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Abstract

Seasonal reductions in food availability may cause animals to catabolize endogenous tissue and the resulting loss of lean
mass can hinder their ability to forage and reproduce. While several studies have considered nitrogen isotopes (8'°N) as an
indicator of catabolism, relationships between protein intake, body condition, and tissue 85N have not been assessed simul-
taneously in controlled conditions. We conducted a feeding experiment on laboratory mice (Mus musculus) to test the effects
of low (5%) versus high (30-40%) dietary protein content on lean mass, fat mass, and tissue 89N. This approach enables the
distinction between use of exogenous and endogenous nitrogen, illuminating a framework of protein metabolism and tissue
synthesis. As expected, lean mass and body fat were lower in mice fed low-protein diets. Nitrogen isotope discrimination
(AN) between blood plasma-diet and liver-diet did not differ between diet treatments. In contrast, AN for hair decreased
while AN for muscle and RBC increased in the low-protein treatment. These patterns suggest that animals in negative
nitrogen balance catabolize labile endogenous protein (e.g., muscle) to maintain vital tissues (e.g., liver) required to survive.
Consequently, muscle and RBC 8'°N values appear to be the most useful in assessing the nutritional state of animals. Our
combination of direct measurements of body condition with §'°N analysis suggest how nitrogen isotopes can be better used
as tracers of catabolic and anabolic activity by demonstrating connections between tissue-specific metabolic processes and
AN, thus refining the application of 8'°N as a tool for assessing nitrogen balance in wild animals.
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Introduction

All animals require a continuous supply of energy to grow,
maintain homeostasis, and reproduce, so when exogenous
sources of energy are unavailable they must rely on endoge-
nous stores to survive (McCue 2010). Degradation of endog-
enous tissue (catabolism) is particularly important for spe-
cies that experience seasonal or persistent food limitation,
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energy and keeping protein catabolism to a minimum (Cuen-
det et al. 1975; Karmann et al. 1994; McCue and Pollock
2013). Loss of lean mass can hinder functional performance
in tasks such as foraging and reproduction, and eventually
increases mortality risk (Bender et al. 2008). It is therefore
important to develop tools to track catabolism of function-
ally important endogenous reserves (e.g., skeletal muscle or
adipose tissue), particularly for application to free-ranging
animals coping with resource limitation.

Hobson and Clark (1992) were the first to find a correla-
tion between nutritional stress and tissue 8'°N values. Since
then, nitrogen, carbon (8'C), and hydrogen (8°H) isotopes
have been used to examine the catabolism of endogenous
protein and lipid reserves (Hobson and Ewins 1997; Hob-
son et al. 2000; Gauthier et al. 2003; Carleton et al. 2004,
2006; Morrison and Hobson 2004; Hobson 2006; Voigt
and Speakman 2007; Warner et al. 2008; Fox et al. 2009;
Graves et al. 2012). The 8'°N values of a consumer’s tis-
sues are higher than its diet due to preferential removal of
amine groups containing '*N during peptide bond hydrolysis
and deamination (Macko et al. 1986, 1987; Gannes et al.
1997; Balter et al. 2006). In mammals, 4N is preferentially
excreted in the form of urea (Steele and Daniel 1978; Sutoh
et al. 1993). The offset in 8'°N values between a consumer’s
tissues and that of its diet (A" N gie)> cOmmonly referred
to as trophic discrimination, is influenced by several fac-
tors including dietary protein content and protein biological
value, defined here as the degree to which the dietary amino
acids meet the amino acid requirements of the consumer
(Robbins 1993; Kelly and Martinez del Rio 2010), tissue
type, growth rates, nutritional or reproductive status, and
nitrogen excretion pathways (Bearhop et al. 2002; Robbins
et al. 2005; Kurle 2009; Pearson et al. 2003; Vanderklift
and Ponsard 2003; Fuller et al. 2005; Martinez del Rio et al.
2009; Ben-David et al. 2012). Earlier studies on arid land
herbivores have also noted a variation in AN that could
result from water stress and associated physiological adapta-
tions to drought (Ambrose and DeNiro 1986). As AN can
vary from 2 to 5%o in mammals, a better understanding of
the underlying physiological influences is crucial for using
nitrogen isotopes to assess nutritional stress in wild animals
and to further refine the use of 8'°N as a proxy for diet com-
position and trophic level in natural settings (Vanderklift
and Ponsard 2003; Caut et al. 2009; Ben-David and Flaherty
2012; Martinez del Rio et al. 2009; Kurle et al. 2014).

