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Abstract— Multi-domain network resource reservation systems
are being deployed, driven by the demand and substantial benefits
of providing predictable network resources. However, a major
lack of existing systems is their coarse granularity, due to the par-
ticipating networks’ concern of revealing sensitive information,
which can result in substantial inefficiencies. This paper presents
Mercator, a novel multi-domain network resource discovery sys-
tem to provide fine-grained, global network resource information,
for collaborative sciences. The foundation of Mercator is a
resource abstraction through algebraic-expression enumeration
(i.e., linear inequalities/equations), as a compact representation
of multiple properties of network resources (e.g., bandwidth,
delay, and loss rate) in multi-domain networks. In addition,
we develop an obfuscating protocol, to address the privacy con-
cerns by ensuring that no participant can associate the algebraic
expressions with the corresponding member networks. We also
introduce a super-set projection technique to increase Mercator’s
scalability. We implement a prototype Mercator and deploy it in
a small federation network. We also evaluate the performance of
Mercator through extensive experiments using real topologies and
traces. Results show that Mercator 1) efficiently discovers avail-
able networking resources in collaborative networks on average
four orders of magnitude faster, and allows fairer allocations of
network resources; 2) preserves the member networks’ privacy
with little overhead; and 3) scales to a collaborative network
of 200 member networks.
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I. INTRODUCTION

MANY of today’s premier science experiments, such

as the Large Hadron Collider (LHC) [2], the Square

Kilometre Array (SKA) [3], and the Linac Coherent Light

Source (LCLS) [4], rely on finely-tuned workflows that coor-

dinate geographically distributed resources (e.g., instrument,

compute, storage) to enable scientific discoveries. An example

of this is the movement of LHC data from Tier 0 (i.e., the data

center at European Organization for Nuclear Research, known

as CERN) to Tier 1 (i.e., national laboratories) storage sites

around the world. This requires deadline scheduling to keep up

with the amount of information that is continually generated

by instruments when they are online. Another example is

the “superfacility” model being developed by LCLS to allow

streaming of data from instruments, across the Wide-Area

Network (WAN), directly into supercomputers’ burst buffers

for near real-time analysis. The key to supporting these

distributed resource workflows is the ability to reserve and

guarantee network resources (e.g., bandwidth) across multiple

network domains to facilitate predictable end-to-end network

connectivity. As such, several Research and Education (R&E)

networks have deployed inter-domain circuit reservation sys-

tems. For example, the Energy Sciences Network (ESnet),

a network supporting the LHC experiments, has deployed an

On-Demand Secure Circuits and Advance Reservation System

called OSCARS [5].

However, due to networks’ concern of revealing sensi-

tive information, existing systems do not provide a network

interface for users to access network resource information

(e.g., network capabilities). Instead, they only allow users to

submit requests for reserving a specific amount of resources

(e.g., a circuit providing a certain amount of bandwidth and

delay), and return either success or failure [5]–[12]. This

approach, which we call “probe requests” in the rest of this

paper, often results in poor performance and fairness. Specif-

ically, while solutions for reserving resources within a single

member network, can be very efficient, solutions for discover-

ing and reserving resources for correlated and concurrent flows

across multiple member networks face unique challenges.

In particular, solutions to reserving resources within a single

administrative domain (e.g., NetStitcher [13], SWAN [14] and

B4 [15]) are often provided with the network’s topology, and

links’ availability. In contrast, in a network with multiple

administrative domains, because this information is typically

considered sensitive, member networks do not reveal internal
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Fig. 1. A motivating example where a user wants to reserve bandwidth
for three source-destination pairs: (S, D1), (S, D2) and (S, D3), across
3 member networks M1, M2 and M3.

network details to external parties. As a result, existing multi-

domain reservation systems treat each member network as a

black box, probe their available resources by submitting varied

circuit reservation requests, and receive boolean responses.

In other words, current solutions perform a depth-first search

on all member networks, and rely on a trial and error approach:

to reserve bandwidth, repeated, and varied attempts may have

to be submitted until success.

To illustrate the limitations of existing systems, we consider

a collaboration network composed of three member networks

running OSCARS [5], as shown in Fig. 1. A user may

submit a request to reserve bandwidth for three circuits, from

source host S to destination hosts D1, D2 and D3. Given the

capabilities of the source host (e.g., the source host may have

a 100 Gbps network card), and to ensure fairness across the

circuits, the user may request 33.33 Gbps for each circuit.

Upon receiving this request, OSCARS processes the circuits

sequentially, for example, in the order of (S, D1), (S, D2) and

(S, D3). For each circuit, it uses a depth-first search approach

to probe if each member network can provide the requested

bandwidth. In this example, there is no path with 33.33 Gbps

of bandwidth from S to D1, and hence OSCARS notifies the

user that this request fails.

The user can then adjust the requested bandwidth. However,

with the limited feedback in OSCARS, the user does not

know the amount of available bandwidth from S to D1.

Consequently, the user may use a cut-to-half-until-reserved

search strategy. As a result, after 12 attempts, the networks

allocate 8.33 Gbps (33.33 → 16.67 → 8.33) for (S, D1),
8.33 Gbps (33.33 → 16.67 → 8.33) for (S, D2) and 1.04 Gbps

(33.33 → 16.67 → 8.33 → 4.17 → 2.08 → 1.04) for (S, D3).
In addition to requiring a large number of search attempts,

the approach may obtain a bandwidth allocation that is far

from optimal. For example, given the links’ capacities and

availability, a fair optimal bandwidth allocation is actually

5 Gbps for each circuit. Without a network interface to

provide network resource information, designing an algorithm

using existing systems to identify this solution can lead to

substantially more complexity and churns.

Driven by the benefits of providing network resource infor-

mation to users to improve the performance of network

resource reservation systems, industry and academia have

spent substantial efforts on designing network resource dis-

covery systems to provide such information (e.g., [16]–[25]).

However, designing a network resource discovery system is

a non-trivial task that requires addressing a series of chal-

lenges. First, the interface should provide a unified, accurate

representation of the availability and sharing of multiple

properties of network resources (e.g., bandwidth, delay and

loss rate) from multiple networks. Second, it should protect the

Fig. 2. Illustration of resource abstraction for the reservation request
from Fig. 1.

privacy of networks by not exposing their private information

(e.g., topology, policy and capacity region). Third, it should not

introduce too much computation and communication overhead

to networks, and should scale to large multi-domain networks.

Existing resource discovery systems do not fully address

these challenges. For example, resource discovery systems in

grid-computing [16]–[23] only focus on the discovery of end-

point resources (i.e., computation and storage resources) and

their availability for different services. Resource discovery sys-

tems in cloud computing (e.g., CloudMirror [26], Pretium [27]

and Amoeba [28] adopt a network-does-all approach, in

which users are provided with a more expressive interface

for specifying requirements on data transfers and the network

orchestrates resources between different user requests. Though

this approach protects the privacy of the network, the network

can only provide elastic resource reservations for user requests

(i.e., some requests may be preempted or rejected). Some

recent systems (e.g., the ALTO protocol [24], [25], [29] and

the SENSE project [30], [31]) provide users the information

of certain properties of network resources using the one-big-

switch abstraction. While this approach protects the privacy of

network, it cannot provide the accurate information of network

resource sharing between flows (e.g., bandwidth), which is

critical for optimizing the emerging use cases (e.g., large-scale

collaborative data sciences).

In this paper, we present Mercator, a novel multi-domain

network resource discovery system designed to address the

limitations of current reservation systems and optimize multi-

domain workflows. Mercator copes with the three aforemen-

tioned challenges for providing network resource information

through three main components. The first and core compo-

nent of Mercator is a resource abstraction through algebraic-

expression enumeration (i.e., linear inequalities and equations),

which provides a compact, unifying representation of multiple

properties (e.g., bandwidth, delay and loss rate) of multi-

domain network resources. For example, considering the same

example of Fig. 1, the resource abstraction captures the con-

straints of bandwidths from all networks using the set of linear

inequalities depicted in Fig. 2. Specifically, the variables xb
1,

xb
2, xb

3 represent the available bandwidth that can be reserved

for (S, D1), (S, D2) and (S, D3), respectively. Each linear

inequality represents a constraint on the reservable bandwidths

over different shared resources by the three circuits. For

example, the inequality xb
1 + xb

2 + xb
3 ≤ 100 indicates that

all three circuits share a common resource and that the sum

of their bandwidths can not exceed 100 Gbps. With this set

of linear inequalities, the user does not need to repeatedly

probe the domains, but can immediately derive the bandwidth

allocation to satisfy its own objective (e.g., same rate for

each transfer, different ratios according to demand ratios, or a

fairness allocation such as max-min fairness).
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Second, Mercator introduces a resource abstraction obfus-

cating protocol to ensure that member networks and other

external parties cannot associate an algebraic expression with

a corresponding member network, leading to a complete

unified aggregation of multiple domains, appearing as much as

possible as a single (virtual) network. Although such complete

integration may not be needed in all settings, it can be

highly beneficial in settings with higher privacy or security

concerns. For example, in the scenario of Fig. 1, this pro-

tocol ensures that (1) the user cannot infer that the con-

straint xb
2 + xb

3 ≤ 10 comes from network M3, and (2) that

neither network M1 nor M2 knows the existence of this

constraint. Finally, Mercator also introduces a super-set pro-

jection technique, which substantially improves the scalability

and performance of Mercator through pre-computation and

projection.

