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Abstract

We study a class of non-stationary shot noise processes which have a general arrival process of noises
with non-stationary arrival rate and a general shot shape function. Given the arrival times, the shot noises are
conditionally independent and each shot noise has a general (multivariate) cumulative distribution function
(c.d.f.) depending on its arrival time. We prove a functional weak law of large numbers and a functional
central limit theorem for this new class of non-stationary shot noise processes in an asymptotic regime
with a high intensity of shot noises, under some mild regularity conditions on the shot shape function and
the conditional (multivariate) c.d.f. We discuss the applications to a simple multiplicative model (which
includes a class of non-stationary compound processes and applies to insurance risk theory and physics)
and the queueing and work-input processes in an associated non-stationary infinite-server queueing system.
To prove the weak convergence, we show new maximal inequalities and a new criterion of existence of a
stochastic process in the space D given its consistent finite dimensional distributions, which involve a finite
set function with the superadditive property.
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1. Introduction

We consider a class of non-stationary shot noise processes X := {X (t) : t ≥ 0} described
as follows. Let A := {A(t) : t ≥ 0} be a counting process with arrival times {τi : i ∈ N}. Let
{Z i : i ∈ N} be a sequence of conditionally independent Rk-valued (k ≥ 1) random vectors
given the event times {τi : i ∈ N}. For each i ∈ N, the distribution of Z i depends on τi only.
To indicate the dependence of Z i on τi explicitly, we write Z i (τi ) for Z i . The regular conditional
probability for Z i (τi ) given that τi = t , t ≥ 0, is given by

P(Z i (τi ) ≤ x |τi = t) = Ft (x), t ≥ 0, x ∈ Rk, (1.1)

where for two vectors x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk , x ≤ y means xi ≤ yi for each
i = 1, . . . , k and Ft (·) is a joint/multivariate cumulative distribution function (c.d.f.) for each
t ≥ 0. Let H : R+ ×Rk

→ R be a deterministic measurable function representing the shot shape
or the (impulse) response function. See the precise assumptions on Ft (·) and H in Assumption 2.
Define the non-stationary shot noise process X by

X (t) :=

A(t)∑
i=1

H (t − τi , Z i (τi )), t ≥ 0. (1.2)

In the literature the sequence of random variables {Z i } is often assumed to be i.i.d.,
independent of the arrival processes of shot noises (see, e.g., [9,12,13,18,26–28,31,40]). Limited
work has studied for the sequence {Z i } with certain dependence structures. For example, in [33],
{Z i } is modulated by a finite-state Markov chain and is conditionally independent with a
distribution depending on the state of the chain at the arrival time of the shot noise (also
modulated by the same chain). In [38], a cluster shot noise model is studied where {Z i } depends
the same ‘cluster mark’ within each cluster. However, the ‘non-stationarity’ of shot noises has
been neither explicitly modeled nor adequately studied, although it often occurs in stochastic
systems (see, e.g., [2,8,15,35,36,45] and references therein). In our model, the sequence {Z i } is
assumed to be conditionally independent given the arrival times and the distribution depends
upon the arrival times. We have explicitly modeled “non-stationarity” in the distribution of
shot noises. In addition, the arrival process is also allowed to be a general non-stationary point
process.

In this paper, we establish the functional weak law of large numbers (FWLLN) and functional
central limit theorems (FCLTs) for this class of non-stationary shot noise processes in an
asymptotic regime where the arrival rate is large while fixing the shot noise distributions Ft (x)
and shot shape function H (see Assumptions 1 and 2). (It is often referred to as the “high
intensity/density regime” [4,17,19,37].) Here we assume that the arrival process satisfies an
FCLT with a continuous limiting process and a non-stationary arrival rate function. In the FCLT,
we obtain a non-stationary stochastic process limit for the diffusion-scaled shot noise process
(Theorem 2.2). The limit can be written as a sum of two independent processes, one as an integral
functional of the limiting arrival process, and the other as a continuous Gaussian process. When
the arrival limit is Gaussian, the limiting shot noise process becomes a Gaussian process. We
also consider a finite collection of shot noise processes as defined in (1.2) with a family of shot
shape functions but the same arrival process and noises, and prove their joint convergence in
Theorem 2.3.

We discuss the applications of the FCLT to a simple multiplicative model and the queueing
and work-input process for a non-stationary infinite-server queueing model (G t/G t/∞) in
Section 3. The simple multiplicative model requires that the shot shape function H (t, x) =
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H̃ (t)ϕ(x) for a nonnegative and monotone function H̃ (t) and a measurable function ϕ : Rk
→ R.

When H̃ (t) ≡ 1 and ϕ(x) = x for each x ∈ R+ (k = 1), the model becomes a non-stationary
compound process, which is new in the literature. As a consequence of Theorem 2.2, we obtain an
FCLT for such non-stationary compound processes; see Theorem 3.1. The multiplicative model
has applications in insurance risk theory (setting ϕ(x) = x for x ∈ R+), in particular, modeling
the delay in insurance claim settlement [27]. It also has applications in physics [41], to study a
damped harmonic oscillator subject to a random force, which has the new feature that the random
forces depend on the arrival times.

For the non-stationary infinite-server queueing system, the queueing process requires that the
shot shape function H (t, x) = 1(t < x), while the work-input process has H (t, x) = x1(t < x),
for x ∈ R+. The G t/G t/∞ queueing model has been recently studied in [36]. In some
sense, the class of non-stationary shot noise processes is a generalization of the non-stationary
infinite-server queueing model studied in [36], where functional limit theorems are established
for the associated two-parameter processes in addition to the total count process. Work-input
processes are studied in [30] using Poisson shot noise processes, where fractional Brownian
motion limits are obtained in the conventional scaling regime. We obtain an approximation for the
joint queueing and work-input processes, which is a continuous two-dimensional non-stationary
Gaussian process when the arrival limit is Gaussian.

To prove the FCLT, we employ a classical weak convergence criterion in the Skorohod
J1 topology, Theorem 13.3 in Billingsley [5]. It provides a sufficient condition involving a
modulus of continuity (see (5.2)), which requires the maximal inequalities in Theorems 10.3
and 10.4 in [5] to establish. Maximal inequalities are usually very challenging to prove. In many
applications, certain properties of the processes of interest (e.g., the martingale property) can
often lead to useful maximal inequalities. The power of Theorems 10.3 and 10.4 in [5] lies
in that sufficient conditions on the probability bounds for the increments of the process are
provided in order to obtain the corresponding probability bounds in the maximal inequalities.
Those conditions require that the probability bound involves a finite measure (see (5.4)), which
can be often induced from the moment bounds for the increment of the processes. However,
for the class of non-stationary shot noise processes, the probability bounds for the processes of
interest do not provide such a convenient finite measure (see Lemmas 4.4–4.5 and discussions in
Remark 4.2).

One main contribution of the paper is to prove new maximal inequalities involving a finite set
function with the superadditive property, which generalize Theorems 10.3 and 10.4 in [5]; see
Theorems 5.1 and 5.2. Their proofs in Section 7 are adaptations of the corresponding ones in [5].
We apply them to verify the sufficient condition with the modulus of continuity in Theorem 13.3
in [5] for the shot noise process in the proof of the FCLT. We also apply the maximal inequality in
Theorem 5.1 to prove the FWLLN for the shot noise process. In addition, a criterion to prove that
there exists a stochastic process in the space D given its consistent finite dimensional distributions
is provided in Theorem 13.6 in [5]. That criterion also relies on the maximal inequalities in
Theorems 10.3 and 10.4 in [5], and thus requires that the probability bound for the process
increments involves a finite measure. We prove a new criterion of existence in Theorem 5.3,
where the finite measure assumption in the probability bound for the increments of the process is
relaxed to allow a finite set function with the superadditive property. It is then applied to prove the
existence of the Gaussian limit process in the FCLT in the space D (in fact in C, which requires
additional continuity in mean square for the limit process; see the proof of Lemma 6.3). These
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generalizations of the maximal inequalities and the criterion of existence in the space D may be
useful in future research on weak convergence of stochastic processes.

1.1. Literature review

Shot noise processes have been extensively studied, and have many applications in physics,
insurance risk theory, telecommunications, and service systems. Functional limit theorems have
been established in two asymptotic regimes.

In the asymptotic regime where the arrival rate of shot noises (the intensity/density) becomes
large, only limited work has been done for some special classes of shot noise processes. One class
includes the queueing, workload and work-input processes in infinite-server queueing systems
with i.i.d. service times. For these models, the shot noises represent service times, and the shot
shape function becomes an indicator function for the queueing process; see, e.g., Chapter 10
of [44] for a review. Networks of infinite-server queues with shot-noise-driven arrival intensities
are recently studied in [29], in order to capture the strong fluctuations in the arrival process.
Weak convergence of a certain class of compound stochastic processes was studied in [19]
in this asymptotic regime. That paper includes a special class of shot noise processes with a
renewal arrival process and i.i.d. shot noises in which the shot shape function H (t, x) satisfies
some regularity conditions (see the assumptions in Theorem 4.3 in [19]). See also the relevant
discussions in Section 2.2. Our results are established for the most general setting with both
non-stationary arrival processes and shot noises.

Although not proving functional limit theorems, some important asymptotic analysis has been
also done for certain shot noise processes in this regime. Papoulis [37] first proved the normal
approximation and its rate of convergence for the standard shot noise process with a Poisson
arrival process and i.i.d. shot noises. Heinrich and Schmidt [17] studied multidimensional shot
noise processes and proved the normal approximation and its rate of convergence in that regime.
In both papers, the asymptotic behavior of the quantity (X (t) − E[X (t)])/(V ar (X (t)))1/2 is
studied, which is different from the nature of our analysis. Recently, Biermé and Desolneux [4]
studied the expected number of level crossings for the shot noise processes with a Poisson arrival
process and i.i.d. shot noises, which has a shot shape function H (t, x) = H̃ (t)x , for t ≥ 0 and
x ∈ R, with a smooth function H̃ (·) in this asymptotic regime.

The conventional scaling regime for shot noise processes is to scale up time and shot noises
simultaneously. There is a vast literature of studies in that regime. Klüppelberg and Mikosch [27]
proved an FCLT for explosive shot noise processes with a Poisson arrival process, which has
a self-similar Gaussian limit. Klüppelberg et al. [28] proved an FCLT for Poisson shot noise
processes which has an infinite-variance stable limit process. In [26], a fractional Brownian
motion limit is proved for Poisson shot noise processes that capture long-range dependence.
Iksanov [20] and Iksanov et al. [23] studied renewal shot noise processes where the shot shape
function takes the form independent of shot noises {Z i }, and proved FCLTs under various
conditions on the shot shape function. Iksanov et al. [24,25] recently studied renewal shot
noise processes with immigration and proved scaling limits and convergence to stationarity.
We refer to [21] for a thorough review on the subject. In [22], an infinite-server queueing
model with correlated interarrival and service times is studied in the conventional scaling
regime and a limiting Gaussian process is obtained in the FCLT assuming that the service time
distributions are regularly varying. We also refer to the work in [6,9,12,13,18,26–28,31,32,34,40]
and references therein for relevant asymptotic properties of Poisson shot noise processes, and
in [33,38,39,42,43] for more general shot noise processes, as well as their applications.
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1.2. Organization of the paper

We summarize the notations used in the paper in the next subsection. The model and main
results (FWLLN and FCLT) are presented in Section 2. We present the applications in Section 3.
Preliminary results on the probability and moment bounds for some prelimit and limit processes
are given in Section 4. We state the new maximal inequalities and criterion of existence in
Section 5 and their proofs are given in Section 7. We prove the FCLT in Section 6. We collect
additional proofs in Appendix.

1.3. Notation

Throughout the paper, N denotes the set of natural numbers. Rk (Rk
+

) denotes the space of
real-valued (nonnegative) k-dimensional vectors, and we write R (R+) for k = 1. For a, b ∈ R,
we write a ∧ b = min{a, b} and a ∨ b = max{a, b}. Let Dk

= D(R+,Rk) denote Rk-
valued function space of all cádlág functions on R+. (Dk, J1) denotes space Dk equipped with
Skorohod J1 topology with the metric dJ1 [5,11,44]. Note that the space (Dk, J1) is complete
and separable. We write D for Dk when k = 1. Let C be the subset of D for continuous functions.
When considering functions defined on finite intervals, we write D([0, T ], R) for T > 0. All
random variables and processes are defined in a common complete probability space (Ω ,F , P).
Notations → and ⇒ mean convergence of real numbers and convergence in distribution,
respectively. The abbreviation a.s. means almost surely. We use lower-case o notation for real-
valued function f and non-zero g, we write f (x) = o(g(x)) if limx→∞| f (x)/g(x)| = 0.

2. Functional limit theorems

In this section, we state the FWLLN and FCLT for the shot noise process X defined in (1.2).
We consider a sequence of the non-stationary shot noise processes indexed by n and let n → ∞.
In particular, in the nth system, we write An and Xn and the associated {τ n

i } while the variables
Z i and the distributions Ft , t ≥ 0, are fixed. We first make the following assumptions.

Assumption 1. The sequence of arrival processes An satisfies an FCLT:

Ân
:=

√
n
(

Ān
− Λ

)
⇒ Â in (D, J1) as n → ∞ (2.1)

where Ān
:= n−1 An , Λ := {Λ(t) : t ≥ 0} is a deterministic nondecreasing continuous function,

and Â is a continuous stochastic process.

Note that Assumption 1 implies an FWLLN for the fluid-scaled arrival process Ān:

Ān
⇒ Λ in (D, J1) as n → ∞. (2.2)

A large class of models has a continuous Gaussian limit process Â. We provide several examples
of arrival processes with a Gaussian limit that satisfy Assumption 1. A special case is Â(t) =

ca B(Λ(t)) for a standard Brownian motion B and a constant ca capturing the variabilities in
the arrival process. When the process An is a renewal process, ca represents the coefficient
of variation for the interarrival times. When the interarrival times are weakly dependent and
satisfying the strong α-mixing condition, by Theorem 4.4.1 and Corollary 13.8.1 in [44], the
arrival process Ân satisfies an FCLT with a Brownian motion limit, where the coefficient ca
captures the dependence among the interarrival times. When the arrival process is a Markov-
modulated Poisson process, the limit Â is a Brownian motion with ca capturing the effect of
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the random environment (see Example 9.6.2 in [44] and also [1]). When the arrival process is
a stationary Hawkes process (a class of simple point processes that are self-exciting and have
clustering effect), whose intensity is the sum of a baseline intensity and a term depending upon
the entire past history of the point process, the limit Â is a non-Markov Gaussian process with
dependent increments [14]. See also FCLTs with Brownian motion limits for nonlinear Hawkes
processes in [3,46].