Nitrogen balance is one of the most important influences
on AN. Animals are in positive nitrogen balance when
consuming more protein than needed for growth, maintain-
ing homeostasis, and reproduction. Trophic discrimination
factors for animals in positive nitrogen balance are shaped by
a combination of mechanisms. First, excessive protein intake
elevates breakdown of dietary amino acids and increases
the rate of N excretion, leading to increases in consumer
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tissue 8"°N values and associated AN (Pearson et al. 2003).
However, this effect is countered by routing of dietary amino
acids directly to tissue synthesis with little isotopic alteration
or fractionation (Schwarcz and Schoeninger 1991), resulting
in consumer tissue 8'°N resembling that of dietary protein
and thus decreased AN (Ambrose and Norr 1993). These
combined effects result in relatively low tissue A°N.

On the other hand, if animals do not consume sufficient
amounts of exogenous protein and are in negative nitrogen
balance, less dietary protein will be directly routed to tis-
sue synthesis and instead endogenous nitrogen stores (e.g.,
skeletal muscle) will be catabolized to fuel metabolism and
tissue maintenance (Hobson and Stirling 1997; O’Brien
et al. 2000). However, not all sources of endogenous pro-
tein experience similar changes in catabolism and anabolism
during nutritional stress. Some proteinaceous tissues must be
maintained by anabolism because they are essential for basic
metabolic functions. For example, the liver plays a critical
role in detoxification, the metabolism of fats, carbohydrates,
and proteins, as well as storage of vitamins and glycogen
(Hall 2015). In times of nutritional stress, the liver may
decrease in mass due to fat, glycogen, and protein depletion
(Fisher and Bartlett 1957; Cotton and Harlow 2010), how-
ever, even with reduced activity it must remain functionally
active and its rate of protein synthesis tends to remain much
higher than tissues such as skeletal muscle (Felig et al. 1969;
Yacoe 1983). Thus, because the liver is crucial for metabo-
lism, we expect this tissue to experience sufficient anabolism
to maintain functional integrity. Conversely, protein sparing
of skeletal muscle tissues is less important because conse-
quences for the organism from degraded function are not as
severe. Therefore, skeletal muscle might be more susceptible
to catabolism and indeed, it has been recognized as a major
labile protein reserve (Swick and Benevenga 1977). Smooth
muscle has also been noted as a labile pool (Yacoe 1983).

As endogenous tissues typically have higher §'°N val-
ues than the diet, catabolism serves to further concentrate
SN within the body nitrogen pool from which lean tissues
are maintained, resulting in even greater AN (Gannes
et al. 1997; Poupin et al. 2011; Arneson and MacAvoy
2005; MacAvoy et al. 2005). There are two proposed
mechanisms for this enrichment: the ‘anabolic’ and the
‘catabolic’ models (Lee et al. 2012). The ‘anabolic’ model,
which is more broadly supported in the literature, sug-
gests that as tissues are catabolized and hydrolyzed into
individual amino acids, they are subjected to deamina-
tion that preferentially removes '“N, and that remaining
I5N-enriched amino acids are then incorporated into tis-
sues during anabolism (Fuller et al. 2004; Lee et al. 2012).
In contrast, the alternative ‘catabolic’ model proposes that
there is a disproportionate loss of light amino acids during
tissue catabolism, causing the 8N value of the remaining
tissue to increase regardless of anabolism (Hobson et al.
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1993; Gloutney et al. 1999). However, the biochemical
mechanism for the catabolic model remains elusive and
its existence is disputed (Lee et al. 2012).