The main contributions of this paper are as follows:

• We identify the fundamental reason of the poor perfor-

mance of current reservation systems for multi-domain data

transfers as the lack of visibility of network information

(e.g., topology and link availability) of each member network,

and design Mercator, a novel multi-domain network resource

discovery system, to address this issue;

• In Mercator, we propose a novel, compact resource

abstraction to represent the network resource availability and

sharing (e.g., bandwidth, delay and loss rate) among virtual

circuit requests through algebraic-expression enumeration;

• We design a resource abstraction obfuscating protocol

to prevent the user from associating the received algebraic

expressions with their corresponding member networks;

• We develop a super-set projection technique to substan-

tially improve the scalability of Mercator;

• We fully implement Mercator, deploy it in a small feder-

ation network, and also conduct extensive experiments using

real network topologies and traces. Results show that Mercator

(1) efficiently discovers available networking resources in

collaborative networks on average six orders of magnitude

faster, and allows fairer allocations of network resources;

(2) preserves the member networks’ privacy with little over-

head; and (3) scales to a collaborative network of 200 member

networks.

The remaining of this paper is organized as follows.

We give an overview of Mercator in Section II. We give the

details of the algebraic-expression-based resource abstraction

in Section III. We discuss the resource abstraction obfuscating

protocol and the super-set projection technique in Section IV

and Section V, respectively. We introduce the implementation

and deployment of Mercator in Section VI. We present the

evaluation results of Mercator in Section VII. We discuss

the related work in Section VIII and conclude the paper

in Section IX.

II. MERCATOR OVERVIEW

This section presents the basic workflow and the architecture

of Mercator, and a brief overview of its three main compo-

nents: the resource abstraction through algebraic-expression

enumeration, the resource abstraction obfuscating protocol and

the super-set projection technique.

Fig. 3. The architecture and basic workflow of Mercator.

A. Basic Workflow

Mercator introduces and relies on a logically centralized

aggregator, and a Mercator domain server in each member

network. Consider a multi-domain network of N member

networks Mi, where i = 1, . . . , N (Fig. 3). The basic workflow

of Mercator to discover the multi-domain network bandwidth

availability and sharing for a set of requested circuits is:

• Step 1: A user (e.g., an application) submits a resource

discovery request for a set of circuits to the aggregator

by specifying the source and destination endpoints of

each circuit, and what properties of network resources

he/she wishes to discover (e.g., bandwidth, delay and loss

rate).

• Step 2: After authenticating and verifying the autho-

rization of the request, the aggregator determines the

member networks that the circuits traverse, and queries

the Mercator domain server in each of these member

networks to discover their resource abstractions. The

determination of the relevant member networks for the

aggregator to contact is further described in Section II-B.

• Step 3: Upon receiving the query from the aggregator,

each Mercator domain server computes the resource

abstraction (Section II-C, Section III) of the correspond-

ing member network, and executes an obfuscating pro-

tocol (Section II-C, Section IV) to send the obfuscated

resource abstraction to the aggregator.

• Step 4: The aggregator collects the obfuscated resource

abstractions from the relevant member networks, and

derives the original resource abstractions to present to

the user. Based on the received information, the user

determines the bandwidth allocation for each circuit, and

sends a reservation request to the underlying reservation

system.

The above workflow illustrates the main steps for a user

to discover the available network bandwidth and properties

for a set of circuits traversing multiple member networks.

To further improve the scalability of Mercator, Section V

introduces the super-set projection technique. It allows the

aggregator to proactively discover the resource abstractions for

a set of circuits between every pair of source and destination

member networks, and project the pre-computed result to get

the resource abstraction when receiving actual requests from

users. The super-set projection technique can significantly

reduce the delay, as well as number of messages, of resource

discovery, and allows the aggregator to process multiple

requests concurrently.
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B. Architecture

This section describes the roles of the aggregator and

Mercator domain servers in further details (Fig. 3).

1) Aggregator: The aggregator is the main interface of

Mercator. It is responsible for authenticating and verify-

ing the authorization of users’ resource discovery requests

(e.g., through PKI [32]), querying Mercator domain servers in

member networks to discover network resource information,

and returning the collected abstractions to users. Depending on

the specific requirements of different multi-domain networks,

Mercator may adopt different authentication/authorization sys-

tems, e.g., OpenID [33] and SAML [34]. We leave the detailed

investigation of this issue in Mercator as future work.

The aggregator has connections to Mercator domain servers

in all member networks. It also acts as a Border Gateway

Protocol (BGP) [35] speaker, and has BGP sessions to all

member networks. Consequently, given a request for a set of

circuits F , the aggregator can infer the member-network path

for each circuit, i.e., the list of member networks a circuit will

traverse, and the ingress points of the circuits to each member

network1 (as described in Step 1 of workflow). As such, for

this request, the aggregator can also infer the set of circuits

traversing and consuming resources in each Mi, denoted as Fi.

It can then queries the Mercator domain servers at each Mi

by providing Fi and their ingress points to enter Mi.

2) Mercator Domain Server: Given a Mercator domain

server in member network Mi, its primary role is to compute

the resource abstraction of Mi. To achieve it, Mercator follows

the layering design principle to separate the routing protocol

and the available network resources. In this way, given a set of

circuits sent by the aggregator, their routes in Mi are computed

and provided by the routing protocol in Mi. The Mercator

domain server in Mi takes these routes as inputs, and derives

the available bandwidth and shared properties for the requested

flows along those routes. After computing the abstraction,

the Mercator domain server executes an obfuscating protocol

to send the obfuscated resource abstraction to the aggregator,

which addresses member networks’ privacy concern.

C. Key Design Points

Having illustrated the high-level workflow of Mercator,

we next give a brief overview on its key design points.

1) Resource Abstraction Through Algebraic-Expression

Enumeration (Section III): Mercator follows two important

principles in human-computer interaction, familiarity and uni-

formity, to design a unifying abstraction that captures the

properties (e.g., available bandwidth, delay and loss rate) of

resources shared – within and between member networks –

by a set of requested circuits. This novel, compact resource

abstraction is the core component of Mercator, and relies

1In BGP glossary, such a path is also called an autonomous-system-
path, or an AS-path, which is announced in BGP update messages along
BGP sessions. The Route View Project [36] relies on a similar architecture
with BGP speakers establishing sessions with hundreds of peering networks
to collect BGP updates, and provides a real time monitoring infrastructure. In
particular, we observe that the AS path for each destination prefix is currently
already collected and made publicly available. As such, Mercator does not
introduce additional privacy issues.

on algebraic expressions (i.e., linear inequalities/equations),

a concept familiar to scientists and network engineers [37],

to express the available bandwidth sharing for a set of

requested circuits to be reserved.

Existing resource abstractions, including graph-based

abstractions [38], [39] and the one-big-switch abstrac-

tions [24], [25], either fail to protect the private, sensitive

information of each member network, or fail to capture

the accurate resource availability and sharing between vir-

tual circuit requests. In contrast, the resource abstraction of

Mercator, expressed through algebraic-expression enumera-

tion, naturally and accurately captures different properties

(e.g., bandwidth, delay and loss rate) of shared resources of

a set of circuits without requiring member networks to reveal

their network topology. Compared with the Boolean response

of current resource reservation systems such as OSCARS,

the user receives the complete resource feasible region of the

collaboration networks for the requested circuits represented

through algebraic expressions. A point in that feasible region

represents a feasible allocation of resources for the different

circuits in the request. In other words, the user can choose any

point in the returned region as the parameters for the circuits

to be reserved, using his own resource allocation strategy

(e.g., max-min fairness), and get predictable performance

guarantee (e.g., bandwidth, delay and loss rate).

2) Resource Abstraction Obfuscating Protocol (Section IV):

The algebraic-expression-based abstraction provides a com-

pact, unifying representation of the multi-domain network

resource information. It does not require member networks

to reveal their network topologies and link availabilities.

However, it does expose the resource feasible region of each

member network (illustrated by the examples in Section I

and Section III). Some member networks might prefer not

to expose such information, as malicious parties may use

it to identify links where to launch attacks (e.g., DDoS).

