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Abstract

Android applications are usually obfuscated before release,
making it difficult to analyze them for malware presence or
intellectual property violations. Obfuscators might hide the
true intent of code by renaming variables and/or modifying
program structures. It is challenging to search for executa-
bles relevant to an obfuscated application for developers
to analyze efficiently. Prior approaches toward obfuscation
resilient search have relied on certain structural parts of
apps remaining as landmarks, un-touched by obfuscation.
For instance, some prior approaches have assumed that the
structural relationships between identifiers are not broken
by obfuscators; others have assumed that control flow graphs
maintain their structures. Both approaches can be easily de-
feated by amotivated obfuscator.We present a new approach,
Macneto, to search for programs relevant to obfuscated exe-
cutables leveraging deep learning and principal components
on instructions.Macnetomakes few assumptions about the
kinds of modifications that an obfuscator might perform. We
show that it has high search precision for executables obfus-
cated by a state-of-the-art obfuscator that changes control
flow. Further, we also demonstrate the potential of Macneto

to help developers understand executables, where Macneto

infers keywords (which are from relevant un-obfuscated
programs) for obfuscated executables.
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1 Introduction

Android apps are typically obfuscated before delivery to de-
crease the size of distributed binaries and reduce disallowed
reuse. Malware authors may take advantage of the general
expectation that Android code is obfuscated to pass off ob-
fuscated malware as benign code: obfuscation will hide the
actual purpose of the malicious code, and the fact that there
is obfuscation will not be surprising, as it is already a gen-
eral practice. Hence, there is great interest in obfuscation
resilient search: tools that can automatically find program
structures (in a known codebase) likely to be similar to the
original version of code that has been obfuscated.
Obfuscation resilient search can be used in various au-

tomated analyses, for instance, plagiarism detection [39]
or detecting precise versions of third party libraries [25]
embedded in applications, allowing auditors to identify the
use of vulnerable libraries. Similarly, obfuscation resilient
search can search among un-obfuscated apps to recover iden-
tifiers [11] and/or control flow [51] of an obfuscated app.
Obfuscation resilient search can be useful in human-guided
analysis, where an engineer inspects applications to deter-
mine security risks.
In general, searching for code likely to be similar to an

obfuscated program relies on some training set of pairs of
un-obfuscated code and its obfuscated counterpart to build
a model. Once trained, the code search engine can match
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obfuscated code to its original un-obfuscated code when both
obfuscated and un-obfuscated versions are in the corpus. In
the more typical use case when only the obfuscated code is
at hand, and the un-obfuscated version is unknown to the
analyst, the code search may be able to find known code
highly likely to be similar to the un-obfuscated version.

For example, some code search łdeobfuscationž tools rely
on the structure of an application’s control flow graph. How-
ever, they are susceptible to obfuscators that introduce extra
basic blocks and jumps to the application’s code and can
be slow to use, requiring many pair-wise comparisons to
perform their task [16, 46]. Using another approach, De-
Guard [11] is a state-of-the-art deobfuscator that builds a
probabilistic model for identifiers based on the co-occurrence
of names. While this technique can be very fast to apply (af-
ter the statistical model is trained), it may be defeated by
obfuscators that introduce new fields among classes.
We present a novel approach for automated obfuscation

resilient search for Android apps, using deep learning: Mac-

neto, which searches at bytecode level, instead of source
code.Macneto leverages a key observation about obfusca-
tion: an obfuscator’s goal is to transform how a program
looks as radically as possible, while maintaining the original
program semantics.Macnetoworks by learning lightweight
(partial) executable semantics through Principal Component
Analysis (PCA). These PCA models are a proxy for program
behaviors that are stable despite changes to the layout of
code, the structure of its control flow graph, or any metadata
about the app (features assumed stable by other deobfusca-
tors). Macneto’s deep PCA model is resilient to multiple
obfuscation techniques [18, 44], including identifier renam-
ing and control flow modifications.