Catabolism of endogenous resources reduces body fat and
lean mass (DelGiudice 1973; Gannes et al. 1997). Accord-
ingly, body composition is dynamic during protein stress
because of the net effect catabolic versus anabolic pro-
cesses. It is, therefore, informative to link direct and accu-
rate measurements of body composition to stable isotope
analysis to better understand the consequences of variation
in protein metabolism for animal fitness. Directly measuring
body condition is difficult, however, because most meth-
ods require euthanasia and carcass or tissue homogeniza-
tion, lipid extraction, and combustion to determine protein,
lipid, and mineral content (Afton and Ankney 1991); these
techniques cannot be used on live animals. Techniques that
can be performed on live animals such as plethysmography,
hydrostatic weighing, bioelectrical impedance, and electrical
conductivity are imprecise (Taicher et al. 2003) and difficult
to employ in field settings. Recently, eco-physiologists have
begun using proton nuclear magnetic resonance, also known
as quantitative magnetic resonance (QMR), to rapidly and
accurately measure lean mass and body fat in live animals
(Taicher et al. 2003; Tinsley et al. 2004; Jones et al. 2009;
McGuire and Guglielmo 2010; Nixon et al. 2010; Guglielmo
et al. 2011).

Our study employs 8'°N analysis to assess the use of
exogenous (i.e. diet derived) versus endogenous nitrogen
and thus illuminate the framework of protein metabolism,
catabolism, and tissue synthesis in an omnivorous mammal.
We conducted a controlled feeding experiment on labora-
tory mice (Mus musculus) to evaluate the effects of dietary
protein content (low 5%, high 30-40%), encompassing the
seasonal range expected for wild mammalian omnivores
(Leirs et al. 1994; Felton et al. 2009), on body condition and
AN discrimination. While "N is potentially a useful tool
for examining nitrogen balance in wild animals and several
feeding experiments have examined the effects of dietary
protein levels on tissue 8N (Karmann et al. 1994; Hilder-
brand et al. 1996; Felicetti et al. 2015; Robbins et al. 2005),
previous studies have not included direct measurements of
body composition. We directly measured mice lean mass
and body fat via QMR to track the effects of anabolic and
catabolic processes on body condition and the 8'°N values
of several tissues that are commonly analyzed by animal
ecologists. We expected that mice consuming low-protein
diets would experience negative nitrogen balance resulting
in catabolism of labile protein reserves to maintain critical
tissues, and overall have lowered body fat and lean mass.
Our experiment is valuable for developing more accurate
discrimination factors during periods of nutritional stress,
improving the application of 8'°N as a tool for tracing nitro-
gen balance in wild animals.

Materials and methods
Experimental design and tissue collection

Sixty-four female weanling laboratory mice (Mus musculus)
were purchased from Charles River Laboratories (Wilming-
ton, MA) and housed in the University of New Mexico Ani-
mal Research Facility (Albuquerque, NM). The mice were
co-housed by diet treatment (n = 8 per treatment) in 18 X 12
inch plastic bins at a temperature of ~ 23 (+ 2) °C and a
12-h photoperiod. This temperature may be below their ther-
moneutral temperature (~ 31 °C; Hudson and Scott 1979;
although see Speakman and Keijer 2013). Our experiment
consisted of eight diet treatments in which we systematically
altered the weight percent of protein (casein), carbohydrates
(sucrose), and fat (lard) according to Table 1. Each diet
was equally enriched with a fortified salt (4%) and vitamin
mixture (1%). All dry ingredients were homogenized with
~ 4 L of water and stored frozen (— 20 °C). Mice in diet H1
were fed 12 g of food per day per mouse and mice in diets
H2-5 and L1-3 were fed 8 g per day per mouse. Access to
water was ad libitum, with food and water being replenished
daily. At the beginning of the experiment, each mouse was
weighed, subcutaneously injected with an electronic pit tag
(BioMark LPTS; Boise, ID) for identification, then randomly
assigned to one of the eight diet treatments. Each treatment
group contained eight mice.