To simplify notations, we define the following functions: for each 0 ≤ u ≤ s ≤ t ,

G1(t, u) :=

∫
Rk

H (t − u, x)d Fu(x),

G2(t, u) :=

∫
Rk

H (t − u, x)2d Fu(x),

G̃(t, u) := G2(t, u) − G1(t, u)2,

Ǧ1(t, s, u) :=

∫
Rk

(
H (t − u, x) − H (s − u, x)

)
d Fu(x),

Ǧ2(t, s, u) :=

∫
Rk

(
H (t − u, x) − H (s − u, x)

)2d Fu(x),

G̃(t, s, u) := Ǧ2(t, s, u) − Ǧ1(t, s, u)2.

We now state the following regularity conditions on the shot shape function H and the c.d.f.
Ft (·). Note that conditions (i) and (ii) in Assumption 2 imply that all functions defined above are
finite for 0 ≤ s ≤ t . We use the convention that H (t, x) ≡ 0 for t < 0.

Assumption 2. For each t ≥ 0, the c.d.f. Ft (·) is continuous and has finite marginal mean.
The shot shape function H (·, x) ∈ D is monotone for each x ∈ Rk . In addition, the following
regularity conditions are satisfied:

(i)

sup
0≤t≤T

V T
0 (G1(t, ·)) < ∞, (2.3)

where V T
0 (G1(t, ·)) is the total variation of the function G1(t, ·) in the interval [0, T ], for

each 0 ≤ t ≤ T ;
(ii) for each t ≥ 0,

sup
0≤u≤t

G̃(t, u) < ∞; (2.4)

(iii) for each T ≥ t ≥ 0,

lim
δ↓0

∫
[0,T ]

Ǧ2(t, t − δ, u)dΛ(u) = 0. (2.5)

Remark 2.1. We remark that the convergence in (2.5) always holds as δ ↑ 0 from the left given
that H (·, x) ∈ D for each x ∈ Rk . Indeed, if δ ↑ 0, then (t − δ) ↓ t for each t ≥ 0. Since
H (·, x) ∈ D for each x ∈ Rk , we have H (t − u, x) − H (t − δ − u, x) → 0 as δ ↑ 0 for each
0 ≤ u ≤ t and x ∈ Rk . By the bounded convergence theorem we have Ǧ2(t, t − δ, u) → 0 as
δ ↑ 0 from the left for each u ≥ 0. Using the bounded convergence theorem again, we obtain
the convergence in (2.5) as δ ↑ 0 from the left. Therefore, in condition (iii) we only require δ
converges to 0 from the right.
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Note that the condition (2.5) implies that

lim
δ→0

∫
[0,T ]

Ǧ1(t, t − δ, u)dΛ(u) = 0. (2.6)

Define the process X̄n
:= {X̄n(t) : t ≥ 0} by X̄n(t) := n−1 Xn(t) for t ≥ 0.

Theorem 2.1 (FWLLN). Under Assumptions 1–2,

X̄n
⇒ X̄ in (D, J1) as n → ∞, (2.7)

where X̄ := {X̄ (t) : t ≥ 0} is a continuous deterministic function, defined by

X̄ (t) :=

∫
[0,t]

G1(t, u)dΛ(u), t ≥ 0. (2.8)

Define the process X̂n
:= {X̂n(t) : t ≥ 0} by

X̂n(t) :=
√

n(X̄n(t) − X̄ (t)), t ≥ 0, (2.9)

where X̄ (t) is given in (2.8).

Theorem 2.2 (FCLT). Under Assumptions 1–2,

X̂n
⇒ X̂ in (D, J1) as n → ∞, (2.10)

where X̂ := {X̂ (t) : t ≥ 0} can be written as a sum of two independent stochastic processes
X̂1 := {X̂1(t) : t ≥ 0} and X̂2 := {X̂2(t) : t ≥ 0}, with

X̂1(t) := Â(t)G1(t, t) −

∫
(0,t]

Â(u)dG1(t, u), t ≥ 0, (2.11)

and X̂2 being a continuous Gaussian process of mean zero and covariance function

R̂2(t, s) := Cov
(
X̂2(t), X̂2(s)

)
=

∫
[0,t∧s]

(
G2(t, s, u) − G1(t, u)G1(s, u)

)
dΛ(u), (2.12)

with

G2(t, s, u) :=

∫
Rk

H (t − u, x)H (s − u, x)d Fu(x), t ≥ u ≥ 0, s ≥ u ≥ 0. (2.13)

Remark 2.2. We remark that the limit process X̂1 has sample paths in D under Assumptions 1–2.
See Lemma 6.1 and its proof. If, in addition, G1(·, u) ∈ C for each u ≥ 0, then X̂1 is continuous.

Remark 2.3. If Â is a continuous Gaussian process with mean 0 and covariance function
R̂a(t, s), then X̂1 is a Gaussian process with mean 0 and covariance function

R̂1(t, s) := Cov(X̂1(t), X̂1(s)) =

∫
[0,t]

∫
[0,s]

G1(t, u)G1(s, v)d R̂a(u, v), t, s ≥ 0.

In the special case that Â(t) = ca B(Λ(t)) is a time-changed Brownian motion, the covariance
function R̂1(t, s) becomes

R̂1(t, s) = c2
a

∫
[0,t∧s]

G1(t, u)G1(s, u)dΛ(u), t, s ≥ 0.

It is worth noting that the limit X̂2 in the FCLT only involves the fluid arrival limit Λ.
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2.1. Joint convergence with a family of shot shape functions

Consider a family of shot shape (impulse response) functions, {H (k)
: k ∈ {1, . . . , K }} for

some K ∈ N+. For each k, we denote the corresponding processes X̄n,(k) and X̄ (k), X̂n,(k) and
X̂ (k), and the functions G(k)

i (t, u), Ǧ(k)
i (t, s, u), i = 1, 2, G̃(k)(t, u) and G̃(k)(t, s, u). Suppose that

the conditions in Assumption 2 hold for the associated functions with each k, which we refer to
as Assumption 2′.

Theorem 2.3. Suppose that Assumptions 1 and 2′ hold.
(i)

(
X̄n,(1), . . . , X̄n,(K )

)
⇒
(
X̄ (1), . . . , X̄ (K )

)
in (DK , J1) as n → ∞, where X̄ (k)

:= {X̄ (k)(t) :

t ≥ 0} is a continuous deterministic function, defined by

X̄ (k)(t) :=

∫
[0,t]

G(k)
1 (t, u)dΛ(u), t ≥ 0,

for k = 1, . . . , K .
(ii)

(
X̂n,(1), . . . , X̂n,(K )

)
⇒
(
X̂ (1), . . . , X̂ (K )

)
in (DK , J1) as n → ∞, where X̂ (k)

:= {X̂ (k)(t) :

t ≥ 0} can be written as a sum of two independent processes X̂ (k)
1 := {X̂ (k)

1 (t) : t ≥ 0} and
X̂ (k)

2 := {X̂ (k)
2 (t) : t ≥ 0}. For k = 1, . . . , K , X̂ (k)

1 is defined by

X̂ (k)
1 (t) := Â(t)G(k)

1 (t, t) −

∫
(0,t]

Â(u)dG(k)
1 (t, u), t ≥ 0.(

X̂ (1)
2 , . . . , X̂ (K )

2

)
is a continuous multidimensional Gaussian processes with mean 0 and the

covariance function

Cov
(
X̂ (k)

2 (t), X̂ ( j)
2 (s)

)
=

∫
[0,t∧s]

(
G(k, j)

2 (t, s, u) − G(k)
1 (t, u)G( j)

1 (s, u)
)
dΛ(u)

where

G(k, j)
2 (t, s, u) :=

∫
Rk

H (k)(t − u, x)H ( j)(s − u, x)d Fu(x)

for each k, j = 1, . . . , K , and t ≥ u ≥ 0, s ≥ u ≥ 0.

Note that the statements in Remark 2.2 apply to each X̂ (k), k = 1, . . . , K . If Â is a continuous
Gaussian process with mean 0 and covariance function R̂a(t, s), then

(
X̂ (1)

1 , . . . , X̂ (K )
1

)
is a

multidimensional Gaussian process with mean 0 and covariance function

Cov
(
X̂ (k)

1 (t), X̂ ( j)
1 (s)

)
=

∫
[0,t]

∫
[0,s]

G(k)
1 (t, u)G( j)

1 (s, v)d R̂a(u, v)

for each k, j = 1, . . . , K , and t, s ≥ 0. In the special case that Â(t) = ca B(Λ(t)) is a time-
changed Brownian motion, the covariance function above becomes

c2
a

∫
[0,t∧s]

G(k)
1 (t, u)G( j)

1 (s, u)dΛ(u),

for each k, j = 1, . . . , K and t, s ≥ 0.

2.2. Discussions on the model with i.i.d. shot noises

When the shot noises are i.i.d. with the same distribution as a random vector Z having joint
c.d.f F , the regularity conditions (i) and (iii) in Assumption 2 are not required. Indeed, the
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condition (i) is always satisfied given the monotonicity of H (t, x) in t . As for condition (iii),
first by Fubini’s theorem, the left hand side of (2.5) becomes

lim
δ→0

∫
Rk

∫
[0,T ]

(
H (t − u, x) − H (t − δ − u, x)

)2dΛ(u)d F(x).

Next, since |H (t − u, x) − H (t − δ− u, x)| ≤ |H (T, x)| ∨ |H (0, x)| for t, u ∈ [0, T ], δ > 0 and
x ∈ Rk , by the bounded convergence theorem, to show the limit above is equal to 0, it suffices to
show that for each x ∈ Rk ,

lim
δ→0

∫
[0,T ]

(
H (t − u, x) − H (t − δ − u, x)

)2dΛ(u) = 0.

This equation holds since Λ ∈ C and H (·, x) ∈ D has at most countably many discontinuous
points for each x ∈ Rk . However, in the i.i.d. case, we still require condition (ii), which holds if
and only if

E[H (t, Z )2] < ∞, for each t ≥ 0.

We remark that in the i.i.d. case, with renewal arrivals, the model becomes a special case of
the compound stochastic processes studied in [19] (by setting ξ (t) = H (t, Z )). Our assumptions
on the function H satisfy the conditions (iii) and (iv) in Theorem 4.3 in [19], where we can
change (t − s) to (Ṽ (t) − Ṽ (s)) in the upper bounds, for Ṽ (t) defined in (4.13) with a constant
arrival rate λ, i.e., Λ(t) = λt ; see also the discussion in the last paragraph on page 24 of [19]. It
is worth noting that the assumptions on the increments of the process ξ in [19] are made so that
the maximal inequality involving a finite measure can be applied (see more discussions on the
weak convergence and maximal inequalities in Section 5).

3. Applications

3.1. A simple multiplicative model

We consider a simple multiplicative model in which the shot shape function

H (t, x) := H̃ (t)ϕ(x), t ≥ 0, x ∈ Rk,

where ϕ : Rk
→ R is a measurable function.

We discuss what the regularity conditions on the function H in Assumption 2 imply for this
simple multiplicative model. First, we require that H̃ is in D, nonnegative and monotone. Note
that

G1(t, u) = H̃ (t − u)G̃1(u), G̃(t, u) = H̃ (t − u)2G̃(u),

and

Ǧ1(t, s, u) =
(
H̃ (t − u) − H̃ (s − u)

)
G̃1(u),

Ǧ2(t, s, u) =
(
H̃ (t − u) − H̃ (s − u)

)2G̃2(u),

where

G̃1(u) :=

∫
Rk
ϕ(x)d Fu(x), G̃2(u) :=

∫
Rk
ϕ(x)2d Fu(x),

G̃(u) := G̃2(u) − G̃1(u)2, u ≥ 0.
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The condition in (2.3) requires that

sup
0≤t≤T

V T
0

(
H̃ (t − ·)G̃1(·)

)
< ∞, (3.1)

while the condition in (2.4) requires that for each t ≥ 0,

sup
0≤u≤t

H̃ (t − u)G̃(u) < ∞. (3.2)

The condition in (2.5) requires that for each T ≥ t ≥ 0,∫
[0,T ]

(
H̃ (t − u) − H̃ (t − δ − u)

)2G̃2(u)dΛ(u) → 0 as δ → 0,

which is satisfied under the condition that H̃ is monotone and Λ ∈ C. Thus, the regularity
condition (iii) in Assumption 2 is not needed for the simple multiplicative model.

The limit process X̂1 in Theorem 2.2 becomes

X̂1(t) := Â(t)H̃ (0)G̃1(t) −

∫
(0,t]

Â(u)d
(
H̃ (t − u)G̃1(u)

)
, t ≥ 0. (3.3)

Note that X̂1 is continuous if H̃ (·) ∈ C. (See Lemma 6.1 and its proof.) If Â is a Gaussian process
with mean 0 and covariance function R̂a(t, s), then the covariance function of X̂1 is

R̂1(t, s) =

∫
[0,t]

∫
[0,s]

H̃ (t − u)H̃ (s − v)G̃1(u)G̃1(v)d R̂a(u, v), t, s ≥ 0. (3.4)

If Â(t) = ca B(Λ(t)) is a time-changed Brownian motion, then the covariance function R̂1(t, s)
becomes

R̂1(t, s) = c2
a

∫
[0,t∧s]

H̃ (t − u)H̃ (s − u)G̃1(u)2dΛ(u), t, s ≥ 0.

The limit process X̂2 has the covariance function

R̂2(t, s) =

∫
[0,t∧s]

H̃ (t − u)H̃ (s − u)G̃(u)dΛ(u), t, s ≥ 0. (3.5)

There is one special case which is worth mentioning. Suppose that x ∈ R, and ϕ(x) = x for all
x ∈ R. In addition, if the conditional mean of shot noises is zero, that is, G̃1(u) =

∫
R xd Fu(x) =

0 for each u ≥ 0, then the fluid limit X̄ (t) in (2.8) and the limit process X̂1 in Theorem 2.2
(see also Eq. (2.11)) both vanish. Thus, the limit for X̂n only has one component X̂2, which is a
continuous Gaussian process and has mean 0 and covariance function

R̂2(t, s) =

∫
[0,t∧s]

H̃ (t − u)H̃ (s − u)G̃2(u)dΛ(u), t, s ≥ 0,

with G̃2(u) =
∫
R x2d Fu(x). It is somewhat surprising that in this special case, the stochastic

variability in the arrival process vanishes, and the variability in the limit for the process X̂ is only
affected by the cumulative arrival rate function Λ(t) from the arrival process.

We next discuss several special models.

3.1.1. Non-stationary compound process
Consider the following special case of the multiplicative model:

X (t) =

A(t)∑
i=1

Z i (τi ), t ≥ 0, (3.6)
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where Z i ’s are nonnegative as described above. Here H̃ (t) ≡ 1, t ∈ R+ and ϕ(x) = x for
each x ∈ R+. This process can be regarded as a general non-stationary compound process with
both non-stationarity in the arrival process and the sequence of random variables {Z i (τi )}. As a
consequence of Theorem 2.2, we obtain the following theorem for the non-stationary compound
processes.

