mapped and the solution V; can be determined

by measuring voltages on the WLs. Thus, the system of linear
equations C - V[ = V is mapped to the memristor crossbar structure.

Note that since matrix coefficients are represented by memristance
values in a memristor crossbar, only non-negative coefficients can be
supported when solving a linear system. For matrix-vector
multiplication, this limitation can be mitigated by using two matrices,
one that stores positive values C, and the other that stores negative
values C_, and performing subtraction C, X V; — C_ X V;j using
summing amplifiers [16][17].

III. Memristor Crossbar-Based Framework For Solving
Convex Optimization Problems

A. Alternating Direction Method of Multipliers (ADMM)

It has been recently shown that ADMM is a powerful tool for
solving large-scale optimization problems; examples include sensor
scheduling in large networks of dynamic systems [27], resource
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allocation in dense wireless cooperative networks [12] and design of
feedback control systems [28]. The major advantage of ADMM is that
it allows us to split the original problem into sub-problems, each of
which can be solved more efficiently or even analytically. ADMM
solves convex problems of the form [19]:

minimize f(x) + g(y) subjectto:x =y 6)
where f'and g may be non-smooth or take infinite values to encode
implicit constraints.

ADMM is an iterative method. Its k-th iteration is:
2 = argmin(f(x) + () + (p/2)||x -y +

(Yp)u®11%) (72)
x0D = arg min(f(x) + 9) + (p/2)l1x = y* +

(Yp)u®113) (7b)
D = 0o 4 p(xk+D) _ 5 (k1)) (7¢)

where p > 0 is the step size parameter, and u is the dual variable
associated with the constraint x = y. Under some mild conditions [19],
ADMM converges to the optimal solution of problem (6).

B. Solving SOCP Using Memristor Crossbar via ADMM

In order to solve a SOCP problem via the use of ADMM, we
reformulate the problem in (6) by introducing a new variable y € R"
and incorporating the indicator function, then the original problem is
equivalent to

minimize  ¢Tx + I, (x) + 1,(y)

subjectto: x =Yy ®)
where x and y are optimization variables, and I; and I, are indicator
functions given by

0, ifAx=»b
L&) = {00, otherwise ©a)
i . <
and I,(y) = {0, lf”}’1.(n—1)”2 < Yn (9b)
0, otherwise

A direct application of ADMM to SOCP yields the x-minimization
step and y-minimization step. That is:
e X-minimization step:
minimize (l) xTx — (u® )Tx
2
subjectto: Ax=0b (10)

where u® = y® — (1/p)(u™® + ¢), and u®can be calculated by
Eqn. (7¢).

e y-minimization step:

lly = v®[;

”yl:(n—l)llz <Yn (11
where v®) = x*+1 + (1/p)u®.

The optimal solution of the x-minimization problem is readily
obtained by using the Lagrangian method. By introducing a multiplier
A € R™, the Lagrangian of (10) can be written as

L(x,A) = G) xTx — (u(k))Tx +AT(Ax-b) (12)

minimize

subject to:

Taking the first derivatives of L(x, 1) with respect to x and 4 and
setting them equal to zero yields the following linear system of

equations:
Inxn AT ] x| _ [u(k)
[ A O, [,1] “Lp (13)

A memristor crossbar could be utilized to effectively solve the
linear system of equations and derive x and A by configuring
memristance values according to the left-hand side matrix and
applying the right-hand side vector at the output end of the memristor
crossbar. The left-hand side matrix is already a square matrix and
therefore suitable for memristor crossbar-based implementations.
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Because negative elements may exist in matrix A, a special treatment
using additional variables is required to eliminate the negative
coefficients and maintain a square matrix. Details of the method for
mapping the left-hand side matrix onto a memristor crossbar and the
method for dealing with negative elements are covered in Section C of
this paper.