After 112 days, the mice were euthanized via exposure
to CO, and tissues were immediately collected for stable
isotope analysis. Blood was collected via cardiac puncture
and transferred into heparinized micro-capillary tubes and
stored on ice until centrifugation. Within 6 h of collection,
blood was separated into plasma and red blood cells (RBC)
via centrifugation at 10,000 rpm for ~ 10 min. Liver and

Table 1 Weight percent proportions of protein (casein), carbohy-
drates (sucrose), and fat (lard) for the low- and high-protein diet treat-
ments

Diet Protein Fat Carbohydrates Cellulose
Low protein
L1 0.05 0.35 0.35 0.20
L2 0.05 0.40 0.20 0.30
L3 0.05 0.05 0.75 0.10
High protein
H1 0.30 0.30 0.30 0.05
H2 0.30 0.30 0.30 0.05
H3 0.35 0.35 0.20 0.05
H4 0.35 0.05 0.35 0.20
H5 0.40 0.05 0.20 0.30

Each diet was equally enriched with a fortified salt (4%) and vitamin
mixture (1%)
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biceps femoris muscle tissues were dissected and stored fro-
zen in plastic micro-centrifuge tubes at — 20 °C. A patch of
hair near the base of the tail was shaved 2 months preced-
ing euthanasia, then hair that had regrown in this area was
collected at the end of the experiment, thus ensuring that
it had equilibrated with diet. All animal handling and hus-
bandry was conducted with the approval of the University of
New Mexico Institutional Animal Care and Use Committee
(16-200492-MC).

Body composition

We weighed mice weekly throughout the experiment to track
growth. One week prior to euthanasia, body fat and lean
mass were directly measured in triplicate for each mouse
using an EchoMRI QMR system (Echo Medical Systems,
Houston, TX). After the QMR was calibrated with refer-
ence materials, each animal was restrained in a Plexiglass
tube and inserted into the magnet for analysis. The QMR
system produced rapid (~ 180 s) and precise (+ 0.1 g) meas-
urements of body fat and lean mass, which were converted
to percent body fat and lean mass using measurements of
body mass (Jones et al. 2009; McGuire and Guglielmo 2010;
Nixon et al. 2010). This technique has been validated on
live un-anaesthetized small mammals, passerine birds, and
bats (Tinsley et al. 2004; McGuire and Guglielmo 2010;
Guglielmo et al. 2011).

Stable isotope analysis

Blood plasma was pipetted into pre-weighed tin capsules
and dried for isotope analysis. Liver samples were lipid-
extracted in a 2:1 chloroform:methanol solvent solution for
72 h, replacing the solvent solution every 24 h. The tissues
were then rinsed five times with deionized water to remove
residual solvent. Similarly, muscle samples were lipid-
extracted using petroleum ether. Surface contaminants were
removed from hair via rinsing in a 2:1 chloroform:methanol
solvent solution. Liver, RBC, muscle, hair, and dietary
casein were freeze-dried for 24 h and then weighed into tin
capsules for isotope analysis. Nitrogen isotope (5'°N) values
were measured using a Costech 4010 elemental analyzer
coupled to a Thermo Scientific Delta V isotope ratio mass
spectrometer at the University of New Mexico Center for
Stable Isotopes (Albuquerque, NM). Stable isotope data are
expressed as & values using the equation §'°N = [(Rsample —
RStandard)/ RSlandard] X 1000’ where RSample and RStandard are the
ratios of ’N/'N for each sample and standard. The interna-
tionally accepted standard for 8'°N is atmospheric N, and
the units are expressed as permil (%o). Internal lab refer-
ence materials included four protein-based materials: soy
protein, whey protein, casein, and tuna muscle with mean
8'°N values (+ SD) of 1.1 + 0.2, 5.9 + 0.2, 6.5 + 0.2 and

@ Springer

13.2 + 0.2, respectively. Analytical precision was estimated
via repeated (within-run) measurements of these reference
materials calibrated to internationally accepted standards;
within-run standard deviation for all reference materials was
< 0.2%o for 8'°N. We also measured the weight percent car-
bon and nitrogen concentrations of each sample; all tissue
samples had [C]:[N] that were similar to the theoretical ratio
of 3.2-3.5 for unaltered protein (Ambrose 1992).

Statistical analysis

Triplicate QMR results for each mouse were averaged. For
the purpose of this study, diets were binned according to the
proportion of protein (Table 1), with the low-protein group
including diets containing 5% protein and the high-protein
group including diets containing 30-40% protein. Significant
differences in body composition and tissue-specific 8'°N and
AN between the two protein groups were evaluated with
one-way analysis of variance (ANOVA). Significant differ-
ences among mean tissue isotope values within low- and
high-protein groups were assessed using Kruskal-Wallis
rank sum tests followed by post hoc pairwise Tukey honest
significant difference (HSD) tests. Additionally, a heatmap
visualizing correlations between dietary protein content,
body composition data, and A’N was created using the R
package corrplot (Wei and Simko 2016).