To address this issue, we develop a resource abstraction

obfuscating protocol, which prevents the resource discov-

ery aggregator from identifying the source of each received

resource constraint. Specifically, the key idea consists of

having each Mercator domain server obfuscate its own set of

linear inequalities as a set of linear equations through a private

random matrix of its own and a couple of random matrices

shared with few other Mercator domain servers from other

member networks (e.g., through a consensus protocol), and

then sends the obfuscated set of linear equations back to the

aggregator using symmetric-key encryption, e.g., Advanced

Encryption Standard (AES) [40]. We demonstrate that from

the received obfuscated equations, the aggregator can retrieve

the actual resource feasible region for the circuits across

member networks, but cannot associate any linear inequality

with its corresponding member network. As a result, even if

a malicious party obtains the resource feasible region across

member networks, launching attacks to all member networks

is much harder than attacking a particular member network.

3) Super-Set Projection (Section V): To improve the scal-

ability of Mercator, we introduce the super-set projection

technique. The main idea consists of having the aggregator

periodically query Mercator domain servers to discover the
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resource abstraction for a set of circuits between every pair of

source and destination member networks. With these precom-

puted abstractions, when a user submits a resource discovery

request, the aggregator does not need to query the Mercator

domain servers to compute the abstraction for each received

request. Instead, the aggregator performs a projection on the

precomputed abstractions based on the source and destination

member networks of each circuit in the actual user request,

to get the abstraction for this request. For example, consider a

network of 2 member networks M1 and M2. Using super-set

projection, the aggregator queries the Mercator domain servers

at both member networks about the bandwidth properties for

a set of 2 circuits, one from M1 to M2 and the other from

M2 to M1, and gets a set of linear inequalities {xb
12 + xb

21 ≤
100, xb

12 ≤ 50}. Suppose later a user submits a request for

1 circuit, with the source being an endpoint in M2 and the

destination being an endpoint in M1, to the aggregator. The

aggregator projects the precomputed set of linear inequalities

by removing all variables that are not xb
21, and returns the

result {xb
21 ≤ 100} to the user.

Such projection is much more efficient than having Mercator

domain servers compute the abstraction for each received

circuit request. With this technique, when a user submits a

resource discovery request to the aggregator, the aggregator

does not need to query Mercator domain servers (Step 2 in

Section II-A), and the Mercator domain servers do not need to

compute and obfuscate the resource abstraction for the request

(Step 3 in Section II-A). Only when the user fails to reserve the

resource based on the projected abstraction will the aggregator

query the Mercator domain servers to obtain an up-to-date

abstraction for the user. As such, servers in the aggregator

pool can process requests concurrently (e.g., using optimistic

concurrency control), significantly improving the scalability,

fault-tolerance, and performance of Mercator.

After an overview of the key design points in Mercator,

we discuss these designs in detail in the next few sections.

III. RESOURCE ABSTRACTION THROUGH

ALGEBRAIC-EXPRESSION ENUMERATION

In this section, we give the details of the resource abstraction

through algebraic-expression enumeration, the core component

of Mercator. We first discuss the limitations of existing design

options. Next we give the specifications of this abstraction, and

how it handles important use cases, e.g., multicast, multi-path

routing and load balancing, using the bandwidth property as

an example. Then we discuss how the resource abstraction

can represent other important properties of network resources

(e.g., delay and loss rate), and how the resource abstractions

from different member networks are aggregated to provide a

unified representation of network resources.

A. Basic Issue

As illustrated by the example in Section I, the fundamental

reason for the poor performance of existing circuit reservation

systems is they are lack of the visibility of properties, e.g.,

bandwidth, of shared network resources for a set of circuits

to be reserved. One may think of a strawman to let each

Fig. 4. A running example for illustrating the inefficiency of one-big-
switch abstraction and the basic idea of resource abstraction through algebraic-
expression enumeration, where two circuits (S1, D1) and (S2, D2) need to
be reserved.

member network provide the full topology information to the

aggregator in a graph-based abstraction [38], [39]. This design,

however, exposes all the sensitive, private information of each

member network, i.e., network topology and links’ availability,

to external parties, leading to security breaches.

A second strawman is to use a one-big-switch abstraction

to provide simplified views of network information [24], [25],

which protects the privacy of each member network. However,

this abstraction fails to capture the information of shared

resource among virtual circuit requests and thus is inaccurate.

Consider the example in Fig. 4, where the user wants to

reserve two circuits from S1 to D1 and S2 to D2, respectively.

Using the one-big-switch abstraction in the P4P system [25],

the user will get the information that each circuit can reserve

a bandwidth up to 100 Gbps (Fig. 4a). However, the routes for

the two circuits – computed by the underlying routing protocol

– share common links l3 and l4 (Fig. 4b), making it infeasible

for both circuits to each reserve a 100 Gbps bandwidth.

In some recent studies [41], [42], a variation of the one-big-

switch abstraction was proposed to define the resource sharing

among different traffic flows as operations defined in different

algebra fields. However, this abstraction is too complex and

can only handle single-path routing policies.

B. Basic Idea

Different from the graph-based abstraction and the one-big-

switch abstraction, the basic idea of the resource abstraction

in Mercator is simple yet powerful: given a set of requested

circuits to be reserved, capture the properties (e.g., available

bandwidth) of relevant shared resources, through a set of

algebraic expressions.

Specifically, suppose the Mercator domain server at a mem-

ber network receives the resource discovery request of a set

of circuits F entering this member network. For each circuit

fj ∈ F , we use xb
j to denote the available bandwidth the

user can reserve for this circuit. Upon receiving this request,

the Mercator domain server first checks the intradomain route

of each circuit fj . Then the server enumerates all the links in

the member network. For each link lu, it generates a linear

inequality:

∑

xb
j ≤ lu.bandwidth, ∀fj that uses link lu in its route.
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Fig. 5. A running example illustrating how the resource abstraction han-
dles multicast through algebraic-expression enumeration, where two circuits
(S1, {D1, D2}) and (S2, D2) need to be reserved.

Revisit the example in Fig. 4, the Mercator domain server

will generate the following set of linear inequalities Π(F ):

xb
1 ≤ 100 ∀lu ∈ {l1, l2, l5, l6},

xb
2 ≤ 100 ∀lu ∈ {l7, l8, l11, l12},

xb
1 + xb

2 ≤ 100 ∀lu ∈ {l3, l4}, (1)

which accurately captures the bandwidth sharing among two

circuits’ routes.

C. Removing Redundant Linear Inequalities

Observe the set of linear inequalities in the above example.

One may realize that this set has redundancies, e.g., there

are 4 same inequalities xb
1 ≤ 100 in this set. Given Π(F ),

a linear inequality y ∈ Π(F ) is redundant if and only if the

optimal solution of any optimization problem with Π(F ) as

the constraint is the same as that with Π(F ) − {c} as the

constraint. In our system, the Mercator domain server adopts

a classic compression algorithm [43] to remove the redundant

linear inequalities. In this example, the compressed Π(F ) will

only contain one inequality, i.e., xb
1 + xb

2 ≤ 100.

Through algebraic-expression enumeration, the resource

abstraction can handle not only unicast, as shown above, but

many other settings. Below we show how resource abstrac-

tion handles three important use cases in collaborative data

sciences.

D. Use Case 1 - Multicast

Consider the example in Fig. 5, where the first circuit is

a multicast circuit from S1 to D1 and D2, and the second

one is a unicast circuit from S2 to D2. The routes for

these circuits, computed by the underlying routing protocol,

are marked in red and yellow, respectively. The resource

abstraction captures the bandwidth sharing between these two

circuits by introducing auxiliary variables xb
11 and xb

12 for the

multicast circuit. Because the traffic duplication for the first

circuit happens at switch 8, we use xb
11 to represent the traffic

from switch 8 to D1, and xb
12 to represent the traffic from

switch 8 to D2. In this way, the Mercator domain server will

generate the following set of linear inequalities:

xb
11 = xb

1, xb
12 = xb

1,

xb
1 ≤ 100 ∀lu ∈ {l1, l2},

xb
11 ≤ 100 ∀lu ∈ {l5, l6},

xb
2 ≤ 100 ∀lu ∈ {l7, l8},

xb
1 + xb

2 ≤ 100 ∀lu ∈ {l3, l4},

xb
12 + xb

2 ≤ 100 ∀lu ∈ {l11, l12}, (2)

Fig. 6. A running example illustrating how resource abstraction handles
complex routing and traffic engineering policies through algebraic-expression
enumeration and how resource abstractions from different member networks
are stitched, where two circuits (S1, D1) and (S2, D2) need to be reserved.

E. Use Case 2 - Multi-Path Routing

Consider the example in Fig. 6, where the user wants to

discover the bandwidth sharing for two circuits f1 : (S1, D1)
and f2 : (S2, D2), and M1 uses multi-path routing for the

circuit f1, i.e., routing to two egresses e1, e2.