Theorem 3.1. Under Assumption 1 and assuming that for each t ≥ 0, the c.d.f. Ft (·) is
continuous and has finite variance, (2.7) in the FWLLN holds with the limit X̄ given by

X̄ (t) :=

∫
[0,t]

G̃1(u)dΛ(u), t ≥ 0, (3.7)

and (2.10) in the FCLT holds with the limit X̂ = X̂1 + X̂2 where X̂1 and X̂2 are independent, X̂1
is defined in (3.3) with H̃ (·) ≡ 1 and has continuous sample paths, and

X̂2(t) = B2

(∫
[0,t]

G̃(u)dΛ(u)
)
, t ≥ 0, (3.8)

for a standard Brownian motion B2, with G̃1(u) and G̃(u) being the conditional mean and
variance of {Z i (τi )}:

G̃1(u) =

∫
[0,∞)

xd Fu(x), G̃2(u) =

∫
[0,∞)

x2d Fu(x),

G̃(u) = G̃2(u) − G̃1(u)2, u ≥ 0.

If Â is a Gaussian process with mean 0 and covariance function R̂a(s, t), then X̂1 is a
continuous Gaussian process with mean 0 and covariance function

R̂1(t, s) =

∫
[0,t]

∫
[0,s]

G̃1(u)G̃1(v)d R̂a(u, v), t, s ≥ 0. (3.9)

In the special case that Â(t) = ca B(Λ(t)) is a time-changed Brownian motion, the covariance
function becomes

R̂1(t, s) = c2
a

∫
[0,t∧s]

G̃1(u)2dΛ(u), t, s ≥ 0. (3.10)

Observe that with i.i.d. random variables {Z i }, under Assumption 1, we obtain the FCLT with
X̂2 being a time-changed Brownian motion, that is, X̂2(t) = σZ B2(Λ(t)) for each t ≥ 0, where B2
is a standard Brownian motion, independent of X̂1, and σ 2

Z = V ar (Z1). The covariance function
for X̂2 in (3.8)

R̂2(t, s) =

∫
[0,t∧s]

G̃(u)dΛ(u), (3.11)

is a natural generalization of that in the i.i.d. case.

3.1.2. Application in insurance risk theory
The simple multiplicative model has been used in insurance risk theory (see, e.g., [27]). Here

x ∈ R+ since Z i represents the pay-offs of insurance claims, and ϕ(x) = x for all x ∈ R+.
Specific examples for the function H̃ include:

(i) H̃ (t) = 1 − e−γ t for some γ > 0. When x ∈ R+, this function is used to model delays in
insurance claim settlement, referring to situations in which the pay-off of each claim decreases
exponentially fast.
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(ii) H̃ (t) = tγ for some γ > 0. When x ∈ R+, the function H̃ is used to model the pay-off of
each claim that decreases polynomially fast.

When the arrival process has a Gaussian limit, the FCLT provides a Gaussian approximation
for the shot noise process, which can be then used to approximate the corresponding ruin
probability. Recall that the ruin probability can be represented as the first-passage-time (hitting
time) of a simple functional of the shot noise process; see Section 4.2 in [27]. Although the
first-passage-time (hitting time) of Gaussian processes is difficult to explicitly characterize [7],
numerical solutions can be easily obtained for the ruin probability by using the Gaussian
approximations. It is worth noting that in the conventional regime, functional limit theorems
are proved in [26–28] for Poisson shot noise processes, where the limit processes are Brownian
motion, α-stable process and fractional Brownian motion under the appropriate assumptions
upon the shot noises, respectively. See also Section 1.1 for relevant discussions.

3.1.3. Application in physics
In [41], the multiplicative model is applied to study a damped harmonic oscillator subject to a

random force, where the random forces are given by i.i.d. symmetric α-stable random variables
(α ∈ (0, 2]). In the conventional scaling regime as reviewed in Section 1.1, the diffusion-scaled
shot noise process is shown to converge to a stochastic integral with respect to a Lévy process.
Here in the asymptotic regime with high intensity, our results provide a new limit under the
assumptions that the random forces are conditionally independent with Gaussian distributions,
having mean zero but the variance depending on the time when the forces occur. In addition, the
random forces can be multidimensional.

Specifically, suppose that the random forces have a conditional Gaussian distribution with
mean zero and covariance matrix Σt such that the density of Ft (x) is

ft (x) =
1√

(2π)k |Σt |
exp

(
−

1
2

xTΣ−1
t x

)
, x ∈ Rk (3.12)

for each t ≥ 0, where xT is the transpose of x ∈ Rk and |Σt | is the determinant of Σt . Then the
limit process X̂ in Theorem 2.2 has the covariance functions R̂1(t, s) and R̂2(t, s) in (3.4) and
(3.5), respectively, where

G̃1(u) =

∫
Rk
ϕ(x) fu(x)dx, G̃2(u) =

∫
Rk
ϕ(x)2 fu(x)dx,

for each u ≥ 0, with ft (u) given in (3.12).

3.2. Queueing and work-input processes in non-stationary infinite-server queues

Consider a non-stationary infinite-server queue with a time-varying arrival process An as in
Assumption 1 and service times {Z i } as described above, denoted as “G t/G t/∞” [36]. The total
queue length process Qn

:= {Qn(t) : t ≥ 0} and the work-input process W n
:= {W n(t) : t ≥ 0}

can be written as

Qn(t) =

An (t)∑
i=1

1(τ n
i + Z i (τ n

i ) > t), t ≥ 0, (3.13)

and

W n(t) =

An (t)∑
i=1

Z i (τ n
i )1(τ n

i + Z i (τ n
i ) > t), t ≥ 0. (3.14)
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The work-input processes are studied in [30], as a general class of Poisson shot noise processes.
Functional limit theorems are proved under certain conditions, where the limit processes are
fractional Brownian motions. Our results are distinct in two aspects: first, the model itself is new
since the arrival process is more general, and non-stationarity lies in both arrival and service
processes, and second, the scaling is different, since we let the arrival rate or intensity get large.

It is worth noting that the work-input process W n is different from the remaining workload
process in the system at each time. The latter can be obtained from the two-parameter process
limits for the non-stationary infinite-server queueing model studied in [36]. The remaining
workload process is the integral of the two-parameter queueing process tracking the residual
service times with respect to the second time parameter.

For the queueing process Qn , the shot shape function

H (1)(t, x) = 1(t < x), x ∈ R+,

and for the work-input process W n ,

H (2)(t, x) = x1(t < x), x ∈ R+.

Since the queueing process Qn has been studied in [36], we focus on the work-input process
and its joint convergence with the queueing process. It is also worth noting that the queueing
process is recently studied in [22] under the conventional scaling regime. Assuming that the
interarrival and service times form a sequence of i.i.d. two-dimensional random vectors with a
general bivariate distribution and that the service time distributions are regularly varying, they
have proved the weak convergence of the queueing processes to a Gaussian process.

We discuss the regularity conditions in Assumption 2. It is easy to see that for each x ∈ R+,
H (1)(t, x) and H (2)(t, x) are in D as a function of t , and they are nonnegative and nonincreasing
in t . For H (1)(t, x), we have

G(1)
1 (t, u) = Fc

u (t − u), G(1)
2 (t, u) = Fc

u (t − u), G̃(1)(t, u) = Fu(t − u)Fc
u (t − u),

and

Ǧ(1)
1 (t, s, u) = Fu(s − u) − Fu(t − u), Ǧ(1)

2 (t, s, u) = Fu(t − u) − Fu(s − u).

Thus, conditions (i) and (ii) in Assumption 2 are always satisfied without additional assumptions
on the distribution function Fu(·), and the condition in (2.5) becomes∫

[0,T ]
(Fu(t − u) − Fu(t − δ − u))dΛ(u) → 0 as δ → 0,

for each T ≥ t ≥ 0. Since for each u ≥ 0, Fu(·) is continuous (see Assumption 2), the integrand
above converges to 0 as δ → 0. Thus, by the bounded convergence theorem, condition (2.5)
holds. Therefore, for the queueing process, we impose the same assumptions on the arrival
process and service times as those in [36]. In particular, we do not require additional moment
conditions on the service times, which is distinct from the work-input process as shown below in
(3.17).

For H (2)(t, x), we have

G(2)
1 (t, u) =

∫
(t−u,∞)

xd Fu(x), G(2)
2 (t, u) =

∫
(t−u,∞)

x2d Fu(x), (3.15)

G̃(2)(t, u) =

∫
(t−u,∞)

x2d Fu(x) −

(∫
(t−u,∞)

xd Fu(x)
)2
,
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and

Ǧ(2)
1 (t, s, u) = −

∫
(s−u,t−u]

xd Fu(x), Ǧ(2)
2 (t, s, u) =

∫
(s−u,t−u]

x2d Fu(x).

The condition in (2.3) requires that

sup
0≤t≤T

V T
0

(∫
(t−·,∞)

xd F·(x)
)
< ∞, (3.16)

while the condition in (2.4) requires that for each t ≥ 0,

sup
0≤u≤t

∫
(t−u,∞)

x2d Fu(x) < ∞. (3.17)

The condition in (2.5) requires that for each T ≥ t ≥ 0,∫
[0,T ]

∫
(t−δ−u,t−u]

x2d Fu(x)dΛ(u) → 0 as δ → 0, (3.18)

which always holds since Fu(·) is continuous for each u ≥ 0.
Let the fluid-scaled processes Q̄n

:= {Q̄n(t) : t ≥ 0} and W̄ n
:= {W̄ n(t) : t ≥ 0} be defined

by Q̄n(t) := n−1 Qn(t) and W̄ n(t) := n−1W n(t) for t ≥ 0, respectively. Define the deterministic
functions

Q̄(t) :=

∫
[0,t]

Fc
u (t − u)dΛ(u), (3.19)

W̄ (t) :=

∫
[0,t]

G(2)
1 (t, u)dΛ(u) =

∫
[0,t]

∫
(t−u,∞)

xd Fu(x)dΛ(u), (3.20)

for t ≥ 0 and G(2)
1 (t, u) is given in (3.15). It is easy to check that Q̄(t) and W̄ (t) are continuous

functions. Let the diffusion-scaled processes Q̂n
:= {Q̂n(t) : t ≥ 0} and Ŵ n

:= {Ŵ n(t) : t ≥ 0}

be defined by Q̂n(t) :=
√

n(Q̄n(t) − Q̄(t)) and Ŵ n(t) :=
√

n(W̄ n(t) − W̄ (t)) for t ≥ 0,
respectively. By Theorem 2.3, we obtain the following theorem for the queueing and work-input
processes.

Theorem 3.2. Under Assumption 1 and conditions in (3.16)–(3.18),

(Q̄n, W̄ n) ⇒ (Q̄, W̄ ) in (D2, J1) as n → ∞,

where Q̄ and W̄ are defined in (3.19)–(3.20), and

(Q̂n, Ŵ n) ⇒ (Q̂, Ŵ ) in (D2, J1) as n → ∞,

where the limits Q̂ = {Q̂(t) : t ≥ 0} and Ŵ = {Ŵ (t) : t ≥ 0} are continuous and can be written
as Q̂ = Q̂1 + Q̂2 and Ŵ = Ŵ1 + Ŵ2, Q̂1 and Q̂2 are independent, Ŵ1 and Ŵ2 are independent,
Q̂1 and Ŵ1 are defined by

Q̂1(t) = Â(t) +

∫
(0,t]

Â(u)d Fu(t − u), t ≥ 0,

Ŵ1(t) = Â(t)G(2)
1 (t, t) −

∫
(0,t]

Â(u)dG(2)
1 (t, u), t ≥ 0,
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and
(
Q̂2, Ŵ2

)
is a two-dimensional Gaussian process with mean 0 and covariance functions:

Cov(Q̂2(t), Q̂2(s)) =

∫
[0,t∧s]

(
Fc

u (t ∧ s − u) − Fc
u (t − u)Fc

u (s − u)
)
dΛ(u),

Cov(Ŵ2(t), Ŵ2(s)) =

∫
[0,t∧s]

(
G(2)

2 (t ∨ s, u) − G(2)
1 (t, u)G(2)

1 (s, u)
)
dΛ(u),

Cov(Q̂2(t), Ŵ2(s)) =

∫
[0,t∧s]

(
G(2)

1 (t ∨ s, u) − Fc
u (t − u)G(2)

1 (s, u)
)
dΛ(u),

for t, s ≥ 0, where G(2)
1 and G(2)

2 are defined in (3.15).

It is evident that G(1)
1 (·, u) ∈ C and G(2)

1 (·, u) ∈ C, and thus, by Lemma 6.1, Q̂1 and
Ŵ1 are continuous. If Â is a Gaussian process with mean 0 and covariance function R̂a(s, t),
then

(
Q̂1, Ŵ1

)
is a two-dimensional continuous Gaussian process with mean 0 and covariance

functions: for t, s ≥ 0,

Cov(Q̂1(t), Q̂1(s)) =

∫
[0,t]

∫
[0,s]

Fc
u (t − u)Fc

v (s − v)d R̂a(u, v)

Cov(Ŵ1(t), Ŵ1(s)) =

∫
[0,t]

∫
[0,s]

(
G(2)

1 (t, u)G(2)
1 (s, v)

)
d R̂a(u, v)

Cov(Q̂1(t), Ŵ1(s)) =

∫
[0,t]

∫
[0,s]

(
Fc

u (t − u)G(2)
1 (s, v)

)
d R̂a(u, v).

In the special case that Â(t) = ca B(Λ(t)) is a time-changed Brownian motion, these covariance
functions become

Cov(Q̂1(t), Q̂1(s)) = c2
a

∫
[0,t∧s]

Fc
u (t − u)Fc

u (s − u)dΛ(u),

Cov(Ŵ1(t), Ŵ1(s)) = c2
a

∫
[0,t∧s]

(
G(2)

1 (t, u)G(2)
1 (s, u)

)
dΛ(u),

Cov(Q̂1(t), Ŵ1(s)) = c2
a

∫
[0,t∧s]

(
Fc

u (t − u)G(2)
1 (s, u)

)
dΛ(u),

for each t, s ≥ 0.

4. Preliminaries

In this section we provide some preliminaries for the proof of Theorem 2.2. We first give a
representation for the process X̂n , which follows from simple calculations.

Lemma 4.1. The process X̂n defined in (2.9) can be written as X̂n
= X̂n

1 + X̂n
2 , where the

processes X̂n
1 and X̂n

2 are given by

X̂n
1 (t) :=

∫
(0,t]

G1(t, u)d Ân(u)

= Ân(t)G1(t, t) −

∫
(0,t]

Ân(u−)dG1(t, u), t ≥ 0, (4.1)

where Ân(u−) denotes the left limit of Ân at time u, and

X̂n
2 (t) :=

1
√

n

An (t)∑
i=1

(
H (t − τ n

i , Z i (τ n
i )) − G1(t, τ n

i )
)
, t ≥ 0. (4.2)
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By the covariance function R̂2(t, s) of X̂2 in (2.12), we obtain the following moment
properties for the increments of the limit process X̂2 (their proofs can be found in Appendix).

Lemma 4.2. For each 0 ≤ s ≤ t ,

E
[⏐⏐X̂2(s) − X̂2(t)

⏐⏐2] =

∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u), (4.3)

and

E
[⏐⏐X̂2(s) − X̂2(t)

⏐⏐4] = 3
(∫

(s,t]
G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u)
)2

. (4.4)

Similarly, for the prelimit process X̂n
2 , we have the following moment properties for its

increments. The proof is given in the Appendix.