Results
Body composition

Mice fed low-protein diets had significantly less body fat
(ANOVA F 5, =42.6, P < 0.001) and lean mass (ANOVA
F, 6, =88.8, P <0.001), lower fat:lean mass ratios (ANOVA
Fi 6, =309, P <0.001), weighed less (ANOVA F ¢, = 61.8,
P <0.001), and had a lower percent weight gain throughout
the trial (ANOVA F, ¢, = 58.7, P < 0.001) than mice fed
high-protein diets (Table 2, Online Resource 1).

8'°N trophic discrimination factors

Since casein (8'°N = 6%c) was the only source of nitrogen
in every diet treatment, nitrogen isotope trophic discrimina-
tion factors (A'°N) were calculated as 8" Ni; .o — 8" Neyeein-
Tissue-specific mean (+ SD) 8!°N values are reported in
Table 2 and AN values are illustrated in Fig. 1. AN
was significantly higher in the low-protein diets for RBC
(ANOVA F; 5; = 189, P < 0.001) and muscle (ANOVA
F ¢ =82.1, P <0.001), but significantly lower for plasma
(ANOVA F, 55 = 7.6, P = 0.008) and hair (ANOVA
Fy 5 =10.9, P = 0.002). AN for liver did not differ sig-
nificantly between the low- and high-protein diet treatments
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Table2 Mean (+ SD) body composition data and tissue 8'°N for
low- and high-protein diet treatments

Low protein High protein P value F value
Body composition
Final weight 243 +5.1 413 +10.6 <0.001 61.78
Total percent gain  24.3 +25.6 112.0+52.3 <0.001 58.67
Lean mass percent 14.0 + 3.9 223+3.0 <0.001 42.58
Body fat percent 50+22 157+7.7 <0.001 88.82
Fat:lean mass 03 +0.1 0.7+03 <0.001 30.86
8N
Liver 10.3 +0.3% 102+ 0.3* NS 0.982
Plasma 104+03"  10.6+02° 0008  7.626
RBC 9.6+02°  88+02° <0001 189
Muscle 10.2 +£ 0.4% 9.4+03% <0.001 82.1
Hair 8.6 +£0.8° 92+0.6% 0.002 10.85

Significant differences in body composition and tissue isotope values
between low- and high-protein diet treatments were assessed with a
one-way ANOVA. Significant differences in 8'SN among tissues
within each protein treatment were assessed using post hoc Tukey
HSD tests. Tissues that share the same letter superscript did not have
significantly different (P < 0.05) 8'°N values within each protein
treatment

5.0
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45 i T
s0] |
= 35 % [
< 30 T
l )
2.5 1
@ Low Protein
2.0 1 . .
High Protein
1.5 T T T . )
Liver Plasma RBC Muscle Hair

Fig.1 Mean AN of tissues for low- and high-protein diet treat-
ments; error bars represent standard deviation

(ANOVA F| g3 = 1.0, P = 0.32). Within the low-protein
group, tissue-specific differences were noted (Kruskal-Wal-
lis rank sum test)(2 = 80.4, df = 4, P = 0.002), however,
pairwise analysis revealed that AN did not differ among
liver, plasma, and muscle (Tukey’s HSD test P > 0.05).
Tissue-specific differences were also noted within the high-
protein group (Kruskal-Wallis rank sum test y*> = 143.6,
df =4, P < 0.001), although AN of hair and muscle were
indistinguishable (Tukey’s HSD test P > 0.05).

Relationship between body condition and tissue
AN

Correlation analysis (Fig. 2, Online Resource 2) revealed
significant positive correlations between dietary protein
content and body condition metrics (total weight gain, lean
mass, and body fat percentages) and hair A'°N values, but
significantly negative correlations to muscle and RBC A'°N
values (P < 0.05). Dietary protein content was not correlated
to plasma or liver AN values. Body condition metrics were
positively correlated to hair and plasma AN values and
negatively correlated to liver, muscle, and RBC AN values;
the only exception being no significant correlation between
body fat percent and hair AN.