The optimal solution of the y-minimization problem given in (11)
can be obtained in a closed form and given by projecting a point v(:

v = [(w)", S]T (14)
onto a second-order cone in R™ [22]:
(o, weel], < s

yon =g Iw®l, <s s
() (14 ) W7 Il w9, = sl

Iwll

The key for hardware-based calculation of y**1) is the £,-norm
calculation of vector w(¥), which could be performed using peripheral
circuits including analog multipliers, summing amplifiers, etc., in the
analog domain [17][23]. An alternative method is to convert vector
w® to the digital domain and then calculate the £,-norm. We will
demonstrate in the computational complexity analysis (in Section 3.5)
that the overall computational complexity does not increase even if
we use only one single ADC/DAC and calculate ||w/||, in a sequential
manner. After the £,-norm calculation, y**1) is calculated based on
the comparison results shown in Eqn. (15). This comparison can be
implemented in either the analog domain or the digital domain.

C. Memristor Conductance Matrix Mapping and Elimination
of Negative Elements

For using a memristor crossbar to represent the left-hand side
matrix in (13), one way is to use Eqn. (5) to map the left-hand side
matrix onto the memristor conductance matrix & However, since the
mapping from matrix Cto & is not a direct one-to-one mapping, it is
highly complicated to use Eqn. (5) to perform the mapping. Hence, we
adopt a simple and fast approximation: g; ; = ¢; j * Imax> Where gmax
is the maximum conductance among memristors in the memristor
crossbar, ¢; j represents an element of the left-hand side matrix, and
gi,j satisfies: gmax < g;; < 0 [16]. It is proved in [16] that such a
simple mapping rule results in negligible inaccuracy. Therefore, the
memristor conductance matrix G is:

~ (16)

I
G = . [ nxn
gmax A Om)(m
Based on the matrix mapping results, the solution of the linear
system (13) is obtained from:

e ™

where V7 is the voltage vector read from the inputs of the memristor
crossbar.

Negative elements may exist in matrix 4, which is provided by the
user and is problem-specific. Since the memristance value cannot be a
negative number, effective techniques are necessary to eliminate these
negative elements to facilitate memristor crossbar-based
implementations. Next, we present an effective method for the
elimination of negative coefficients. Consider a linear system Ax = b,
and suppose that a; ; is a negative element in 4. The equation in the i-
th row:

ai_lxl ++aux] + ~~+ai’nxn = bi (18)

is equivalent to:
ai’1x1 + 40 X] + -+ ai,nxn + (—ai‘j)zj = bi (19)
Hence, a negative element can be eliminated by setting it to zero

and introducing one more row and one more column. Thus, the linear
system Ax = b can be written as:



[G1 - G1j - dan 0 1 X by
T oIk :
al:_l w0 al-.‘n _gi'j g] _ b] (20)
Api o Qpj o Gng 0 ||%n b,

0 1 1% 0

0 0 1 0
Similarly, after applying the above technique to Eqn. (13), the
linear system can be reformulated as:

I Aglxm 0or Az;éZk X u®
A;nxn 0m><m 0or A;;szk [1] = b (21)
Aékxn Agixm 0 o7 Izl 2 0

where A’ and AT’ are obtained by setting the negative elements in A
and AT to zero, respectively. A" and AT" are matrices whose
elements are zeros and the absolute values of negative elements in A
and AT, respectively. A’ and ATT are matrices consisting of ones and
zeros. Locations of ones in A’ and A”’, and locations of those absolute
values in A" and AT"" depend on the locations of negative elements in
A and AT. z is a compensation vector of x, and will not be further utilized
after (21) is solved.

For simplicity, Eqn. (21) can also be written as:

M-s=r (22)
where M represents the left-hand side matrix in (21), s represents the
solution of (21), and r represents the right-hand side vector of (21).
Consequently, the memristor conductance matrix of M is set by:

G =9, M (23)
The relation between s and V; satisfies:
_ Ys
s= — vV (24)

D. Detailed Procedure for Solving SOCP Problems Using
Memvristor Crossbar-Based Framework

The detailed procedure of our proposed memristor crossbar-based
framework for solving SOCP problems is summarized as follows:

Detailed Procedure for Solving SOCP Problems Using Memristor
Crossbar-Based Framework

Input: Matrix A, vectors b, ¢, u(®, u(®_ constant ¢, p, k.
Output: Vector x, y

Initialize x, y with arbitrary elements, k = 0.