Macneto uses deep learning to train a classifier on known
pairs of un-obfuscated/obfuscated apps offline. This train-
ing process allows Macneto to be potentially applicable to
various obfuscators: supporting a new obfuscator using the
same kinds of obfuscations would only require a new data
set of pairs of the original un-obfuscated apps and the corre-
sponding obfuscated apps. Then, these models are saved for
fast, online search where an unknown obfuscated executable
is projected to principal components via deep learning, and
matched to the most similar executables from the known
corpus.
We evaluatedMacneto on 1500+ real Android apps us-

ing an advanced obfuscator: Allatori [44]. Allatori supports
name obfuscation (similar to what ProGuard does [18]) and
also control flow obfuscations, e.g., it changes the standard
Java constructions for loops, conditional and other branch-
ing instructions.Macneto achieves good search precision,
about 80%, to retrieve relevant code given unknown obfus-
cated executables. It significantly outperforms two baseline
approaches without deep learning.
The contributions of this paper are:

• A new approach to conduct obfuscation resilient code
search leveraging deep learning and principal components
(features) on bytecode.
• A new approach to automate classification of programs
with similar semantics.
• An evaluation of our tool on an advanced obfuscator.
• An open source implementation of Macneto [1].

2 Background

In general, obfuscators make transformations to code that
result in an equivalent execution, despite structural or lex-
ical changes to the code Ð generating code that looks dif-
ferent, but behaves similarly. Depending on the intended
purpose (e.g., hiding a company’s intellectual property, dis-
guising malware, or minimizing code size), a developer may
choose to use a different kind of obfuscator. These obfusca-
tions might include lexical transformations, control transfor-
mations, and data transformations [14]. Obfuscators might
choose to apply a single sort of transformation, or several.

Lexical transformations are typically employed by łmini-
mizingž obfuscators (those that aim to reduce the total size
of code). Lexical transformations replace identifiers (such as
method, class or variable names) with new identifiers. Since
obfuscators are applied only to individual apps, they must
leave identifiers exposed via public APIs unchanged.
Control transformations can be significantly more com-

plex, perhaps inlining code from several methods into one,
splitting methods into several, reordering statements, adding
jumps and other instructions [31, 41]. Control transforma-
tions typically leverage the limitations of static analysis: an
obfuscator might add additional code to a method, with a
jump to cause the new code to be ignored at runtime. How-
ever, that jumpmight be based on some complex heap-stored
state which is tricky for a static analysis tool to reason about.

Finally, data transformations might involve encoding data
in an app or changing the kind of structure that it’s stored in.
For instance, an obfuscator might encrypt strings in apps so
that they can’t be triviallymatched, or change data structures.
For encrypting/decrypting strings, an obfuscator can inject
additional helper methods into programs [44].
In this paper we define the obfuscation resilient search

problem as follows. A developer/security analyst has access
to a set of obfuscated executables, and her job is to identify
executables similar with its original version in the existing
codebase. The developer/analyst can analyze the obfuscated
executable with its similar ones to identify malware variants,
which becomes a significantly easier problem. Thus, our task
is similar to a search-based deobfuscator DeGuard [11].

We assume that obfuscators can make lexical, control, and
data transformations to code. We do not base our search
model on any lexical features, nor do we base it on the con-
trol flow structure of or string/numerical constants in the
code. When inserting additional instructions and methods,
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we assume that obfuscators have a limited vocabulary of
no-op code segments to insert. We assume that there are
some patterns (which need not be pre-defined) that our deep
learning approach can detect. Macneto relies on a training
phase that teaches it the rules that the obfuscator follows:
if the obfuscator is random with no pattern to the transfor-
mations that it makes, then Macneto would be unable to
apply its search model to other obfuscated apps. We imagine
that this is a reasonable model: an adversary would have to
spend an incredible amount of resources to construct a truly
random obfuscator.

3 Macneto Overview

From a set of obfuscated APKs,Macneto intends to identify
the relevant executables to the original version of a given
obfuscated APK. Here we describe an overview of Macneto.