Discussion

By combining direct measurements of body condition with
stable isotope analysis of multiple tissues, our study illus-
trates the influence of nutritional state on tissue-specific ana-
bolic and catabolic processes that affect nitrogen isotope
discrimination. Proteinaceous tissues are synthesized from
the free amino acid pool of blood plasma (Waterlow et al.
1978), thus their 8N values and associated AN reflect
changes in the isotopic composition of that pool. Differ-
ences in AN among tissues in mice fed with the same diet
may also be due to differing amino acid compositions, as
amino acids can vary in 8'°N by ~ 20%o (Hare et al. 1991;
McClelland and Montoya 2002). In the following sections,
we describe why the influence of dietary protein content on
nitrogen isotope discrimination differed among tissues, and
how this relationship could help researchers characterize the
body condition and nutritional status of wild free-ranging
animals. To aid our explanation, we use a conceptual model
(Fig. 3) which emphasizes the availability of dietary protein
and its impact on tissue-specific anabolism and catabolism
that ultimately influences A'°N.

Diet-independent effects

Regardless of protein intake, plasma and liver AN values
were higher than other tissue types, consistent with pre-
vious observations (Arneson and MacAvoy 2005; Kurle
et al. 2014). Plasma likely had high AN values because
it represents amino acids that have been retained after
the selective excretion of *N in urea, the most abundant
nitrogenous waste product in mammalian urine (Poupin
et al. 2011; Arneson and MacAvoy 2005; MacAvoy et al.
2005). Liver tissue performs many critical physiological
functions, and as one of the most metabolically active tis-
sues in the body it requires constant replacement (anabo-
lism) of its proteins (Tieszen et al. 1983). Such proteins
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Fig.2 Heatmap created from
Pearson correlation matrix of
dietary protein content, body
condition scores and AN,
Shaded ellipses are significant
(P value < 0.05); slant angle
indicates negative (right) or
positive (left) correlations while
ellipse width and hue indicate
magnitude of correlation; darker
and narrower are more strongly
correlated
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are synthesized from the free amino acid pool in blood
plasma, and therefore the rapid shuttling of amino acids
from plasma into liver proteins (Fig. 3) likely explains
their similar A'>N within and among diet treatments in our
experiment. In comparison to liver and plasma, RBC and
muscle are less metabolically active and exhibit a lower
rate of protein replacement during normal physiological
maintenance (Arneson and MacAvoy 2005; Kurle 2009).
As a result, these tissues had AN values that were dif-
ferent than that of the plasma amino acid pool, but the
magnitude of discrimination varied depending on dietary
protein content (see below).

Although plasma AN was significantly different
between high-protein versus low-protein diets, the mean
difference of ~ 0.2%o is not biologically meaningful and is
similar in magnitude to analytical precision for 8'°N analysis
of organic substrates via EA-IRMS. The similarity in plasma
and liver AN between high- and low-protein diet treat-
ments implies that the enhanced metabolic activity inherent
to these tissues influences their 8'°N value more than varia-
tion in dietary protein content or nitrogen balance.
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High-protein diet

AN for muscle and RBC were lower in mice fed high-
protein diets than low-protein diets. This pattern meets our
expectations because high-protein diets are associated with
increased protein routing, which causes the 8N value of
tissues to more closely resemble that of dietary protein and
thus leads to decreased AN (Schwarcz and Schoeninger
1991; Ambrose and Norr 1993). Mice fed high-protein diets
also exhibited greater weight gain and lean mass percentages
(Table 2, Online Resource 1), indicative of higher rates of
anabolism (Fig. 3a). As anabolic processes draw upon the
plasma amino acid pool, it follows that the isotopic composi-
tion of muscle should mirror that of the plasma. However,
the observed patterns of relatively low muscle AN and
disequilibrium between liver and muscle 8'°N are expected
if direct routing of dietary protein to muscle synthesis over-
whelmed de novo amino acid synthesis (Fig. 3a).