Construct matrix M and vector r in (22) based on A4.

Map M to memristor crossbar according to G’ = gpax - M.
do:

1) Solve x
crossbar, then according to (24), xk+1) =

(k+1) . read the solution V; from the memristor

s

— Viamy-

2) Calculate v® = x**D + (1/p)u™®  using summing
amplifier, and then construct w®) and s according to

v® = [(wio) 5]

3) Calculate y**1 in (15) by calculating w®with peripheral
circuits.

4) Update p®*b using summing amplifier according to (7c).

5) Update u®*VD ysing summing amplifier: u®+D =
y&D — (1/p) (™Y + ).

6) k=k+1

While x®*+D — 50 > ¢

Return x, cTx.

E. Computational Complexity Analysis

The algorithm-hardware co-optimization of the memristor-based
framework proposed in this paper is an iterative solution framework.
In each iteration, the complexity of solving Eqn. (21) with the
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memristor crossbar is O(1) and that of calculating y***V with
peripheral circuits is O(N). Hence the framework presents an overall
solution complexity of pseudo-O(N), or O(MN) if M represents the
number of iterations, which is a significant improvement compared
with the complexity of the state-of-the-art software-based solution
namely O(N*) - O(NV*). For various scales of optimization problems,
the speed improvement compared with software-based solvers can be
as high as 10*-10° and the energy efficiency improvement can be even
more significant.

The previous discussion only accounts for the solution complexity.
The complexity of initialization of the matrix in the memristor
crossbar is O(N?), or lower for sparse matrices which are very common
in (large-scale) optimization problems.

Matrix: A, b, ¢, u®,
v® constants: 6, p, k

Initialize
X

Construct

Mand r

Map M to
emeristor crossbaj

Main Loop

Fig. 2. Flow Diagram of the proposed algorithm for solving SOCP problems

F. Memristor-Based Framework for Solving Homogeneous
QCQP Problems

Consider the homogeneous QCQP problem expressed in (4).
According to the eigenvalue decomposition of P;, we have Q; such
that P; = QT Q;. Upon defining:

Z; = ‘Q/;—X:I € ]Rn+1,
problem (4) can be expressed as a convex program with second-order
cone constraints:

minimize xTPyx
subject to: [[[z;]y.nllz < [Zi]p4s (=1, ...,m)
Zi_cix=di (l =1, ,m) (25)
Ax = b,

PP . T
where the optimization variables are x and z;, and C; = [QlT , O] ,

T
d; = [07,\r;] .

After applying the ADMM technique to problem (25), it can be
written as:

minimize  xTPox + X1, 1(z))
subjectto: z; —Cix=d;,i=12,..,m, (26)
Ax =b,
where I(z;) is an indicator functions given by
_ {0, iflllziinllz < [Zi]nsa
1) =1 otherwise @7

The augmented Lagrangian of (26) is given by
L(x,{z;},{u},v) = x"Pox + X2, 1(z;) + X2, uf (2 —
Cox —dy) + 2|z, — Cix — dyl|3 +v" (Ax — b) +
2llax - bl13, (28)

where u; and v are Lagrangian multipliers, and their values at (++1)-th
iteration are given by:

u§t+1) _ ugt) + p(ZEHl) _ Cix(t+1) _ di) (29)

v+ = p® 4 p(AxE+D — p), (30)



Solving problem (28) yields the x-minimization step and the z-
minimization step:

e X-minimization step:

minimize ~ xTPox + gzz’;l ”zl@ —Cx—d; +

e e

Letg!” =2 —d; + %ugt), and h® = b — %v(t), the solution
of (31) yields a system of linear equations:

(2Po +p X, CICi + pATA)x = p XL, €T g; + pATh. (32)
where CTC; = P;.

e z-minimization step:
minimize  ||z; — L||3
subjectto:  [|[zi]1nll2 < [Zi]n41 (33)
where L = C;x®+D +d; — %ulm.

