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Abstract. We study the infinite-horizon optimal control problem for N-network queue-
ing systems, which consists of two customer classes and two server pools, under aver-
age (ergodic) criteria in the Halfin–Whitt regime. We consider three control objectives:
(1) minimizing the queueing (and idleness) cost, (2) minimizing the queueing cost while
imposing a constraint on idleness at each server pool, and (3) minimizing the queueing
cost while requiring fairness on idleness. The running costs can be any nonnegative con-
vex functions having at most polynomial growth. For all three problems, we establish
asymptotic optimality; namely, the convergence of the value functions of the diffusion-
scaled state process to the corresponding values of the controlled diffusion limit. We also
present a simple state-dependent priority scheduling policy under which the diffusion-
scaled state process is geometrically ergodic in the Halfin–Whitt regime, and some
results on convergence of mean empirical measures, which facilitate the proofs.
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1. Introduction
Parallel server networks in the Halfin–Whitt regime have been very actively studied in recent years. Many
important insights have been gained in their performance, design, and control. One important question that has
mostly remained open is optimal control under the long-run average expected cost (ergodic) criterion. Since it
is prohibitive to exactly solve the discrete state Markov decision problem, the plausible approach is to solve
the control problem for the limiting diffusion in the Halfin–Whitt regime and use this as an approximation.
However, the results in the existing literature for ergodic control of diffusions (see a good review in Arapostathis
et al. [2]) cannot be directly applied to the class of diffusion models arising from the parallel server networks
in the Halfin–Whitt regime. Recently, Arapostathis et al. [3] and Arapostathis and Pang [1] have developed the
basic tools needed to tackle this class of ergodic control problems.

Given an optimal solution to the control problem for the diffusion limit, the important task that remains is
to show it gives rise to a scheduling policy for the network and establish that any sequence of such scheduling
policies is asymptotically optimal in the Halfin–Whitt regime. Under the discounted cost criterion, this task
has been accomplished in Atar et al. [8] for the multiclass V-model (or V-network), which consists of multiple
customer classes that are catered by servers in a single pool, and in Atar [7] for multiclass multipool networks
with certain tree topologies. Under the ergodic criterion, the problem becomes much more difficult because it is
intertwined with questions concerning the ergodicity of the diffusion-scaled state process under the scheduling
policies. This relates to various open questions on the stochastic stability of parallel server networks in the
Halfin–Whitt regime.

Stability of the multiclass V-model in the Halfin–Whitt regime is well treated in Gamarnik and Stolyar [14].
Stolyar [23] has recently proved the tightness of the stationary distributions of the diffusion-scaled state process
for the so-called N-network (or N-model), depicted in Figure 1, with no abandonment under a static priority
policy. For the V-network, Arapostathis et al. [3] have shown that a sequence of scheduling policies constructed
from the optimal solution to the diffusion control problem under the ergodic criterion is asymptotically optimal.
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Figure 1. The N-network.

Class 1 Class 2

Pool 1 Pool 2

In this construction, the state space is divided into a compact subset with radius in the order of the square root
of the number of servers around the steady state, and its complement. An approximation to the optimal control
for the diffusion is used inside this set, and a static priority policy is employed in its complement. It follows
from the results of Arapostathis et al. [3] that under this sequence of scheduling policies, the state process
is geometrically ergodic. The proof of asymptotic optimality takes advantage of the fact that, under the static
priority scheduling policy, the state process of the V-model in the Halfin–Whitt regime is geometrically ergodic.
In fact, such a static priority policy for the V-model also corresponds to a constant Markov control, under which
the limiting diffusion is geometrically ergodic.

However, for multiclass multipool networks, although the optimal control problem for the limiting diffusion
has been thoroughly solved in Arapostathis and Pang [1], the lack of sufficient understanding of the stochastic
stability properties of the diffusion-scaled state process has been the critical obstacle to establishing asymptotic
optimality. It is worth noting that this difficulty is related to the so-called joint work conservation (JWC) condi-
tion, which plays a key role in the study of multiclass multipool networks as shown in Atar [6, 7]. Although the
JWC condition holds for the limiting diffusions over the entire state space, it generally holds only in a bounded
subset of the state space for the diffusion-scaled process, whose radius is in the order of the number of servers
around the steady state. Thus an optimal control derived from the limiting diffusion does not translate well to
a scheduling policy, which is compatible with the controlled dynamics of the network on the entire state space.
At the same time, although as shown in Arapostathis and Pang [1], there exists a constant Markov control under
which the limiting diffusion of multiclass multipool networks is geometrically ergodic, it is unclear if this is
also the case for the diffusion-scaled state processes under the corresponding static priority scheduling policy.
Therefore the limiting diffusion does not offer much help in the synthesis of a suitable scheduling policy on the
part of the state space where the JWC condition does not hold, and as a result constructing stable policies for
multiclass multipool networks is quite a challenge.

In this paper, we address these challenging problems for the N-network. We study three ergodic control
problems: (P1) minimizing the queueing (and idleness) cost, (P2) minimizing the queueing cost while imposing
a constraint on the idleness of each server pool (e.g., the long-run average idleness cannot exceed a specified
threshold), and (P3) minimizing the queueing cost while requiring fairness on idleness (e.g., the average idleness
of the two server pools satisfies a fixed ratio condition). The running cost can be any nontrivial nonnegative
convex functions having at most polynomial growth. Under its usual parameterization, the control specifies the
number of customers from each class that are scheduled to each server pool, and we refer to it as a “scheduling”
policy. However, the control can be also parameterized in a way so as to specify which class of customers
should be scheduled to server pool 2 if it has any available servers (“scheduling” control), and which of the
server pools should class 1 customers be routed to, if both pools have available servers (“routing” control). The
optimal control problems for the limiting diffusion corresponding to (P1)–(P3) are well posed and in the case
of (P1)–(P2), the solutions can be fully characterized via Hamilton-Jacobi-Bellman (HJB) equations, following
the methods in Arapostathis and Pang [1], Arapostathis et al. [3]. The dynamic programming characterization
for (P3) is more difficult. This is one of those rare examples in ergodic control where the running cost is not
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bounded below or above, and there is no blanket stability property. In this paper, we establish the existence of
a solution to the HJB equation, and the usual characterization of optimality for this problem.

We first present a Markov scheduling policy, for the N-network under which the diffusion-scaled state pro-
cesses are geometrically ergodic in the Halfin–Whitt regime (see Section 3.2). Unlike the V-model, this scheduling
policy is a state-dependent priority (SDP) policy, i.e., priorities change as the system state varies—yet it is simple
to describe. This result is significant since it indicates that the ergodic control problems for the diffusion-scaled
processes in the Halfin–Whitt regime have finite values. Moreover, it can be used as a scheduling policy outside
a bounded subset of the state space where the JWC property might fail to hold. On the other hand, it follows
from the theory in Arapostathis and Pang [1] that the controlled diffusion limit is geometrically ergodic under
some constant Markov control (see Theorem 4.2 in Arapostathis and Pang [1]). In this paper, we show that a
much stronger result applies for the N-network (Lemma 4.1): as long as the scheduling control is a constant
Markov control with pool 2 prioritizing class 2 over 1, the controlled diffusion limit is geometrically ergodic,
uniformly over all routing controls (e.g., class 1 customers prioritizing server pool 1 over 2, or an SDP policy,
or even a nonstationary one).

The main results of the paper center around the proof of convergence of the value functions, which is accom-
plished by establishing matching lower and upper bounds (see Theorems 5.1–5.2). To prove the lower bound,
the key is to show that as long as the long-run average first-order moment of the diffusion-scaled state process
is finite, the associated mean empirical measures are tight and converge to an ergodic occupation measure
corresponding to a stationary stable Markov control for the limiting diffusion (Lemma 7.1). In fact, we can
show that for the N-network, under any admissible (work conserving) scheduling policy, the long-run average
mth (m ≥ 1) moment of the diffusion-scaled state process is bounded by the long-run average mth moment of
the diffusion-scaled queue under that policy (Lemma 8.1). The lower bounds can then be deduced from these
observations. It is worth noting that to establish asymptotic optimality for the fairness problem (P3), we must
relax the equality in the constraint and show instead that the constraint is asymptotically feasible.

To establish the upper bound, a Markov scheduling policy is synthesized, which is the concatenation of a
Markov policy induced by the solution of the ergodic control problem for the diffusion limit, and which is
applied on a bounded subset of the state space where the JWC condition holds, and the SDP policy, which is
applied on the complement of this set.

The proof involves the following key components. First, we apply the spatial truncation approximation tech-
nique developed in Arapostathis et al. [3] and Arapostathis and Pang [1] for the ergodic control problem for
the diffusion limit. This provides us with an ε-optimal continuous precise control. Second, we show that under
the concatenation of the Markov scheduling policy induced by this ε-optimal control and the SDP policy, the
diffusion-scaled state processes are geometrically ergodic (Lemma 9.1). Then, we prove that the mean empirical
measures of the diffusion-scaled process and control, converge to the ergodic occupation measure of the diffu-
sion limit associated with the ε-optimal precise control originally selected (Lemma 7.2). Uniform integrability
implied by the geometric ergodicity takes care of the rest.

1.1. Literature Review
In a certain way, the N-network has been viewed as the benchmark of multiclass multipool networks, mainly
because it is simple to describe, yet it has complicated enough dynamics. There are several important studies
on stochastic control of parallel server networks, focusing on N-networks. Xu et al. [30] studied the Marko-
vian single-server N-network and showed that a threshold scheduling policy is optimal under the expected
discounted and long-run average linear holding cost, using a Markov decision process approach. In the
conventional (single-server) heavy-traffic regime, the N-network with two single severs, was first studied in
Harrison [19], under the assumption of Poisson arrivals and deterministic services, and a “discrete-review”
policy is shown to be asymptotically optimal under an infinite-horizon discounted linear queueing cost. The
N-model with renewal arrival processes and general service time distributions was then studied in Bell and
Williams [10], as a Brownian control problem under an infinite-horizon discounted linear queueing cost, and a
threshold policy is shown to be asymptotically optimal. Ghamami and Ward [15] studied the N-network with
renewal arrival processes, general service time distributions, and exponential patience times, and showed that
a two-threshold scheduling policy is asymptotically optimal via a Brownian control problem under an infinite-
horizon discounted linear queueing cost. Brownian control models for multiclass networks were pioneered in
Harrison [18, 20] and have been extended to many interesting networks; see Williams [29] for an extensive
review of that literature.

In the many-server Halfin–Whitt regime, Atar [6, 7] pioneered the study of multiclass multipool networks
with abandonment (of a certain tree topology) via the corresponding control problems for the diffusion limit
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under an infinite-horizon discounted cost. Gurvich and Whitt [16, 17] have studied queue-and-idleness-ratio
controls for multiclass multipool networks (including the N-network) in the Halfin–Whitt regime by estab-
lishing a state-space-collapse property, under certain assumptions on the network structure and the system
parameters. The N-network with many-server pools and abandonment has been recently studied in Tezcan and
Dai [26], where a static priority policy is shown to be asymptotically optimal in the Halfin–Whitt regime under
a finite-time horizon cost criterion. In Ward and Armony [27], some blind fair routing policies are proposed for
some multiclass multipool networks (including the N-network), where the control problems are formulated to
minimize the average queueing cost under a fairness constraint on the idleness.

On the other hand, most of the existing results on the stochastic control of multiclass multipool networks
in the Halfin–Whitt regime have only considered either discounted cost criteria (Atar [6, 7], Atar et al. [9]) or
finite-time horizon cost criteria (Dai and Tezcan [12, 13]). There is only limited work of multiclass networks
under ergodic cost criteria. Arapostathis et al. [3] have recently studied the multiclass V-model under ergodic
cost in the Halfin–Whitt regime. The inverted V-model is studied in Armony [4], and it is shown that the Fastest
server first policy is asymptotically optimal for minimizing the steady-state expected queue length and waiting
time. For the same model, Armony and Ward [5] showed that a threshold policy is asymptotically optimal
for minimizing the steady-state expected queue length and waiting time subject to a “fairness” constraint on
the workload division. Biswas [11] has recently studied a multiclass multipool network with “help” under an
ergodic cost criterion, where each server pool has a dedicated stream of a customer class, and can help with other
customer classes only when it has idle servers. The N-network does not belong to the class of models considered
in Biswas [11]. For general multiclass multipool networks, Arapostathis and Pang [1] have thoroughly studied
ergodic control problems for the limiting diffusion. However, as mentioned earlier, asymptotic optimality has
remained open. This work makes a significant contribution in that direction, by studying the N-network. The
fairness problem we study fills, in some sense (our formulation is more general), the asymptotic optimality
gap in Ward and Armony [27], where the associated approximate diffusion control problems are studied via
simulations.

We also feel that this work contributes to the understanding of the stability of multiclass multipool networks
in the Halfin–Whitt regime. In this topic, in addition to the stability studies of the V- and N-networks in
Gamarnik and Stolyar [14] and Stolyar [23], it is worthwhile mentioning the following relevant work. Stolyar
and Yudovina [25] studied the stability of multiclass multipool networks under a load balancing scheduling
and routing policy, “longest-queue freest-server” (LQFS-LB). They showed that the fluid limit may be unstable
in the vicinity of the equilibrium point for certain network structures and system parameters, and that the
sequence of stationary distributions of the diffusion-scaled processes may not be tight in the underloaded
regime and the Halfin–Whitt regime. They also provided positive answers to the stability and exchange of limit
results in the diffusion scale for one special class of networks. Stolyar and Yudovina [24] proved the tightness
of the sequence of stationary distributions of multiclass multipool networks under a leaf activity priority policy
(assigning static priorities to the activities in the order of sequential “elimination” of the tree leaves) in the scale
n1/2+ε (n is the scaling parameter) for all ε > 0, which was extended to the diffusion scale n1/2 in Stolyar [23].
The stability/recurrence properties for general multiclass multipool networks under other scheduling policies
remain open.

As alluded above, the main challenge to establish asymptotic optimality for general multiclass multipool
networks is to understand the stochastic stability/recurrence properties of the diffusion-scaled state processes in
the Halfin–Whitt regime. Despite the recent development in Stolyar and Yudovina [24, 25], Stolyar [23], these are
far from being adequate for proving the asymptotic optimality for general multiclass multipool networks. The
stochastic stability/recurrence properties may depend critically upon the network topology and/or parameter
assumptions. We believe that the methodology developed here for the N-network will provide some important
insights on what stochastic stability properties are required and the roles they may play in proving asymptotic
optimality.