Although obfuscators may perform significant structural
and/or naming transformations, the semantics of a program
before and after obfuscation remain the same. Macneto

leverages such semantic equivalence between an original
program executable and its obfuscated version at the gran-
ularity of individual methods. The semantics of a program
executable are the summation of each individual method that
it has. The semantics of a program executable are captured
as the hidden principal components of its machine code in-
stead of human texts such as identifier names in methods
and/or descriptions of this program. By construction, an ob-
fuscated program/application is semantically equivalent to
its original, un-obfuscated version that it is based on.Mac-

neto assumes that the principal component vector of an
obfuscated application will match those of the original appli-
cation. In its learning phase,Macneto is provided a training
set of android applications (APKs), which are labeled pairs
of obfuscated and original versions. Once training is com-
plete, Macneto can be presented with an arbitrary number
of obfuscated applications, and for each return suggested
applications from its codebase (that it had been trained on)
that are similar to the unknown original application. In the
event that the original version happens to exist in the cor-
pus, Macneto will match the obfuscated application with
its original version.
Macneto utilizes a four stage approach:
(i) Computing Instruction Distribution. For an application

executable (original or obfuscated), Macneto parses each
method as a distribution of instructions. An application exe-
cutable can then be represented as the summation of all of
its methods, which is also a distribution of instructions. The
instruction distribution of an application executable is anal-
ogous to the term frequency vector of a document, where
we treat each application executable as a document.

(ii) Principal Component Analysis. Identifies principal com-
ponents [37] from the instruction distribution of the original
app. These principal components are used as a proxy for app

semantics. The same PCA model is used later to annotate
the corresponding obfuscated application.
(iii) Learning. Uses a three-layered Artificial Neural Net-

work (ANN) [33] where the input is the instruction distribu-
tion of an application executable (original and obfuscated),
and the output layer is the corresponding principal com-
ponent vector of the original application. Macneto uses
this three-layered ANN as a program classifier that maps an
original application and its obfuscated version to the same
class represented by principal component vector. This is
the training phase of the ANN model. Such model can be
pre-trained.

(iv) Obfuscation Resilient Search. This is the testing phase
of the ANN model. It operates on a set of original and ob-
fuscated applications that form our testing set. Given an
obfuscated application, the above ANN model tries to infer
its principal component vector; Macneto then finds a set of
un-obfuscated applications with similar principal component
vectors and ranks them as possible deobfuscated candidates.

Figure 1 shows a high level overview of Macneto’s ap-
proach for conducting obfuscation resilient application search.
The first three stages occur offline and can be pre-trained.

Consider the example readAndSort program shown in
Figure 2, assuming that this is an Android app that we are
using to trainMacneto. To compute the instruction distribu-
tion of readAndSort application,Macneto first recruits the
data flow analysis to identify all possible methods which may
be invoked at runtime, which are readFile and sort. The
instruction distributions of these two callee methods will
be incorporated into readAndSort. ThenMacneto moves
to the next step, applying Principal Component Analysis
(PCA) [37] on the instruction distributions of all applications
including readAndSort in the training app set. The result of
this step is a vector containing the value/membership that a
method has toward each principal component: a Principal
Component Vector (PCV).
Our insight is that while some instructions in our fea-

ture set can be correlated, PCA can help us convert these
instructions into orthogonal features. Furthermore, we can
also understand which components are more important to
classify application executables. These components can help
drastically reduce the query time of Macneto to search for
similar executables. Macneto annotates both the original
and obfuscated versions of this application with this same
PCV. This annotation process allows our learning phase to
predict similar PCVs for an application and its obfuscated
version, even their instruction distributions are different.