In particular, the Mercator domain server at M1 introduces

variables x11 and x12 to represent the available bandwidth

from S to egresses e1 and e2, respectively, and share the

introduction of these variables to M2. Then M1 independently

adds an equation x1 = x11 + x12 into its set of linear

inequalities Π1(F ). The resulting resource abstraction at both

member networks are then expressed as

Π1(F ) : xb
1 = xb

11 + xb
12, Π2(F ) : xb

11 ≤ 40,

xb
11 ≤ 40, xb

12 ≤ 40,

xb
12 ≤ 40, xb

2 ≤ 40.

xb
2 ≤ 40,

xb
11 ≤ 100,

xb
12 + xb

2 ≤ 100. (3)

Using Π1(F ) and Π2(F ) as the constraint, the user can then

make reservation requests based on the optimization of her

own objective function. For example, to achieve the max-

min fairness between two circuits, the user will reserve xb
1 =

80 Gbps for (S1, D1) and xb
2 = 40 Gbps for (S2, D2), where

internally M1 can allocate xb
11 = xb

12 = 40 Gbps.

F. Use Case 3 - Load-Balancing

In the same example in Fig. 6, assume M1 uses weighted-

cost-multi-path (WCMP) and has an internal policy to allocate

bandwidth for the circuit (S1, D1) along two path S1 → e1

and S1 → e2 in a ratio of 1:2. With this policy, the previous

reservation request with xb
1 = 80 Gbps and xb

2 = 40 Gbps

is no longer valid as xb
11 and xb

12 cannot reach 40 Gbps

simultaneously. To capture this policy so that the user does

not make the invalid reservation request, the Mercator domain

server at M1 introduces an additional equation xb
12 = 2xb

11

into Π1(F ) and sends to the user. And the user can compute

the valid, optimal reservation decisions, e.g., xb
1 = 60 Gbps

and xb
2 = 40 Gbps, to achieve max-min fairness.

G. Resource Abstraction for Other Properties

The algebraic-expression-based resource abstraction pro-

vides a generic representation for different properties of net-

work resources. We now illustrate this generality by showing

how it can represent two other important properties of network

resources, delay and loss rate.
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Specifically, suppose the Mercator domain server at a mem-

ber network receives the resource discovery request of the

delay and loss rate of a set of circuits F entering this network.

For each circuit fj ∈ F , we use xd
j to denote the delay of this

circuit in the network. The Mercator domain server checks

the intradomain route of each fj , and generates the following

linear expression:

xd
j =

∑

u

lu.delay, ∀lu in the route offj .

Similarly, for the property of loss rate, we use xr
j to denote

the loss rate of circuit fj , and the Mercator domain server

generates the following linear expression:

xr
j = 1 −

∏

(1 − lu.lossrate), ∀lu in the route offj .

As such, the algebraic-expression-based resource abstrac-

tion is a unified representation of different properties of net-

work resources for a set of circuits. Given Πi(F ), the resource

abstraction of Mi for a set of F circuits, from the geometric

perspective, represents the resource feasible region of Mi for

providing bandwidths, delays and loss rates to this set of

circuits.

H. Aggregation of Multi-Domain Resource Abstraction

Given a set of F circuits spanning over N member net-

works, the resource abstractions Πi(Fi) from all the Mercator

domain servers in the member networks can be aggregated into

a unified, aggregated representation of multi-domain network

resources ⊕Πi(Fi), where ⊕ is a property-specific operator.

Specifically, for the bandwidth property, the ⊕ operator

is ∪, i.e., the union of multiple sets of linear inequalities.

Geometrically speaking, ∪Πb
i (Fi) represents the intersection

of the bandwidth feasible region of all member networks.

For the delay property, the ⊕ operator is
∑

d, i.e., the sum

of delays from different networks. In
∑

d Πd
i (Fi), for each

circuit fj and all member networks Mi, xd
j =

∑

delayji,

where delayji is the delay of circuit fj in network Mi. For

the loss rate property, the ⊕ operator is
∑

r. In
∑

r Πr
i (Fi),

for each circuit fj and all member networks i, xr
j = 1−

∏

(1−
lossrateji), where lossrateji is the loss rate of circuit fj in

network Mi.

IV. PRIVACY-PRESERVING RESOURCE ABSTRACTION

Given a member network, the algebraic-expression-based

resource abstraction specified in Section III accurately cap-

tures different properties of the available network resources

among virtual circuits without exposing its network topology

and links’ availability. However, a resource abstraction still

represents the resource feasible region of the corresponding

member network for a set of circuits. Such information is still

private and sensitive, and a malicious party who acquires it

may use it to launch attacks to the corresponding member

network. To address the privacy challenge for network resource

discovery and preserve the privacy of resource feasible region

of member networks while still providing the accurate network

resource information for circuits, we extend the base resource

abstraction to develop an obfuscating protocol in Mercator.

Fig. 7. A running example to illustrate the resource abstraction obfuscating.

In this section, we first formally define the privacy-preserving

resource abstraction problem. Next, we present the details of

our protocol and conduct a rigorous analysis.

A. Privacy-Preserving Resource Abstraction Problem

1) Basic Issue: We use the example in Fig. 7 to illustrate the

privacy concern of the resource abstraction, where Mercator

tries to discover the shared bandwidth of two virtual circuits

(S1, D1) and (S2, D2) across 3 member networks. In this

example, all links in black line are 1 Tbps aggregating links.

The inter-member-network-paths of two circuits are [M1, M2]
and [M1, M3], respectively. And two circuits share the same

intra-domain path in M1.

When receiving the resource discovery request, the Mercator

domain server at each member network will abstract the band-

width sharing of both circuits into a set of linear inequalities.

After removing the redundant inequalities of each member

network, the resource abstraction of each member network’s

bandwidth is:

Πb
1(F1) : {xb

1 + xb
2 ≤ 100}

Πb
2(F2) : {xb

1 ≤ 30}

Πb
3(F3) : {xb

2 ≤ 30}. (4)

If each Mercator domain server directly sends its own

resource abstraction to the aggregator, the aggregator will have

the knowledge of the resource feasible region of each indi-

vidual member network. This makes the whole collaboration

network vulnerable because the aggregator is a single point

of failure possessing the private information of all member

networks. In other words, if an attacker gains the control to

the aggregator, he can leverage such specific information to

attack any member network.

2) Problem Definition: To make Mercator functional and

secure, therefore, we need a solution that provides the accurate

network resource information for the set of virtual circuits

to be reserved, and at the same time protects each member

network from exposing its private resource feasible region.

To this end, we first give a formal definition of privacy-

preserving, equivalent resource abstraction:

Definition 1 (Equivalent, Privacy-Preserving Resource

Abstraction): Given a set of circuits F that span over N > 1
member networks, the resource abstraction Πp(F ) collected

by the aggregator is equivalent and privacy-preserving if for

all network resource properties (e.g., bandwidth, delay and

loss rate), (1) the resource feasible region represented by

Πp(F ) is the same as that represented by ⊕Π(Fi) where

i = 1, 2, . . . , N ; and (2) for any linear inequality c ∈ Πp(F ),
the aggregator cannot associate it with a particular member

network.
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Fig. 8. The resource abstraction obfuscating protocol.

With this definition, we further define the privacy-preserving

resource abstraction problem:

Problem 1 (Privacy-Preserving Resource Abstraction Prob-

lem): Given a set of circuits F that span over N > 1 member

networks, design a security protocol in the resource discovery

system to ensure that for all network resource properties

(e.g., bandwidth, delay and loss rate), (1) the aggregator

receives the equivalent, privacy-preserving resource abstrac-

tion Πp(F ); and (2) for any Mi, it does not know any linear

inequality from any other Πj(Fj), where j 6= i.
3) Security Model: In this paper, we assume a semi-honest

security model, i.e., the aggregator and all member networks

will not deviate from the security protocol, but merely try to

gather information during the execution of the protocol [44].

This is sufficient for collaboration science networks where

member networks share resources to collaboratively conduct

common tasks such as data transfers, storage and analytics.

B. Resource Abstraction Obfuscating Protocol

There are different design options for Problem IV-A.2, e.g.,

garbled circuit based protocols [45]. However, these designs

would incur expensive computation and communication over-

head, hence are not suitable for the need of multi-domain

resource discovery. In this paper, we tackle this problem by

designing a novel resource abstraction obfuscating protocol

that only requires simple operations on matrices, i.e., addition

and multiplication.

1) Basic Idea: Our protocol leverages random matrix theory

[46], [47]. In particular, each Mi independently computes and

sends to the aggregator a set of disguised linear equations,

which are derived from the private Πi(Fi), a random matrix

Pi known only to Mi, two random matrices Ci and Di known

only to Mi and Mi−1, and two random matrices Ci+1 and

Di+1 known only to Mi and Mi+1.

2) Protocol: The protocol is composed of three phases:

initialization, obfuscation and transmission, as shown in Fig. 8.

For the simplicity of presentation, we let mi = |Πi(Fi)|, i.e.,

the number of linear inequalities in Πi(Fi) after redundancy

removal, and Mi =
∑i

j=1
mj . And for each circuit fj ,

we also omit the superscript representing different properties

in the corresponding xj . As such, the resource abstraction of

a member network i is written as Πi(Fi) = Aix ≤ bi.