1.2. Organization of the Paper
The notation used in this paper is summarized in Section 1.3. A detailed description of the N-network model is
given in Section 2. We define the control objectives in Section 3.1 and present an SDP policy that is geometrically
stable in Section 3.2. We state the corresponding ergodic control problems for the limiting diffusion, as well
as the results on the characterization of optimality in Section 4. The asymptotic optimality results are stated in
Section 5. We describe the system dynamics and an equivalent control parameterization in Section 6. In Section 7,
we establish convergence results for the mean empirical measures for the diffusion-scaled state processes. We
then prove the lower and upper bounds in Sections 8 and 9, respectively. The proof of geometric stability of the
SDP policy is given in Appendices A, and B is concerned with the proof of Theorem 4.3.
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1.3. Notation
The following notation is used in this paper. The symbol � denotes the field of real numbers, and �+, �, and
� denote the sets of nonnegative real numbers, natural numbers, and integers, respectively. Given two real
numbers a and b, the minimum (maximum) is denoted by a ∧ b (a ∨ b), respectively. Define a+ :� a ∨ 0 and
a− :�−(a ∧ 0). The integer part of a real number a is denoted by �a�. We also let e :� (1, 1)T.

For a set A ⊂ �d , we use Ā, Ac , and �A to denote the closure, the complement, and the indicator function of
A, respectively. A ball of radius r > 0 in �d around a point x is denoted by Br(x), or simply as Br if x � 0. The
Euclidean norm on �d is denoted by | · |, x · y denotes the inner product of x , y ∈ �d , and ‖x‖ :�

∑d
i�1 |xi |.

For a nonnegative function g ∈ �(�d), we let �(g) denote the space of functions f ∈ �(�d) satisfying
supx∈�d | f (x)|/(1∨ g(x))<∞. We also let �(g) denote the subspace of �(g) consisting of those functions f satisfy-
ing limsup|x |→∞| f (x)|/(1∨ g(x))� 0. Abusing the notation, �(x) and �(x) occasionally denote generic members
of these sets.

We let �∞
c (�d) denote the set of smooth real-valued functions on �d with compact support. Given any Polish

space 	 , we denote by 
(	) the set of probability measures on 	 and we endow 
(	) with the Prokhorov
metric. For ν ∈
(	) and a Borel measurable map f : 	→�, we often use the abbreviated notation ν( f ) :� ∫	 f dν.
The quadratic variation of a square integrable martingale is denoted by 〈 · , · 〉. For any path X( · ) of a càdlàg
process, we use the notation ΔX(t) to denote the jump at time t.

2. Model Description
All stochastic variables introduced below are defined on a complete probability space (Ω,�,� ). The expectation
w.r.t. � is denoted by Ɛ.

2.1. The N-Network Model
Consider an N-network with two classes of jobs (or customers) and two server pools, as depicted in Figure 1.
Jobs of each class arrive according to a Poisson process with rates λn

i , i � 1, 2. There are two server pools, each
of which have multiple statistically identical servers, and servers in pool 1 can only serve class 1 jobs, while
servers in pool 2 can serve both classes of jobs. Let Nn

j be the number of servers in pool j, j � 1, 2. The service
times of all jobs are exponentially distributed, where jobs of class 1 are served at rates μn

11 and μn
12 by servers

in pools 1 and 2, respectively, while jobs of class 2 are served at a rate μn
22 by servers in pool 2. Throughout the

paper, we set μn
21 ≡ 0 and μ21 ≡ 0. Jobs may abandon while waiting in queue, with an exponential patience time

with rate γn
i for i � 1, 2. We study a sequence of such networks indexed by an integer n, which is the order of

the number of servers and let n →∞.
Throughout the paper, we assume that the parameters satisfy the following conditions.

Assumption 2.1 (Halfin–Whitt Regime). As n →∞, the following hold:

λn
i

n
→ λi > 0,

λn
i − nλi√

n
→ λ̂i , γn

i → γi ≥ 0, i � 1, 2,

Nn
j

n
→ ν j > 0,

√
n(n−1Nn

j − ν j)→ 0, j � 1, 2,

μn
i j → μi j > 0,

√
n(μn

i j − μi j)→ μ̂i j , i , j � 1, 2.

We also have

λ1 > μ11ν1 ,
λ1 − μ11ν1

μ12ν2

+
λ2

μ22ν2

� 1. (1)

Note that (1) implies that class 1 jobs are overloaded for server pool 1, class 2 jobs are underloaded for server
pool 2, and the overload of class 1 jobs can be served by server pool 2, so that both server pools are critically
loaded. This assumption is referred to as the complete resource pooling condition (Williams [28], Atar [7]).

Let ξ∗ be a constant matrix

ξ∗ :�

⎡⎢⎢⎢⎢⎢⎢⎣
1
λ1 − μ11ν1

μ12ν2

0
λ2

μ22ν2

⎤⎥⎥⎥⎥⎥⎥⎦
. (2)

The quantity ξ∗i j can be interpreted as the steady-state fraction of service allocation of pool j to class i jobs in
the fluid scale. Define x∗ � (x∗

i )i�1, 2 and z∗ � (z∗
i j)i , j�1, 2 by

x∗
1 :� ξ∗11ν1 + ξ

∗
12ν2 , x∗

2 :� ξ∗22ν2 , (3)
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z∗
� (z∗

i j) :� (ξ∗i jν j)�
⎡⎢⎢⎢⎢⎢⎢⎣
ν1

λ1 − μ11ν1

μ12

0
λ2

μ22

⎤⎥⎥⎥⎥⎥⎥⎦
. (4)

Then, x∗
i can be interpreted as the steady-state total number of class i jobs, and z∗

i j can be interpreted as the
steady-state number of class i jobs receiving service in pool j, in the fluid scale. It is easy to check that e ·x∗ � e ·ν,
where ν :� (ν1 , ν2)T.

For each i � 1, 2, let Xn
i � {Xn

i (t): t ≥ 0} and Qn
i � {Qn

i (t): t ≥ 0} be the total number of class i jobs in the system
and in the queue, respectively. For each j � 1, 2, let Yn

j � {Yn
j (t): t ≥ 0} be the number of idle servers in server

pool j. For i , j � 1, 2, let Zn
ij � {Zn

ij(t): t ≥ 0} be the number of class i jobs being served in server pool j, and note
that Zn

21 ≡ 0. The following fundamental balance equations hold:

Xn
1 (t)� Qn

1 (t)+Zn
11(t)+Zn

12(t), Nn
1 � Yn

1 (t)+Zn
11(t),

Xn
2 (t)� Qn

2 (t)+Zn
22(t), Nn

2 � Yn
2 (t)+Zn

12(t)+Zn
22(t), (5)

Xn
i (t) ≥ 0, Qn

i (t) ≥ 0, Yn
j (t) ≥ 0, Zn

ij(t) ≥ 0, i , j � 1, 2,

for each t ≥ 0. We let Zn � (Zn
ij)i , j�1, 2, Xn � (Xn

i )i�1, 2, and analogously define Qn and Yn .

2.2. Scheduling Control
For the control problem, we only consider work conserving policies, which are nonanticipative and preemptive.
Work conservation requires that the processes Qn and Yn satisfy

Qn
1 (t) ∧Yn

j (t)� 0, ∀ j � 1, 2 and Qn
2 (t) ∧Yn

2 (t)� 0, ∀ t ≥ 0.

In other words, no server will idle if there is any job in a queue that the server can serve. Service preemption
is allowed; that is, jobs in service at pool 2 can be interrupted and resumed at a later time to serve jobs from
the other class.

Let

q1(x , z) :� x1 − z11 − z12 , yn
1 (x , z) :� Nn

1 − z11 ,

q2(x , z) :� x2 − z22 , yn
2 (x , z) :� Nn

2 − z12 − z22.

We define the action set �n(x) as

�n(x) :� {z ∈ �2×2
+

: z21 � 0, q1(x , z) ∧ q2(x , z) ∧ yn
1 (x , z) ∧ yn

2 (x , z) ≥ 0,

q1(x , z) ∧ (yn
1 (x , z)+ yn

2 (x , z))� 0, q2(x , z) ∧ yn
2 (x , z)� 0}.

Define the σ-fields

� n
t :� σ{Xn(0), Ãn

i (s), S̃n
i j(s), R̃n

i (s): i , j � 1, 2, 0 ≤ s ≤ t} ∨� ,
�n

t :� σ{δÃn
i (t , r), δS̃n

i j(t , r), δR̃n
i (t , r): i , j � 1, 2, r ≥ 0},

where � is the collection of all � -null sets, and

Ãn
i (t) :� An

i (λn
i t), δÃn

i (t , r) :� Ãn
i (t + r) − Ãn

i (t),
S̃n

i j(t) :� Sn
i j

(
μn

i j

∫ t

0

Zn
ij(s)ds

)
, δS̃n

i j(t , r) :� Sn
i j

(
μn

i j

∫ t

0

Zn
ij(s)ds + μn

i j r
)
− S̃n

i j(t),

R̃n
i (t) :� Rn

i

(
γn

i

∫ t

0

Qn
i (s)ds

)
, δR̃n

i (t , r) :� Rn
i

(
γn

i

∫ t

0

Qn
i (s)ds + γn

i r
)
− R̃n

i (t).

The processes An
i , Sn

i j and Rn
i are all rate-1 Poisson processes, representing the arrival, service, and abandonment

quantities, respectively. We assume that they are mutually independent, and also independent of the initial
condition Xn

i (0). Note that quantities with subscript i � 2, j � 1 are all equal to zero. The filtration Fn :� {� n
t : t ≥ 0}
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represents the information available up to time t, and the filtration Gn :� {�n
t : t ≥ 0} contains the information

about future increments of the processes. We say that a scheduling policy Zn is admissible if
(i) Zn(t) ∈�n(Xn(t)) for all t ≥ 0;

(ii) Zn(t) is adapted to � n
t ;

(iii) � n
t is independent of �n

t at each time t ≥ 0;
(iv) for each i , j ∈ {1, 2}, and for each t ≥ 0, the process δS̃n

i j(t , · ) agrees in law with Sn
i j(μn

i j · ), and the process

δR̃n
i (t , · ) agrees in law with Rn

i (γn
i · ).

We denote the set of all admissible scheduling policies (Zn ,Fn ,Gn) by �n . Abusing the notation, we sometimes
denote this as Zn ∈ �n .

Following Atar [7], we also consider a stronger condition, JWC, for preemptive scheduling policies. Namely,
for each x ∈�2

+
, there exists a rearrangement z ∈�n(x) of jobs in service such that there is either no job in queue

or no idling server in the system, satisfying

e · q(x , z) ∧ e · yn(x , z)� 0. (6)

We let � n denote the set of all possible values of �2
+

for which the JWC condition (6) holds, i.e.,

� n :� {x ∈ �2
+
: (6) holds for some z ∈�n(x)}.

Note that the set � n may not include all possible scenarios of the system state Xn(t) for finite n at each time
t ≥ 0.

We quote a result from Atar [7], which is used later.

Lemma 2.1 (Lemma 3 in Atar [7]). There exists a constant c0 > 0 such that, the collection of sets �̆ n defined by

�̆ n :�
{

x ∈ �2
+
: ‖x − nx∗‖ ≤ c0n

}
,

satisfies �̆ n ⊂ � n for all n ∈ �. Moreover, for any q , y ∈ �2
+

satisfying e · q ∧ e · y � 0, and e · (x − q) � e · (Nn − y) ≥ 0,
we have [

Nn
1 − y1 x1 − q1 − (Nn

1 − y1)
0 x2 − q2

]
∈�n(x). (7)

We need the following definition.

Definition 2.1. We fix some open ball B̆ centered at the origin such that n(B̆ + x∗) ⊂ �̆ n for all n ∈ �. The jointly
work conserving action set �̆

n(x) at x is defined as the subset of �n(x), which satisfies

�̆
n(x) :�

{{z ∈�n(x): e · q(x , z) ∧ e · yn(x , z)� 0} if x ∈ n(B̆ + x∗),
�n(x) otherwise.

We also define the associated admissible policies by

�̆
n

:� {Zn ∈ �n : Zn(t) ∈ �̆n(Xn(t)), ∀ t ≥ 0},
� :� {Zn ∈ �̆n

: n ∈ �}.

We refer to the policies in � as eventually jointly work conserving (EJWC).

Remark 2.1. The ball B̆ is fixed in Definition 2.1 only for convenience. We could instead adopt a more general
definition of �, without affecting the results of the paper. Let {Dn , n ∈ �} be a collection of domains, which
covers �2 and satisfies Dn ⊂ Dn+1, and

√
nDn + nx∗ ⊂ �̆ n for all n ∈�. Then, we redefine �̆

n
using Definition 2.1

and replacing n(B̆ + x∗) with
√

nDn + nx∗ and define � analogously. If {Zn} ⊂ �, then, in the diffusion scale,
JWC holds on an expanding sequence of domains that cover �2. This is the reason behind the terminology
EJWC. The EJWC condition plays a crucial role in the derivation of the controlled diffusion limit. Therefore,
convergence of mean empirical measures of the diffusion-scaled state process and control, and thus also the
lower and upper bounds for asymptotic optimality are established for sequences {Zn , n ∈ �} ⊂ �.
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3. Ergodic Control Problems
We define the diffusion-scaled processes Ẑn � (Ẑn

i j)i , j∈{1, 2}, X̂n � (X̂n
1 , X̂

n
2 )T, and analogously for Q̂n and Ŷn , by

X̂n
i (t) :�

1√
n
(Xn

i (t) − nx∗
i ), Ẑn

i j(t) :�
1√
n
(Zn

ij(t) − nz∗
i j),

Q̂n
i (t) :�

1√
n

Qn
i (t), Ŷn

j (t) :�
1√
n

Yn
j (t),

(8)

where x∗ and z∗ are defined in (3)–(4).