4 Macneto Approach

This section describes the four stages of Macneto in detail,
illustrating our several design decisions. We have designed
Macneto to target any JVM-compatible language (such as
Java), and evaluate it on Android apps.Macneto works at
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into an orthogonal feature space. While we believe that some
instructions may have dependencies, PCA helps us project
the IDs of all executables onto an orthogonal space, where
each dimension is a principal component. Macneto uses
PCA to convert the ID of each application to a principal
component vector (PCV):

PCV (Aj ) = [ValP1 ,ValP2 ...ValPm ]j (1)

, whereAj represents the jth application executable in the ap-
plication set and Pm represents themth principal component.
ValPm represents the value that the application executable
Aj has of the principal component Pm .

PCA accelerates the search time of Macneto compared
with a naïve approach using the ID directly to search for
similar applications. More details regarding the performance
of Macneto can be found in Section 5. To the best of our
knowledge,Macneto is the first system to identify principal
components of programs from machine code.

In Macneto, we define 32 principal components (m = 32)
and have 252 types of instructions (n = 252) as we listed
in Table 1. Using these 32 principal components, we gen-
erate unique principal component vector (PCV). Note that,
the dimension of each PCV is the same as the principal com-
ponent number, i.e. 32, although the number of PCV can
be potentially infinite due to different feature values (see
Eq. 1). Thus, an application Aj can have a unique PCV (Aj )

that encodes the value of the application belonging to each
principal component. PCV (Aj ) becomes the semantic repre-

sentation of both Aj and its obfuscated counterpart Aob
j . We

annotate each original and its obfuscated application with
the corresponding PCV and use them to train our ANN based
classifier, which will be discussed in Section 4.3. To compute
PCV, we use the scikit-learn [38] library on machine code.
In the next two steps, Macneto aims to search for rel-

evant executables to the original version of an obfuscated
executable using a ANN based deep learning technique. In
the training phase, the ANN learns the semantic relationship
between a original and its obfuscated executable through
their unique PCV. Next, in the testing (obfuscation resilient
search) phase, given an obfuscated application executable,
ANN retrieves a set of candidate applications having similar
PCVs with the obfuscated application.Macneto then scores
these candidate applications and outputs a ranked list of
relevant un-obfuscated applications with similar PCVs.

4.3 Learning Phase

In this step, Macneto uses an ANN based deep learning
technique [45] to project the low-level features (Instruction
Distributions) of applications to a relevant vector of princi-
pal components (PCV). Macneto treats PCV as a proxy for
program semantics, which should be invariant before and
after obfuscation. Thus, PCV can serve as a signature (i.e.,
class) of both original and obfuscated applications. Given
a training application set T , Macneto attempts to project

each application Aj ∈ T and its obfuscated counterpart Aob
j

to the same PCV, i.e., Aj → PCV (Aj ) ← Aob
j .

Similar deep learning technique is widely adopted to clas-
sify data. However, most of data comes with pre-annotated
classes to facilitate learning. For example, Socher et al. [45]
uses deep learning to classify images to relevant wordings.
Such work has benchmarked images accompanied with cor-
rect descriptions in words to train such classifiers,Macneto

does not have any similar benchmarks. However, Macneto

does have available sets of applications, and has access to
obfuscators. Hence,Macneto builds a training set and co-
trains a classifier on both obfuscated and original application
executables withMacneto knowing the mapping from each
training application to its obfuscated counterpart. The learn-
ing phase of Macneto is relevant to the Deep Structured
Semantic Models (DSSM) [20], which projects two related
corpuses having the same concepts, e.g., queries and their cor-
responding documents, onto the same feature space. DSSM
can then maximize the similarity based on the relationship
between a query and its corresponding document, which
can be constructed by clickthrough rate data. DSSM offers
Macneto a future direction, where we can project the origin
version of an execution and all of its obfuscated versions
onto the same feature space.
Macneto characterizes each application Aj and Aob

j by

the same principal component vector PCV (Aj ), allowing it
to automatically tag each application for training program
classifiers. Given an unknown obfuscated application, Mac-

neto can first classify it to relevant PCV, which helps quickly
search for similar and/or original applications.