Lemma 4.3. For each 0 ≤ s ≤ t and all n,

E
[⏐⏐X̂n

2 (s) − X̂n
2 (t)

⏐⏐2] = E
[∫

(s,t]
G̃(t, u)d Ān(u) +

∫
(0,s]

G̃(t, s, u)d Ān(u)
]
, (4.5)

and

E
[⏐⏐X̂n

2 (s) − X̂n
2 (t)

⏐⏐4] = 3
(

E
[∫

(s,t]
G̃(t, u)d Ān(u) +

∫
(0,s]

G̃(t, s, u)d Ān(u)
])2

+ o(1/n). (4.6)

Fix T > 0. For any 0 ≤ s ≤ t ≤ T , define a nonnegative function V : R+ × R+ → R+ by

V (s, t) := C̃
(
Λ(t) − Λ(s)

)
+

∫
[0,T ]

Ǧ2(t, s, u)dΛ(u)

= C̃
(
Λ(t) − Λ(s)

)
+

∫
[0,T ]

∫
Rk

(
H (t − u, x) − H (s − u, x)

)2d Fu(x)dΛ(u), (4.7)

where C̃ = sup0≤t,u≤T G̃(t, u) < ∞. To see that C̃ is indeed finite, recall that G̃(t, u) =

G2(t, u) − G2
1(t, u) and H (t, x) is assumed monotone in t for each x . Then,

sup
0≤t,u≤T

G̃(t, u) ≤ sup
0≤t,u≤T

G2(t, u) ≤ sup
0≤u≤T

{G2(T, u) ∨ G2(0, u)}. (4.8)

Consider sup0≤u≤T G2(T, u) first. We have

sup
0≤u≤T

G2(T, u) = sup
0≤u≤T

{G̃(T, u) + G2
1(T, u)} ≤ sup

0≤u≤T
G̃(T, u) + sup

0≤u≤T
G2

1(T, u).

The first term is finite by Assumption 2(ii). By Assumption 2(i), we have sup0≤t,u≤T |G1(t, u)| <
∞, which implies sup0≤t,u≤T G2

1(t, u) < ∞, and thus, sup0≤u≤T G2(T, u) < ∞. A similar
argument applies to sup0≤u≤T G2(0, u). Thus, we have shown that C̃ is finite.

Remark 4.1. Note that the function V (s, t) has the following properties:

(i) V (t, t) = 0 for each t ∈ [0, T ];
(ii) V (s, t) is nondecreasing in t for each s and nonincreasing in s for each t , and thus it is

evident that V (s, t) ≤ V (s, T ) ≤ V (0, T ) for each s, t ≥ 0;
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(iii) V (s, t) is continuous in both s and t . To see this, for any δ1, δ2 ∈ R,

V (s, t) − V (s − δ1, t − δ2)

= C̃
(
Λ(t) − Λ(t − δ2) − (Λ(s) − Λ(s − δ1))

)
+

∫
[0,T ]

∫
Rk

(
H (t − u, x) − H (s − u, x)

)2d Fu(x)dΛ(u)

−

∫
[0,T ]

∫
Rk

(
H (t − δ2 − u, x) − H (s − δ1 − u, x)

)2d Fu(x)dΛ(u)

= C̃
(
Λ(t) − Λ(t − δ2) − (Λ(s) − Λ(s − δ1))

)
+

∫
[0,T ]

Ǧ2(t, t − δ2, u)dΛ(u) +

∫
[0,T ]

Ǧ2(s, s − δ1, u)dΛ(u)

+ 2
∫

[0,T ]

∫
Rk

[H (t − u, x) − H (t − δ2 − u, x)]

× [H (t − δ2 − u, x) − H (s − u, x)]d Fu(x)dΛ(u)

− 2
∫

[0,T ]

∫
Rk

[H (s − u, x) − H (s − δ1 − u, x)]

× [H (t − u, x) − H (s − δ1 − u, x)]d Fu(x)dΛ(u). (4.9)

Note that the last two terms in (4.9) are bounded by

2
(∫

[0,T ]
Ǧ2(t, t − δ2, u)dΛ(u)

)1/2(∫
[0,T ]

Ǧ2(t − δ2, s, u)dΛ(u)
)1/2

,

and

2
(∫

[0,T ]
Ǧ2(s, s − δ1, u)dΛ(u)

)1/2(∫
[0,T ]

Ǧ2(t, s − δ1, u)dΛ(u)
)1/2

,

respectively, due to Cauchy–Schwarz inequality. By the continuity of Λ and Assump-
tion 2(iii) that for each T ≥ t ≥ 0, limδ→0

∫
[0,T ] Ǧ2(t, t − δ, u)dΛ(u) = 0, it is easy

to verify that each term in (4.9) converges to 0 as |δ1| + |δ2| → 0. Now the continuity of V
has been proved.

However, the function V (s, t) cannot be regarded as a measure defined on [0, T ] due to the
nonlinear integrand in (4.7), and cannot be written as the difference Ṽ (t) − Ṽ (s) for some
nondecreasing and continuous function Ṽ on R+. Thus, the standard approach to prove weak
convergence in D (e.g., Theorem 13.5 in [5]) and the existence of a stochastic process in the
space D given its consistent finite-dimensional distributions (e.g., Theorem 13.6 in [5]) cannot
be applied directly to the proof of the weak convergence X̂n

2 ⇒ X̂2 in (D, J1) as n → ∞. This
motivates us to prove new maximal inequalities that are necessary to prove the weak convergence
in the next section. □

We now state the probability bound for the increments of the limit process X̂2.

Lemma 4.4. For 0 ≤ r ≤ s ≤ t ≤ T and any ϵ > 0,

P
(⏐⏐X̂2(r ) − X̂2(s)

⏐⏐ ∧ ⏐⏐X̂2(s) − X̂2(t)
⏐⏐ ≥ ϵ

)
≤

3
ϵ4 V (r, s)V (s, t). (4.10)
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Proof. We have

P
(⏐⏐X̂2(r ) − X̂2(s)

⏐⏐ ∧ ⏐⏐X̂2(s) − X̂2(t)
⏐⏐ ≥ ϵ

)
≤

1
ϵ4 E

[⏐⏐X̂2(r ) − X̂2(s)
⏐⏐2 ⏐⏐X̂2(s) − X̂2(t)

⏐⏐2]
≤

1
ϵ4

(
E
[⏐⏐X̂2(r ) − X̂2(s)

⏐⏐4])1/2(
E
[⏐⏐X̂2(s) − X̂2(t)

⏐⏐4])1/2

=
3
ϵ4

(∫
(r,s]

G̃(s, u)dΛ(u) +

∫
[0,r ]

G̃(s, r, u)dΛ(u)
)

×

(∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u)
)

≤
3
ϵ4 V (r, s)V (s, t),

where the equality follows from Lemma 4.2. □

Similarly, we obtain the following probability bound for the increments of the prelimit process
X̂n

2 , whose proof is given in the Appendix.

Lemma 4.5. For 0 ≤ r ≤ s ≤ t ≤ T , all n ≥ 1, and any ϵ > 0,

P
(⏐⏐X̂n

2 (r ) − X̂n
2 (s)

⏐⏐ ∧ ⏐⏐X̂n
2 (s) − X̂n

2 (t)
⏐⏐ > ϵ

)
≤

C
ϵ4 V (r, s)V (s, t), (4.11)

where C > 0 is a constant.

Remark 4.2. Note that even when the sequence {Z i } is i.i.d., the function V (s, t) cannot be
regarded as a measure defined on [0, T ], unless certain regularity conditions are imposed on the
function H (see, e.g., Theorem 4.3 in [19]). For the exposition convenience in this remark, let us
assume that H (t, x) is nondecreasing in t for each x ∈ Rk . It is possible to bound the function
V (s, t) by another function V̆ which can be regarded as a measure on [0, T ], where

V̆ (s, t) := C̃
(
Λ(t) − Λ(s)

)
+

∫
[0,T ]

∫
Rk

(
H (T, x) − H (0, x)

)(
H (t − u, x) − H (s − u, x)

)
d F(x)dΛ(u). (4.12)

This function V̆ (s, t) can be written as the difference Ṽ (t) − Ṽ (s) for the nondecreasing and
continuous function Ṽ on R+, where

Ṽ (t) := C̃Λ(t) +

∫
[0,T ]

∫
Rk

(
H (T, x) − H (0, x)

)
H (t − u, x)d F(x)dΛ(u)

= C̃Λ(t) +

∫
Rk

(
H (T, x) − H (0, x)

)(∫
[0,T ]

H (t − u, x)dΛ(u)
)

d F(x), (4.13)

for t ≥ 0.
It is easy to check that the function Ṽ (t) is continuous without imposing any regularity

conditions as remarked in Section 2.2. Thus, in this case, the weak convergence criterion in
Theorem 13.5 of [5] can be applied with this bounding function V̆ (s, t). See more discussions
on this approach in Section 5.

Similarly, in the special case of the simple multiplicative model in Section 3.1, we also observe
that the function V (s, t) cannot be regarded as a measure defined on [0, T ], but we can bound
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the function V (s, t) by a function V̌ (s, t) which can be regarded as measure on [0, T ], where

V̌ (s, t) := C̃
(
Λ(t) − Λ(s)

)
+
(
H̃ (T ) − H̃ (0)

) ∫
[0,T ]

(
H̃ (t − u) − H̃ (s − u)

)
G̃2(u)dΛ(u),

where G̃2(u) is given in (3.3). Here we assume H̃ is nondecreasing for the convenience of
exposition. As above, we can also apply Theorem 13.5 of [5] directly without imposing additional
regularity conditions other than those in (3.1) and (3.2).

However, for our general non-stationary model, this bounding approach will give us the
corresponding functions V̆ (s, t) and Ṽ (t) in (4.12) and (4.13), respectively, where F is replaced
by Fu . The continuity of Ṽ (t) is key in applying Theorem 13.5 of [5], which will require that

lim
δ↓0

∫
[0,T ]

∫
Rk

(
H (T, x) − H (0, x)

)(
H (t − u, x) − H (t − δ − u, x)

)
d Fu(x)dΛ(u) = 0.

Instead of making this assumption, we choose to work with the function V (s, t) in (4.7) directly,
while assuming the regularity condition (iii) in Assumption 2 (the continuity condition only
requires (2.5)). Although under Assumption 2 we cannot apply Theorem 13.5 of [5], we are able
to prove the weak convergence by providing new maximal inequalities in the next section. □

5. A general maximal inequality and criterion of existence

A standard approach to prove weak convergence of stochastic processes Xn
⇒ X in

(D([0, T ],R), J1) is stated as Theorem 13.5 in [5], which requires three conditions:

(i) convergence of finite-dimensional distributions, that is, (Xn(t1), . . . , Xn(tk)) ⇒ (X (t1), . . . ,
X (tk)) for continuity points {ti : 1 ≤ i ≤ k} of X ;

(ii) X (T ) − X (T − δ) ⇒ 0 in R as δ → 0;
(iii) for 0 ≤ r ≤ s ≤ t ≤ T , n ≥ 1 and ϵ > 0,

P
(
|Xn(s) − Xn(r )| ∧ |Xn(t) − Xn(s)| ≥ ϵ

)
≤

1
ϵ4β (F(t) − F(r ))2α, (5.1)

where β ≥ 0 and α > 1/2, and F is a nondecreasing and continuous function on [0, T ].

The proof of this criterion relies on the maximal inequalities in Theorems 10.3 and 10.4 in [5].
Specifically, the proof requires verifying the third condition in Theorem 13.3 in [5], that is, for
ϵ > 0 and η > 0, there exists a δ ∈ (0, 1) and n0 such that

P(w′′(Xn, δ) ≥ ϵ) ≤ η, n ≥ n0, (5.2)

where w′′(x, δ) is a modulus of continuity of a function x ∈ D defined by

w′′(x, δ) := sup
t1≤t≤t2, t2−t1≤δ

{|x(t) − x(t1)| ∧ |x(t2) − x(t)|}, (5.3)

with the supremum over all triples t1, t, t2 in [0, T ] satisfying the constraints. To verify the
condition in (5.2), the maximal inequalities in Theorem 10.3 and 10.4 of [5] play a key role.
They provide conditions under which the probability bound on the increments as in (5.1) will
imply the probability bound on the modulus of continuity as in (5.2).

We first review Theorem 10.3 of [5]. If T is a Borel subset of [0, T ] and µ is a finite measure
on [0, T ] such that

P
(
|X (s) − X (r )| ∧ |X (t) − X (s)| ≥ ϵ

)
≤

1
ϵ4β

(
µ(T ∩ (r, t])

)2α
, (5.4)
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for 0 ≤ r ≤ s ≤ t ≤ T , and for ϵ > 0, α > 1/2, and β ≥ 0, then

P
(

sup
r≤s≤t, r,s,t∈T

|X (s) − X (r )| ∧ |X (t) − X (s)| ≥ ϵ

)
≤

K
ϵ4β (µ(T ))2α, (5.5)

for ϵ > 0 and K being a constant depending only on α and β. Theorem 10.4 in [5] provides a
further inequality which restricts the time intervals to be within δ distance. That is,

P
(

sup
r≤s≤t,t−r≤δ, r,s,t∈T

|X (s) − X (r )| ∧ |X (t) − X (s)| ≥ ϵ

)
≤

K
ϵ4β µ(T ) sup

0≤t≤T −2δ

(
µ(T ∩ [t, t + 2δ])

)2α−1
, (5.6)

for ϵ > 0 and K being a constant depending only on α and β.
A critical condition in these maximal inequalities requires that µ be a finite measure on [0, T ],

and as a consequence, that results in the probability bound in (5.1) involving a nondecreasing and
continuous function F (by simply taking µ(s, t] = F(t) − F(s)). However, as we have observed
in Lemmas 4.4–4.5, the probability bounds for X̂2 and X̂n

2 do not provide us a finite measure to
work with. We will next prove new maximal inequalities by relaxing the finite measure condition.
We give a definition of a set function below that will be used to replace the finite measure.

Definition 5.1. Let µ be a set function from the Borel subset of R+ into R+ ∪ {∞} such that

(i) µ is nonnegative and µ(∅) = 0;
(ii) µ is monotone, that is, if A ⊆ B ⊂ R+, then µ(A) ≤ µ(B);

(iii) µ is superadditive, that is, for any disjoint Borel sets A and B, µ(A) + µ(B) ≤ µ(A ∪ B).

By definition, the monotonicity implies that µ(s, t] ≤ µ(0, T ] for any 0 ≤ s ≤ t ≤ T , and
the superadditivity implies that µ(s, t] ≤ µ(0, t] − µ(0, s], for any 0 ≤ s ≤ t ≤ T . It is evident
that if µ is a measure, then the conditions (i)–(iii) are always satisfied.