3.1. Control Objectives
We consider three control objectives, which address the queueing (delay) and/or idleness costs in the system:
(i) unconstrained problem, minimizing the queueing (and idleness) cost, (ii) constrained problem, minimizing the
queueing cost while imposing a constraint on idleness, and (iii) fairness problem, minimizing the queueing cost
while imposing a constraint on the idleness ratio between the two server pools. The running cost is a function
of the diffusion-scaled processes, which are related to the unscaled ones by (8). For simplicity, in all three cost
minimization problems, we assume that the initial condition Xn(0) is deterministic and X̂n(0)→ x ∈�2 as n →∞.
Let r̂: �2

+
×�2

+
→�+ be defined by

r̂(q , y) :�
2∑

i�1

ξi q
m
i +

2∑
j�1

ζ j y
m
j , q ∈ �2

+
, y ∈ �2

+
for some m ≥ 1, (9)

where ξ � (ξ1 , ξ2)T is a strictly positive vector and ζ � (ζ1 , ζ2)T is a nonnegative vector. In the case ζ ≡ 0, only
the queueing cost is minimized. In (P1) below, idleness may be added as a penalty in the objective. We denote
by ƐZn

the expectation operator under an admissible policy Zn .
(P1) (unconstrained problem) The running cost penalizes the queueing (and idleness). Let r̂(q , y) be the running

cost function as defined in (9). Given an initial state Xn(0), and an admissible scheduling policy Zn ∈ �n , we
define the diffusion-scaled cost criterion by

J(X̂n(0),Zn) :� limsup
T→∞

1

T
ƐZn

[∫ T

0

r̂(Q̂n(s), Ŷn(s))ds
]
. (10)

The associated cost minimization problem becomes

V̂n(X̂n(0)) :� inf
Zn∈�n

J(X̂n(0),Zn).

(P2) (constrained problem). The objective here is to minimize the queueing cost while imposing idleness con-
straints on the two server pools. Let r̂o(q) be the running cost function corresponding to r̂ in (9) with ζ ≡ 0. The
diffusion-scaled cost criterion Jo(X̂n(0),Zn) is defined analogously to (10) with running cost r̂o(Q̂n(s)); that is,

Jo(X̂n(0),Zn) :� limsup
T→∞

1

T
ƐZn

[∫ T

0

r̂o(Q̂n(s))ds
]
.

Also, define

Jc, j(X̂n(0),Zn) :� limsup
T→∞

1

T
ƐZn

[∫ T

0

(Ŷn
j (s))m̃ ds

]
, j � 1, 2

with m̃ ≥ 1. The associated cost minimization problem becomes

V̂n
c (X̂n(0)) :� inf

Zn∈�n
Jo(X̂n(0),Zn),

subject to Jc, j(X̂n(0),Zn) ≤ δ j , j � 1, 2, (11)

where δ� (δ1 ,δ2)T is a positive vector.
(P3) (fairness) Here, we minimize the queueing cost while keeping the average idleness of the two server pools

balanced. Let θ be a positive constant and let 1 ≤ m̃ < m. The associated cost minimization problem becomes

V̂n
f (X̂n(0)) :� inf

Zn∈�n
Jo(X̂n(0),Zn),

subject to Jc, 1(X̂n(0),Zn)�θJc, 2(X̂n(0),Zn).
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We refer to V̂n(X̂n(0)), V̂n
c (X̂n(0)), and V̂n

f (X̂n(0)) as the diffusion-scaled optimal values for the nth system
given the initial state Xn(0) for (P1)–(P3), respectively.

Remark 3.1. We choose running costs of the form (10) mainly to simplify the exposition. However, all the results
of this paper still hold for more general classes of functions. Let ho: �

2 → �+ be a convex function satisfying
ho(x) ≥ c1 |x |m + c2 for some m ≥ 1 and constants c1 > 0 and c2 ∈�, and h: �2 →�+, hi : �→�+, i � 1, 2, be convex
functions that have at most polynomial growth. Then, we can choose r̂(q , y)� ho(q)+ h(y) for the unconstrained
problem, and hi(yi) as the functions in the constraints in (11) (with r̂o � ho). For the problem (P3), we require
in addition that h1 � h2 � 0 and they are in �(|x |m). The analogous running costs can, of course, be used in the
corresponding control problems for the limiting diffusion, which are presented later in Section 4.2.

3.2. A Geometrically Stable Scheduling Policy
We introduce a Markov scheduling policy for the N-network that results in geometric ergodicity for the
diffusion-scaled state process, and also implies that the diffusion-scaled cost in the ergodic control problem (P1)
is bounded, uniformly in n ∈ �. Let Nn

12 :� �ξ∗12Nn
2 � and Nn

22 :� �ξ∗22Nn
2 �. Note that Nn

12 + Nn
22 � Nn

2 .

Definition 3.1. For each n, we define the scheduling policy žn � žn(x), x ∈ �2
+

by

žn
11(x)� x1 ∧ Nn

1 ,

žn
12(x)�

{
(x1 − Nn

1 )+ ∧ Nn
12 if x2 ≥ Nn

22

(x1 − Nn
1 )+ ∧ (Nn

2 − x2) otherwise,

žn
22(x)�

{
x2 ∧ Nn

22 if x1 ≥ Nn
1 + Nn

12

x2 ∧ (Nn
2 − (x1 − Nn

1 )+) otherwise.

Note that the scheduling policy žn is state dependent, and can be interpreted as follows. Class 1 jobs prioritize
server pool 1 over 2. Server pool 2 prioritizes the two classes of jobs depending on the system state. Whenever
x1 ≥ Nn

1 + Nn
12, server pool 2 allocates no more than Nn

22 servers to class 2 jobs, while whenever x2 ≥ Nn
22, it

allocates no more than Nn
12 servers to class 1 jobs. It is easy to check that this policy žn is work conserving. The

resulting queue length and idleness q̌n and y̌n can be obtained by the balance equations for x ∈ �2
+
,

q̌n
1 (x)� x1 − žn

11(x) − žn
12(x), q̌n

2 (x)� x2 − žn
22(x),

y̌n
1 (x)� Nn

1 − žn
11(x), y̌n

2 (x)� Nn
2 − žn

12(x) − žn
22(x).

Definition 3.2. For each x ∈ �2
+
, define

x̃n(x) :� (x1 − nx∗
1 , x2 − nx∗

2), x̂n(x) :�
x̃n(x)√

n
, (12)

where x∗ is given in (3). Also, define

�n :� {x̂n(x): x ∈ �2
+
} �̆

n
:� {x̂n(x): x ∈ �̆ n}.

For k ≥ 2 and β > 0, we let
� k , β(x) :� |x1 |k + β |x2 |k , x ∈ �2. (13)

The generator of the state process Xn under a scheduling policy zn takes the form

�zn

n f (x) :�
2∑

i�1

λn
i ( f (x + ei) − f (x))+ (μn

11zn
11 + μ

n
12zn

12)( f (x − e1) − f (x))

+ μn
22zn

22( f (x − e2) − f (x))+
2∑

i�1

γn
i qn

i ( f (x − ei) − f (x)), x ∈ �2
+

(14)

for f ∈ �b(�2). We can write the generator �̂
zn

n of the diffusion-scaled state process X̂n using (14) and the
function x̂n in Definition 3.2 as

�̂
zn

n f (x̂)��zn

n f (x̂n(x)). (15)

We have the following proposition.
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Proposition 3.1. Let X̂n denote the diffusion-scaled state process under the scheduling policy žn in Definition 3.1, and

�̂
žn

n be its generator. For any k ≥ 2, there exists β0 > 0 such that

�̂
žn

n � k , β(x̂) ≤ C1 −C2� k , β(x̂), ∀ x̂ ∈ �n , ∀ n ≥ n0 , (16)

for some positive constants C1, C2, and n0 ∈ �, which depend on β ≥ β0 and k. Namely, X̂n under the scheduling policy
žn is geometrically ergodic. As a consequence, for any k > 0, there exists n0 ∈ � such that

sup
n≥n0

limsup
T→∞

1

T
Ɛžn

[∫ T

0

��X̂n(s)��k ds
]
<∞, (17)

and the same holds if we replace X̂n with Q̂n or Ŷn in (17). In other words, the diffusion-scaled cost criterion J(X̂n(0),Zn)
is finite for n ≥ n0.

Proof. See Appendix A. �

Remark 3.2. We remark that given (17) for X̂n , the same property may not hold for Q̂n or Ŷn . It always holds if
a scheduling policy satisfies the JWC condition (by the balance Equation (39)). Otherwise, that property needs
to be verified under the given scheduling policy. It can easily checked that if the property holds for any two
processes of X̂n , Q̂n , and Ŷn , then it also holds for the third.

4. Ergodic Control of the Limiting Diffusion
4.1. The Controlled Diffusion Limit
If the action space is �̆

n
, or equivalently, Zn ∈ �̆n

, the convergence in distribution of the diffusion-scaled processes
X̂n to the limiting diffusion X in (18) is shown in proposition 3 in Atar [7]. For the class of multiclass multipool
networks, the drift of the limiting diffusion is given implicitly via a linear map in proposition 3 of Atar [7]. For
the N-network, the drift can be explicitly expressed as we show below in (21). In Arapostathis and Pang [1],
a leaf elimination algorithm has been developed to provide an explicit expression for the drift of the limiting
diffusion of general multiclass multipool networks. In the case of the N-network, the limit process X is a
two-dimensional diffusion satisfying the Itô equation

dXt � b(Xt ,Ut)dt +ΣdWt , (18)

with initial condition X0 � x and the control Ut ∈ �, where

� :� {u � (uc , us) ∈ �2
+
×�2

+
: e · uc

� e · us
� 1}. (19)

In (18), the process W is a two-dimensional standard Wiener process independent of the initial condition X0 � x.
Following the leaf elimination algorithm for the N-network, the drift of the diffusion can be computed as

follows. Let

Ĝ[u](x) :�

(−(e · x)−us
1 x1 − (e · x)+uc

1 + (e · x)−us
1

0 x2 − (e · x)+uc
2

)
, u ∈ �. (20)

Then, the drift b: �2 ×�→�2 takes the form

b(x , u)�
(
−μ11Ĝ11[u](x) − μ12Ĝ12[u](x) − γi(e · x)+uc

i + l1

μ22Ĝ22[u](x) − γ2(e · x)+uc
2 + l2

)
,

which can also be written as (see lemma 4.3 and section 4.2 in Arapostathis and Pang [1])

b(x , u)�−B1(x − (e · x)+uc)+ (e · x)−B2us − (e · x)+Γuc
+ l , (21)

with
B1 :� diag{μ12 , μ22}, B2 :� diag{μ11 − μ12 , 0}, Γ :� diag{γ1 , γ2}.

Here, l :� (l1 , l2)T defined by

l1 :� λ̂1 − μ̂11z∗
11 − μ̂12z∗

12 , and l2 :� λ̂2 − μ̂22z∗
22. (22)
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The covariance matrix is given by Σ :� diag(√2λ1 ,
√

2λ2). The control process U lives in the compact set � in
(19), and Ut(ω) is jointly measurable in (t , ω) ∈ [0,∞) ×Ω. Moreover, it is nonanticipative for s < t, Wt − Ws is
independent of

�s :� the completion of σ{X0 ,Ur ,Wr , r ≤ s} relative to (�,� ).
Let � be the set of all such controls, referred to as admissible controls. We refer the reader to Section 6.2 on the
control parameterization. A mere comparison of (20) with (44) makes it clear how the control process U relates
to the control process Un for the nth system in Definition 6.1.

We remark that (18) can be regarded as a piecewise-linear controlled diffusion. Note that the matrix B1 is
an M-matrix. However, there is an additional term (e · x)−B2us in the drift, which differs from the class of
piecewise-linear controlled diffusions discussed in section 3.3 of Arapostathis et al. [3]. We refer to (18) as the
limiting diffusion, or the diffusion limit.

The associated limit processes Q, Y, and Z satisfy the following balance equations:

X1(t)� Q1(t)+Z11(t)+Z12(t), Y1(t)+Z11(t)� 0,

X2(t)� Q2(t)+Z22(t), Y2(t)+Z12(t)+Z22(t)� 0

with Qi(t) ≥ 0, Yj(t) ≥ 0, i , j � 1, 2. Note that these “balance” conditions imply that JWC always holds at the
diffusion limit, i.e.,

e ·Q(t)� (e · X(t))+ , e ·Y(t)� (e · X(t))− , ∀ t ≥ 0.

4.2. Control Problems for the Diffusion Limit
We state the three problems, which correspond to (P1)–(P3) in Section 3.1 for the controlled diffusion in (18).
Let r :�2 ×�→� be defined by

r(x , u)� r(x , (uc , us)) :� r̂((e · x)+uc , (e · x)−us),
with the same r̂ in (9); that is,

r(x , u)� [(e · x)+]m
2∑

i�1

ξi(uc
i )m

+ [(e · x)−]m
2∑

j�1

ζ j(us
j )m , m ≥ 1 (23)

for the given ξ � (ξ1 , ξ2)T and ζ � (ζ1 , ζ2)T in (9). Let the ergodic cost associated with the controlled diffusion X
and the running cost r be defined as

Jx ,U[r] :� limsup
T→∞

1

T
ƐU

x

[∫ T

0

r(Xt ,Ut)dt
]
, U ∈�.

(P1′) (unconstrained problem). The running cost function r(x , u) is as in (23). The ergodic control problem is
then defined as


∗(x)� inf
U∈�

Jx ,U[r]. (24)

(P2′) (constrained problem). The running cost function ro(x , u) is as in (23) with ζ ≡ 0. Also, define

rj(x , u) :� [(e · x)−us
j ]m̃ , j � 1, 2, (25)

with m̃ ≥ 1, and let δ � (δ1 ,δ2) be a positive vector. The ergodic control problem under idleness constraints is
defined as


∗c(x)� inf
U∈�

Jx ,U[ro],
subject to Jx ,U[rj] ≤ δ j , j � 1, 2.

(26)

(P3′) (fairness) The running costs ro, r1, and r2 are as in (P2′). Let θ be a positive constant, and 1 ≤ m̃ <m. The
ergodic control problem under idleness fairness is defined as


∗f (x)� inf
U∈�

Jx ,U[ro],
subject to Jx ,U[r1]�θJx ,U[r2].

(27)
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The last problem enforces fairness of idleness allocation among the two server pools. Also, note that penal-
izing only the queueing cost in (P1) raises a well-posedness question, which was resolved in corollaries 4.1–4.2
of Arapostathis and Pang [1].

The quantities 
∗(x), 
∗c(x), and 
∗f (x) are called the optimal values of the ergodic control problems (P1′)–(P3′),
respectively, for the controlled diffusion process X with initial state x. Note that as is shown in section 3 of
Arapostathis et al. [3] and sections 3 and 5.4 of Arapostathis and Pang [1], the optimal values 
∗(x), 
∗c(x), and

∗f (x) do not depend on x ∈ �2, and thus we remove their dependence on x in the statements below.