To train such projection/mapping,Macneto tries to mini-
mize the following objective function

J (Θ) =
∑

Aj ∈T

∥PCV (Aj ) − l (θ
(3) · д(θ (2) · f (θ (1) · Aj )))∥

2

+∥PCV (Aj ) − l (θ
(3) · д(θ (2) · f (θ (1) · Aob

j )))∥2

(2)

, where T is a training application set, PCV (Aj ) ∈ R
n (be-

cause Macneto defines n principal components) and Θ =

(θ (1),θ (2),θ (3) ) defines the weighting numbers for each hid-
den layer. For hidden layers, Macneto uses relu function,
where f (.) is the first layer containing 128 neurons, д(.) is
the second layer containing 64 neurons and l (.) is the third
layer containing 32 neurons. Macneto uses the Adam [24]
solver to solve this objective function. Macneto build the
ANN on the frameworks of tensorflow [2, 50] and keras [23].

4.4 Obfuscation Resilient Search

Taking an obfuscated application executable as a query,Mac-

neto attempts to locate which un-obfuscated application(s)
in the codebase are mostly similar with it. The ANN inMac-

neto can effectively infer the principal component vector
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(PCV) of an unknown obfuscated executable and then lo-
cate a set of un-obfuscated candidates having similar PCVs
measured by the cosine similarity. Given two application
executables, their cosine similarity is defined as

similarity =
PCV (Ai ) · PCV (Aj )

∥PCV (Ai )∥ ∗ ∥PCV (Aj )∥
(3)

, where Ai and Aj are two application executables.
Before we detail the procedure of obfuscation resilient

search, we define the terminology that we will use as follows.

• Tr : The training application executable set.
• Te: The testing application executable set.
• Tror : The training original application set, which is a sub-
set of Tr . This is also the search space in our evaluation.
• Trob : The training obfuscated application set, which is a
subset of Tr and the obfuscated counterpart of Tror .
• Teor : The testing original application set, which is a subset
of Te .
• Teob : The training obfuscated application set, which is a
subset of Te and the obfuscated counterpart of Teor .
• Aj : The jth application executable.

• Aob
j : The obfuscated counterpart of Aj .

• ∼ Aj : A similar application executable of Aj , where the
similarity is measured by their PCV via Eq. 3.
• {∼ Aj }: A list of similar application executables sorted by
their cosine similarity with Aj .

In our evaluation, we split all Android application exe-
cutables and their obfuscated counterparts into a training
set Tr and a testing set Te . For the training purpose, both
Tror and Trob are used to construct the ANN, where only
Tror is recruited for building the PCA model. For the testing
purpose, we use an Aob

j in Teob as a query to search for n

(n = 10 in this paper) similar application executables {∼ Aob
j }

in Tror .
The original version ofAob

j ,Aj inTeor is not in the search

space, Tror . Thus, to verify the efficacy of Macneto, we
use Aj as a query to search for the closest executable ∼ Aj

in Tror , as the groundtruth. We then check the ranking of
∼ Aj in {∼ Aob

j }. By this procedure, we evaluate the search

performances of three systems includingMacneto, which
will be discussed in Section 5.

5 Evaluation

To evaluate the performance of Macneto, we design two
large scale experiments to address two research questions
based on an advanced obfuscator Allatori [44] as follows.

• RQ1 Executable search: Given an unknown application
executable that is obfuscated using lexical, control and
data transformation, how accurately can Macneto search
for relevant un-obfuscated executables?
• RQ2 Executable understanding: Given an unknown appli-
cation executable without source code and text description,

canMacneto infer meaningful keywords for developer-
s/program analyst to understand its semantics?