During the initialization phase, all member networks

agree on a common k >
∑

mi. For each Mi where

i = 1, 2, . . . , N − 1, it generates a k-by-(|F | + mi + mi+1)

random matrix Ci = [C
|F|
i

Ci
mi Ci

mi+1 ], and a k-by-1
random matrix Di, and sends to Mi+1. And we define C0,

D0, CN and DN as zero matrices. As we will illustrate in

the remaining of this section, these zero matrices are used for

presentation completeness and will not affect the correctness

of the obfuscating protocol.

During the obfuscation phase, each Mi introduces mi slack

variables, denoted by x
s

i
, to transform Πi(Fi) = Aix ≤ bi

from the standard form to the augment form and gets the

following equivalent linear system:

[

Ai Imi

] [

x, x
s

i

]

= bi. (5)

We then add slack variables introduced by all other member

networks with zero coefficients into the linear system in

Equation (5) and get the following equivalent linear system:

[

Ai 0Mi−1
Imi

0
] [

x, x
s
1, . . . , x

s

i
, . . . , x

s

N

]

= bi.

(6)

Next, each Mi generates a private random matrix Pi ∈
Rk×mi , and left-multiplies both sides of Equation (6) to get:

[

PiAi 0Mi−1
Pi 0

] [

x, x
s
1
, . . . , x

s

i
, . . . , x

s

N

]

=Pibi.

(7)

Then each Mi adds

[

C
|F|
i

−C
|F|
i−1

0Mi−2
−C

mi−1

i−1
−C

mi

i−1
+ C

mi

i
C

mi+1

i
0

]

,

to the coefficient matrix of the left-hand-side (LHS) of Equa-

tion (7), and adds −Di−1+Di to its right-hand-side (RHS) to

get Equation (8), as shown at the bottom of this page, where

it can be observed that for each Mi, the coefficient matrix of

LHS of Equation (8) is of dimension k-by-|F |+MN , and the

RHS is of dimension k-by-1.

In the transmission phase, each Mi encrypts the set of linear

equations in Equation (8) using a symmetric-key algorithm,

e.g., AES, and sends the cypher text to the aggregator. After

collecting the linear equations from all member networks, the

aggregator decrypts them and computes the sum of all LHS

matrices and RHS matrices of all member networks, respec-

tively. After simple elimination, the LHS sum is expressed as:

[
∑

PiAi P1 . . . PN

]

.

Similarly, the sum of all RHS matrices of all member net-

works can be expressed as
∑

Pibi. Denoting [xs
1
, . . . ,xs

N
] as

x
s, the aggregator can get the privacy-preserving abstraction

Πp(F ):

[
∑

PiAi P1 . . . PN.
] [

x, x
s
]

=
∑

Pibi. (9)

3) Example: We use the example in Fig. 7 to illustrate the

resource abstraction obfuscating protocol. For simplicity,

[

PiAi + C
|F|
i

− C
|F|
i−1

0Mi−2
−C

mi−1

i−1
Pi − C

mi

i−1
+ C

mi

i
C

mi+1

i
0

]

·
[

x, x
s
1
, . . . , x

s

i
, . . . , x

s

N

]

= Pibi − Di−1 + Di

(8)
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we assume three member networks agree on k = 4.

The private random matrices P1, P2 and P3 are gener-

ated as P1 = [11, 49, 95, 34], P2 = [58, 22, 75, 25], and

P3 = [50, 69, 89, 95]. The obfuscated resource abstractions

computed by each network are:

15x1 + 14x2 + 15xs
11 + 4xs

21 + 0xs
31 = 1130,

53x1 + 50x2 + 53xs
11 + 2xs

21 + 0xs
31 = 4910,

96x1 + 97x2 + 96xs
11 + 4xs

21 + 0xs
31 = 9540,

38x1 + 37x2 + 38xs
11 + 1xs

21 + 0xs
31 = 3420,

−2x1 + 47x2 + 0xs
11 + −3xs

21 + 47xs
31 = 1470,

−4x1 + 68x2 + 0xs
11 + −4xs

21 + 68xs
31 = 2040,

−4x1 + 85x2 + 0xs
11 + −3xs

21 + 86xs
31 = 2630,

−4x1 + 91x2 + 0xs
11 + −2xs

21 + 94xs
31 = 2810,

and

56x1 + 0x2 + −4xs
11 + 57xs

21 + 3xs
31 = 1740,

22x1 + 0x2 + −4xs
11 + 24xs

21 + 1xs
31 = 680,

78x1 + 2x2 + −1xs
11 + 74xs

21 + 3xs
31 = 2250,

25x1 + 0x2 + 0xs
11 + 25xs

21 + 0xs
31 = 770.

Summing these obfuscated resource abstractions together, the

resulting resource abstraction Πp(F ) collected by the aggre-

gator is:

69x1 + 61x2 + 11xs
11 + 58xs

21 + 50xs
31 = 4340,

71x1 + 118x2 + 49xs
11 + 22xs

21 + 69xs
31 = 7630,

170x1 + 184x2 + 95xs
11 + 75xs

21 + 89xs
31 = 14420,

59x1 + 129x2 + 34xs
11 + 25xs

21 + 95xs
31 = 7000,

where xs
11, xs

21 and xs
31 are slack variables. Assume the user’s

objective is to maximize the throughput, i.e., x1 + x2. Using

this set of linear inequalities as the constraint, it can get the

optimal solution where x1 = x2 = 30 Gbps, the same as when

using Equation (4) as the constraint.

C. Analysis

We conduct rigorous analysis on different properties of the

proposed obfuscating protocol.

1) Correctness: We first study the correctness of this pro-

tocol. In particular, we prove the correctness of this protocol

for different properties in the following propositions.

Proposition 1 (Bandwidth Resource Abstraction Equiva-

lence): If the resource abstraction Ax ≤ b, where A =
[A1,A2, . . . ,AN] and b = [b1,b2, . . . ,bN], represents the

bandwidth property for a set of circuits F over N member

networks. Using the proposed obfuscating protocol, the band-

width feasible region of represented by Equation (9) is the

same as the bandwidth feasible region represented by Ax ≤ b.

Proof: To prove this proposition, we first observe that the

bandwidth feasible region of Ax ≤ b is the same as that of
[

A IMN

] [

x, x
s
]

= b (10)

Representing P = [P1, . . . ,PN] ∈ Rk×MN , we first

observe that
[
∑

PiAi P1 . . . PN

]

= P
[

A IMN

]

, and that
∑

Pibi = Pb [47]. It is easy to see that when
[

x x
s
]

satisfies

Equation (10), it also satisfies Equation (9).

Next, from the results in [46] and that P ∈ Rk×MN ,

we have rank(P) = MN < k. As a result, P has a left

inverse matrix P
−1

left where P
−1

leftP = IMN
. Hence when

[

x x
s
]

satisfies Equation (9), i.e., P
[

A IMN

] [

x, x
s
]

= Pb,
we have

P
−1

leftP
[

A IMN

] [

x, x
s
]

= P
−1

leftPb,

which then transforms into Equation (10). Therefore,

Equations (9) and (10) represent the same bandwidth feasible

region, which completes the proof.

Next, we give the correctness proof for delay and loss rate

resource abstraction equivalence.

Proposition 2 (Delay/Loss Rate Resource Abstraction

Equivalence): If the resource abstraction Ax ≤ b, where

A = [A1,A2, . . . ,AN] and b = [b1,b2, . . . ,bN],
represents the delay or loss rate property for a set of circuits

F over N member networks. The aggregator can compute

the aggregated multi-domain delay or loss rate resource

abstraction ⊕Πi(Fi), where Πi(Fi) = Aix ≤ b1 using the

set of linear equations in Equation (9).

Proof: From the proof of Proposition 1, we know

that P is full column rank. Observe
[
∑

PiAi P1 . . . PN

]

,

the coefficient matrix on the LHS of Equation (10),

we can find that each column of
∑

PiAi can be linearly

expressed by the columns in P. As a result, we can dissect
[
∑

PiAi P1 . . . PN

]

into P
[

A IMN

]

through Gaussian

Elimination and learn A. Similarly, we can learn b. As such,

we can reconstruct Ax ≤ b and then compute the aggre-

gated multi-domain delay or loss rate resource abstraction

⊕Πi(Fi).
2) Security: Next, we give the following proposition on the

privacy-preserving property of the proposed protocol.

Proposition 3 (Resource Abstraction Privacy-Preserving):

In the semi-honest security model, the proposed resource

abstraction obfuscating protocol ensures that (1) the

aggregator cannot associate any linear equation it receives in

Πp(F ) with any particular member network, and (2) for any

Mi, it does not know any linear inequality from any other

Πj(Fj) (j 6= i).
Proof: From the description of the resource abstraction

obfuscation proof, we see that each Mi directly sends its

own set of disguised linear equations back to the aggregator,

hence it does not know any linear inequality from any other

member network. Furthermore, even though Proposition 2

shows that it is possible for the aggregator to compute Ax ≤
b, the aggregator cannot associate any Ai or bi to any

particular Mi because Pi is also disguised by matrices Ci,

Ci−1, Ci+1, Di, Di−1 and Di+1 before sending back to the

aggregator.