Remark 5.1. The function V (s, t) defined in (4.7) naturally induces a set function ν satisfying
the conditions in Definition 5.1. More precisely, for any Borel set A ⊂ [0, T ], define

ν(A) := sup {V (s, t) : (s, t] ⊂ A} . (5.7)

It is easy to check that ν satisfies all the conditions in Definition 5.1 and ν((s, t]) = V (s, t)
for 0 ≤ s ≤ t ≤ T . In particular, the condition (iii) is satisfied because of the inequality that∑n

i=1x2
i ≤

(∑n
i=1xi

)2 for each n ≥ 1 if all elements of {xi : 1 ≤ i ≤ n} have the same sign.
Note that V (s, t) is continuous in both s and t , while the continuity condition for the set function
µ is not required in Theorems 5.1 and 5.2.

Let T ⊂ [0, T ] be a Borel set and {X (t) : t ∈ T } is a stochastic process on T . We assume that
X (t) is right-continuous in the sense that if for k ≥ 1, tk ∈ T such that tk ↓ t ∈ T as k → ∞,
we have X (tk) → X (t) a.s. as k → ∞. The following two theorems generalize Theorems 10.3
and 10.4 of [5], respectively. The proofs of Theorems 5.1–5.3 are given in Section 7, which are
adapted from those in [5].

Theorem 5.1. Suppose that α > 1/2 and β ≥ 0 and that µ is a finite set function in
Definition 5.1 such that for any r, s, t ∈ T with r ≤ s ≤ t and ϵ > 0,

P
(
|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤

C0

ϵ4β

(
µ
(
T ∩ (r, t]

))2α
, (5.8)
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where C0 is a positive constant. Then

P
(

sup
r ≤ s ≤ t, r, s, t ∈ T

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤

C1

ϵ4β

(
µ(T )

)2α
, (5.9)

where C1 is a positive constant that depends only on α, β and C0.

Theorem 5.2. Suppose that α > 1/2 and β ≥ 0, and for any r ≤ s ≤ t with t − r < 2δ, δ > 0,
r, s, t ∈ T and ϵ > 0,

P
(
|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤

C0

ϵ4β

(
µ
(
T ∩ (r, t]

))2α
, (5.10)

where µ is a finite set function in Definition 5.1. Then

P
(

sup
r<s<t, r,s,t∈T

t−r≤2δ

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)

≤
2C1

ϵ4β µ(T ) sup
0≤t≤T −2δ

(
µ
(
T ∩ (t, t + 2δ]

))2α−1
. (5.11)

Similarly, a standard criterion to prove the existence of a stochastic process with sample paths
in D given its finite dimensional distributions is given in Theorem 13.6 in [5]. That criterion also
requires a probability bound in the same flavor as (5.1), and its proof relies on the same maximal
inequalities in Theorems 10.3 and 10.4 of [5]. For our purpose, to prove the existence of the
Gaussian process X̂2 in the space D (in fact in C, see Lemma 6.3) given its finite dimensional
distributions, the probability bound for the increments of X̂2 in Lemma 4.4 does not satisfy the
condition in Theorem 13.6 in [5]. Therefore, we also generalize Theorem 13.6 in [5] by relaxing
the condition on the probability bound for the increments of the process. We now state the new
criterion of existence in the following theorem.

Theorem 5.3. There exists a random element X in D([0, T ],R) with finite-dimensional
distributions πt1,...,tk for any 0 ≤ t1 < · · · < tk ≤ T , that is, πt1,...,tk (x1, . . . , xk) = P(X (t1) ≤

x1, . . . , X (tk) ≤ xk) for xi ∈ R, i = 1, . . . , k, if the following conditions are satisfied:

(i) the finite dimensional distributions πt1,...,tk are consistent, satisfying the conditions of
Kolmogorov’s existence theorem;

(ii) for any 0 ≤ r ≤ s ≤ t ≤ T , β ≥ 0, α > 1/2 and ϵ > 0,

P
(
|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤

C2

ϵ4β

(
µ(r, t]

)2α
, (5.12)

where C2 is a positive constant, µ is a finite set function in Definition 5.1 and µ(0, t] is
continuous in t;

(iii) for any ϵ > 0 and t ∈ [0, T ),

lim
δ↓0

P
(
|X (t) − X (t + δ)| > ϵ

)
= 0. (5.13)

6. Proof of Theorems 2.1 and 2.2

In this section we prove Theorems 2.1 and 2.2.
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Proof of Theorem 2.1. We first prove the continuity of X̄ . For each t ≥ 0, let tk ≥ 0 be a
sequence such that limk→∞tk = t . We have

X̄ (tk) − X̄ (t) =

∫
[0,tk ]

G1(tk, u)dΛ(u) −

∫
[0,t]

G1(t, u)dΛ(u)

=

∫
[0,t]

[G1(tk, u) − G1(t, u)]dΛ(u) +

∫
(t,tk ]

G1(tk, u)dΛ(u)

=

∫
[0,t]

∫
Rk

[H (tk − u, x) − H (t − u, x)]d Fu(x)dΛ(u)

+

∫
(t,tk ]

∫
Rk

H (tk − u, x)d Fu(x)dΛ(u). (6.1)

By applying Cauchy–Schwarz inequality twice, the first term on the right hand side of (6.1) is
bounded by(

Λ(t)
∫

[0,t]
Ǧ2(t, tk, u)dΛ(u)

)1/2

. (6.2)

Under condition (2.5), it is easy to see that the quantity in (6.2) vanishes as k → ∞ (see also
Remark 2.1). For the second term in (6.1), Assumption 2(i) implies that

∫
Rk H (tk − u, x)d Fu(x)

has the same upper bound (and is thus integrable) for all k. By the continuity of Λ and the
absolute continuity of Lebesgue–Stieltjes integration, the second term also converges to 0 as
k → ∞. Therefore, we conclude that X̄ is continuous.

Since X̄ is deterministic and continuous, to show that X̄n
⇒ X̄ in (D, J1) as n → ∞, it

suffices to show that for each T > 0 and ϵ > 0,

lim
n→∞

P
(

sup
t∈[0,T ]

|X̄n(t) − X̄ (t)| > ϵ

)
= 0. (6.3)

By the definitions of X̄n and X̄ , we have

|X̄n(t) − X̄ (t)|

=

⏐⏐⏐⏐1n
An (t)∑
i=1

H (t − τ n
i , Z i (τ n

i )) −

∫
[0,t]

G1(t, u)dΛ(u)
⏐⏐⏐⏐

=

⏐⏐⏐⏐1n
An (t)∑
i=1

(
H (t − τ n

i , Z i (τ n
i )) − G1(t, τ n

i )
)
+

∫
(0,t]

G1(t, u)d( Ān(u) − Λ(u))
⏐⏐⏐⏐

≤
⏐⏐X̄n

2 (t)
⏐⏐+ ⏐⏐ Ān(t) − Λ(t)

⏐⏐|G1(t, t)| +

⏐⏐⏐⏐ ∫
(0,t]

( Ān(u) − Λ(u))dG1(t, u)
⏐⏐⏐⏐, (6.4)

where X̄n
2 :=

1
√

n X̂n
2 for X̂n

2 defined in (4.2).
Recall that Ān

⇒ Λ in (D, J1) in (2.2) and Λ ∈ C, we have that for each T > 0 and ϵ > 0,

lim
n→∞

P
(

sup
t∈[0,T ]

⏐⏐ Ān(t) − Λ(t)
⏐⏐ > ϵ

)
= 0. (6.5)

For the second and third terms in (6.4), Eq. (6.5) together with the facts that supt∈[0,T ]G1(t, t)
and supt∈[0,T ]V

T
0 (G1(t, ·)) are finite (recall (2.3)) implies that for ϵ > 0

lim
n→∞

P
(

sup
t∈[0,T ]

⏐⏐ Ān(t) − Λ(t)
⏐⏐|G1(t, t)| > ϵ

)
= 0,
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and

lim
n→∞

P
(

sup
t∈[0,T ]

⏐⏐⏐⏐ ∫
(0,t]

( Ān(u) − Λ(u))dG1(t, u)
⏐⏐⏐⏐ > ϵ

)
= 0.

The proof now reduces to show that for ϵ > 0

lim
n→∞

P
(

sup
t∈[0,T ]

⏐⏐X̄n
2 (t)

⏐⏐ > ϵ

)
= 0. (6.6)

Since for any 0 ≤ t ≤ T , |X̄n
2 (t)| ≤ |X̄n

2 (T )− X̄n
2 (t)|+ |X̄n

2 (T )| and |X̄n
2 (t)| ≤ |X̄n

2 (t)|+ |X̄n
2 (T )|,

we have

|X̄n
2 (t)| ≤ |X̄n

2 (t)| ∧ |X̄n
2 (T ) − X̄n

2 (t)| + |X̄n
2 (T )|.

Thus, to show (6.6), it suffices to prove that

lim
n→∞

P
(

sup
t∈[0,T ]

⏐⏐X̄n
2 (t)

⏐⏐ ∧ ⏐⏐X̄n
2 (T ) − X̄n

2 (t)
⏐⏐ > ϵ

)
= 0, (6.7)

and

lim
n→∞

P
(⏐⏐X̄n

2 (T )
⏐⏐ > ϵ

)
= 0. (6.8)

To show (6.7), recall Remark 5.1 that the function V in (4.7) induces a finite set function ν
such that ν((s, t]) = V (s, t). By Lemma 4.5, condition (5.8) holds for X̂n

2 (with α = β = 1,
T = [0, T ] and ϵ being replaced by

√
nϵ), that is,

P
(⏐⏐X̂n

2 (r ) − X̂n
2 (s)

⏐⏐ ∧ ⏐⏐X̂n
2 (s) − X̂n

2 (t)
⏐⏐ > √

nϵ
)

≤
Ĉ0

n2ϵ4 V (r, s)V (s, t),

for some constant Ĉ0 > 0. Thus, by Theorem 5.1, we obtain that as n → ∞,

P
(

sup
0≤r<s<t≤T

⏐⏐X̂n
2 (r ) − X̂n

2 (s)
⏐⏐ ∧ ⏐⏐X̂n

2 (s) − X̂n
2 (t)

⏐⏐ ≥
√

nϵ
)

≤
Ĉ ′

0

n2ϵ4 V 2(0, T ) → 0,

for some constant Ĉ ′

0 > 0, which further implies (6.7) (by taking r = 0, s = t and t = T ).
To prove (6.8), first note that by (6.5), there exists a large constant K > 2Λ(T ) such that

P
(

Ān(T ) > K
)

→ 0 as n → ∞. We then write

P
(⏐⏐X̄n

2 (T )
⏐⏐ > ϵ

)
≤ P

(
Ān(T ) > K

)
+ P

(
1( Ān(T ) ≤ K )

⏐⏐X̄n
2 (T )

⏐⏐ > ϵ
)
.

The second term on the right hand side is upper bounded by

1
nϵ2 E

[
1( Ān(T ) ≤ K )

⏐⏐X̂n
2 (T )

⏐⏐2]
=

1
nϵ2 E

[
1( Ān(T ) ≤ K )

∫
(0,T ]

G̃(T, u)d Ān(u)
]

≤
K

nϵ2 sup
0≤u≤T

G̃(T, u) → 0 as n → ∞,

where the equality follows from (4.5). Note that sup0≤u≤T G̃(T, u) < +∞ (see (2.4)). Thus, we
have shown that (6.8) holds, which completes the proof of the theorem. □

For the convergence of X̂n
1 , we need the following lemma, whose proof is in the Appendix.
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Lemma 6.1. Define the mapping ψ on D: for z ∈ D,

ψ(z)(t) := z(t)G1(t, t) −

∫
(0,t]

z(u−)dG1(t, u), t ≥ 0. (6.9)

Then the following hold:

(i) For any z ∈ D, ψ(z) ∈ D;
(ii) If z ∈ C and G1(·, u) ∈ C for each u ≥ 0, then ψ(z) ∈ C;

(iii) If zn ∈ D for each n ∈ N and z ∈ C satisfy zn → z in (D, J1) as n → ∞, then
ψ(zn) → ψ(z) in (D, J1) as n → ∞.

Remark 6.1. The integral in (6.9) is understood as a Lebesgue–Stieltjes integral, since for each
t ≥ 0, G1(t, ·) is of bounded variation under Assumption 2(i) and z ∈ D. Thus, the mapping ψ
is well-defined.

Lemma 6.2. Under Assumptions 1–2, X̂n
1 ⇒ X̂1 in (D, J1) as n → ∞, where X̂1 is as given in

Theorem 2.2.

Proof. The claim follows from (4.1) and Lemma 6.1, and applying the continuous mapping
theorem. □

We next prove the convergence of the processes X̂n
2 . This proceeds in the following steps:

Step 1: The existence of the limit Gaussian process X̂2 with sample paths in C (Lemma 6.3).
Step 2: The convergence of finite dimensional distributions of X̂n

2 to those of X̂2 (Lemma 6.6).
Step 3: Verifying the convergence criterion with the modulus of continuity as in Theorem 13.3

of [5] and completing the proof (Lemma 6.7).

Lemma 6.3. The Gaussian process X̂2 with mean zero and covariance function in (2.12) has
continuous sample paths.

Proof. We first show that X̂2 ∈ D by verifying the conditions in Theorem 5.3. The finite-
dimensional distributions of X̂2 are Gaussian with the covariance function R̂2 in (2.12). The
consistency condition (i) is satisfied because of the Gaussian distributional property. Condition
(ii) is satisfied by Lemma 4.4. To check condition (iii), it suffices to show that for all t ∈ [0, T ),

lim
δ↓0

E
[⏐⏐X̂2(t + δ) − X̂2(t)

⏐⏐2] = 0.

By (4.3) in Lemma 4.2, this holds since H (·, x) ∈ D for all x ∈ Rk . Thus we have shown that
X̂2 ∈ D.

Finally, to show that the Gaussian process X̂2 ∈ C, given that X̂2 ∈ D, it suffices to show
that it is stochastically continuous (Theorem 1 in [16]). It is well known that a real-valued
Gaussian process is continuous in quadratic mean if and only if it is stochastically continuous.
Continuity in quadratic mean holds by (4.3) and (2.6) under Assumption 2(iii). The proof is now
complete. □

To prove the convergence of the finite-dimensional distributions of X̂n
2 to those of X̂2, we

quote the following two lemmas in [10].
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Lemma 6.4. Let z1, . . . , zn and w1, . . . , wn be complex numbers of modulus less than 1. Then⏐⏐⏐⏐ n∏
i=1

zi −

n∏
i=1

wi

⏐⏐⏐⏐ ≤

n∑
i=1

|zi − wi |.

Lemma 6.5. For x ∈ R,⏐⏐⏐⏐⏐ei x
−

n∑
m=0

(i x)m

m!

⏐⏐⏐⏐⏐ ≤ min
{

|x |
n+1

(n + 1)!
,

2|x |
n

n!

}
.

In particular, if b is a complex number with |b| ≤ 1, then |eb
− (1 + b)| ≤ |b|

2.

Lemma 6.6. The finite-dimensional distributions of the processes X̂n
2 converge to those of X̂2.