We selected the Allatori obfuscator based on a recent sur-
vey of Android obfuscators for its complex control and data-
flow modification transformations [9]. We performed our
evaluation on the most recent version at time of experiment-
ing: Allatori 6.5. To judge Macneto’s precision for obfusca-
tion resilient search, we needed a benchmark of plain apps
(that is, not obfuscated) from which we could construct train-
ing and testing sets. We used the 1, 559 Android apps from
the F-Droid repository as experimental subjects [17].
We first split these apps into a training set and a testing

set and then systematically obfuscate each of them. Both
the original and obfuscated training sets are used to train
the program classifier using the first three steps outlined
in Section 4. To evaluate the obfuscation resilient search
precision of Macneto, we follow the procedure in Section 4.4
to compare the search results given an obfuscated application
Aob
j as a query and its original version Aj as a query.

As a baseline, we compareMacnetowith two approaches
as follows: (1) Naïve approach: Calculates the similarity be-
tween two applications based on their instruction distribu-
tions (IDs) described in Section 4.1 without PCA and deep
learning. (2) Pure PCA approach: Calculates the similarity be-
tween two applications based on their PCV computed solely
by PCA without deep learning.

The major difference betweenMacneto and the pure PCA
approach is that while Macneto uses Tror to build a PCA
model and use it to annotate both Tror and Trob for deep
learning, the pure PCA approach use the whole training set
(Tror +Trob ) to build a PCA model without deep learning
to transform ID of an application executable to PCV. The
key insight here is that we believe an application Aj and its

obfuscated counterpart Aob
j should share the same seman-

tic classification (PCV), but the pure PCA approach cannot
guarantee this invariance. The PCVs of Aj and Aob

j can be

different by pure PCA, because their IDs can be different.
This is why Macneto first uses PCA to compute the PCV
for Aj and use the same PCV to annotate Aob

j . The power of

deep learning can then help Macneto recognize and search
for similar application executables given an unknown ob-
fuscated application. In our evaluations, we observe that
the pure PCA approach can provide good search precision,
but Macneto with deep learning can achieve even better
precision.

5.1 Evaluation Metrics

We use two metrics to evaluate Macneto’s performance
to conduct obfuscation resilient search: Top@K and Mean
Reciprocal Rank (MRR). By this procedure, we evaluate the
search performances of three systems includingMacneto,
which will be discussed in Section 5.
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• Search(Aj ,Tror ,n): Given an application executable Aj ,
Search(.) retrieves the mostn (n = 10 in this paper) similar
application executables in the search space, which is the
training original application set Tror in this paper.
• Best (Aj ,Tror ): Best (.) is a specialized version of Search(.)
to retrieve the most similar application executable (n = 1)
in the search space.
• Rank (Ak , {Al },K ): Given an application executable Ak ,
Rank (.) return 1 if the ranking ofAk in the application list
{Al } is higher than or equal to K . If Ak is not in {Al } or its
ranking is lower than K , Rank (.) returns 0.

The definition of Top@K can then be

Top@K =

∑
j ∈T eor Rank (Best (Aj ), Search(A

ob
j ,n),K )

|Teor |
(4)

, where Aj is an application executable, Aob
j is its obfuscated

counterpart. The search space isTror for both Search(.) and
Best (.), so we ignore it to simplify the definition. In our
experiments, we use K = {1, 5, 10} to evaluate the system
performance.
The definition of MRR is

MRR =
1

|Teor |

∑

j ∈T eor

1

Rank (Best (Aj ), Search(A
ob
j ,n))

(5)

, where the Rank (.) here returns the ranking of Best (Aj )

in Search(Aob
j ,n) directly. If Best (Aj ) is not in Search(Aob

j ),

Rank (.) returns 0.

5.2 Executable Search

In this section, we answer the research question: RQ1.Given
an unknown application executable that is obfuscated using
lexical, control and data transformation, how accurately can
Macneto search for relevant un-obfuscated executables?