Recall that a control is called Markov if Ut � v(t ,Xt) for a measurable map v: �+ ×�2 → �, and it is called
stationary Markov if v does not depend on t, i.e., v: �2 →�. Let �SM denote the set of stationary Markov controls.
Recall also that a control v ∈ �SM is called stable if the controlled process is positive recurrent. We denote the
set of such controls by �SSM, and let μv denote the unique invariant probability measure on �2 for the diffusion
under the control v ∈�SSM. We also let � :� {μv : v ∈�SSM}, and � denote the set of ergodic occupation measures
corresponding to controls in �SSM; that is,

� :�

{
π ∈
(�2 ×�):

∫
�2×�

�u f (x)π(dx ,du)� 0 ∀ f ∈�∞
c (�2)

}
,

where �u f (x) is the controlled extended generator of the diffusion X,

�u f (x) :�
1

2

2∑
i , j�1

ai j∂i j f (x)+
2∑

i�1

bi(x , u)∂i f (x), u ∈ �,

with a :�ΣΣT and ∂i :� ∂/∂xi and ∂i j :� ∂2/∂xi∂xj . The restriction of the ergodic control problem with running
cost r to stable stationary Markov controls is equivalent to minimizing

π(r)�
∫
�2×�

r(x , u)π(dx ,du)

over all π ∈ �. If the infimum is attained in �, then we say that the ergodic control problem is well posed, and
we refer to any π̄ ∈ � that attains this infimum as an optimal ergodic occupation measure.

We define the class of admissible controls � :� {U � (Uc ,Us): Uc � vc(x)� (1, 0) ∀ x ∈ �2}, and we also let

β̄k :�
(γ1 ∨ μ11 ∨ μ12)k+1

μ22(γ1 ∧ μ11 ∧ μ12)k
. (28)

We have the following lemma.

Lemma 4.1. Let � k , β be as in (13). There exist positive constants C1 and C2 depending only on k and β ≥ β̄k such that

�U� k , β(x) ≤ C1 −C2� k , β(x), ∀U ∈�, ∀ x ∈ �2.

Proof. By (21), we have

b1(x ,U)�
{−γ1x1 + (μ12 − γ1)x2 + l1 if (e · x)+ ≥ 0

−(μ11Us
1 + μ12Us

2)x1 − (μ11 − μ12)Us
1 x2 + l1 otherwise,

b2(x ,U)�−μ22x2 + l2 , ∀ x ∈ �2.

Therefore

�U� k , β(x) ≤ −k(γ1 ∧ μ11 ∧ μ12)|x1 |k + k(γ1 ∨ μ11 ∨ μ12)|x2 | |x1 |k−1 − βkμ22 |x2 |k
+ kl1 |x1 |k−1

+ βkl2 |x2 |k−1
+ k(k − 1)(λ1 |x1 |k−2

+ λ2β |x2 |k−2). (29)

Let

α :�
γ1 ∧ μ11 ∧ μ12

γ1 ∨ μ11 ∨ μ12

.

Using Young’s inequality, we write

|x2 | |x1 |k−1 ≤ (k − 1)α
k/(k−1)

k
|x1 |k + α

−k

k
|x2 |k ≤ (k − 1)α

k
|x1 |k + α

−k

k
|x2 |k .
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Thus, by (29), we have

�U� k , β(x) ≤ −(γ1 ∧ μ11 ∧ μ12)|x1 |k − (kβμ22 − β̄k)|x2 |k + kl1 |x1 |k−1
+ βkl2 |x2 |k−1

+ k(k − 1)(λ1 |x1 |k−2
+ λ2β |x2 |k−2),

from which the result easily follows. �

As shown in corollary 4.2 of Arapostathis and Pang [1], for any k ≥ 1, there exists a constant C � C(k)> 0 such
that any solution Xt of (18) with X0 � x0 ∈ �2 satisfies

ƐU
x

[∫ T

0

|Xt |k dt
]
≤ C |x0 |k +CT +C ƐU

x

[∫ T

0

((e · Xt)+)k dt
]
, ∀U ∈�, ∀T > 0. (30)

This property plays a crucial role in solving (P1′)–(P3′).

4.3. Optimal Solutions to Problems (P1′)–(P3′)
The characterization of the optimal solutions to the ergodic control problems (P1′)–(P3′) has been thoroughly
studied in Arapostathis et al. [3] and Arapostathis and Pang [1]. We review some results that are used in the
sections, which follow to construct asymptotically optimal scheduling policies and prove asymptotic optimality.
We first introduce some notation. Let

Hr(x , p) :�min
u∈�

[b(x , u) · p + r(x , u)] for x , p ∈ �2. (31)

For δ� (δ1 ,δ2) ∈ �2
+
, let

� (δ) :� {π ∈ �: π(rj) ≤ δ j , j � 1, 2} � o(δ) :� {π ∈ �: π(rj) < δ j , j � 1, 2}.
For δ ∈ �2

+
, and λ� (λ1 ,λ2)T ∈ �2

+
, define the running cost gδ,λ by

gδ,λ(x , u) :� ro(x , u)+
2∑

j�1

λ j(rj(x , u) − δ j).

We say that the vector δ ∈ (0,∞)2 is feasible (or that the constraints in (26) are feasible) if there exists π′ ∈� o(δ)
such that π′(ro) <∞. The following is contained in theorem 5.2 of Arapostathis and Pang [1].

Theorem 4.1. For the ergodic control problem in (24), there exists a unique solution V ∈ �2(�2), satisfying V(0) � 0 to
the associated HJB equation:

min
u∈�

[�uV(x)+ r(x , u)]� 
∗.
Moreover, a stationary Markov control v ∈�SSM is optimal if and only if it satisfies

Hr(x ,∇V(x))� b(x , v(x)) · ∇V(x)+ r(x , v(x)) a.e. in �2.

The following is contained in lemmas 3.3–3.5, and theorems 3.1–3.2 of Arapostathis and Pang [1].

Theorem 4.2. Suppose that δ is feasible for the ergodic control problem under constraints in (26), i.e., there exists
π′ ∈� o(δ) such that π′(ro) <∞. Then, the following hold:

(a) There exists λ∗ ∈ �2
+

such that

inf
π∈� (δ)

π(ro)� inf
π∈�
π(gδ,λ∗ )� 
∗c.

(b) If π∗ ∈� (δ) attains the infimum of π �→π(ro) in � (δ), then π∗(ro)�π∗(gδ,λ∗ ), and

π∗(gδ,λ) ≤ π∗(gδ,λ∗ ) ≤ π(gδ,λ∗ ) ∀ (π,λ, ) ∈ � ×�2
+
.

(c) There exists Vc ∈�2(�2) satisfying

min
u∈�

[�uVc(x)+ gδ,λ∗ (x , u)]�π∗(gδ,λ∗ )� 
∗c , x ∈ �2.
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(d) A stationary Markov control vc ∈�SSM is optimal if and only if it satisfies

Hgδ,λ∗ (x ,∇Vc(x))� b(x , vc(x)) · ∇Vc(x)+ gδ,λ∗ (x , vc(x)) a.e. in �2 ,

where Hgδ,λ∗ is defined in (31) with r replaced by gδ,λ∗ .
(e) The map δ �→ infπ∈� (δ)π(ro) is continuous at any feasible point δ̂.

For uniqueness of the solutions Vc, see theorem 3.2 in Arapostathis and Pang [1].
We now turn to the constrained ergodic control problem in (27). Lemma 4.1 implies that assumption 5.1 in

Arapostathis and Pang [1] holds, and consequently, the solution of (P3′) follows by theorem 5.8 in the same
paper. However, the Lagrangian in (P3′) is not bounded below in �2, and since no details were provided in
Arapostathis and Pang [1] on the existence of solutions to the HJB equation, we provide a proof in Appendix B.

Theorem 4.3. For any θ > 0, the constraint in (27) is feasible. All the conclusions of Theorem 4.2 hold, provided that we
replace � (δ) and gδ,λ with

� f(θ) :� {π ∈ �: π(r1)�θπ(r2)}, (32)

and
hθ,λ(x , u) :� ro(x , u)+λ(r1(x , u) −θr2(x , u)), λ ∈ �,

respectively.

5. Asymptotic Optimality
In this section, we present the main results on asymptotic optimality. We show that the values of the three
ergodic control problems in the diffusion scale converge to the values of the corresponding ergodic control prob-
lems for the limiting diffusion, respectively. The proofs of the lower and upper bounds are given in Sections 8
and 9, respectively.

Recall the definitions of J, Jo, V̂n , V̂n
c , and V̂n

f in (P1)–(P3), and the definitions of 
∗, 
∗c, and 
∗f in (P1′)–(P3′).

Theorem 5.1 (Lower Bounds). Let X̂n(0)⇒ x ∈ �2 as n →∞. The following hold:
(i) For any sequence {Zn , n ∈ �} ⊂ �, the diffusion-scaled cost in (10) satisfies

lim inf
n→∞

J(X̂n(0), Ẑn) ≥ 
∗.
(ii) Suppose that under a sequence {Zn , n ∈ �} ⊂ �, the constraint in (11) is satisfied for all sufficiently large n ∈ �.

Then,
lim inf

n→∞
Jo(X̂n(0), Ẑn) ≥ 
∗c ,

and as a result, we have that lim infn→∞ V̂n
c (X̂n(0)) ≥ 
∗c.

(iii) There exists a positive constant Ĉ, such that if a sequence {Zn , n ∈ �} ⊂ � satisfies���� Jc, 1(X̂n(0),Zn)
Jc, 2(X̂n(0),Zn) −θ

���� ≤ ε (33)

for some ε ∈ (0, θ), and all sufficiently large n ∈ �, then

lim inf
n→∞

Jo(X̂n(0),Zn) ≥ 
∗f − Ĉε. (34)

The proof of the theorem that follows relies on the fact that r and also rj for i � 0, 1, 2, are convex functions
of u.

Theorem 5.2 (Upper Bounds). Let X̂n(0)⇒ x ∈ �2 as n →∞. The following hold:
(i) limsupn→∞ V̂n(X̂n(0)) ≤ 
∗.
(ii) For any ε > 0, there exists a sequence {Zn , n ∈�} ⊂ � such that the constraint in (11) is feasible for all sufficiently

large n, and
limsup

n→∞
Jo(X̂n(0), Ẑn) ≤ 
∗c + ε.

Consequently, we have that limsupn→∞ V̂n
c (X̂n(0)) ≤ 
∗c.

(iii) For any ε > 0, there exists a sequence {Zn , n ∈ �} ⊂ � such that (33) holds for all sufficiently large n ∈ �, and

limsup
n→∞

Jo(X̂n(0),Zn) ≤ 
∗f + ε.
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6. System Dynamics and an Equivalent Control Parameterization
6.1. Description of the System Dynamics
The processes Xn can be represented via rate 1 Poisson processes: for each i � 1, 2, and t ≥ 0, we have

Xn
1 (t) � Xn

1 (0)+An
1 (λn

1 t) − ∑
j�1, 2

Sn
1 j

(
μn

1 j

∫ t

0

Zn
1 j(s)ds

)
−Rn

1

(
γn

1

∫ t

0

Qn
1 (s)ds

)
,

Xn
2 (t) � Xn

2 (0)+An
2 (λn

2 t) − Sn
22

(
μn

22

∫ t

0

Zn
22(s)ds

)
−Rn

2

(
γn

2

∫ t

0

Qn
2 (s)ds

)
.

(35)

Recall that the processes An
i , Sn

i j , and Rn
i are all rate-1 Poisson processes and mutually independent, and inde-

pendent of the initial quantities Xn
i (0).

By (8) and (35), we can write X̂n
1 (t) and X̂n

2 (t) as

X̂n
1 (t)� X̂n

1 (0)+ ln
1 t − μn

11

∫ t

0

Ẑn
11(s)ds − μn

12

∫ t

0

Ẑn
12(s)ds − γn

1

∫ t

0

Q̂n
1 (s)ds

+ M̂n
A, 1(t) − M̂n

S, 11(t) − M̂n
S, 12(t) − M̂n

R, 1(t), (36)

X̂n
2 (t)� X̂n

2 (0)+ ln
2 t − μn

22

∫ t

0

Ẑn
22(s)ds − γn

2

∫ t

0

Q̂n
2 (s)ds + M̂n

A, 2(t) − M̂n
S, 22(t) − M̂n

R, 2(t), (37)

where for i � 1, 2,, and j � 1, 2,

M̂n
A, i(t) :�

1√
n
(An

i (λn
i t) − λn

i t),

M̂n
S, i j(t) :�

1√
n

(
Sn

i j

(
μn

i j

∫ t

0

Zn
ij(s)ds

)
− μn

i j

∫ t

0

Zn
ij(s)ds

)
,

M̂n
R, i(t) :�

1√
n

(
Rn

i

(
γn

i

∫ t

0

Qn
i (s)ds

)
− γn

i

∫ t

0

Qn
i (s)ds

)
,

and ln � (ln
1 , l

n
2 )T is defined by

ln
1 :�

1√
n
(λn

1 − μn
11z∗

11n − μn
12z∗

12n), ln
2 :�

1√
n
(λn

2 − μn
22z∗

22n),

with z∗
i j as in (4). It is easy to see that under the assumptions on the parameters in Assumption 2.1, ln → l

as n → ∞, where l is defined in (22). The processes M̂n
A, i :� {M̂n

A, i(t): t ≥ 0}, M̂n
S, i j :� {M̂n

S, i j(t): t ≥ 0}, and

M̂n
R, i :� {M̂n

R, i(t): t ≥ 0} are square integrable martingales w.r.t. the filtration Fn with quadratic variations

〈M̂n
A, i〉(t) :�

λn
i

n
t , 〈M̂n

S, i j〉(t) :�
μn

i j

n

∫ t

0

Zn
ij(s)ds , 〈M̂n

R, i〉(t) :�
γn

i

n

∫ t

0

Qn
i (s)ds .

By (2)–(4), (5), and (8), we obtain the balance equations

X̂n
1 (t)� Q̂n

1 (t)+ Ẑn
11(t)+ Ẑn

12(t), Ŷn
1 (t)+ Ẑn

11(t)� 0,

X̂n
2 (t)� Q̂n

2 (t)+ Ẑn
22(t), Ŷn

2 (t)+ Ẑn
12(t)+ Ẑn

22(t)� 0
(38)

for all t ≥ 0. The work conservation and JWC conditions translate to the following:

Q̂n
1 (t) ∧ Ŷn

j (t)� 0 ∀ j � 1, 2 and Q̂n
2 (t) ∧ Ŷn

2 (t)� 0, ∀ t ≥ 0,

and e · Q̂n(t) ∧ e · Ŷn(t)� 0, t ≥ 0, respectively.