Even with Proposition 2 and the inter-member-network-

path information of each circuit, the aggregator still can-

not associate any linear inequality in Ax ≤ b with the

corresponding member network or any networking device

(i.e., switch or link). This is because (1) the set of linear

equations sent by each member network do not represent its

original feasible region, and (2) the inter-member-network-

path does not reveal any topology information inside member

networks.
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With Propositions 1, 2, and 3, we can get the following

theorem.

Theorem 1: Given a set of circuits F that span over N
member networks, the proposed resource abstraction obfuscat-

ing protocol ensures that the aggregator receives equivalent,

privacy-preserving resource abstraction and each member

network only knows its own resource feasible region.

As stated in Section IV-A, the resource abstraction obfus-

cating protocol was designed for the semi-honest security

model. Next, we analyze the privacy-preserveness of our

obfuscating protocol in a collusion security model, a more

adversarial model in which some member networks may share

their resource abstractions with the aggregator. Specifically,

we prove the following proposition.

Proposition 4 (Resource Abstraction Privacy-Preserving

against Collusion): Assume some member networks may col-

lude with the aggregator to share their resource abstractions

Πj(Fj). Given a non-colluding member network Mi, the

resource abstraction obfuscating protocol ensures that the

aggregator cannot associate any linear equation it receives

in Πp(F ) with Mi unless all other N − 1 member networks

choose to share their resource abstractions Πj(Fj), where

j 6= i, with the aggregator.

Proof: The proof of this proposition follows the proof

of Proposition 2 and Proposition 3. Essentially, in order to

associate any linear equation in Πp(F ) to a non-colluding

member network Mi, the aggregator needs to know that this

linear equation does not belong to any other member network.

Given that the colluding member networks only share their

own resource abstractions with the aggregator, this can only

be achieved for all other N − 1 networks to share their

own resource abstractions Πj(Fj), where j 6= i, with the

aggregator.

This proposition indicates that the obfuscating protocol can

preserve the privacy of a member network against the collusion

between the aggregator and up to N − 2 member networks.

3) Efficiency: We next analyze the efficiency of our protocol

at different phases. During the initialization phase, the main

overhead comes from the process each member network agree-

ing on k, and each Mi share Ci and Di with Mi+1. The first

part can be efficiently realized using leader-election algorithms

in ring topology or pre-configured. For the second part, it can

be efficiently realized by sharing random seeds between Mi

and Mi+1. In the obfuscating phase, the computation overhead

is also low because it only involves simple, cheap matrix

operations, e.g., addition and multiplication.

One may have concern on the transmission overhead of our

protocol in the transmission phase because we disguise the set

of linear inequalities of each member network into a larger

set of linear equations. As such, we quantify the transmission

overhead of our obfuscating protocol as follows:

Proposition 5 (Transmission Overhead): Given a resource

discovery procedure for a set of circuits F spanning over N
member networks, the transmission overhead of the resource

abstraction obfuscating protocol at each member network is

O(k|F |), where k >
∑

mi.

Proof: Observing the set of equations sent by each Mi

in Equation (8), we can see that most of the columns of the

Fig. 9. An illustrating example of super-set projection.

LHS coefficient matrix are zero-columns. Therefore, each Mi

only needs to send nonzero-columns to the aggregator and

specifies the indice of these columns. As such, the number of

elements to be sent to the aggregator is bounded by O(k|F |),
where k >

∑

mi. This substantially reduces the amount of

data needs to be transmitted from Mi to the aggregator.

V. SUPER-SET RESOURCE ABSTRACTION PROJECTION

As pointed out in Section I, the third challenge for resource

discovery is efficiency and scalability, as the number of

resource discovery requests may be large in collaboration

networks and each request could trigger a resource discov-

ery procedure. This procedure requires the communication

between the aggregator and the user, and between the aggre-

gator and every Mercator domain server in member networks.

Furthermore, the introduction of resource abstraction obfuscat-

ing in Section IV may also increase the communication and

computation overhead of resource discovery. To address the

efficiency and scalability issue, we develop a novel super-set

projection technique, which does not require any change to

the resource abstraction design in Section III or the extended

obfuscating protocol in Section IV. In this section, we first

describe its basic idea, and then give the details of this

mechanism.

A. Basic Idea

The intuition of super-set projection is simple: to have the

aggregator proactively discover the resource abstraction for a

set of circuits between every pair of source and destination

member networks, and use these pre-computed abstractions

to quickly project to get the resource abstraction for user’s

requests.

In particular, in a collaboration network of N member

networks, the super-set projection technique first simulates

the need of N(N − 1) artificial circuits, where each circuit

fij represents an artificial circuit from Mi to Mj . With this

artificial resource discovery request, the aggregator follows

the normal resource discovery process to discover the shared

bandwidth of all these N(N − 1) circuits across the whole

collaboration network, represented by Πfull. When a user

sends an actual resource discovery request for a set of F
circuits, the aggregator checks the source and destination

member networks of each circuit, and uses the stored Πfull to

derive Π(F ) by removing unrelated inequalities and unrelated

artificial circuits, instead of starting a new resource discovery

procedure. In this way, the overhead of resource discovery is

reduced to a single round of message exchange between the

aggregator and the user.

Example: Consider an example of 3 member networks in

Fig. 9. With the super-set projection, the aggregator discovers



1934 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019

the bandwidth sharing of all 3 × 2 = 6 network-to-network

artificial circuits as Πfull in the figure. When a user submits

a resource discovery request for two circuits (S1, D1) and

(S2, D2), where S1 is in M1, S2 and D1 are in M2 and D2 is

in M3. The aggregator first maps the (S1, D1) to the artificial

circuit from M1 to M2, and (S2, D2) to the artificial circuit

from M2 to M3. Next, it projects Πfull to these two circuits

to get the resource abstraction for these two circuits by (1)

removing all linear inequalities that do not contain xb
12 or xb

23,

and (2) for every remaining linear inequality, remove all the

items on the LHS that are not xb
12 or xb

23. Finally, it returns

the resource abstraction: {xb
12 ≤ 60, xb

23 ≤ 80}, to the user.

B. Update of Πfull

We ensure the freshness of Πfull via two mechanisms. First,

the Mercator domain servers at member networks periodically

send updated information to the aggregator. Second, when

the reservation system receives and successfully executes a

resource reservation request from the user, it sends a notifi-

cation to the aggregator with the reservation details so that

the aggregator can update Πfull. The aggregator will only

query the Mercator domain servers to obtain an up-to-date

abstraction for the user when the user fails to reserve the

resource based on the projected abstraction.

C. Handling Heterogeneous Flows

One may notice that the super-set projection technique

is designed based on the assumption that given a source-

destination member network pair, all the traffic flows between

these two member networks will be treated homogeneously

by all other member networks. In practice, flows between

the same source-destination member network pair may be

handled differently by other member networks, i.e., they are

heterogeneous flows. To address this limitation, we use traffic

classes to differentiate heterogeneous flows. In particular, for

each source-destination member network pair with G different

traffic classes, the super-set projection technique considers

these classes as G separate artificial circuits and proactively

discovers the bandwidth sharing among these G circuits and

other artificial circuits.

VI. IMPLEMENTATION AND DEPLOYMENT

In this section, we describe the implementation of the

Mercator and the recent deployment of Mercator in a small

federation network to orchestrate large-scale science dataset

transfer between two major cities in the United States.

A. Implementation

Figure 10 shows the Mercator domain server implementa-

tion, including the Mercator domain server and the aggregator.

1) Mercator Domain Server: We build the Mercator domain

server on top of the OpenDaylight Software Defined Network

controller [48]. Essentially, the Mercator domain server col-

lects the network state information from the OpenDaylight

controller, e.g., topology, policy and traffic statistics, processes

the collected information into resource abstraction, and sends

the abstraction back to the aggregator.

Fig. 10. The Mercator implementation.

Fig. 11. Deployment of Mercator on a small federation network at Dallas,
Texas and Los Angeles, California.

The Mercator domain server has three modules: an Open-

Daylight application running in a Karaf container, and a web

server accepting the resource discovery from the aggregator

and responding with the resource abstraction, and a syn-

chronization service communicating with neighbor domain

servers to exchange shared-random matrices that are used for

abstraction obfuscating.

2) Aggregator: The aggregator has three modules: a web

server, a web client and a BGP speaker. The web server

provides interfaces for the user to submit a resource discovery

request for a set of circuits in a format specified by the ALTO

protocol [24]. The web client communicates with Mercator

domain servers in different member networks by sending

resource discovery requests. In addition, the BGP speaker

maintains BGP sessions with the border routers or route

servers at member networks to collects inter-member-network

paths information.

B. Deployment

We deploy Mercator in a small federation network shown

in Figure 11. Specifically, this federation is composed of

three member networks. Network 1 is in Dallas, Texas, and

Network 2 and network 3 are in Los Angeles, California.