Compared with lexical obfuscators like ProGuard [18] that
mainly focuses on renaming identifiers in programs, Alla-
tori changes control flow and encrypts/decrypts strings via
inserting additional methods into programs. To demonstrate
the performance of Macneto to search for relevant appli-
cation executables against such advanced obfuscations, we
conduct a K-fold analysis (K = 8) on the Android application
set we have. We first split the 1559 Android application exe-
cutables we have into 8 folds. For each experiment, we use 7
folds to train an obfuscation resilient search model and use
the other as the testing set (queries). In total, we trained 8
models for 8 experiments, where each application executable
will be in the testing set for once and in the training set for 7
times. This K-fold analysis can help us verify the robustness
of Macneto, because each executable will be tested.
The overall results of the 8 models trained byMacneto

and two baseline approaches can be found in Table 2. In Table
2, the łExpž column represents the experiment ID, where we
have 8 folds (experiments) in total. The łTraining APKs’ and
łTesting APKsž columns represent the numbers of training

and testing apps, respectively. Note that the size of training
apks does not matter to the naïve approach, because it simply
relies on instruction distributions to search for programs. The
reason that we offer two numbers, e.g., 1359 + 1359, for the
training apks is that the training phase includes both original
apks in Tror and their obfuscated counterparts in Trob . The
łTrainingMethodsž and łTestingMethodsž columns show the
number of methods including in the training apks and testing
apks, respectively. Note that while Macneto includes all
possible invoked methods of executables (apks) to compute
instruction distributions, our training and testing works at
executable level. The łSystemž column shows which system
we evaluate, where łPCAž and łNaïvež are the two baseline
approaches we discussed in Section 5. The łTraining Timež
and łQuery Time" column shows the time consumed by
each system to complete the training and testing (query)
in seconds. The łTop@Kž columns, where K = {1, 5, 10},
and the łMRRž column is self-explanatory. The łBoost@1ž
column shows the improvement of Macneto and the pure
PCA approach against the naïve approach.
We observe three key findings of Macneto in Table 2:

1. Good effectiveness of obfuscation resilient research:Mac-

neto can achieve 80 + % Top@1 for most experiments.
2. Effectiveness of the executable classifier trained by deep

learning: Compared with the naïve and the pure PCA ap-
proach without deep learning, Macneto achieves 17.76%
and 8.72% enhancements of Top@1, respectively. In our
experiment, PCA is an effective technique to extract ap-
plication semantics, because the pure PCA approach al-
ready offers 8.31% enhancement of Top@1 over the naïve
approach. Deep learning helps Macneto understand exe-
cutables further (17.76% enhancement) with PCA.

3. Query performance by PCA: Compared with the naïve
approach which searches for similar applications based
on 252 types of instructions, Macneto and the pure PCA
approach searches only by 32 principal components. This
leads to great runtime performance of both systems to
search for similar application executables: while the naïve
approach needs 65.09 seconds in average to process 200
queries, Macneto and the pure PCA approach only need
24.09 and 20.13 seconds in average.

Result 1:Macneto can achieve up to 84% precision (Top@1)
for searching for similar application executables given un-
known and obfuscated executables as queries. It significantly
outperforms two baseline approaches in precision and MRR.

5.3 Executable Understanding

In addition to searching for similar executables, we are in-
terested in exploring the potential of Macneto to support
developers quickly understanding an unknown application
executable without human descriptions. We will answer the
research question: RQ2. Given an unknown application
executable without source code and text description, can
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Table 2. Obfuscation resilient search results of Allatori-obfuscated code.

#Training #Training #Testing #Testing Training Query
Exp APKs Methods APKs Methods System Time (sec) Time (sec) Top@1 Top@5 Top@10 MRR Boost@1

#1 1359 + 1359 1.14M 200 + 200 152K
Macneto 2786.72 24.66 0.825 0.96 0.965 0.89 +22.22%
PCA 0.0357 20.49 0.78 0.925 0.97 0.85 +15.56%
Naïve N/A 66.55 0.675 0.91 0.94 0.78 N/A

#2 1359 + 1359 1.08M 200 + 200 214K
Macneto 2791.56 24.88 0.82 0.94 0.955 0.87 +18.84%
PCA 0.0357 20.73 0.75 0.925 0.95 0.86 +8.7%
Naïve N/A 67.5 0.69 0.91 0.94 0.79 N/A