6.2. Control Parameterization
By (38), we obtain

e · X̂n(t)� e · Q̂n(t) − e · Ŷn(t), (39)

and therefore the JWC condition is equivalent to

e · Q̂n(t)� (e · X̂n(t))+ e · Ŷn(t)� (e · X̂n(t))−. (40)
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Definition 6.1. We define the processes Uc , n :� (Uc , n
1 ,U

c , n
2 )T, and Us , n :� (Us , n

1 ,U
s , n
2 )T, t ≥ 0 by

Uc , n(t) :�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q̂n(t)

e · Q̂n(t) if e · Q̂n(t) > 0,

e1 � (1, 0) otherwise,

(41)

and

Us , n(t) :�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ŷn(t)

e · Ŷn(t) if e · Ŷn(t) > 0,

e2 � (0, 1) otherwise,

(42)

and let Un :� (Uc , n ,Us , n).
The process Uc , n

i (t) represents the proportion of the total queue length in the network at queue i at time t,
while Us , n

j (t) represents the proportion of the total idle servers in the network at station j at time t. The
control Uc , n(t) � e1 � (1, 0) means that server pool 2 gives strict static priority to class 2 jobs, while the control
Us , n(t)� e2 � (0, 1) means that class 1 jobs strictly prefer service in pool 1.

Given Zn ∈ �n , the process Un is uniquely determined via (38) and (41)–(42) and lives in the set � in (19). It
follows by (38) and (40) that, under JWC, we have that for each t ≥ 0,

Q̂n(t)� (e · X̂n(t))+Uc , n(t), Ŷn(t)� (e · X̂n(t))−Us , n(t). (43)

Also, by (43), under the JWC condition, we have

Ẑn
�

[−(e · X̂n)−Us , n
1 X̂n

1 − (e · X̂n)+Uc , n
1 + (e · X̂n)−Us , n

1

0 X̂n
2 − (e · X̂n)+Uc , n

2

]
. (44)

7. Convergence of Mean Empirical Measures
For the process Xn under a scheduling policy Zn , and with Un as in Definition 6.1, we define the mean empirical
measures

ΦZn

T (A× B) :�
1

T
ƐZn

[∫ T

0

�A×B(X̂n(t),Un(t))dt
]

(45)

for Borel sets A ⊂ �2 and B ⊂ �. Recall Definition 2.1. The lemma that follows provides a sufficient condition
under which the mean empirical measures ΦZn

T are tight and converge to an ergodic occupation measure cor-
responding to some stationary stable Markov control for the limiting diffusion control problem. The condition
simply requires a finite long-run average first-order moment of the diffusion-scaled state process under an EJWC
scheduling policy. This lemma is used in Section 8 to prove the lower bounds in Theorem 5.1.

Lemma 7.1. Suppose that under some sequence {Zn , n ∈ �} ⊂ �, we have

sup
n

limsup
T→∞

1

T
ƐZn

[∫ T

0

��X̂n(s)��ds
]
<∞. (46)

Then, any limit point π ∈
(�2 ×�) of ΦZn

T defined in (45) as (n ,T)→∞ satisfies π ∈ �.

Proof. Let f ∈�∞
c (�2), and define

� f (X̂n , s) :�Δ f (X̂n(s)) −
2∑

i�1

∂i f (X̂n(s−))ΔX̂n
i (s) −

1

2

2∑
i , i′�1

∂ii′ f (X̂n(s−))ΔX̂n
i (s)ΔX̂n

i′ (s). (47)

By applying Itô’s formula (see, e.g., theorem 26.7 in Kallenberg [21]) and using the definition of ΦZn

T in (45),
and X̂n in (36)–(37), we obtain

Ɛ[ f (X̂n(T))] − Ɛ[ f (X̂n(0))]
T

�

∫
�2×�

�n f (x̂ , u)ΦZn

T (dx̂ ,du)+ 1

T
Ɛ

[∑
s≤T
� f (X̂n , s)

]
(48)
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with Ɛ� ƐZn
. Define

�n
1, 1(x̂ , u) :�−μn

12(x̂1 − (e · x̂)+uc
1)+ (μn

11 − μn
12)(e · x̂)−us

1 − γn
1 (e · x̂)+uc

1 + ln
1 ,

�n
2, 1(x̂ , u) :�−μn

22(x̂2 − (e · x̂)+uc
2) − γn

2 (e · x̂)+uc
2 + ln

2 ,

�n
1, 2(x̂ , u) :�

1

2

(
λn

1

n
+ μn

11z∗
11 + μ

n
12z∗

12 +
1√
n
μn

12(x̂1 − (e · x̂)+uc
1)

+
1√
n
(μn

11 − μn
12)(e · x̂)−us

1 +
1√
n
γn

1 (e · x̂)+uc
1

)
,

�n
2, 2(x̂ , u) :�

1

2

(
λn

2

n
+ μn

22z∗
22 +

1√
n
μn

22(x̂2 − (e · x̂)+uc
2)+ 1√

n
γn

2 (e · x̂)+uc
2

)
.

(49)

Since Zn ∈ �̆n
, the operator �n : �∞

c (
√

nB̆)→�∞
c (
√

nB̆ ×�) takes the form

�n f (x̂ , u) :�
2∑

i�1

(�n
i , 1(x̂ , u)∂i f (x̂)+�n

i , 2(x̂ , u)∂ii f (x̂)).

Let

‖ f ‖�3 :� sup
x∈�2

(
| f (x)| + ∑

i�1, 2

|∂i f (x)| +
2∑

i , j�1

|∂i j f (x)| +
2∑

i , j, k�1

|∂i jk f (x)|
)
.

By Taylor’s formula, using also the fact that the jump size is 1/√n, we obtain��� f (X̂n , s)�� ≤ κ‖ f ‖�3

2∑
i , j, k�1

��ΔX̂n
i (s)

����ΔX̂n
j (s)

����ΔX̂n
k (s)

�� ≤ κ′‖ f ‖�3√
n

2∑
i , i′�1

��ΔX̂n
i (s)ΔX̂n

i′ (s)
��,

for some constants κ and κ′ that do not depend on n ∈ �. Let

	̄
n
1 (t) :�

λn
1

n
+

1

n
μn

11Zn
11(t)+ 1

n
μn

12Zn
12(t)+ 1

n
γn

1 Qn
1 (t),

	̄
n
2 (t) :�

λn
2

n
+

1

n
μn

22Zn
22(t)+ 1

n
γn

2 Qn
2 (t)

(50)

for t ≥ 0. Since independent Poisson processes have no simultaneous jumps w.p.1., we have

1

T
Ɛ

[∫ T

0

2∑
i , i′�1

��ΔX̂n
i (s)ΔX̂n

i′ (s)
��ds

]
≤ 1

T
Ɛ

����∫ T

0

(	̄ n
1 (s)+ 	̄ n

2 (s))ds
����,

and that the right-hand side is uniformly bounded over n ∈ �, and T > 0 by (46). Thus we have

1

T
exp

[∑
s≤T

��� f (X̂n , s)��] ≤ κ′‖ f ‖�3

T
√

n
Ɛ

[∫ T

0

2∑
i , i′�1

��ΔX̂n
i (s)ΔX̂n

i′ (s)
��ds

]
→ 0

as (n ,T)→∞. Therefore, taking limits in (48), we obtain

limsup
(n ,T)→∞

∫
�2×�

�n f (x̂ , u)ΦZn

T (dx̂ ,du)� 0.

Note that for i � 1, 2, �n
i , 1 tends to the drift of the limiting diffusion bi , while �n

i , 2 tends to λi as n → ∞,
uniformly over compact sets in �2 ×�.

Let (nk ,Tk) be any sequence along which ΦZn

T converges to some π ∈
(�2 ×�). Let

�u f (x)�
2∑

i�1

[λi∂ii f (x)+ bi(x , u)∂i f (x)].

We have ∫
�2×�

�u f (x)π(dx ,du) −
∫
�2×�

�n f (x̂ , u)ΦZn

T (dx̂ ,du)�
∫
�2×�

�u f (x)(π(dx ,du) −ΦZn

T (dx ,du))

+

∫
�2×�

(�u f (x̂) −�n f (x̂ , u))ΦZn

T (dx̂ ,du). (51)
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The first term on the right-hand side of (51) converges to 0 as n →∞ by the convergence of ΦZn

T to π, while the
second term also converges to 0 by the uniform convergence of �u f to �n f on compact subsets of �2 ×� and
the tightness of ΦZn

T . Thus we obtain ∫
�2×�

�u f (x)π(dx ,du)� 0.

This completes the proof. �

Before stating the second lemma, we first introduce a canonical construction of scheduling policies from the
optimal control v ∈�SSM for the diffusion control problems. Recall the notation in Definition 3.2.

Definition 7.1. Let �: {x ∈ �2
+
: e · x ∈ �}→�2

+
be a measurable map defined by

�(x) :� (�x1� , e · x − �x1�), x ∈ �2.

For any precise control v ∈�SSM, define the maps qn[v] and yn[v] by

qn[v](x̂) :� �((e · (√nx̂ + nx∗))+vc(x̂)) yn[v](x̂) :� �((e · (√nx̂ + nx∗))−vs(x̂))
for x̂ ∈ �n . We also define the map (Markov scheduling policy) zn[v] on �̆

n
by

zn[v](x̂) :�

[
Nn

1 − yn
1 [v](x̂) x1 − qn

1 [v](x̂) − (Nn
1 − yn

1 [v](x̂))
0 x2 − qn

2 [v](x̂)
]
, x̂ ∈ �̆n

.

Compare this to (7).

Corollary 7.1. For any precise control v ∈�SSM, we have

e · qn[v](x̂n(x)) ∧ e · yn[v](x̂n(x))� 0, and zn[v](x̂n(x)) ∈�n(x)
for all x ∈ �̆ n , i.e., the JWC condition is satisfied for x ∈ �̆ n .

Proof. This follows from Lemma 2.1 and the definition of the maps qn[v], yn[v], and zn[v]. �
The lemma that follows asserts that, if a sequence of EJWC scheduling policies is constructed using any

precise stationary stable Markov control in a way that the long-run average moment condition in Lemma 7.1
is satisfied, then any limit of the mean empirical measures of the diffusion-scaled processes agrees with the
ergodic occupation measure of the limiting diffusion corresponding to that control. This lemma is used in the
proof of upper bounds in Theorem 5.2. Recall Definition 2.1.

Lemma 7.2. Let v ∈ �SSM be a continuous precise control, and {Zn : n ∈ �} be any sequence of admissible scheduling
policies such that each Zn agrees with the Markov scheduling policy zn[v] given in Definition 7.1 on

√
nB̆, i.e., Zn(t) �

zn[v](X̂n(t)) whenever X̂n(t) ∈ √
nB̆. For x̂ ∈ √

nB̆ ∩�n , we define

uc , n[v](x̂) :�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qn[v](x̂)

e · qn[v](x̂) if e · qn[v](x̂) > 0,

vc(x̂) otherwise,

and

us , n[v](x̂) :�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yn[v](x̂)

e · yn[v](x̂) if e · yn[v](x̂) > 0,

vs(x̂) otherwise.

For the process Xn under the scheduling policy Zn , define the mean empirical measures

Φ̃Zn

T (A× B) :�
1

T
ƐZn

[∫ T

0

�A×B(X̂n(t), un[v](X̂n(t)))dt
]

(52)

for Borel sets A ⊂ √
nB̆, and B ⊂ �. Suppose that (46) holds under this sequence {Zn}. Then, the ergodic occupation

measure πv of the controlled diffusion in (18) corresponding to v is the unique limit point in 
(�d × �) of Φ̃Zn

T as
(n ,T)→∞.
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Proof. It follows by Corollary 7.1 that {Zn} ∈ �. Also, by the continuity of v, we have

sup
x̂∈�n∩K

|un[v](x̂) − v(x̂)| → 0 as n →∞ (53)

for any compact set K ⊂ �2. Also, for any f ∈�∞
c (�2 ×�), it holds that∫

�2×�
f (x̂ , u) Φ̃Zn

T (dx̂ ,du)� 1

T
ƐZn

[∫ T

0

f (X̂n(t), un[v](X̂n(t)))dt
]
,

for all sufficiently large n such that the support of f is contained in
√

nB̆. Therefore, if πn is any limit point of
Φ̃Zn

T as T →∞, and we disintegrate πn as

πn(dx̂ ,du)� νn(dx̂)ξn(du | x̂), (54)

Then, we have ∫
�2×�

�n f (x̂ , u)πn(dx̂ ,du)�
∫
�2

�n f (x̂ , un[v](x̂)) νn(dx̂).

By Lemma 7.1, the sequence {νn} is tight. Let {n} ∈ � be any increasing sequence such that νn → ν ∈
(�2). To
simplify the notation, let �̃

n f (x̂) :��n f (x̂ , un[v](x̂)). We have∫
�2

�̃
n f dνn −

∫
�2

�v f dν �

∫
�2

(�̃n f −�v f )dνn
+

∫
�2

�v f (dνn −dν). (55)

It follows by (53) that �̃n f −�v f → 0, uniformly as n →∞, which implies that the first term on the right-hand
side of (55) converges to 0. The second term does the same by the convergence of νn to ν. By Lemma 7.1, we
have

∫
�2 �̃

n f dνn → 0 as n →∞. Therefore we obtain∫
�2

�v f (x)ν(dx)� 0,

and this means that ν is an invariant probability measure for the diffusion associated with the control v. Next,
note that, the Markov control ξn in (54) agrees with un[v](x̂) when x̂ ∈ √

nB̆ ∩ �n by definition. In other words,
ξn(du | x̂) � δun [v](x̂)(u), where δ denotes the Dirac measure. It then follows by (53) that ξn converges to v as
n →∞ in the topology of Markov controls (Arapostathis et al. [2, section 2.4]). The ergodic occupation measure
πv ∈ 
(�2 ×�) is given by πv(dx ,du) :� ν(dx ,du)δv(x)(u). With g ∈ �c(�2 ×�), i.e., a continuous function with
compact support, we write����∫

�2×�
g(x , u)(πv(dx ,du) −πn(dx ,du))

���� ≤
����∫
�

(∫
�2

g(x , u)(ν(dx) − νn(dx))
)
ξn(du | x)

����
+

����∫
�

(∫
�2

g(x , u)ν(dx)
)
(ξn(du | x) − δv(x)(u))

����. (56)

The first term on the right-hand side of (56) converges to 0 as n →∞ by the convergence of νn → ν in 
(�2).
Since ν has a continuous density, the second term also converges to 0 as n → ∞ by Arapostathis et al. [2,
lemma 2.4.1]. Therefore (56) shows that πn →πv in 
(�2 ×�), and this completes the proof. �

8. Proof of the Lower Bounds
In this section, we prove the lower bounds in Theorem 5.1. The following lemma, which applies to the diffusion-
scaled process, is analogous to lemma 3.1 (c) for the diffusion limit in Arapostathis and Pang [1].