ADMM terminates when the following two conditions are
satisfied:

”x(t+1) _ x(t)llz +3m, ”Z§t+1) _ Zlgt)”2 <e,
and ||Ax(t+1) - b”2 + 2t ”thﬂ) - Cix(tﬂ) - di”z s€

Eqn. (32) and Eqn. (33) are respectively similar to Eqn. (13) and
Eqn. (11) for solving SOCP problems. Hence our proposed memristor-
based framework can also be utilized to solve the homogeneous QCQP
problems.

IV. Experiments And Analysis

A. Estimation of Power and Performance Improvement

Our estimation of power and performance improvement is based
on accurate memristor modeling work from [29], demonstrating
significant improvement in speed and energy efficiency of memristor
crossbar based solution framework for SOCP/homogeneous QCQP
problems. The estimated time for solving SOCP/homogeneous QCQP
problems is around or less than 400us if the number of variables is
1024. This estimation is based on (i) actual simulation results
indicating that it generally takes 500-800 iterations for convergence,
and (ii) the amount of analog or digital computation in one iteration
(the most time-consuming computation is calculating y**1) can be
performed in at most N clock cycles (where N is the number of
variables. This is a very conservative estimate.). Please note that our
procedure does not need to update matrix M in the memristor crossbar
during iterations. A maximum of 1.57 X 10> X estimated
improvement in speed is achieved compared with the CVX tool
executed on an Intel 17 server. This significant improvement comes
from the reduction in computational complexity and the speedup due
to dedicated hardware implementations. The maximum amount of
energy reduction is 1.32 X 107X in this case, which is even more
significant than the speedup, because of the low power consumption
of the dedicated hardware of memristor crossbar and peripheral
circuits.

B. Experiments to Study the Effect of Process Variations

We develop a simulation and evaluation framework for using
memristor crossbars to solve SOCP and homogeneous QCQP
problems that accounts for the effect of process variations. The
developed simulation framework simulates the memristor crossbar-
based iterative solution framework, and in each iteration it calculates
outputs of the memristor crossbar from inputs by solving KCL/KVL
equations. Element writing inaccuracies, random process variations,
and other variations can be accounted for in the simulation framework
and their impact on the outcomes can be evaluated.

All input matrices are randomly generated using randn and
sprandn functions provided by Matlab. These inputs are first sent to
the CVX tool, which is a well-known and widely recognized software
solver for convex optimization. After the randomly generated
problems are verified to be feasible and bounded, our solver is then
utilized to solve the problems.
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Generally, the constraint matrix of an SOCP or homogeneous
QCQP problem is sparse. Thus, in our experiments, the constraint
matrix A (corresponding to the constraints Ax = b) is sparse with
respective density of 0.1 (i.e., only 10% elements in A are nonzero)
and 0.2. The size of the optimization vector x is 2!, i =
4,5,6,7,8,9,10. Although the size of a single memristor crossbar is
limited to 1024 at most, multiple crossbars can be organized in the
structure  of nmetwork-on-chip (NoC) to perform larger-scale
computations [30]. Additionally, due to the unavoidable variations
introduced by the matrix elements writing errors, manufacturing
process, and temperature changes, etc., it is necessary to test the
accuracy of our proposed tool and how variation-tolerant it is. Thus,
for each individual problem, three scenarios with process variations of
0%, 5% and 10% are simulated, and each scenario is simulated 200
times.

C. Experimental Results and Analysis

Fig. 3-(a) and Fig. 3-(b) show the error rates and failure rates when
solving the SOCP problem under different conditions (different
problem/matrix size, process variations, etc.), using our developed
simulation/evaluation framework. Error here means the difference
between the result solved by our framework and the result solved by
CVX, and failure here means the result does not converge to the
optimal value obtained by CVX. We find that under the ideal
condition, i.e., no variation is introduced, the optimal values are the
same as the results calculated by CVX and no failure is found. And it
is obvious that higher variation level will result in lower accuracy and
higher failure rates.