Network 1 is connected to network 2 through a layer-2 WAN

circuit with a 100 Gbps bandwidth, provisioned by several

providers such as SCinet, CenturyLink and CENIC. Network 1

is a temporal science network in the CMS experiment [49],

while network 2 and 3 are long-running CMS Tier-2 sites.

In this federation, users need to reserve network resources

to transfer large-scale science datasets (e.g., with a size of

hundreds of PB) between networks.

In our deployment, a Mercator domain server is deployed

in each network, and the aggregator is deployed in Dallas.

We also deploy SFP, a BGP-compatible routing protocol pro-

viding fine-grained routing information [50] in the federation.

Upon receiving a user’s request, e.g., to discover network

resources for circuits from network 1 to network 2 and 3,

the aggregator in Mercator contacts the SFP speaker at

different networks to discover the interdomain routes for
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these circuits, and then sends resource discovery requests

to the Mercator domain servers at different networks. After

collecting the resource abstraction from Mercator domain

servers, the aggregator assembles them and returns to the

user. The user then uses such information to compute the

optimal amount of network resources to reserve for each

circuit and send to the underlying reservation to reserve the

resources.

1) Performance: We evaluate the accuracy and latency of

Mercator for discovering network resources in this network.

During our evaluation, Mercator accurately discovers the net-

work resource information for a large amount of circuits reser-

vation requests with a very low discovery latency. Specifically,

for all the reservation requests, Mercator always provides the

accurate information of available bandwidth sharing in the

network (i.e., a 100% accuracy), with an average discovery

latency of ∼100 milliseconds, and a worst latency of less than

1 second. With the discovered network resource information,

users can transmit large-scale science datasets at a speed

up to 100 Gbps, (i.e., the theoretical maximal throughput).

A demonstration of the Mercator deployment in this federation

network can be found at [51].

VII. EVALUATION

We implement Mercator on commodity servers

(i.e., equipped with Intel(R) Xeon(R) E5-2609 2.50GHz 4-core

CPU and 32 GB memory) and evaluate its performance based

on a member-network-level topology from a large federation

of networks supporting large-scale distributed science

collaborations, and using real traffic traces from recent science

experiments. After describing our experimental setup, we

first demonstrate the benefits of resource abstraction through

algebraic-expression enumeration. Second, we demonstrate

the efficiency of the proposed resource abstraction obfuscation

protocol. Finally, we demonstrate that the super-set projection

technique substantially increases the scalability of Mercator.

A. Experimental Setup

We evaluate Mercator on the member-network-level topol-

ogy from LHC Open Network Environment (LHCONE),

a global science network consisting of 62 member networks,

where scientists conduct large-scale distributed analytics.

Because inter-member-network routing typically is not based

on shortest path routing, but follows business relationships

(e.g., customer, peer, provider), we label the connections

between every pair of connected member networks with their

business relationship using the CAIDA network relationships

dataset [52], and we compute the inter-member-network paths

according to conventional policies for selecting and exporting

routes. For member networks’ intradomain topologies, we ran-

domly select a topology for each network from the Topology

Zoo [53], which provides a collection of real intradomain

topologies. The topology of transit member networks varies

from 31 switches/routers with 33 links to 49 switches/routers

with 85 links. The topology of stub member networks

(e.g., campus science networks) ranges from 7 switches/routers

with 6 links to 21 switches/routers with 44 links.

B. Benefits of Resource Abstraction Through

Algebraic-Expression Enumeration

The first set of experiments demonstrate the benefits of the

resource abstraction through algebraic-expression enumera-

tion. We show that this abstraction reduces the time to discover

network resources by up to six orders of magnitude, and allows

fairer allocations of network resources.

1) Methodology: To evaluate the benefits of this resource

abstraction, we replay the trace from a large-scale distributed

experiment, and submit network resource reservations for the

corresponding flows. More specifically, we use the actual trace

from the CMS experiment [54], a major scientific experiment

in LHC, and a main source of traffic in LHCONE. We extract

the traffic flows, with their source member network, destina-

tion member network and the time. We focus on the 7-day

trace starting from September 30, 2018 to October 6, 2018, and

slice the data trace into 24 continuous 2-hour time windows.

We apply the resources reservation once every time window.

In other words, resources for traffic flows starting at the same

time window are reserved in the same request, and we assume

all resources will be released in the next time window.

We compare the performance of Mercator with that of exist-

ing reservation systems. In particular, for existing systems,

we consider one that adopts a probe-requests based approach:

• Mercator: As described in Section II, for every resource

discovery request, the aggregator queries the relevant member

networks for their resource abstraction, and then derives the

feasible bandwidth allocation region.

• Probe requests: As described in Section I, existing

resource reservation systems such as OSCARS process each

circuit in the request one at a time and in a sequential order.

For each circuit, the resource reservation system initiates

a depth-first search to probe if each member network can

provide the requested bandwidth. We set the initial requested

bandwidth for a circuit as C/N where C is the source host’s

capacity, and N is the number of flows from that host. In the

event of a failure, the resource reservation system performs

a binary search of the available bandwidth repeatedly halving

the requested bandwidth until success. The process is repeated

for each circuit in the request.

2) Results: First, we consider that the goal of the resource

allocation policy is to maximize the minimum throughput of

all the requested flows (max-min fairness). Such a policy is

commonly desired as it ensures high throughput and fairness

across the circuits. We compare the fairness of the network

resource allocations obtained with Mercator to that obtained

with the probe-requests based solution. We adopt Jain’s fair-

ness index [55] to measure the fairness [56]:

J(x1, x2, . . . , xn) =
(
∑n

i=1
xi)

2

n ·
∑n

i=1
xi

2

where xi is the ratio of the actual allocation and the optimal

fair allocation for a single flow. 12a shows that with resource

abstraction, Mercator can always compute the optimal max-

min fairness allocation. Hence its fairness index is always 1.

In contrast, the highest fairness index the probe-requests can

get is 0.05, with most of the slots even smaller than 0.01.
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Fig. 12. Comparison of performance between the probe-requests approach
and Mercator in different objectives.

Fig. 13. Ratio of throughput between Mercator and the probe-requests
approach when the objective is to maximize the total throughput.

Fig. 14. Resource discovery latency of the probe-requests approach and
Mercator.

Second, we consider the case where the objective is to

maximize the total throughput. 12b shows that the total

throughput of Mercator is larger than that obtained by the

probe-requests based solution throughout the whole experi-

ment. Fig. 13 shows that the ratio of throughput of Mercator

over that of probe-requests based solution is by 3.47x on

average, and up to 6.2x. The results are noteworthy given

that Mercator assumes the routes for each circuit to be

completely determined by the underlying intradomain routing

protocol. In contrast, the probe-requests approach sequentially

explores every possible route for each circuit until it finds an

available one. In other words, even with much less exploration,

Mercator still outperforms the probe requests significantly.

Allowing Mercator to consider not only the routes provided by

the underlying routing protocols, but also all other available

routes, could lead to significant additional improvements.

We leave the extension of Mercator to consider all possible

routes in the network as future work.

Fig. 14 presents the total resource discovery latency for

completing all circuits resource reservations in a time window.

We assume the aggregator to be in New York, and consider

network latencies as measured in [57]. The figure shows the

total resource discovery latency with Mercator can reduce the

time to discover network resources by four orders of magni-

tude on average and up to six orders of magnitude at times.

Fig. 15. Ratio of failed requests in the probe-requests approach.

This is because resource abstraction allows users to query

the information from different member networks in parallel.

In contrast, existing probe-requests based solutions process

requests sequentially, and continuously probe to discover the

available network resources.

Finally, we highlight that the probe-requests based solution

suffers high request failure ratio, i.e., a large number of

requests cannot succeed: We define a failure of a request as the

inability to reserve resource for the circuit, due to the lack of

remaining capacity despite the gradually decreasing requested

bandwidth. Fig. 15 shows that during the 7-day period Mer-

cator is running, the probe-requests based solution has an

average request failure ratio of 87%. In other words, more than

80% of the circuits cannot reserve network resources. This

is because the probe-requests approach processes the request

for each circuit sequentially. Therefore, the first few circuits

may successfully reserve network resources and saturate the

network. As such, the majority of the latter requests may fail

as the links do not have any spare resources. In contrast,

the request failure ratio of Mercator is null because Mercator

returns a feasible region for the set of circuits so that the user

can make optimal reservation decisions for all circuits.

C. Efficiency of Resource Abstraction Obfuscating Protocol

This second set of experiments evaluate the performance

of the resource abstraction obfuscating protocol. We show

that this protocol efficiently scales for collaboration networks

of 200 member networks, with a maximal overall latency

around 3 seconds and an average data transmission over-

head between the aggregator and member networks of only

around 180 KB.