Lemma 8.1. There exist constants C1 and C2 independent of n such that

limsup
T→∞

1

T
ƐZn

[∫ T

0

��X̂n(s)��m ds
]
≤ C1 +C2 Jo(X̂n(0), Ẑn), ∀ n ∈ � (57)

for any sequence {Zn ∈ �n , n ∈ �}, where m ≥ 1 is as in (9).
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Proof. Let � (x) :� � 1(x1) + β� 2(x2), x ∈ �2, where β is a positive constant to be determined later, and � i(x) �
|xi |m+1/√1+ |xi |2 for m ≥ 1. By applying Itô’s formula on � with Ɛ� ƐZn

, we obtain from (36) that, for t ≥ 0,

Ɛ[� (X̂n(t))]� Ɛ[� (X̂n(0))]+ Ɛ
[∫ t

0

 n� (X̂n(s), Ẑn(s))ds
]
+ Ɛ

[∑
s≤t
�� (X̂n , s)

]
, (58)

where �� (X̂n , s) is defined as in (47),

 n� (x̂ , ẑ) :�
2∑

i�1

( n
i , 1(x̂ , ẑ)∂i� (x̂)+ n

i , 2(x̂ , ẑ)∂ii� (x̂)),

and

 n
1, 1(x̂ , ẑ) :� ln

1 − μn
11 ẑ11 − μn

12 ẑ12 − γn
1 (x̂1 − ẑ11 − ẑ12),

 n
2, 1(x̂ , ẑ) :� ln

2 − μn
22 ẑ22 − γn

2 (x̂2 − ẑ22),
 n

1, 2(x̂ , ẑ) :�
1

2

[
λn

1

n
+ (μn

11z∗
11 + μ

n
12z∗

12)+ 1√
n
(μn

11 ẑ11 + μ
n
12 ẑ12)+

γn
1√
n
(x̂1 − ẑ11 − ẑ12)

]
,

 n
2, 2(x̂ , ẑ) :�

1

2

[
λn

2

n
+ μn

22z∗
22 +

1√
n
μn

22 ẑ22 +
γn

2√
n
(x̂2 − ẑ22)

]
,

for x̂ ∈ �n , and ẑi j :� (1/√n)(zi j − nz∗
i j) for zi j ∈�+, and z∗ defined in (4). We also use the nonnegative variables q̂i

and ŷi , i � 1, 2, which are defined as functions of x̂ and ẑ via the balance Equation (38), keeping in mind that
the work conservation condition holds for these.

Define

 ̄1, 1(x , z) :� l1 − μ11z11 − μ12z12 − γ1(x1 − z11 − z12),
 ̄2, 1(x , z) :� l2 − μ22z22 − γ2(x2 − z22)

for x ∈ �2 and z ∈ �2×2.
By the convergence of the parameters in Assumption 2.1, we have that, for i � 1, 2,�� ̄i , 1(x̂ , ẑ) − n

i , 1(x̂ , ẑ)
�� ≤ κ1(n)(‖ x̂‖ + ‖ ẑ‖) (59)

for some constant κ1(n)↘ 0 as n →∞.
Let ξ̂ :� (e · q̂) ∧ (e · ŷ). We claim that if ξ̂n > 0, then q̂1 � 0, ŷ2 � 0 by the work conservation condition. Indeed,

since q̂i ∧ ŷ2 � 0 for i � 1, 2, then ξ̂n > 0 implies that ŷ2 � 0, which, in turn, implies that ŷ1 > 0. This, of course,
implies that q̂1 � 0.

If ξ̂ � ŷ1, then by the balance equations, we have ẑ11 �−ξ̂, ẑ12 � x̂1 + ξ̂, and ẑ22 � x̂2 − q̂2. On the other hand, if
ξ̂ � q̂2, then we obtain ẑ11 � x̂1 + x̂2 − ξ̂, ẑ12 � ξ̂ − x̂2, and ẑ22 � x̂2 − ξ̂. Hence, when ξ̂ > 0, we have

 ̄1, 1(x̂ , ẑ) � −μ12 x̂1 + (μ11 − μ12) ξ̂ + l1

 ̄2, 1(x̂ , ẑ) � −μ22(x̂2 − q̂2) − γ2 q̂2 + l2

if ŷ1 < q̂2 ,

 ̄1, 1(x̂ , ẑ) � −μ11 x̂1 + (μ11 − μ12) (ξ̂ − x̂2)+ l1

 ̄2, 1(x̂ , ẑ) � −μ22(x̂2 − ξ̂) − γ2ξ̂ + l2

if ŷ1 ≥ q̂2 ,

(60)

and when ξ̂ � 0, we can use the parameterization q̂ � (e · x̂)+uc and ŷ � (e · x̂)−us and (49) to obtain

 ̄1, 1(x̂ , ẑ) � −μ12 x̂1 + (μ12 − γ1) q̂1 + l1

 ̄2, 1(x̂ , ẑ) � −μ22(x̂2 − q̂2) − γ2 q̂2 + l2

if (e · x̂)+ > 0,

 ̄1, 1(x̂ , ẑ) � −(μ12(1− us
1)+ μ11us

1)x̂1 − (μ11 − μ12) x̂2 us
1 + l1

 ̄2, 1(x̂ , ẑ) � −μ22 x̂2 + l2

if (e · x̂)− ≥ 0.

(61)

It follows by the above analysis that

|zi j | ∈ �(|x | + |q |), i , j ∈ {1, 2}. (62)
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Hence we have
 n

i , 2(x̂ , ẑ) ∈ �(1+ n−1/2 |x̂ |). (63)

Following the steps in the proof of Lemma 4.1, and also using the fact that ξ̂ ≤ e · q̂ and Young’s inequality, it
follows by (60)–(61) that we can choose β > 0 and positive constants c1 and c2 such that

2∑
i�1

 ̄n
i , 1(x̂ , ẑ)∂i� (x̂) ≤ −c1� (x̂)+ c2(1+ | q̂ |m). (64)

Thus, by (59), (63), and (64), we obtain

 n� (x̂ , ẑ) ≤ −c′1� (x̂)+ c′2(1+ | q̂ |m) (65)

for some positive constants c′1 and c′2.
For the jumps in (58), we first note that by the definition of � i , since there exists a positive constant c3

such that
sup

|x′i−xi |≤1

��� ′′
i (x′

i)
�� ≤ c3(1+ |xi |m−2), ∀ xi ∈ �.

Since also the jump size is of order 1/√n, then by Taylor’s expansion, we obtain

Δ� i(X̂n(s)) −� ′
i(X̂n(s−)) ·ΔX̂n

i (s) ≤
1

2
sup

|x′i−X̂n
i (s−)|≤1

|� ′′
i (x′

i)|(ΔX̂n
i (s))2 ,

for i � 1, 2. Recall the definitions of 	̄
n
1 and 	̄

n
2 in (50). Thus, for i � 1, 2, using also (62), we obtain

Ɛ

[∑
s≤t
�� i(X̂n , s)

]
≤ Ɛ

[∑
s≤t

c3(1+ |X̂n
i (s−)|m−1)(ΔX̂n

i (s))2
]
≤ c3 Ɛ

[∫ t

0

(1+ |X̂n
i (s)|m−1)	̄ n

i (s)ds
]

≤ c4 Ɛ

[∫ t

0

(1+ |X̂n
i (s)|m−1)(1+ n−1/2(|X̂n(s)| + |Q̂n(s)|))ds

]
(66)

for some positive constant c4. Therefore, by (58), (65), and (66), we can choose positive constants c5 and c6

such that

Ɛ[� (X̂n(t))] ≤ Ɛ[� (X̂n(0))]+ c6t − c5 Ɛ

[∫ t

0

|X̂n(s)|m ds
]
+ c6 Ɛ

[∫ t

0

|Q̂n |m ds
]
.

Dividing by t and taking limits as t →∞, establishes (57). �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let Zn ∈�n , n ∈�, be an arbitrary sequence of scheduling policies in �, and let Φn :�ΦZn

as defined in (45). Without loss of generality, we assume that along some increasing sequence {nk} ⊂�, we have
supk J(X̂nk (0),Znk ) < ∞; Otherwise, there is nothing to prove. By Lemmas 7.1 and 8.1, the sequence of mean
empirical measures {Φnk

T : T > 0, k ≥ 1} is tight and any subsequential limit as (nk ,T) → ∞ is in �. Select any
subsequence {Tk , n′

k} ⊂ �+ × {nk} with Tk →∞ as k →∞ and such that

J(X̂n′
k (0),Zn′

k ) ≤ 1

k
+ lim inf

l→∞
J(X̂nl (0),Znl ), and

∫
�2×�

r(x , u)Φn′
k

Tk
(dx ,du) ≤ J(X̂n′

k (0),Zn′
k )+ 1

k

for all k ∈�, and extract any further subsequence, also denoted as {Tk , n′
k}, along which Φ

n′
k

Tk
→ π̂ ∈ �. Since r is

nonnegative, taking limits as k →∞, we obtain

lim inf
k→∞

J(X̂nk (0),Znk ) ≥ π̂(r) ≥ 
∗.

This proves part (i).
We next show the lower bound (ii) for the constrained problem. Repeating the same argument as in part (i),

suppose that supk Jo(X̂nk (0),Znk ) <∞ along some increasing sequence {nk} ⊂ �. As in the proof of part (i), let
π̂ ∈
(�2 ×�) be a limit of Φn

T as (n ,T)→∞. Recall the definition of rj in (25). Since rj is bounded below, taking
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limits, we obtain π̂(rj) ≤ δ j , j � 1, 2. Therefore π̂ ∈� (δ), and by optimality, we must have π̂(ro) ≥ 
∗c. Similarly,
we obtain,

lim inf
k→∞

Jo(X̂nk (0),Znk ) ≥ π̂(ro) ≥ 
∗c.
This proves part (ii).

The result in part (iii) for the fairness problem follows along the same lines as part (ii). With π̂ as in part (ii),
we have

lim inf
k→∞

Jo(X̂nk (0),Znk ) ≥ π̂(ro). (67)

The uniform integrability of
1

T
ƐZn

[∫ T

0

(Ŷn
j (s))m̃ ds

]
, j � 1, 2,

which follows by (30) and the assumption that m̃ < m, together with (33), imply that

(θ− ε)π̂(r2) ≤ π̂(r1) ≤ (θ+ ε)π̂(r2).
Therefore π̂(r1)� θ̃(ε)π̂(r2) for some θ̃(ε) satisfying |θ̃(ε) −θ| ≤ ε. Let


̃ :� inf
π∈� f(θ̃(ε))

π(ro),

and λ∗ denote the Lagrange multiplier for the problem in Theorem 4.3. It is clear that π̂(ro) ≥ 
̃. Writing π̂(r1)�
θ̃(ε)π̂(r2) as π̂(r1) −θπ̂(r2)� (θ̃(ε) −θ)π̂(r2), we obtain by Luenberger [22, theorem 1, p. 222] that


∗f − 
̃ ≤
��λ∗(θ̃(ε) −θ)π̂(r2)

�� ≤ ε ��λ∗π̂(r2)
��. (68)

Without loss of generality, we may assume that π̂(ro) ≤ 
∗f ; otherwise, (34) trivially follows by (67). By (30) and
Jensen’s inequality, we have

π̂(r2) ≤ κ̂(1+π(ro)m̃/m) ≤ κ̂(1+ (
∗f )m̃/m) (69)

for some constant κ̂. Therefore combining (68)–(69), we obtain

π̂(ro) ≥ 
̃ ≥ 
∗f − ε |λ∗ |κ̂(1+ (
∗f )m̃/m),
and (34) follows by this estimate and (67). This completes the proof. �

9. Proof of the Upper Bounds
In this section, we prove the upper bounds in Theorem 5.2. We need the following lemma.

Lemma 9.1. Let � k , β be as in (13). Suppose v ∈ �SSM is such that for some positive constants C1, C2, β, and k ≥ 2, it
holds that

�v� k , β(x) ≤ C1 −C2� k , β(x), ∀ x ∈ �2.

Let X̂n denote the diffusion-scaled state process under the scheduling policy zn[v] in Definition 7.1, and �̂n be its generator.
Then, there exists n0 ∈ � such that

�̂n� k , β(x̂) ≤ C′
1 −C′

2� k , β(x̂), ∀ x̂ ∈ �̆n

for some positive constants C′
1 and C′

2, and for all n ≥ n0.

Proof. See Appendix A. �

We continue with the proof of Theorem 5.2.

Proof of Theorem 5.2. We first prove part (i) for the unconstrained problem. Recall the definition in (13). Let
k � m+1. By theorems 5.5 in Arapostathis and Pang [1] and Lemma 4.1, there exists a continuous precise control
vε ∈�SSM, which is ε-optimal for (P1′) and satisfies

�vε� k , β(x),≤ c1 − c2� k , β(x) ∀ x ∈ �2 (70)

for any β ≥ β̄ defined in (28), and for some positive constants c1, c2, which depend on β. Recall Definition 2.1.
The scheduling policy that we apply to the nth system is as follows: Inside the ball nB̆, we apply the Markov
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policy in Definition 7.1 zn[vε], while outside this ball, we apply the Markov policy žn in Definition 3.1. Let Zn

denote this concatenated policy. By Proposition 3.1 and Lemma 9.1, there exist positive constants C1, C2, β, and
n0 ∈ � such that

�̂
Zn

n � k , β(x̂) ≤ C1 −C2� k , β(x̂), ∀ x̂ ∈ �n , ∀ n ≥ n0. (71)

Let Φ̃n
T ≡ Φ̃Zn

T as defined in (52). We define

q̂(x̂) :� (x̂1 −Zn
11(x̂) −Zn

12(x̂), x̂2 −Zn
22(x̂))

ŷ(x̂) :� (−Zn
11(x̂) −Zn

12(x̂),−Zn
22(x̂)).