Proof. We need to show that the l-dimensional random variables(
X̂n

2 (t j ), 1 ≤ j ≤ l
)

⇒
(
X̂2(t j ), 1 ≤ j ≤ l

)
in Rl as n → ∞, (6.10)

for any 0 ≤ t1 ≤ · · · ≤ tl ≤ T and l ≥ 1. We first consider the case when l = 1 (removing
subscript 1 in t1 for brevity below).

Before proceeding to the proof, for each n ≥ 1, let the set Υ n be the collection of the
trajectories of {An(t) : t ≥ 0} such that for each T ≥ 0, sup0≤t≤T | Ân(t)| ≤ n1/4 and
max1≤i≤An (T )|τ

n
i+1 − τ n

i | → 0 as n → ∞. It is evident that under Assumption 1, P(Υ n) =

P(An
∈ Υ n) → 1 as n → ∞ and An(t) increases without limit and is of order O(n) on Υ n .

Decompose X̂n
2 (t) as X̂n

2 (t) = X̂n
2 (t)1(An

∈ Υ n) + X̂n
2 (t)1(An

̸∈ Υ n) and observe that for
each ϵ > 0

P
(
|X̂n

2 (t)|1(An
̸∈ Υ n) > ϵ

)
≤ P(An

̸∈ Υ n) = 1 − P(Υ n) → 0 as n → ∞.

Thus, we obtain that X̂n
2 (t)1(An

̸∈ Υ n) ⇒ 0 as n → ∞. It then suffices to show that
X̂n

2 (t)1(An
∈ Υ n) ⇒ X̂2(t) in R as n → ∞.

By the continuity theorem (see, e.g., [10]), it suffices to show that the characteristic function
of X̂n

2 (t)1(An
∈ Υ n), denoted by ϕn

t (θ ), converges pointwise to that of X̂2(t), denoted by ϕt (θ ),
and ϕt (θ ) is continuous at θ = 0. Recall the covariance function of X̂2 in (2.12). For each t ≥ 0,
X̂2(t) is a normal random variable with mean zero and variance

∫
[0,t] G̃(t, u)dΛ(u). Thus we have

ϕt (θ ) = E
[
exp

(
iθ X̂2(t)

)]
= exp

(
−
θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)
)
, (6.11)

and ϕt (θ ) is continuous at θ = 0. For ϕn
t (θ ), let An(t) := σ (An(s) : 0 ≤ s ≤ t) ∨ N

where N is the collection of P-null sets. Recall the definition of X̂n
2 in (4.2) and denote

Ȟ n
i (t) := H (t − τ n

i , Z i (τ n
i )) −

∫
Rk H (t − τ n

i , x)d Fτn
i

(x) and Ǎn(t) := An(t)1(An
∈ Υ n) for
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brevity in the calculations below,

ϕn
t (θ ) = E

[
exp

(
iθ X̂n

2 (t)1(An
∈ Υ n)

)]
= E

[
E
[
exp

(
iθ X̂n

2 (t)1(An
∈ Υ n)

) ⏐⏐ An(t)
]]

= E
[

E
[

exp
(

iθ
1

√
n

An (t)∑
i=1

Ȟ n
i (t)1(An

∈ Υ n)
)⏐⏐⏐⏐An(t)

]]

= E
[

E
[

exp
(

iθ
1

√
n

Ǎn (t)∑
i=1

Ȟ n
i (t)

)⏐⏐⏐⏐An(t)
]]

= E
[

E
[ Ǎn (t)∏

i=1

exp
(

iθ
1

√
n

Ȟ n
i (t)

)⏐⏐⏐⏐An(t)
]]

= E
[ Ǎn (t)∏

i=1

E
[

exp
(

iθ
1

√
n

Ȟ n
i (t)

)⏐⏐⏐⏐An(t)
]]

≤ E

⎡⎣ Ǎn (t)∏
i=1

[
1 −

θ2

2n
G̃(t, τ n

i ) +
θ2

3!n
min

{
θE[(Ȟ n

i (t))3
|An(t)]

√
n

, 6G̃(t, τ n
i )

}]⎤⎦ ,
where

∏0
i=1xi := 1 for all xi ∈ R whenever Ǎn(t) = 0 and the last inequality follows from

the first part of Lemma 6.5. Notice that the minimum term above is smaller than 6G̃(t, τ n
i ) and

converges to 0 as n → ∞, and thus it is of order o(1/n) when being multiplied by θ2

3n . Therefore
we can write

ϕn
t (θ ) = E

[ Ǎn (t)∏
i=1

[
1 −

θ2

2n
G̃(t, τ n

i ) + o(n−1)
]]
.

Thus, for large enough n (specified below), we have

|ϕn
t (θ ) − ϕt (θ )|

=

⏐⏐⏐⏐E[ Ǎn (t)∏
i=1

[
1 −

θ2

2n
G̃(t, τ n

i ) + o(n−1)
]]

− exp
(

−
θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)
)⏐⏐⏐⏐

≤ E
[⏐⏐⏐⏐ Ǎn (t)∏

i=1

[
1 −

θ2

2n
G̃(t, τ n

i ) + o(n−1)
]

−

Ǎn (t)∏
i=1

exp
(

−
θ2

2n
G̃(t, τ n

i )
)⏐⏐⏐⏐]

+

⏐⏐⏐⏐E [exp
(

−
θ2

2
1(An

∈ Υ n)
∫

[0,t]
G̃(t, u)d Ān(u)

)]
− exp

(
−
θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)
) ⏐⏐⏐⏐

≤ E
[ Ǎn (t)∑

i=1

⏐⏐⏐⏐exp
(

−
θ2

2n
G̃(t, τ n

i )
)

−

(
1 −

θ2

2n
G̃(t, τ n

i )
)⏐⏐⏐⏐]+ E[o(1/n) Ǎn(t)]

+

⏐⏐⏐⏐E [exp
(

−
θ2

2
1(An

∈ Υ n)
∫

[0,t]
G̃(t, u)d Ān(u)

)]
− exp

(
−
θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)
)⏐⏐⏐⏐
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≤
θ4

4n
E
[

1(An
∈ Υ n)

∫
[0,t]

G̃2(t, u)d Ān(u)
]

+ o(1)

+

⏐⏐⏐⏐E [exp
(

−
θ2

2
1(An

∈ Υ n)
∫

[0,t]
G̃(t, u)d Ān(u)

)]
− exp

(
−
θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)
)⏐⏐⏐⏐

→ 0, as n → ∞. (6.12)

Here the first inequality is by subtracting and adding the same term and the triangle inequality.
The second inequality follows from Lemma 6.4. The third inequality follows from the definition
of Ǎn(actually Υ n) and the second part of Lemma 6.5 for large n such that

θ2

2n
max

1≤i≤An (t)
G̃(t, τ n

i ) ≤
θ2

2n
sup

0≤u≤t
G̃(t, u) < 1.

Under Assumption 2(ii), such a large n can always be found.
The final convergence to zero is implied by the facts that Ān

⇒ Λ in D, P(Υ n) → 1, the
continuous mapping theorem and the uniform integrability of the two sequences for each t ≥ 0:{

1(An
∈ Υ n)

∫
[0,t]

G̃(t, u)d Ān(u) : n ≥ 1
}
,

and {
exp

(
−
θ2

2
1(An

∈ Υ n)
∫

[0,t]
G̃(t, u)d Ān(u)

)
: n ≥ 1

}
,

since

sup
n

E

[
1(An

∈ Υ n)
(∫

[0,t]
G̃(t, u)d Ān(u)

)2
]
< ∞

by the definition of Υ n and Assumption 2(ii).
Therefore, we have shown that for each fixed t ≥ 0,

X̂n
2 (t) ⇒ X̂2(t) in R as n → ∞.

To generalize to the case l > 1, we prove that for any (θ1, . . . , θl) ∈ Rl and 0 ≤ t1 < · · · <

tl ≤ T ′,

E
[

exp
(

i
l∑

i=1

θi X̂n
2 (ti )

)]
→ E

[
exp

(
i

l∑
i=1

θi X̂2(ti )
)]

as n → ∞,

and the limit is continuous at (0, . . . , 0) ∈ Rl . By definition,
∑l

i=1θi X̂2(ti ) is a normal random
variable with mean zero and variance

l∑
i=1

l∑
j=1

θiθ j R̂2(ti , t j ),

for the covariance function R̂2 defined in (2.12). Thus we have

E
[

exp
(

i
l∑

i=1

θi X̂2(ti )
)]

= exp
(

−
1
2

l∑
i=1

l∑
j=1

θiθ j R̂2(ti , t j )
)
, (6.13)

and it is continuous at (0, . . . , 0) ∈ Rl .
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By definition,

l∑
i=1

θi X̂n
2 (ti ) =

l∑
i=1

θi

(
1

√
n

An (ti )∑
k=1

(
H (ti − τ n

k , Zk(τ n
k )) −

∫
Rk

H (ti − τ n
k , x)d Fτn

k
(x)
))
.

Thus, a direct calculation as in (6.12) shows that

E
[

exp
(

i
l∑

i=1

θi X̂n
2 (ti )1( Ân

∈ Υ n)
)]

= E
[

1 −
1
2

1( Ân
∈ Υ n)

l∑
i=1

l∑
j=1

θiθ j

∫ ti ∧t j

0
(G2(ti , t j , u) − G1(ti , u)G1(t j , u))d Ān(u)

]
+ o(n−1). (6.14)

The convergence of (6.14) to (6.13) can be shown in a similar way as in (6.12) by Lemmas 6.4–
6.5. This completes the proof of the convergence of the finite-dimensional distributions. □

Lemma 6.7. Under Assumptions 1–2, X̂n
2 ⇒ X̂2 in (D, J1) as n → ∞, where X̂2 is as given in

Theorem 2.2.

Proof. Given the convergence of finite-dimensional distributions of X̂n
2 in Lemma 6.6, by

Theorem 13.3 in [5], it suffices to show that for each ϵ > 0

lim
δ→0

P
(⏐⏐X̂2(T ) − X̂2(T − δ)

⏐⏐ ≥ ϵ
)

= 0, (6.15)

and

lim
δ→0

lim sup
n

P
(

sup
0≤r<s<t≤T

t−r≤δ

⏐⏐X̂n
2 (r ) − X̂n

2 (s)
⏐⏐ ∧ ⏐⏐X̂n

2 (s) − X̂n
2 (t)

⏐⏐ ≥ ϵ

)
= 0. (6.16)

(6.15) is implied by

lim
δ→0

E
[⏐⏐X̂2(T ) − X̂2(T − δ)

⏐⏐2] = 0. (6.17)

By Lemma 4.2,

E
[⏐⏐X̂2(T ) − X̂2(T − δ)

⏐⏐2]
=

∫
(T −δ,T ]

G̃(T, u)dΛ(u) +

∫
[0,T −δ]

G̃(T, T − δ, u)dΛ(u). (6.18)

Recall that Λ(·) ∈ C. The first term in the summation above vanishes as δ goes to zero due to
absolute continuity of the Lebesgue–Stieltjes integral. The second term vanishes as δ → 0 by
Assumption 2(iii).

Finally, (6.16) is easily implied by Lemma 4.5 and Theorem 5.2. Specifically, recall
Remark 5.1 that the function V induces a set function ν such that ν((s, t]) = V (s, t). By
Lemma 4.5, condition (5.10) holds for all X̂n

2 (with α = β = 1 and T = [0, T ]). Then by



G. Pang, Y. Zhou / Stochastic Processes and their Applications 128 (2018) 505–544 533

Theorem 5.2, we obtain that

P
(

sup
0≤r<s<t≤T

t−r≤δ

⏐⏐X̂n
2 (r ) − X̂n

2 (s)
⏐⏐ ∧ ⏐⏐X̂n

2 (s) − X̂n
2 (t)

⏐⏐ ≥ ϵ

)

≤
C ′

2

ϵ4 V (0, T ) sup
0≤t≤T −2δ

V (t, t + 2δ). (6.19)

By the uniform continuity of V , we obtain (6.16) holds. The proof is now complete. □

Proof of Theorem 2.2. We begin by defining an auxiliary process X̃n
2 = {X̃n

2 (t) : t ≥ 0} by

X̃n
2 (t) :=

1
√

n

[nΛ(t)]∑
i=1

(
H (t − un

i , Z i (un
i )) −

∫
Rk

H (t − un
i , x)d Fun

i
(x)
)
, t ≥ 0, (6.20)

where [x] denotes the largest integer less than or equal to x , un
i = Λ−1( i

n ) for i = 1, . . . , [nΛ(t)],
and Λ−1 is the inverse function of Λ defined by Λ−1(t) := inf{u ≥ 0 : Λ(u) ≥ t} for t ≥ 0.
Note that, comparing with the definition of X̂n

2 (t) in (4.2), we replace An(t) by [nΛ(t)] and τ n
i by

un
i in the definition of X̃n

2 . Thus, the only source of randomness in X̃n
2 comes from the sequence

{Z i (un
i ), i ≥ 1}. All the arguments in Lemmas 6.6 and 6.7 hold true with An replaced by [nΛ] and

associated τ n
i replaced by un

i , since the only requirement on An in those lemmas is Assumption 1,
which is obviously satisfied by taking An

= [nΛ]. Thus, we have

X̃n
2 ⇒ X̂2 in D as n → ∞. (6.21)

Moreover, since {Z i (un
i ), i ≥ 1} and An are assumed to be mutually independent for each n, X̃n

2
and X̂n

1 are independent. Thus, we obtain the joint convergence(
X̂n

1 , X̃n
2

)
⇒
(
X̂1, X̂2

)
in D2 as n → ∞, (6.22)

and the limits X̂1 and X̂2 are also independent.
Then, by Lemma 6.7 and (6.21), we obtain that for any ζ > 0 and T > 0,

lim
n→∞

P
(

sup
t∈[0,T ]

⏐⏐X̂n
2 (t) − X̃n

2 (t)
⏐⏐ > ζ

)
= 0.

Thus, we have proved the joint convergence(
X̂n

1 , X̂n
2

)
⇒
(
X̂1, X̂2

)
in D2 as n → ∞.

By continuity of addition in D (e.g., Corollary 12.7.1 in [44]) and the continuous mapping
theorem, we obtain that X̂n

= X̂n
1 + X̂n

2 ⇒ X̂1 + X̂2 in D as n → ∞. This completes the
proof. □

6.1. Proof of Theorem 2.3

In this subsection, we sketch the proof of Theorem 2.3. For each j = 1, . . . , K , X̂n,( j) is
first decomposed into a summation of X̂n,( j)

1 and X̂n,( j)
2 , defined similarly as in Lemmas 4.1.