9%
8%

variations, density:
10%, 0.1 %-10%, 0.2+-5%, 0.1 5%, 0.2---0,0.1 © 0,0.2

16 k ] 64 128 256 512 1024
Matrix Size
(a)
30%

variations, density:
25% 10%, 0.1 #-10%, 0.2 +5%, 0.1 45%,0.2 - 0,0.1 ©0,0.2

20%

15%

Failure Rate

10%

16 32 64 256 512 1024

128
Matrix Size
b

Fig. 3. Simulation results for solving SOCP problems (a) Error vs Matrix Size
(b) Failure vs Matrix Size

From the point of view of matrix density, the cases with density of
0.1 will result in higher failure rates than the cases with density of 0.2,
namely, the denser the input matrix A4 is, the more reliability our
hardware-based solution framework can guarantee. From the point of
view of matrix size, the success rates decrease with the increase in the
size of matrix A. Basically, our algorithm can achieve high accuracy
(95%) and success rates (85%) when the process variations are
restricted to below 5%.

Fig. 4-(a) depicts the error rates while solving homogeneous
QCQP problems when A has different sparsity levels and variation
levels, meanwhile a strict ADMM tolerance is set (i.e., € is less than
1.0 X 10™*). This strict ADMM tolerance can result in high time
complexity, i.e., solving each problem usually iterates 1/ times or so.
Under such strict tolerance, the accuracy is relatively low when the
problem size is less than 128, but the problems of large-size converge
very well. Therefore, we can conclude that our framework is more
appropriate for large-sized homogeneous QCQP problems. Due to the
fact that error rates are less than 3%, there is a lot of room for tradeoffs
between accuracy and time complexity. Thus, we relax the ADMM
tolerance to 1.0 X 1073 to reduce the number of iterations, and Fig. 4-



(b) displays the error rates with more relaxed tolerance level. We find
that even though we significantly reduce the number of iterations, up
to 96% accuracy can be obtained. Unlike the results for SOCP
problems, the impact of process variations is quite limited here and not
a single failure is found during the experiments. Because the source of
accuracy loss is that variations somehow change the original problem
(the objective function and constraints) by changing the mapped
matrix, considering Eqn. (32), the effects of variations added to the
memristor crossbar is reduced by a factor of p. Hence when p is large,
the effect is small.
45%

variations, density:
+10%,0.1 £10%,0.2

40%
35%
30%
R

§ 20%

5%,0.1 +5%,0.2 +0,0.1 0,02

16 32 64 128 256 512 1024

Matrix Size
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Matrix Size

(b)

Fig. 4. Simulation results for solving homogeneous QCQP problems (a) errors
with strict ADMM tolerance (b) errors with relaxer ADMM tolerance

Considering all simulation cases, we conclude that our framework
is a reliable tool for solving SOCP problems if the process variations
can be restricted to within 5%, and the framework is suitable for
different matrix sizes. For homogeneous QCQP problems, our solver
is more appropriate for large-sized problems, and it is more robust,
accurate and variation-tolerant than for solving SOCP problems.

V. Conclusion

This paper introduced the memristor device and its crossbar
structure, to solve SOCP as well as homogeneous QCQP problems. To
use the memristor crossbar to solve the above two problems, the
presented framework in this paper applied ADMM to decompose the
two problems into linear systems, so that the merit of memristor
crossbar for solving a set of linear equations in O(1) time complexity,
can be sufficiently utilized. The overall time complexity of solving
SOCP and homogeneous QCQP problems are both pseudo-O(N). Our
experiments demonstrated that our proposed algorithm can achieve
higher than 94% accuracy when solving SOCP problems and higher
than 96% accuracy when solving homogeneous QCQP problems.
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