By (71), we have supn≥n0
J(X̂n(0),Zn)<∞, and by Birkhoff’s ergodic theorem for each n ≥ n0, there exists Tn ∈�+

such that ����∫
�2×�

r̂((e · q̂(x̂))+uc , (e · ŷ(x̂))+ us)Φ̃n
T(dx̂ ,du) − J(X̂n(0),Zn)

���� ≤ 1

n
(72)

for all T ≥ Tn and n ≥ n0. By (71), the sequence {Tn} can be selected so as to also satisfy

sup
n≥n0

sup
T≥Tn

∫
�2×�

� k , β(x̂)Φ̃n
T(dx̂ ,du) <∞. (73)

Without loss of generality, we assume that Tn →∞. Hence, by uniform integrability, which is implied by (73),
together with (72) for any η > 0, there exists a ball Bη such that����∫

Bη×�
r̂((e · q̂(x̂))+uc , (e · ŷ(x̂))+us)Φ̃n

T(dx̂ ,du) − J(X̂n(0),Zn)
���� ≤ 1

n
+ η (74)

for all T ≥ Tn and n ≥ n0.
By JWC on {x̂ ∈ √

nB̆}, we have (e · q̂(x̂))+ � (e · x̂)+ and (e · ŷ(x̂))+ � (e · x̂)− for all x̂ ∈ Bη, and for all large

enough n by Corollary 7.1. On the other hand, Φ̃n
T converges as (n ,T)→∞, to πvε in 
(�2 ×�) by Lemma 7.2.

Therefore ∫
Bη×�

r̂((e · q̂(x̂))+uc , (e · ŷ(x̂))+ us)Φ̃n
Tn
(dx̂ ,du) −−−→

n→∞

∫
Bη×�

r(x , u)πvε (dx ,du). (75)

By (74)–(75), we obtain
limsup

n→∞
J(X̂n(0),Zn) ≤ 
∗ + ε+ η.

Since η and ε are arbitrary, this completes the proof of part (i).
We next show the upper bound for the constrained problem. Let ε > 0 be given. By Theorem 5.7 in

Arapostathis and Pang [1] and Lemma 4.1, there exists a continuous precise control vε ∈ �SSM and constants
δεj < δ j , j � 1, 2, satisfying πvε (ro) ≤ 
∗c + ε and πvε (rj) ≤ δεj , j � 1, 2, and (70) holds. Let Zn be the Markov policy
constructed in part (i) by concatenating zn[vε] and žn . Following the proof of part (i) and choosing η small
enough, i.e., η < ε∧ 1

2
min(δ j − δεj , j � 1, 2), we obtain

limsup
n→∞

Jo(X̂n(0),Zn) ≤ 
∗c + 2ε,

limsup
n→∞

Jc, j(X̂n(0),Zn) ≤ 1

2
(δ j + δ

ε
j ), j � 1, 2.

This completes the proof of part (ii).
The proof of the upper bound for the fairness problem is analogous to part (ii). By theorem 5.7 and remark 5.1

in Arapostathis and Pang [1], for any ε > 0, there exists a continuous precise control vε ∈�SSM for (P3′) satisfying

πvε (ro) ≤ 
∗f + ε, and πvε (r1)�θπvε (r2). (76)

Since {πvε , ε ∈ (0, 1)} is tight, and (e · x)− is strictly positive on an open subset of B1, it follows by the Harnack
inequality for the density of the invariant probability measure of the diffusion that

inf
ε∈(0, 1)

πvε (r2) > 0. (77)
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Arguing as in part (ii), we obtain

limsup
n→∞

Jo(X̂n(0),Zn) ≤ 
∗f + ε,
lim
n→∞

Jc, j(X̂n(0),Zn)�πvε (rj), j � 1, 2.
(78)

The result then follows by (76)–(78), thus completing the proof. �

10. Conclusion
We have proved asymptotic optimality for the N-network in the Halfin–Whitt regime. The analysis results in a
good understanding of the stability of the diffusion-scaled state processes under certain scheduling policies and
the convergence properties of the associated mean empirical measures. The SDP scheduling policy constructed
not only gives us a better understanding of the N-network, but also plays a key role in proving the upper
bound. In addition, we have identified some important properties of the diffusion-scaled state processes that
concern existence of moments, and the convergence of the mean empirical measures. The methodology we
followed should help to establish asymptotic optimality for more general multiclass multipool networks in the
Halfin–Whitt regime. If this is done, it will nicely complement the results on ergodic control of the limiting
controlled diffusion in Arapostathis and Pang [1].
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Appendix A. Proofs of Proposition 3.1 and Lemma 9.1
In these proofs, we use the fact that the quantities

λn
1 − μn

11Nn
1 − μn

12Nn
12 , nx∗

1 − Nn
1 − Nn

22 , λn
2 − μn

22Nn
22 , nx∗

2 − Nn
22 , and λn

2 − μn
22nx∗

2

are in �(√n). This is straightforward to verify using Assumption 2.1.

Proof of Proposition 3.1. Simplifying the notation in Definition 3.1, we let zn � žn , and analogously, for y̌n and q̌n . Fix k > 2.
Under the scheduling policy in Definition 3.1, the resulting process Xn is Markov with generator

�žn

n f (x) :�
2∑

i�1

λn
i ( f (x + ei) − f (x)),+(μn

11zn
11 + μ

n
12zn

12)( f (x − e1) − f (x))

+ μn
22zn

22( f (x − e2) − f (x))+
2∑

i�1

γn
i qn

i ( f (x − ei) − f (x)). x ∈ �2
+
, (A.1)

Recall the definition of x̂ in (12). Define

fn(x) :� |x1 − nx∗
1 |k + β |x2 − nx∗

2 |k � nk/2(|x̂1 |k + β |x̂2 |k),
for some positive constant β, to be determined later. If we show that

�žn

n fn(x) ≤ C1nk/2 −C2 fn(x), x ∈ �2
+
, (A.2)

for some positive constants C1 and C2, and for all n ≥ n0, then by using (15), we obtain (16).
Given (A.2), we easily obtain that

Ɛ[ fn(Xn(T))] − fn(Xn(0))� Ɛ
[∫ T

0

�n fn(Xn(s))ds
]
≤ C1nk/2T −C2 Ɛ

[∫ T

0

fn(Xn(s))ds
]
,

which implies that
1

T
Ɛ

[∫ T

0

� k , β(X̂n(s))ds
]
≤ C1 +

1

T
� k , β(X̂n(0)) − 1

T
Ɛ[� k , β(X̂n(T))].

By letting T →∞, this implies that (17) holds.
We now focus on proving (A.2). Note that

(a ± 1)k − ak
� kak−1

+�(ak−2) a ∈ �.
Recall x̃ in (12). Then, by (A.1), we have

�žn

n fn(x)� λn
1 (kx̃1 |x̃1 |k−2

+�(|x̃1 |k−2))+ βλn
2 (kx̃2 |x̃2 |k−2

+�(|x̃2 |k−2))



Arapostathis and Pang: Infinite-Horizon Average Optimality of the N-Network in the Halfin-Whitt Regime
862 Mathematics of Operations Research, 2018, vol. 43, no. 3, pp. 838–866, © 2018 INFORMS

+ (μn
11zn

11 + μ
n
12zn

12)(−kx̃1 |x̃1 |k−2
+�(|x̃1 |k−2))+ βμn

22zn
22(−kx̃2 |x̃2 |k−2

+�(|x̃2 |k−2))
+ γn

1 qn
1 (−kx̃1 |x̃1 |k−2

+�(|x̃1 |k−2))+ βγn
2 qn

2 (−kx̃2 |x̃2 |k−2
+�(|x̃2 |k−2)).

Let

F(1)
n (x) :� (λn

1 + γ
n
1 qn

1 )�(|x̃1 |k−2)+ β(λn
2 + γ

n
2 qn

2 )�(|x̃2 |k−2)+ (μn
11zn

11 + μ
n
12zn

12)�(|x̃1 |k−2)+ βμn
22zn

22�(|x̃2 |k−2), (A.3)

and

F(2)
n (x) :� kx̃1 |x̃1 |k−2(λn

1 − γn
1 qn

1 )+ βkx̃2 |x̃2 |k−2(λn
2 − γn

2 qn
2 ) − kx̃1 |x̃1 |k−2(μn

11zn
11 + μ

n
12zn

12) − βkx̃2 |x̃2 |k−2μn
22zn

22. (A.4)

Then,
�n fn(x)� F(1)

n (x)+ F(2)
n (x).

We first study F(1)
n (x). It is easy to observe that for each i � 1, 2 and j � 1, 2,

zn
i j ≤ xi and qn

i ≤ xi . (A.5)

Thus we obtain

F(1)
n (x) ≤ (λn

1 + γ
n
1 x1)�(|x̃1 |k−2)+ β(λn

2 + γ
n
2 x2)�(|x̃2 |k−2)

+ (μn
11 + μ

n
12)x1�(|x̃1 |k−2)+ βμn

22x2�(|x̃2 |k−2)
� (λn

1 + γ
n
1 (nx∗

1 + x̃1))�(|x̃1 |k−2)+ β(λn
2 + γ

n
2 (nx∗

2 + x̃2))�(|x̃2 |k−2)
+ (μn

11 + μ
n
12)(nx∗

1 + x̃1)�(|x̃1 |k−2)+ βμn
22(nx∗

2 + x̃2)�(|x̃2 |k−2)

≤
2∑

i�1

(�(n)�(|x̃i |k−2)+�(|x̃i |k−1)), (A.6)

where the last inequality follows from Assumption 2.1.

We next focus on F(2)
n (x). We consider the following four cases:

Case 1. x1 ≥ Nn
1 + Nn

12, and x2 ≥ Nn
22. Then,

zn
11 � Nn

1 , zn
12 � Nn

12 , zn
22 � Nn

22 , qn
1 � x1 − Nn

1 − Nn
12 , qn

2 � x2 − Nn
22.

We obtain

F(2)
n (x)� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12Nn

12 − γn
1 (nx∗

1 − Nn
1 − Nn

12)]
+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22Nn

22 − γn
2 (nx∗

2 − Nn
22)] − kγn

1 |x̃1 |k − βkγn
2 |x̃2 |k

��(√n)(|x̃1 |k−1
+ β |x̃2 |k−1) − kγn

1 |x̃1 |k − βkγn
2 |x̃2 |k . (A.7)

Case 2. x1 < Nn
1 + Nn

12 and x2 < Nn
22. Consider two subcases:

Case 2.1. x1 > Nn
1 . Then,

zn
11 � Nn

1 , zn
12 � x1 − Nn

1 , zn
22 � x2 , qn

1 � qn
2 � 0.

We have

F(2)
n (x)� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12(nx∗

1 − Nn
1 )]+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22nx∗

2] − kμn
12 |x̃1 |k − βkμn

22 |x̃2 |k
��(√n) (|x̃1 |k−1

+ β |x̃2 |k−1) − kμn
12 |x̃1 |k − βkμn

22 |x̃2 |k . (A.8)

Case 2.2. x1 < Nn
1 . Then,

zn
11 � x1 , zn

12 � 0, zn
22 � x2 , qn

1 � qn
2 � 0.

We obtain

F(2)
n (x)� kx̃1 |x̃1 |k−2[λn

1 − μn
11x1]+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22(x̃2 + nx∗

2)]
≤ kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12Nn

12]+ βkx̃2 |x̃2 |k−2[λn
2 − μn

22nx∗
2]+ kμn

12Nn
12 x̃1 |x̃1 |k−2 − βkμn

22 |x̃2 |k . (A.9)

Since x1 ≤ Nn
1 , we have

μn
12Nn

2 x̃1 ≤ −μ
n
12Nn

2

Nn
1

|x̃1 |2 �−μ12ν2

ν1

|x̃1 |2 +�(
√

n)|x̃1 |.

Thus (A.9) takes the form

F(2)
n (x) ≤ �(√n)(|x̃1 |k−1

+ β |x̃2 |k−1) − kξ∗12

μ12ν2

ν1

|x̃1 |k − βkμn
22 |x̃2 |k . (A.10)

Case 3. x1 ≥ Nn
1 + Nn

12, and x2 < Nn
22. We distinguish the following two subcases.
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Case 3.1. x1 + x2 ≥ Nn
1 + Nn

2 .
Then,

zn
11 � Nn

1 , zn
12 � Nn

2 − x2 , zn
22 � x2 , qn

1 � x1 + x2 − Nn
1 − Nn

2 , qn
2 � 0.

We have

F(2)
n (x)� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12(Nn

2 − nx∗
2 − x̃2) − γn

1 (x1 + x2 − Nn
1 − Nn

2 )]
+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22(nx∗

2 + x̃2)]
� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12Nn

12 + μ
n
12(nx∗

2 + Nn
22)]

− kx̃1 |x̃1 |k−2γn
1 (nx∗

1 + nx∗
2 − Nn

1 − Nn
2 )+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22nx∗

2]
+ k(μn

12 − γn
1 )x̃1 x̃2 |x̃1 |k−2 − kγn

1 |x̃1 |k − βkμn
22 |x̃2 |k

��(√n)(|x̃1 |k−1
+ β |x̃2 |k−1)+ k(μn

12 − γn
1 )x̃1 x̃2 |x̃1 |k−2 − kγn

1 |x̃1 |k − βkμn
22 |x̃2 |k . (A.11)

Case 3.2. x1 + x2 < Nn
1 + Nn

2 . Then,

zn
11 � Nn

1 , zn
12 � x̃1 + nx∗

1 − Nn
1 , zn

22 � x2 , qn
1 � qn

2 � 0.

We have

F(2)
n (x)� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12(x̃1 + nx∗

1 − Nn
1 )]+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22(nx∗

2 + x̃2)]
� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12Nn

12 − μn
12(nx∗

1 − Nn
1 − Nn

12)]
+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22nx∗

2] − kμn
12 |x̃1 |k − βkμn

22 |x̃2 |k
��(√n)(|x̃1 |k−1

+ β |x̃2 |k−1) − kμn
12 |x̃1 |k − βkμn

22 |x̃2 |k . (A.12)

Case 4. x1 < Nn
1 + Nn

12, and x2 ≥ Nn
22. Here, we distinguish four subcases.