1) Methodology: We conduct our experiment by using the

member-network-level topology from the LHC Open Network

Environment (LHCONE). In each round of the experiment,

we randomly select a set of member networks from the topol-

ogy. For each chosen member network, we randomly select

a set of m linear inequalities, where m is randomly chosen

between 5 and 15, to represent the bandwidth feasible reason

for 10 circuits in this member network. For the encryption

and decryption operations in the obfuscating protocol, we use

the AES algorithm, provided by the Python Cryptography

Toolkit (pycrypto) [58]. The parameters k, Ci and Di are

pre-configured as discussed in Section IV-C.

We consider two metrics, i.e., the latency and the data

transmission overhead of the resource abstraction obfuscating

protocol. First, the overall latency of the protocol is measured

from the beginning of the obfuscation phase, when each

member network independently starts to obfuscate its own set

of linear inequalities, to the end of the transmission process,
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Fig. 16. The latency of the resource abstraction obfuscating protocol.

Fig. 17. The data transmission overhead of the resource abstraction
obfuscating protocol.

when the aggregator obtains
∑

PiAix = b. We use the

field statistic results measured in [57] as the communication

latencies between the aggregator and the Mercator domain

servers at the different member networks. Second, the data

transmission overhead is measured as the size of the set of

encrypted, obfuscated linear equations transferred from each

member network to the aggregator. We vary the number of

member networks from 10 to 200, in a step size of 10. For

each number of member networks, we repeat the experiment

10 times and measure the average values of these metrics.

2) Results: We present the results of our experiments

in Fig. 16 and Fig. 17. In particular, Fig. 16a shows the overall

latency of the obfuscating protocol under different numbers of

member networks, together with a break down on processing

delay and transmission latency. We observe that even for a

large collaboration network with 200 member networks, which

is larger than most existing operational collaboration networks,

the overall latency of the resource abstraction obfuscating

protocol is only slightly over 3 seconds, which demonstrates

that the latency of this protocol is reasonably low. We also

observe that the processing latency takes a much higher per-

centage than the transmission latency and that the processing

latency has a linear growth as the number of member networks

increases. We further plot the breakdown of the processing

latency. Fig. 16b shows that both the cryptography operations

of AES and the matrix operations in the resource abstraction

obfuscating protocol increases linearly as the number of mem-

ber networks increases, but the AES encryption and decryption

operations are the most expensive operations in the protocol

(i.e., up to 2.4 seconds for federations of 200 member net-

works). More importantly, although the obfuscating protocol

may take over 3 seconds for a federation of 200 member

networks, we emphasize that with the super-set projection

technique, the Mercator domain servers do not need to execute

the obfuscating protocol for each individual request.

Next, we present the average data transmission overhead of

the obfuscating protocol at each member network in Fig. 17.

Fig. 18. Comparison of latency between Mercator with and without super-set
projection.

We see in this figure that even after the encryption, the

size of data to be transmitted from member networks to the

aggregator is still very small. For example, for a collaboration

network with 200 member networks, the average size of data

transmitted from a member network to the aggregator is only

180 KB. As discussed in Section IV-C, this is because most of

the columns of the LHS coefficient matrix are zero-columns

and each member network only needs to send nonzero-

columns to the aggregator. The linear scaling of the data

transmission overhead (i.e., the ciphertext) at each member

network comes from the linear increase of the number of

disguised linear equations (i.e., the plaintext), which is caused

by the linear increase of k due to the increased number

of member networks. This is consistent with Proposition 5

in Section IV-C.

D. Efficiency of Super-Set Projection

In this experiment, we evaluate the efficiency of the

super-set projection technique in improving the scalability of

Mercator. We show that this mechanism improves the resource

discovery delay of Mercator by 2 times, and that its update

latency is within seconds in a collaborative network with

200 member networks.

1) Methodology: We conduct our experiments by using the

same settings as in Section VII-B.1. We focus on two metrics.

The first one is the resource discovery latency. When Mercator

uses super-set projection, the resource discovery latency is

reduced to only the round-trip time from the user to the

Mercator aggregator because the aggregator can derive the

resource abstraction for a request from the precomputed Πfull.

To have a comprehensive understanding on the scalability

of super-set projection, we are also interested in a second

metric, the update latency. This is measured as the resource

discovery latency of from the time the aggregator starting

the artificial resource abstraction discovery procedure to the

time the aggregator receives the latest Πfull. In particular,

we measure this latency under different collaboration scales

by varying the number of member networks and the number of

stub member networks in the collaborative network. For each

setting, we repeat the experiment 10 times and compute the

average update latency. In each repetition, we also randomly

choose different sizes of intradomain topologies from the

Topology Zoo dataset for each member network.

2) Results: Fig. 18 compares the resource discovery latency

of Mercator with and without super-set projection for a

48-hour period in the LHCONE trace. The results for

the whole 7-day period is similar, and hence is omitted.
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Fig. 19. Update latency of super-set projection.

We observe that the super-set projection technique decreases

the average resource discovery latency by around 2 times.

Fig. 19 presents the update latency of this mechanism. It shows

that even in a collaborative network with 200 member net-

works, the update latency of Πfull is still less than 10 seconds.

Most importantly, although computing Πfull may take up

to ten seconds for a federation of 200 member networks,

we emphasize that resource discovery requests do not get

blocked at the aggregator because servers from the aggregator

pool can still process incoming requests using the previously

computed resource abstraction, which is continuously locally

updated (e.g., available resources are continuously reduced as

incoming requests reserve resources).

VIII. RELATED WORK

A. Resource Reservation

Network resource reservation systems are deployed driven

by the demand and substantial benefits of providing pre-

dictable network resources [5]–[11], [13]–[15]. Systems run-

ning in a single administrative domain (e.g., NetStitcher [13],

SWAN [14] and B4 [15]) are often provided with detailed

network information, such as the topology and links’ avail-

ability. Therefore, optimizing resource reservations in a single

administrative domain can be very efficient. In contrast, in a

multi-domain network (e.g., LHC), due to networks’ con-

cern of revealing sensitive information, resource reservation

systems only allow users to submit requests for reserving

a specific amount of resources (e.g., a circuit providing a

certain amount of bandwidth and delay), and return either

success or failure [5]–[11]. Without an interface to provide net-

work resource information, optimizing resource reservations in

a multi-domain network requires a complex, time-consuming

trial-and-error process.

B. Resource Discovery

Multiple multi-domain resource discovery systems

(e.g., [16]–[20]) are designed to discover endpoint resources

(i.e., computation and storage resources) and their availability

for different services across multiple domains. In contrast,

there has been little progress on multi-domain network

resource discovery systems that provide fine-grained, global

network resource information, to support high-performance,

collaborative data sciences.

Many cluster/grid resource management systems [38], [39],

[59]–[64] adopt a graph-based abstraction to discover and

manage network resources. This abstraction is designed for

single administrative domains (e.g., a company or a university)

to manage their own network, where they do not need to

preserve the privacy of network. If this abstraction is directly

ported to a multi-domain collaborative network, it would

expose the private information (e.g., the network topology)

of member networks, leading to security breaches.

Some systems in cloud computing [26]–[28] adopt a

network-does-all approach, in which users are provided with a

more expressive interface for specifying requirements on data

transfers and the network orchestrates resources between dif-

ferent user requests. Though this approach protects the privacy

of the network, the network can only provide elastic resource

reservation for user requests (i.e., some requests may be

preempted or rejected). Some recent systems (e.g., the ALTO

protocol [24], [25], [29] and the SENSE project [30], [31])

provide users the information of certain properties of network

resources using the one-big-switch abstraction. While this

approach protect the privacy of network, it cannot provide

accurate information of network resource sharing between

flows (e.g., bandwidth), which is critical for optimizing the

emerging use cases (e.g., large-scale collaborative sciences).

Some recent studies [37], [41], [42], [65], [66] propose

variations of the one-big-switch abstraction to represent the

resource availability and sharing among different data traffic

flows using operations defined on different algebra fields.

However, this abstraction (1) cannot handle complex routing

and traffic engineering policies, e.g., WCMP, and (2) will raise

security concern when applied to multi-domain science collab-

orations. In contrast, Mercator provides fine-grained, global

network resource information, to support high-performance,

collaborative data sciences, through a unifying representa-

tion and composition framework to reveal compact, complete

multi-domain network resource information.

IX. CONCLUSION

Existing multi-domain network resource reservation sys-

tems often operate on coarse-grained or localized information,

resulting in substantial inefficiencies. To address this issue,

We present Mercator, a novel multi-domain network resource

discovery system to provide fine-grained, global network

resource information, to support high-performance, collab-

orative data sciences. The core of Mercator is a unifying

representation resource abstraction using algebraic expressions

to represent multi-domain network resources. We develop

a resource abstraction obfuscating protocol and a super-set

projection technique to ensure the privacy-preserving and the

scalability of Mercator. Evaluation using real data shows

that Mercator discovers fine-grained network resources by

up to six orders of magnitude, allows fairer allocations of

network resources, and scales to a collaborative network of

200 member networks.
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