The positive correlation between increasing hair A°N
values and dietary protein content is consistent with previ-
ous studies on humans (Petzke et al. 2005) and ungulates
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Fig.3 Conceptual figure
describing the relative contribu- A
tion of anabolic versus catabolic
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(Sponheimer et al. 2003). We hypothesize that for mice fed
high-protein diets, muscle and hair were in isotopic equi-
librium because they were built from similar proportions of
amino acids that were directly routed from diet versus those
synthesized de novo from non-protein dietary macromol-
ecules (Newsome et al. 2014) (Fig. 3a).

Low-protein diet

Muscle and RBC AN values were high for mice fed low-
protein diets, suggesting negative nitrogen balance and
extensive catabolism (Fig. 3b). We contend that the ‘ana-
bolic’ model is the most likely mechanism for the increase
in tissue 8'°N values during inadequate protein intake, sug-
gesting that amino acids used to rebuild and maintain tissues
are derived from the breakdown of endogenous proteins (Lee
et al. 2012). The catabolism of these endogenous proteins
leads to repeated recycling of nitrogen, yielding greater
fractionation, loss of '*N, and a corresponding increase
in >N in the amino acid pool (Hobson et al. 1993). Thus,
5N-enriched amino acids are retained in the body and used
to maintain tissues, which explains the increases in 85N val-
ues observed in the tissues from mice fed low-protein versus
high-protein diets (Fig. 3; Sick et al. 1997). Similar increases
in muscle A'°N during nutritional stress have been observed
in captive feeding experiments on American crows (Corvus
brachyrhynchos), Japanese quail (Coturnix japonica), and

\J

YN Urea

Ross’ Geese (Chen rossii) (Hobson and Clark 1992; Hobson
et al. 1993). Lee et al. (2012) suggested that the anabolic
model should lead to increases in the '°N values of liver
but not muscle, however, our results indicate that muscle is
being maintained by a '’N-enriched amino acid pool in mice
fed low-protein diet. This maintenance is likely because the
mice in our experiment were neither hibernating nor fasting
like the adult Arctic ground squirrels (Urocitellus parryii)
studied by Lee et al. (2012). Instead, mice in our experiment
were growing juveniles, physically active, fed daily, and all
maintained or gained weight throughout the trial; although,
the mice fed low-protein diets did not gain as much weight
and had less lean mass as a proportion of total body weight
than mice fed high-protein diets.

The 8'N values of liver, plasma, and muscle of mice
fed low-protein diets were not significantly different from
one another, which suggests that catabolic and anabolic pro-
cesses were acting in tandem to shuttle nitrogen among these
tissues, resulting in isotopic equilibrium. In low-protein
diets, there was less exogenous protein available for direct
routing to tissue synthesis, so the routing of protein directly
from diet likely did not overwhelm the de novo synthesis of
non-essential amino acids from non-protein dietary macro-
molecules (Fig. 3b).

Hair AN was low in mice fed low-protein diets, con-
tradicting some previous studies of humans that consumed
low-protein diets; e.g., patients suffering from anorexic
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nervosa (Mekota et al. 2006) and pregnant women experi-
encing weight loss caused by morning sickness (Fuller et al.
2004). Although these two studies found an inverse relation-
ship between hair AN values and dietary protein content,
this may be explained by temporal shifts in dietary nitrogen
sources as diet content could not be controlled. In our study,
dietary protein !N was constant since casein (5'°N = 6%o)
was the sole protein source. The positive relationship we
observed between hair 8'°N and protein intake agrees with
other studies that used animal- or plant-derived protein
(Sponheimer et al. 2003; Petzke et al. 2005). We suggest
that mice consuming low-protein diets had lower hair AN
for two possible reasons. First, hair growth was stimulated
by shaving a small region of skin. Because thermoregula-
tion is critical to mammalian health and function (Terrien
et al. 2011), mice may have prioritized hair regrowth and
its associated protein requirements over the maintenance of
other tissues. Therefore, these mice could have experienced
greater protein routing from exogenous sources into hair to
meet these demands (Fig. 3b). Second, the low-protein diets
may have altered protein composition of the hair (Noer and
Garrigues 1956; Robbins 1993), potentially decreasing the
relative abundance of certain amino acids (cysteine, argi-
nine, and methionine; Noer and Garrigues 1956; Koyanagi
and Takanohaski 1961; Friedman and Orraca-Tetteh 1978;
Robbins 1993), resulting in the observed decreased discrimi-
nation. We are currently testing this second explanation via
amino acid 8'°N and concentration analyses of mouse tissues
from our experiment.