Case 4.1. x1 ≤ Nn
1 and x2 ≤ Nn

2 . Using the argument used in Case 2.2, we obtain the same estimate as (A.10).
Case 4.2. x1 ≤ Nn

1 and x2 > Nn
2 . Then,

zn
11 � x1 , zn

12 � 0, zn
22 � Nn

2 , qn
1 � 0, qn

2 � x2 − Nn
2 .

We use the inequality
μn

22Nn
12 + γ

n
2 (x̃2 + nx∗

2 − Nn
2 ) ≥ (μn

22 ∧ γn
2 ) x̃2 +�(

√
n), x2 > Nn

2

to write

λn
2 − μn

22Nn
2 − γn

2 (x2 − Nn
2 )� λn

2 − μn
22Nn

2 − γn
2 (x̃2 + nx∗

2 − Nn
2 )

≤ λn
2 − μn

22Nn
22 + (μn

22 ∧ γn
2 )x̃2 +�(

√
n).

Therefore, as in Case 2.2, we obtain

F(2)
n (x) ≤ k�(√n)|x̃1 |k−1

+ βkx̃2 |x̃2 |k−2[λn
2 − μn

22Nn
22 +�(

√
n)]

− kξ∗12

μ12ν2

ν1

|x̃1 |k − βk(μn
22 ∧ γn

2 )|x̃2 |k

≤ �(√n)(|x̃1 |k−1
+ β |x̃2 |k−1) − kξ∗12

μ12ν2

ν1

|x̃1 |k − βk(μn
22 ∧ γn

2 )|x̃2 |k . (A.13)

Case 4.3. x1 > Nn
1 , and x1 + x2 < Nn

1 + Nn
2 . Then,

zn
11 � Nn

1 , zn
12 � x1 − Nn

1 , zn
22 � x2 , qn

1 � 0, qn
2 � 0.

We obtain

F(2)
n (x)� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12(x̃1 + nx∗

1 − Nn
1 )]+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22(x̃2 + nx∗

2)]
� kx̃1 |x̃1 |k−2[λn

1 − μn
11Nn

1 − μn
12Nn

12 − μn
12(nx∗

1 − Nn
1 − Nn

12)]
+ βkx̃2 |x̃2 |k−2[λn

2 − μn
22Nn

22 − μn
22(nx∗

2 − Nn
22)] − kμn

12 |x̃1 |k − βkμn
22 |x̃2 |k

��(√n)(|x̃1 |k−1
+ β |x̃2 |k−1) − kμn

12 |x̃1 |k − βkμn
22 |x̃2 |k . (A.14)

Case 4.4. x1 > Nn
1 , and x1 + x2 ≥ Nn

1 + Nn
2 . Then,

Zn
11 � Nn

1 , Zn
12 � x1 − Nn

1 , Zn
22 � Nn

2 + Nn
1 − x1 , Qn

1 � 0, Qn
2 � x1 + x2 − Nn

1 − Nn
2 .

Therefore, we obtain

F(2)
n (x)� qβ1 x̃1 |x̃1 |q−2[λn

1 − μn
11Nn

1 − μn
12(x̃1 + nx∗

1 − Nn
1 )]
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+ qβ2 x̃2 |x̃2 |q−2[λn
2 − μn

22(Nn
2 + Nn

1 − x1) − γn
2 (x2 − (Nn

2 + Nn
1 − x1))]

≤ qβ1 x̃1 |x̃1 |q−2[λn
1 − μn

11Nn
1 − μn

12Nn
12 − μn

12(x̃1 + nx∗
1 − Nn

1 − Nn
12)]

+ qβ2 x̃2 |x̃2 |q−2[λn
2 − (μn

22 ∧ γn
2 )(x̃2 + nx∗

2)]
≤ �(√n)(β1 |x̃1 |q−1

+ β2 |x̃2 |q−1) − qβ1μ
n
12 |x̃1 |q − qβ2(μn

22 ∧ γn
2 )|x̃2 |q , (A.15)

where the first inequality follows by observing that

μn
22(Nn

2 + Nn
1 − x1)+ γn

2 (x2 − (Nn
2 + Nn

1 − x1)) ≥ (μn
22 ∧ γn

2 )x2 ,

since x2 ≥ Nn
2 + Nn

1 − x1, and Nn
2 + Nn

1 − x1 > Nn
22 + Nn

1 − x1 > 0.
By Young’s inequality, we have

|x̃1 |k−1 |x̃2 | ≤ ε |x̃1 |k + 1

εk−1
|x̃2 |k , |x̃2 |k−1 |x̃1 | ≤ ε |x̃1 |k + 1

ε1/k−1
|x̃2 |k

for any ε > 0. Using this in (A.11) in combination with (A.7)–(A.8), (A.10), and (A.12)–(A.15), we can choose the constant β
properly so that

�žn

n fn(x) ≤
2∑

i�1

(�(n)�(|x̃i |k−2)+�(√n)�(|x̃i |k−1)) − C̃2

2∑
i�1

|x̃i |k (A.16)

for some positive constant C̃2. Now, applying Young’s inequality again to the first two terms on the right-hand side of (A.16),
we obtain

�(√n)�(|x̃i |k−1) ≤ ε(�(|x̃i |k−1))k/(k−1)
+ ε1−k(�(√n))k ,

�(n)�(|x̃i |k−2) ≤ ε(�(|x̃i |k−2))k/(k−2)
+ ε1−k/2(�(n))k/2

for any ε > 0. This shows that we can choose β, C1, and C2 appropriately to obtain the claim in (A.2).
Recall x̂n in (12) and let q̂n

i :� qn
i /
√

n for i � 1, 2. Concerning the claim in (17) with X̂n replaced by Q̂n , we observe that in
Case 1, q̂n

1 � x̂n
1 +�(1) and q̂n

2 � x̂n
2 +�(1), in Case 3.1, q̂n

1 � x̂n
1 + x̂n

2 +�(1), and q̂n
2 � 0, in Case 4.2, q̂n

1 � 0, and q̂n
2 ≤ x̂n

2 +�(1),
in Case 4.4, q̂n

1 � 0, and q̂n
2 � x̂n

1 + x̂n
2 +�(1), and in all the other cases, q̂n

1 � q̂n
2 � 0. The same claim for Ŷn then follows from

the balance Equation (39). The proof of the proposition is complete. �

Proof of Lemma 9.1. We need to show (A.2) holds for �n fn(x) under the scheduling policy zn[v] in Definition 7.1. We can

write �n fn(x)� F(1)
n (x)+F(2)

n (x) with F(1)
n (x) and F(2)

n (x) given by (A.3) and (A.4), respectively. We obtain (A.6) for F(1)
n (x) since

(A.5) also holds under the policy zn[v]. For F(2)
n (x), by (A.4) and Definition 7.1, since the control v satisfies (9.1) and x ∈� n

(JWC being satisfied), we easily obtain

F(2)
n (x) ≤ �(√n)(|x̃1 |k−1

+ β |x̃2 |k−1) − C̃3

2∑
i�1

|x̃i |k ,

for some positive constant C̃3. Thus, following the argument in the proof of Proposition 3.1, we obtain the claim in (A.2)
and hence the result follows by scaling. �

Appendix B. Proof of Theorem 4.3
Recall � f(θ) defined in (32). As in Theorem 4.2, there exists λ∗ ∈ � such that

inf
π∈� f(θ)

π(ro)� inf
π∈�
π(hθ,λ∗ )� 
∗f ,

and the property in (30) implies that the infimum is attained in some π∗ ∈ �. Therefore the conclusions analogous to parts
(a) and (b) of Theorem 4.2 hold. Part (e) is also standard. It remains to derive the HJB equation and the characterization of
optimality corresponding to Theorem 4.2(c)–(d). This is broken in a series of lemmas.

We need to introduce some notation. We denote by τ̆δ , δ > 0, the first exit time of a process from Bc
δ , i.e.,

τ̆δ :� inf{t > 0: Xt � Bc
δ}.

We denote by ��SM the class of Markov controls v satisfying πv(ro) < ∞, and by ��, the corresponding class of ergodic
occupation measures.

By the method of proof of (30), there exists inf-compact � ∈�2(�2) and positive constants κ1 and κ2 satisfying

�u� (x) ≤ κ1 − κ2 |x |m + ro(x , u), ∀ (x , u) ∈ �2 ×�. (B.1)

Moreover, since (e · x)− ∈�(|x |m), there exists a constant κ0 such that

(1+ θ)λ∗rj(x , u) ≤ κ0 +
κ2

2
|x |m , ∀ (x , u) ∈ �2 ×�, j � 1, 2. (B.2)

For ε > 0, we define
hε(x , u) :� hθ,λ∗ (x , u)+ εκ2 |x |m .
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Lemma B.1. The following hold:

π(hθ,λ∗ ) ≤ κ0 +
κ1

2
+

3

2
π(ro), ∀π ∈ ��, π(ro) ≤ κ0 +

κ2

2
+π(hθ,λ∗ ), ∀π ∈ � , π(hε) ≤ ε

(
κ0 +

κ1

2
+
κ2

2

)
+ (1+ ε)π(hθ,λ∗ ).

Proof. This is an easy calculation using (B.1)–(B.2). �

Lemma B.2. There exists a unique function V ε ∈�2(�2) with V ε(0)� 0, which is bounded below in �2, and solves the HJB

min
u∈�

[�uV ε(x)+ hε(x , u)]� 
ε , x ∈ �2 , (B.3)

where 
ε :� infπ∈� π(hε), and the usual characterization of optimality holds. Moreover,
(a) for every R > 0, there exists a constant kR > 0 such that

sup
ε∈(0, 1)

osc
BR

V ε ≤ kR ;

(b) if vε is a measurable a.e. selector from the minimizer of the Hamiltonian in (B.3), then for any δ > 0, we have

V ε(x) ≥ Ɛvε
x

[∫ τ̆δ

0

(hε(Xs , vε(Xs)) − 
ε)ds
]
+ inf

Bδ
V ε ;

(c) for any stationary control v ∈��SM and for any δ > 0, it holds that

V ε(x) ≤ Ɛv
x

[∫ τ̆δ

0

(hε(Xs , v(Xs)) − 
ε)ds +V ε(Xτ̆δ )
]
.

Proof. The proof follows along the lines of theorem 3.3 in Arapostathis et al. [3], using the fact that hε is inf-compact, for
each ε > 0, and infπ∈� π(hε)<∞ by Lemmas 4.1 and B.1. There is one important difference though: the running cost hε is not
bounded below uniformly in ε > 0, and the estimate in part (a) needs special attention. By (B.1)–(B.2), using Itô’s formula,
we obtain

ƐU
x

[∫ ∞

0

e−αs(1+ θ)λ∗ri(Xs ,Us)ds
]
≤ � (x)+ ƐU

x

[∫ ∞

0

e−αs(κ0 +
κ1

2
+

1

2
ro(Xs ,Us))ds

]
for all U ∈�, α > 0. It follows that, given any ball BR , the discounted value function

Ṽ εα (x) :� inf
U∈�
ƐU

x

[∫ ∞

0

e−αs(2κ0 + κ1 + hε(Xs ,Us))ds
]

is strictly positive on BR for all sufficiently small α > 0. Therefore, by adding the constant 2κ0 + κ1 to the running cost, we
obtain estimates on the oscillation of Ṽ ε that are uniform over ε > 0 by lemmas 3.5 and 3.6 of Arapostathis et al. [3]. �

The next lemma completes the proof of Theorem 4.3.

Lemma B.3. Let V ε and 
ε , for ε > 0, be as in Lemma B.2. The following hold:
(i) The function V ε converges to some Vf ∈�2(�2), uniformly on compact sets, and 
ε→ 
∗f , as ε↘ 0, and Vf satisfies

min
u∈�

[�uVf(x)+ hθ,λ∗ (x , u)]� 
∗f �π∗(hθ,λ∗ ). (B.4)

Also, any limit point v∗ (in the topology of Markov controls) as ε↘ 0 of measurable selectors {vε} from the minimizer of (B.3) satisfies

�v∗Vf(x)+ hθ,λ∗ (x , v∗(x))� 
∗f a.e. in �2.

(ii) A stationary Markov control v ∈�SM is optimal if and only if it satisfies

Hhθ,λ∗ (x ,∇Vf(x))� b(x , v(x)) · ∇Vf(x)+ hθ,λ∗ (x , v(x)) a.e. in �2 , (B.5)

where Hhθ,λ∗ is defined in (31) with r replaced by hθ,λ∗ .
(iii) The function V∗ has the stochastic representation

Vf(x)� lim
δ↘0

inf
v ∈��

SM

Ɛv
x

[∫ τ̆δ

0

(hθ,λ∗ (Xs , v(Xs)) − 
∗)ds
]
� lim
δ↘0
Ɛv̄

x

[∫ τ̆δ

0

(hθ,λ∗ (Xs , v̄(Xs)) − 
∗)ds
]

for any v̄ ∈�SM that satisfies (B.5).

Proof. We follow the method in the proof of theorem 3.4 in Arapostathis et al. [3]. Since 
ε is nonincreasing and bounded
below, it converges to some value, which is clearly π∗(hθ,λ∗ ) by Lemma B.1. Parts (i) and (iii) then follow as in the proof of
lemma 3.9 in Arapostathis et al. [3], and we can follow the method in the proof of lemma 3.10 in the same paper to establish
that V−

f ∈�(� ).
Now, let v̂ ∈ �SM be any control satisfying (B.5). We modify the estimate in (B.2) and write it as (1 + θ)λ∗ri(x , u) ≤

κ0 + (κ2/4)|x |m for some constant κ′0. An easy calculation using (B.1) then shows that

� v̂(� + 2Vf) ≤ κ0 + κ1 + 2κ′0 −
κ2

2
|x |m − hθ,λ∗ (x , v̂(x)).

Therefore, since � + 2Vf is inf-compact, we must have v̂ ∈ ��SM. Using this and the fact that V−
f ∈ �(� ), we deduce that

(1/T)Ɛv̂
x[V−

f (XT)] → 0 as T →∞. Hence, by Itô’s formula and (B.4), we obtain πv̂(hθ,λ∗ ) ≤ 
∗f . Thus we must have equality
πv̂(hθ,λ∗ )�π∗(hθ,λ∗ ), i.e., v̂ is optimal. This completes the proof. �
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