The weak convergence of X̂n,( j)
1 to X̂ ( j)

1 in D follows from similar arguments as that of X̂n
1

to X̂1 in Lemmas 6.1–6.2, with the mapping ψ modified accordingly to ψ ( j). Thus, the joint
weak convergence of

(
X̂n,(1)

1 , . . . , X̂n,(K )
1

)
follows from the continuity of the joint mapping(

ψ (1), . . . , ψ (K )
)

from DK to DK since each component is continuous.
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For each j = 1, . . . , K , by similar arguments in Lemmas 6.6–6.7, X̂n,( j)
2 converges weakly to

X̂ ( j)
2 in D. Thus, the tightness of the joint process

(
X̂n,(1)

2 , . . . , X̂n,(K )
2

)
follows from the tightness

of each component. It remains to show the convergence of finite dimensional distributions of(
X̂n,(1)

2 , . . . , X̂n,(K )
2

)
, that is, for any l ∈ N, we need to show that as n → ∞,(

X̂n,( j)
2 (tm), 1 ≤ j ≤ K , 1 ≤ m ≤ l

)
⇒
(
X̂ ( j)

2 (tm), 1 ≤ j ≤ K , 1 ≤ m ≤ l
)

in Rl K .

We first consider l = 1 and write t1 = t for brevity. By Cramér–Wold theorem, it is equivalent
to prove that for any (θ j , j = 1, . . . , K ) ∈ RK ,

K∑
j=1

θ j X̂n,( j)
2 (t) ⇒

K∑
j=1

θ j X̂ ( j)
2 (t) in R as n → ∞. (6.23)

A simple algebra shows that (6.23) follows from the arguments in Lemma 6.6 with slight
changes. It is also evident that the case when l > 1 can be proved in the same way as its
counterpart in Lemma 6.6 with slight changes. That completes the proof of the finite dimensional
distributions.

By constructing auxiliary processes
(
X̃n,(1)

2 , . . . , X̃n,(K )
2

)
as in (6.20), we first obtain that(

X̃n,(1)
2 , . . . , X̃n,(K )

2

)
converges to the same limit process as

(
X̂n,(1)

2 , . . . , X̂n,(K )
2

)
. We can then

conclude the independence and continuity statements in the theorem similarly as in the proof of
Theorem 2.2, which completes the proof. □

7. Proofs of Theorems 5.1–5.3

Proof of Theorem 5.1. We adapt the proof of Theorem 10.3 in [5] and modify some arguments
for the relaxed condition on µ being a finite set function with the superadditive property as given
in Definition 5.1. We consider three cases.

Case 1: Suppose that T = [0, T ] and µ(0, t] is continuous in t .
Suppose further that µ(0, t] is strictly increasing in t . For each k ∈ N, let Dk ⊂ [0, T ] be the

set of {z(k)
i : i ≥ 0} such that z(k)

0 = 0 and

µ
(
0, z(k)

i

]
=

i
2k
µ(0, T ]. (7.1)

It is easy to see that for each k, the set Dk ⊂ Dk+1. Let Bk be the maximum of
|X (s) − X (r )| ∧ |X (t) − X (s)| over triples in Dk satisfying 0 ≤ r ≤ s ≤ t ≤ T . Let Ak

be the same maximum but with further constraint that r, s, t are adjacent: ∃i ∈ N such that
(r, s, t) = (z(k)

i−1, z(k)
i , z(k)

i+1). For any t = z(k)
j ∈ Dk , define a point t ′

∈ Dk−1 by

t ′
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t if t ∈ Dk−1,

z(k−1)
j−1
2

if t ̸∈ Dk−1 and |X (t) − X (z(k)
j−1)| ≤ |X (t) − X (z(k)

j+1)|,

z(k−1)
j+1
2

if t ̸∈ Dk−1 and |X (t) − X (z(k)
j−1)| > |X (t) − X (z(k)

j+1)|.

(7.2)

Then |X (t) − X (t ′)| ≤ Ak for t ∈ Dk . As in the proof of Case 1 for Theorem 10.3 in [5], we
obtain that

sup
0≤r≤s≤t≤T

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≤ 2
∞∑

k=1

Ak .
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Now we need to control
∑

∞

k=1 Ak . Suppose that 0 < θ < 1 and choose c such that
c ·
∑

∞

k=1θ
k

= 1/2. Then

P
(

sup
0≤r≤s≤t≤T

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤ P

(
2

∞∑
k=1

Ak ≥ ϵ

)
≤

∞∑
k=1

P
(

Ak ≥ cϵθ k)
≤

∞∑
k=1

2k∑
i=1

P
(⏐⏐X (z(k)

i−1) − X (z(k)
i )
⏐⏐ ∧ ⏐⏐X (z(k)

i ) − X (z(k)
i+1)

⏐⏐ ≥ cϵθ k
)
. (7.3)

By assumptions and (7.1),

P
(⏐⏐X (z(k)

i−1) − X (z(k)
i )
⏐⏐ ∧ ⏐⏐X (z(k)

i ) − X (z(k)
i+1)

⏐⏐ ≥ cϵθ k
)

≤
C0

(cϵθ k)4β

(
µ(z(k)

i−1, z(k)
i+1]

)2α

≤
C0

(cϵθ k)4β

(
µ(0, z(k)

i+1] − µ(0, z(k)
i−1]

)2α

=
C0
(
2µ(0, T ]

)2α

(cϵ)4

(
1

θ4β22α

)k

, (7.4)

where in the second inequality the superadditive property of the set function µ in Defini-
tion 5.1(iii) is used. Therefore, (7.3) becomes

P
(

sup
0≤r≤s≤t≤T

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤

∞∑
k=1

2k C0
(
2µ(0, T ]

)2α

(cϵ)4

(
1

θ4β22α

)k

=
C0
(
2µ(0, T ]

)2α

(cϵ)4

∞∑
k=1

(
1

θ4β22α−1

)k

.

Since 4β ≥ 0 and 2α− 1 > 0, there exists a θ ∈ (0, 1) for which the series above converges, and
this shows how to define the constant C1.

If µ(0, t] is not strictly increasing in t . Consider first the set function µκ (s, t] := µ(s, t] +

κ(t − s) for all 0 ≤ s ≤ t ≤ T where κ is a positive constant and then let κ go to 0.
Case 2: Suppose that T is finite. Without loss of generality, we may assume that T = {ti :

0 ≤ i ≤ v} such that

0 = t0 < t1 < · · · < tv = T .

Define the processes X ′
:= {X ′(t) : t ∈ T } by

X ′(t) :=

{
X (ti ) if ti ≤ t < ti+1, 0 ≤ i < v,

X (T ) if t = T . (7.5)

It is easy to see that |X ′(r ) − X ′(s)| ∧ |X ′(s) − X ′(t)| > 0 only if r, s and t fall into different
subintervals of [ti , ti+1). Suppose that

r ∈ [ti , ti+1), s ∈ [t j , t j+1), t ∈ [tk, tk+1), i < j < k.
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Then by the definition of X ′ in (7.5) and the assumption in (5.8),

P
(
|X ′(r ) − X ′(s)| ∧ |X ′(s) − X ′(t)| > ϵ

)
= P

(
|X (ti ) − X (t j )| ∧ |X (t j ) − X (tk)| > ϵ

)
≤

C0

ϵ4β

(
µ
(
T ∩ (ti , tk]

))2α
. (7.6)

Now define an measure ν on [0, T ] such that for each 1 ≤ i ≤ v−1, over the interval [ti , ti+1],
ν has a uniform distribution of mass µ

(
T ∩ (0, ti+1]

)
− µ

(
T ∩ (0, ti−1]

)
, and over the interval

[0, t1], ν has a uniform distribution of mass µ
(
T ∩ [0, t1]

)
. Note that by definition,

ν(0, T ] ≤ µ
(
T ∩ (0, tv]

)
+ µ

(
T ∩ (0, tv−1]

)
≤ 2µ(T ). (7.7)

Then by the property (iii) of the set function µ in Definition 5.1,

µ
(
T ∩ (ti , tk]

)
≤ µ

(
T ∩ (0, tk]

)
− µ

(
T ∩ (0, ti ]

)
≤ ν(ti+1, tk] ≤ ν(r, t].

Then (7.6) implies that

P
(
|X ′(r ) − X ′(s)| ∧ |X ′(s) − X ′(t)| > ϵ

)
≤

C0

ϵ4β

(
ν(r, t]

)2α
. (7.8)

Even though the assumption t ∈ [tk, tk+1) requires that t < T , the inequality above also holds
for t = T by similar arguments.

By Theorem 10.3 in [5], (7.7) and the definition of X ′, we obtain that

P
(

sup
0≤r<s<t≤T

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
= P

(
sup

0≤r<s<t≤T
|X ′(r ) − X ′(s)| ∧ |X ′(s) − X ′(t)| ≥ ϵ

)
≤

C3

ϵ4

(
ν(0, T )

)2α
≤

22αC3

ϵ4β

(
µ(T )

)2α
, (7.9)

where C3 > 0 is a constant depending only on C0.
Case 3: Consider the general T and set function µ. Let {Tn} be finite sets

Tn := {0 = tn,0 < tn,1 < · · · < tn,vn = T }, n ∈ N,

such that Tn ⊂ Tn+1 and ∪
∞

n=1Tn is dense in T . Let µn be a measure having a mass
µ
(
T ∩ (0, tn,i ]

)
−µ

(
T ∩ (0, tn,i−1]

)
at points tn,i . Define the processes Xn,′

:= {Xn,′(t) : t ∈ T }

similarly as X ′ above, that is,

Xn,′(t) :=

{
X (tn,i ) if tn,i ≤ t < tn,i+1, 0 ≤ i < vn,

X (T ) if t = T . (7.10)

Denote the event

En
ϵ :=

{
sup

0≤r<s<t≤T
|Xn,′(r ) − Xn,′(s)| ∧ |Xn,′(s) − Xn,′(t)| ≥ ϵ

}
for each n and ϵ > 0. Then by Case 2,

P(En
ϵ ) ≤

22αC3

ϵ4β

(
µn(Tn)

)2α
=

22αC3

ϵ4β

(
µ(T )

)2α
. (7.11)
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Since Xn,′ and X are right continuous, by the construction of Xn,′ from X above, we have that

sup
0≤r<s<t≤T

|Xn,′(r ) − Xn,′(s)| ∧ |Xn,′(s) − Xn,′(t)|

−→ sup
0≤r<s<t≤T

|X (r ) − X (s)| ∧ |X (s) − X (t)| a.s. as n → ∞. (7.12)

Thus, by (7.12) and Fatou’s lemma, for each ϵ > κ > 0,

P
(

sup
0≤r<s<t≤T

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤ P

(
lim inf

n
En
ϵ−κ

)
≤ lim inf

n
P(En

ϵ−κ ) ≤
22αC3

(ϵ − κ)4β

(
µ(T )

)2α
.

where the last inequality follows (7.11) . The proof is complete by letting κ go to 0. This
completes the proof. □

Proof of Theorem 5.2. Take v = [T/δ], ti = iδ for 0 ≤ i < v and tv = T . Then, by
Theorem 5.1, we obtain that for ϵ ≥ 0, and for each 1 ≤ i ≤ v − 1,

P
(

sup
ti−1≤r≤s≤t≤ti

|X (r ) − X (s)| ∧ |X (s) − X (t)| ≥ ϵ

)
≤

C1

ϵ4β

(
µ
(
T ∩ (ti−1, ti+1]

))2α
. (7.13)

For the upper bound, we have
v−1∑
i=1

(
µ
(
T ∩ (ti−1, ti+1]

))2α

≤

v−1∑
i=1

µ
(
T ∩ (ti−1, ti+1]

)
× max

0≤i≤v−1

(
µ
(
T ∩ (ti−1, ti+1]

))2α−1

≤ 2µ(T ) × max
0≤i≤v−1

(
µ
(
T ∩ (ti−1, ti+1]

))2α−1
, (7.14)

where the second inequality follows from the superadditive property of the set function µ in
Definition 5.1(iii). We can then conclude the probability bound in (5.11). □

Proof of Theorem 5.3. We modify the proof of Theorem 13.6 in [5] by relaxing the condition
(13.15) with our condition (ii).

For each n ∈ N, consider the points tn
i = iT/2n for i = 0, . . . , 2n , and let X̃n be a random

function that is constant over each [tn
i−1, tn

i ) and for which (X̃n(tn
0 ), . . . , X̃n(tn

2n )) has the same
distribution of (X (tn

0 ), . . . , X (tn
2n )). Thus, X̃n are elements of D. We need to show that the

distributions of {X̃n
} are tight and X is the limit in distribution of some subsequence of {X̃n

}. To
prove tightness of X̃n , we apply Theorem 13.2 of [5] with the condition (13.5) replaced by (13.8)
using the modulus of continuity w′′ in (5.3).

We first provide a proof for the first condition in (13.8) of [5], that is, for each ϵ > 0 and
η > 0, there exists a δ ∈ (0, 1) and an integer n0 such that

P
(
w′′(X̃n, δ) ≥ ϵ

)
≤ η, for n ≥ n0. (7.15)

Now let Ỹ n be the process X̃n with the time-set cut back to Tn = {tn
i }. Let µ̃n be a finite

measure having mass µ(0, tn
i ] − µ(0, tn

i−1] at tn
i for i = 0, . . . , 2n . By (5.10), for 0 ≤ r ≤ s ≤



538 G. Pang, Y. Zhou / Stochastic Processes and their Applications 128 (2018) 505–544

t ≤ T ,

P
(⏐⏐Ỹ n(s) − Ỹ n(r )

⏐⏐ ∧ ⏐⏐Ỹ n(t) − Ỹ n(s)
⏐⏐ ≥ ϵ

)
≤

C0

ϵ4β

(
µ̃n(r, t]

)2α
.

It follows by Theorem 10.4 in [5] that

P
(

sup
0≤r<s<t≤T

t−r≤δ

⏐⏐Ỹ n(r ) − Ỹ n(s)
⏐⏐ ∧ ⏐⏐Ỹ n(s) − Ỹ n(t)

⏐⏐ ≥ ϵ

)
≤

C4

ϵ4β µ̃n(0, T ] sup
0≤t≤T −2δ

(
µ̃n(t, t + 2δ]

)2α−1
, (7.16)

for some constant C4 > 0.
By the definition of µ̃n , we have that

µ̃n(0, T ] = µ̃n({tn
i }) =

2n∑
i=0

(
µ(0, tn

i ] − µ(0, tn
i−1]

)
≤ µ(0, T ], (7.17)

which follows from the superadditive property of the set function µ in Definition 5.1(iii).
By the construction of Ỹ n from X̃n , we obtain that when T/2n

≤ δ,

w′′(X̃n, δ) ≤ sup
0≤r<s<t≤T

t−r≤2δ

{⏐⏐Ỹ n(r ) − Ỹ n(s)
⏐⏐ ∧ ⏐⏐Ỹ n(s) − Ỹ n(t)

⏐⏐}. (7.18)

Now by the definition of µn , we have that when T/2n
≤ δ,

µn(t, t + 4δ] = µn(
{tn

i : t < tn
i ≤ t + 4δ}

)
=

∑
tn
i :t<tn

i ≤t+4δ

(
µ(0, tn

i ] − µ(0, tn
i−1]

)
≤ µ(0, t + 4δ] − µ(0, t − T/2n]

≤ sup
0<t−s≤5δ

(
µ(0, t] − µ(0, s]

)
. (7.19)

where the two inequalities follows from the superadditive property of the set function µ in
Definition 5.1(iii).