Use of 8'°N to assess body condition and nutritional
stress

Our results provide a better understanding of how A!°N var-
ies in response to dietary protein content at a tissue-specific
level, providing a framework for the use of nitrogen iso-
topes as tracers of catabolic and anabolic activity during
periods of nutritional stress. Specifically, our data provide
expectations for the AN of multiple tissues of small, non-
hibernating omnivorous rodents that can be used to study
wild populations of this diverse and ubiquitous group of
mammals. Our results also show that phenotypic plasticity
of mice in response to dietary protein deficiency generates
variation in tissue 8'°N that may confound isotope-based
estimates of diet composition and trophic level.

The observed pattern in body condition and AN among
tissues suggests that mice fed low-protein diets were in nega-
tive nitrogen balance, which resulted in catabolism of labile
endogenous protein stores (e.g., skeletal muscle) to maintain
vital tissues (e.g., liver) required to survive in a nutrition-
ally compromised state. Therefore, given each tissues’ pro-
pensity towards catabolic and anabolic processes based on
their importance to maintaining bodily function, we propose
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that certain tissues are more informative for assessing the
physiological responses to nutritional stress. We suggest that
ecologists interested in minimally invasive assessments of
the nutritional state of free-ranging animals should ana-
lyze the 8N values of muscle, RBCs, and plasma. ABN
of muscle and RBC provided the most reliable information
regarding body condition and catabolism of endogenous
resources, as these metrics closely correlated with dietary
protein, weight gain, lean mass, and body fat (Fig. 2). RBC
samples are routinely collected from live animals, however,
it is also possible to collect non-lethal muscle biopsies from
a wide range of larger taxa (Sponheimer et al. 2006; Tilley
et al. 2013; Henderson et al. 2016). Our data indicate that
blood plasma 8'>N values are not sensitive to nutritional
stress, and thus may be a more faithful proxy for assessing
diet composition and trophic level than catabolic activity.
And because plasma is in isotopic equilibrium with the liver,
it is not necessary to sacrifice animals to collect liver for
isotope analysis. Although not examined here, measuring the
8'°N value of urine could also prove insightful in assessing
nitrogen balance as it is expected to become progressively
enriched if the animal is not at steady state (McCue and Pol-
lock 2008), thus reflecting enrichment of the body nitrogen
pool. Moreover, the anabolic model requires the preferen-
tial excretion of '“N via urea, so measuring the 8N values
of urine would provide useful information to complement
tissue 5'°N data. And because incorporation rates differ
among tissues (Martinez del Rio et al. 2009), it is important
to remember that shifts over time in the nitrogen isotope
values of dietary inputs could cause changes in AN similar
in magnitude and direction as those observed in response to
nutritional stress (1-2%o, Fig. 1). Lastly, tissue 8°N data
should be paired with direct data on body condition, such as
that generated by field-portable QMR systems like the one
used in our study, to create a comprehensive understanding
of the physiological pathways by which animals were likely
gaining or losing lean mass at the time of sampling.
Researchers should also consider the emerging technique
of amino acid 8"°N analysis, which could provide an addi-
tional context for interpreting nitrogen dynamics during ana-
bolic and catabolic activity. For example, “trophic” amino
acids are easily transaminated and therefore their §!°N
increases with trophic level (O’Connell 2017). Some trophic
amino acids are non-essential (e.g., glutamic acid, aspartic
acid) and are likely synthesized de novo by animals eating
protein-deficient diets. In contrast, other trophic amino acids
are essential (e.g., isoleucine, valine, leucine) and cannot be
synthesized de novo. It is thus possible that the 8'°N values
of non-essential, trophic amino acids increase during nega-
tive nitrogen balance, while the 8N of essential, trophic
amino acids remains constant. We are currently testing this
hypothesis via amino acid 8'°N analysis of the mouse tis-
sues collected in this experiment and we encourage other
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researchers to examine such patterns with additional con-
trolled feeding experiments.
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