Inequalities (7.16)–(7.19) together with the uniform continuity of µ(0, t] imply (7.15) holds.
Then, the verifications of the condition (13.4) in Theorem 13.2 of [5], and the second and

third conditions in (13.8) of [5] follow exactly the same arguments as in the proof of Theorem
13.6 of [5]. The proof is complete. □

Acknowledgments

We thank two anonymous reviewers for their comments and suggestions which have greatly
improved our paper. This work is partly supported by an NSF grant (CMMI-1538149), an Army
Research Office grant W911NF-17-1-0019.



G. Pang, Y. Zhou / Stochastic Processes and their Applications 128 (2018) 505–544 539

Appendix. Proofs of Lemmas 4.2, 4.3, 4.5 and 6.1

Proof of Lemma 4.2. Recall the covariance function R̂2 of the Gaussian process X̂2 defined in
(2.12). We obtain that for 0 ≤ s ≤ t ,

E
[⏐⏐X̂2(s) − X̂2(t)

⏐⏐2]
= R̂2(s, s) + R̂2(t, t) − 2R̂2(s, t)

=

∫
[0,s]

(
G2(s, s, u) − G2

1(s, u)
)
dΛ(u) +

∫
[0,t]

(
G2(t, t, u) − G2

1(t, u)
)
dΛ(u)

− 2
∫

[0,s]

(
G2(t, s, u) − G1(t, u)G1(s, u)

)
dΛ(u)

=

∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u).

Since X̂2(s) − X̂2(t) is normal and the kurtosis of a normal random variable is 3, we obtain

E
[⏐⏐X̂2(s) − X̂2(t)

⏐⏐4] = 3
(
E
[⏐⏐X̂2(s) − X̂2(t)

⏐⏐2])2

= 3
(∫

(s,t]
G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u)
)2

. □

Proof of Lemma 4.3. Let

Ȟi (s) := H (s − τ n
i , Z i (τ n

i )) −

∫
Rk

H (s − τ n
i , x)d Fτn

i
(x), i ∈ N, s ≥ 0.

(Note that we omit the dependence of Ȟi on n for brevity.) By definition, for each 0 ≤ r ≤ s, we
have

X̂n
2 (s) − X̂n

2 (r ) =
1

√
n

An (s)∑
i=An (r )+1

Ȟi (s) +
1

√
n

An (r )∑
i=1

(
Ȟi (s) − Ȟi (r )

)
. (A.1)

The two summation terms in (A.1) are independent, and the expectations of both terms equal to
zero. By conditioning and direct calculations, we obtain that

E
[(

1
√

n

An (s)∑
i=An (r )+1

Ȟi (s)
)2]

= E
[∫

(r,s]
G̃(s, u)d Ān(u)

]
,

and

E
[(

1
√

n

An (r )∑
i=1

(
Ȟi (s) − Ȟi (r )

))2]
= E

[∫
[0,r ]

G̃(s, r, u)d Ān(u)
]
.

For the fourth moment, we have

E
[⏐⏐X̂n

2 (s) − X̂n
2 (r )

⏐⏐4]
=

1
n2 E

[( An (s)∑
i=An (r )+1

Ȟi (s)
)4]

+
1
n2 E

[(An (r )∑
i=1

[
Ȟi (s) − Ȟi (r )

])4]

+
6
n2 E

[( An (s)∑
i=An (r )+1

Ȟi (s)
)2]

E
[(An (r )∑

i=1

[
Ȟi (s) − Ȟi (r )

])2]
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=
3
n2

(
E
[( An (s)∑

i=An (r )+1

Ȟi (s)
)2

+

(An (r )∑
i=1

[Ȟi (s) − Ȟi (r )]
)2])2

+
1
n2 E

[( An (s)∑
i=An (r )+1

Ȟi (s)
)4]

+
1
n2 E

[(An (r )∑
i=1

[
Ȟi (s) − Ȟi (r )

])4]

−
3
n2

(
E
[( An (s)∑

i=An (r )+1

Ȟi (s)
)2])2

−
3
n2

(
E
[(An (r )∑

i=1

[
Ȟi (s) − Ȟi (r )

])2])2

. (A.2)

By conditioning, we obtain that the first term in (A.2) is equal to

3
(

E
[∫

(r,s]
G̃(s, u)d Ān(u) +

∫
[0,r ]

G̃(s, r, u)d Ān(u)
])2

. (A.3)

Next, by conditional independence of Ȟi (s) and Ȟ j (s) for i ̸= j given An defined in the proof
of Lemma 6.6, and by the fact that the conditional expectations of Ȟi (s) equal to 0, we have

1
n2 E

[( An (s)∑
i=An (r )+1

Ȟi (s)
)4]

=
1
n2 E

[ An (s)∑
i=An (r )+1

Ȟi (s)4
]

+
6
n2 E

[ An (s)∑
i, j=An (r )+1, i ̸= j

Ȟi (s)2 Ȟ j (s)2
]
, (A.4)

and

3
n2

(
E
[( An (s)∑

i=An (r )+1

Ȟi (s)
)2])2

=
3
n2

(
E
[ An (s)∑

i=An (r )+1

Ȟi (s)2
])2

=
3
n2 E

[ An (s)∑
i=An (r )+1

Ȟi (s)4
]

+
6
n2 E

[ An (s)∑
i, j=An (r )+1, i ̸= j

Ȟi (s)2 Ȟ j (s)2
]
. (A.5)

Thus, we obtain that

1
n2 E

[( An (s)∑
i=An (r )+1

Ȟi (s)
)4]

−
3
n2

(
E
[( An (s)∑

i=An (r )+1

Ȟi (s)
)2])2

= −
2
n2 E

[ An (s)∑
i=An (r )+1

Ȟi (s)4
]

= o(1/n). (A.6)

Similarly, we also have

1
n2 E

[(An (r )∑
i=1

[
Ȟi (s) − Ȟi (r )

])4]
−

3
n2

(
E
[(An (r )∑

i=1

[
Ȟi (s) − Ȟi (r )

])2])2

= −
2
n2 E

[An (r )∑
i=1

[
Ȟi (s) − Ȟi (r )

]4
]

= o(1/n). (A.7)

Thus, combining (A.2)–(A.7), we obtain (4.6). □
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Proof of Lemma 4.5. First we observe that for any K ∈ N, nK = An(τ n
nK ). On {An(T ) ≤ nK =

An(τ n
nK )}, we have t = t ∧ τ n

nK for t ≤ T . Thus, An(t) = An(t ∧ τ n
nK ) and X̂n

2 (t) = X̂n
2 (t ∧ τ n

nK )
on {An(T ) ≤ nK }.

Now, for K ∈ N such that K > Λ(T ) and ϵ > 0,

P
(⏐⏐X̂n

2 (r ) − X̂n
2 (s)

⏐⏐ ∧ ⏐⏐X̂n
2 (s) − X̂n

2 (t)
⏐⏐ ≥ ϵ

)
≤ P(An(T ) ≥ nK )

+ P
(

An(T ) < nK ,
⏐⏐X̂n

2 (r ) − X̂n
2 (s)

⏐⏐ ∧ ⏐⏐X̂n
2 (s) − X̂n

2 (t)
⏐⏐ ≥ ϵ

)
≤ P( Ān(T ) ≥ K )

+
1
ϵ4 E

[
1( Ān(T ) ≤ K ) ·

⏐⏐X̂n
2 (r ) − X̂n

2 (s)
⏐⏐2 ·

⏐⏐X̂n
2 (s) − X̂n

2 (t)
⏐⏐2]

≤ P( Ān(T ) ≥ K )

+
1
ϵ4

(
E
[⏐⏐X̂n

2 (r ∧ τ n
nK ) − X̂n

2 (s ∧ τ n
nK )
⏐⏐4])1/2

×

(
E
[⏐⏐X̂n

2 (s ∧ τ n
nK ) − X̂n

2 (t ∧ τ n
nK )
⏐⏐4])1/2

, (A.8)

where the last inequality is from Cauchy–Schwarz inequality and from the observation that
X̂n

2 (t) = X̂n
2 (t ∧ τ n

nK ) for t ≤ T on { Ān(T ) ≤ K }. Since Ān(T ) ⇒ Λ(T ) as n → ∞ by
Assumption 1, we have

P( Ān(T ) ≥ K ) → P(Λ(T ) ≥ K ) = 0 as n → ∞

for the chosen K > Λ(T ). Therefore, due to (A.8), Lemma 4.5 is implied by

E
[⏐⏐X̂n

2 (r ∧ τ n
nK ) − X̂n

2 (s ∧ τ n
nK )
⏐⏐4] ≤ C5V (r, s)2, (A.9)

for n ∈ N, 0 ≤ r ≤ s ≤ T and some positive constant C5. By Lemma 4.3, we obtain

E
[⏐⏐X̂n

2 (r ∧ τ n
nK ) − X̂n

2 (s ∧ τ n
nK )
⏐⏐4]

≤ 3
(

E
[

1( Ān(T ) ≤ K )
(∫

(r,s]
G̃(s, u)d Ān(u) +

∫
[0,r ]

G̃(s, r, u)d Ān(u)
)])2

+ o(1/n).

On { Ān(T ) ≤ K },

E
[∫

(r,s]
G̃(s, u)d Ān(u) +

∫
[0,r ]

G̃(s, r, u)d Ān(u)
]

n→∞
→

∫
(r,s]

G̃(s, u)dΛ(u) +

∫
[0,r ]

G̃(s, r, u)dΛ(u)

≤

∫
(r,s]

G̃(s, u)dΛ(u) +

∫
[0,T ]

G̃(s, r, u)dΛ(u)

≤

∫
(r,s]

G2(s, u)dΛ(u) +

∫
[0,T ]

Ǧ2(s, r, u)dΛ(u) = V (r, s). (A.10)

Here the convergence is implied by the uniform integrability of the sequence for each r ≤ s:{∫
(r,s]

G̃(s, u)d Ān(u) +

∫
[0,r ]

G̃(s, r, u)d Ān(u) : n ≥ 1
}

under Assumptions 1 and 2(ii). (A.10) implies (A.9), which further implies Lemma 4.5. □
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Proof of Lemma 6.1. We first prove (i). Fix 0 ≤ t ≤ T . To show that ψ(z)(t) is right continuous
at t , let {tk : k ≥ 1} converge to t from the right (i.e., tk ≥ t for each k) as k → ∞ and we prove
that ψ(z)(tk) → ψ(z)(t) as k → ∞.

By the definition of ψ ,

ψ(z)(tk) − ψ(z)(t)

= z(tk)G1(tk, tk) −

∫
(0,tk ]

z(u−)dG1(tk, u)

− z(t)G1(t, t) +

∫
(0,t]

z(u−)dG1(t, u)

= z(t)[G1(tk, t) − G1(t, t)] −

∫
(0,t]

z(u−)d(G1(tk, u) − G1(t, u))

+ z(tk)G1(tk, tk) − z(t)G1(tk, t) −

∫
(t,tk ]

z(u−)dG1(tk, u). (A.11)

Recall the definition of G1(t, u) =
∫
Rk H (t − u, x)d Fu(x) and the assumption that H (·, x) ∈ D

for each x ∈ Rk . It is easy (by the bounded convergence theorem) to see that G1(·, u) ∈ D for
each u ≥ 0. Thus, the first term z(t)[G1(tk, t) − G1(t, t)] converges to 0 as k → ∞.

By Theorem 12.2.2 in [44], any function in D can be approximated by piecewise-constant
functions. In particular, for any ϵ > 0, there exists finitely many points t̄i such that 0 ≡ t̄0 <
t̄1 < · · · < t̄m−1 ≤ t̄m ≡ t < t̄m+1 < · · · < t̄M ≡ T and zc is constant on the intervals [t̄i−1, t̄i ),
1 ≤ i ≤ M − 1, and [t̄M−1, T ] such that ∥z − zc∥T ≤ ϵ.

For the second term in (A.11), we can write∫
(0,t]

z(u−)d(G1(tk, u) − G1(t, u))

=

∫
(0,t]

zc(u−)d(G1(tk, u) − G1(t, u))

+

∫
(0,t]

(z(u−) − zc(u−))d(G1(tk, u) − G1(t, u)).

By the definition of zc, the first integral on the right hand side is equal to
m∑

i=0

zc(t̄i+1)
[
G1(tk, t̄i+1) − G1(t, t̄i+1) − (G1(tk, t̄i ) − G1(t, t̄i ))

]
. (A.12)

Each summand above converges to 0 as k → ∞ by the fact that G1(·, u) ∈ D for each u ≥ 0.
Thus the summation also vanishes when k → ∞. For the second integral, it is bounded by

ϵ · 2 sup
0≤t≤T

V T
0 (G1(t, ·)),

where the coefficient of ϵ is finite under Assumption 2(i). Since ϵ is arbitrary, we have shown
that the second term in (A.11) converges to 0 as k → ∞.

When k is large enough, we have (t, tk] ⊂ [t̄m(≡ t), t̄m+1). In that case, zc is constant on [t, tk],
yielding 0 if we replace z by zc in the last line in (A.11). Observe that

(z(tk) − zc(tk))G1(tk, tk) − (z(t) − zc(t))G1(tk, t) −

∫
(t,tk ]

(z(u−) − zc(u−))dG1(tk, u)

≤

(
2 sup

0≤t,u≤T
G1(t, u) + sup

0≤t≤T
V T

0 (G1(t, ·))
)

· ϵ.
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The coefficient of ϵ is finite under Assumption 2. Since ϵ is arbitrary, this completes the proof of
right continuity.

The existence of a left limit for ψ(t) at each 0 < t ≤ T follows the similar argument above.
In particular, if tk converges to t from left, then the first term z(t)[G1(tk, t) − G1(t, t)] in (A.11)
has a limit since G1(·, u) ∈ D for each u ≥ 0. Similarly, each summand in (A.12) also has a
limit, so does the summation. The last line in (A.11) in this case still converges to 0 (and also has
a limit). Thus, ψ(z) has left limit at 0 < t ≤ T . The proof for ψ(z) ∈ D is complete.

The claim in (ii) follows directly from the above argument while imposing the conditions
z ∈ C and G1(·, u) ∈ C for each u ≥ 0.

For (iii), we need to show that for zn ∈ D and z ∈ C and for T > 0, if ∥zn − z∥T → 0 as
n → ∞, then dJ1 (ψ(zn), ψ(z)) → 0 as n → ∞. Since the J1 metric is bounded by the uniform
norm (see, e.g., Section 3.3 in [44]), it suffices to prove that ∥ψ(zn) − ψ(z)∥T → 0 as n → ∞.
Recalling that H (·, x) is monotone for each x ∈ Rk , we obtain

∥ψ(zn) − ψ(z)∥T

≤ ∥zn − z∥T sup
0≤t≤T

|G1(t, t)| + ∥zn − z∥T sup
0≤t≤T

V T
0 (G1(t, ·)). (A.13)

Therefore, by the assumptions, the two terms in (A.13) converge to zero as n → ∞. □
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