#3 1359 + 1359 1.16M 200 + 200 137K
Macneto 2826.57 24.76 0.8 0.915 0.955 0.86 +22.13%
PCA 0.0352 20.72 0.73 0.94 0.975 0.82 +11.45%
Naïve N/A 66.57 0.655 0.905 0.935 0.77 N/A

#4 1359 + 1359 1.15M 200 + 200 143K
Macneto 2848.41 24.68 0.755 0.905 0.925 0.82 +16.15%
PCA 0.0349 20.71 0.715 0.915 0.95 0.80 +10%
Naïve N/A 66.7 0.65 0.865 0.9 0.79 N/A

#5 1359 + 1359 1.14M 200 + 200 157K
Macneto 2842.08 24.72 0.84 0.945 0.96 0.89 +15.86%
PCA 0.0336 20.7 0.765 0.93 0.94 0.80 +5.5%
Naïve N/A 67.37 0.725 0.89 0.935 0.79 N/A

#6 1359 + 1359 1.14M 200 + 200 152K
Macneto 2866.28 24.77 0.795 0.95 0.96 0.86 +16.05%
PCA 0.0342 20.65 0.72 0.95 0.97 0.85 +5.1%
Naïve N/A 66.64 0.685 0.865 0.935 0.77 N/A

#7 1359 + 1359 1.13M 200 + 200 166K
Macneto 2866.14 24.81 0.82 0.915 0.935 0.86 +29.13%
PCA 0.0347 20.65 0.735 0.94 0.95 0.82 +15.75%
Naïve N/A 66.68 0.635 0.87 0.915 0.74 N/A

#8 1400 + 1400 1.13M 159 + 159 167K
Macneto 2958.32 20.192 0.79 0.90 0.93 0.84 +4.2%
PCA 0.039 16.94 0.73 0.91 0.93 0.81 -3.3%
Naïve N/A 54.5 0.75 0.90 0.93 0.82 N/A

Column Description: Exp: Experiment ID; Train APKs and Test APKs: numbers of training and testing APKs, respectively; Training Methods and Testing Methods: denote the

method numbers belonging to Training APKs and Testing APKs, respectively; System: system under evaluation; Training Time: the time that each system spends to training the
model for each experiment; Query Time: the time that each system spends to search for relevant executables given an unknown and obfuscated executable; Top@K: the
percentage of queries (executables), where their original versions are retrieved and ranked by each system at or better than Kth position; MRR: Mean Reciprocal Ranking of each
system; Boost@1: the enhancements achieve by Macneto and the pure PCA approach over the naïve approach on precision (Top@1).

Macneto infer meaningful keywords for developers/pro-
gram analyst to understand its semantics?

We crawled the F-Droid repository [17] to extract the de-
scription for each un-obfuscated APK. Then we follow the
search procedure in Section 4.4 to retrieve 10 most similar ap-
plication executables inTror , given an obfuscated executable
Aob
j . Among these 10 similar application executables, we use

a TF-IDF [40] model to extract a set of keywords from their
descriptions. From this set of keywords, we select top 10
keywords having the highest TF-IDF values. These selected
keywords become the human semantic that we predict for
an application executable Aob

j without human descriptions.

To verify the correctness of these keywords, we compare
with the real description of Aj , the original version of Aob

j .

To conduct this experiment, we randomly select 1, 539
application executables as the training set and use the rest
20 as the testing set. We then manually compare the pre-
dicted keyword set of Aob

j with the real description of its

original version Aj . Due to the page limitation, we are not
able to offer all the results. Instead, we list some interesting
cases that Macneto precisely infers meaningful words to
describe an unknown and obfuscated executable without
any descriptions.

• com.platypus.SAnd: The partial description of this exe-
cutable is łUse your phones sensors...to show your current

orientation, height and air pressure...ž. Given the obfus-
cated version of this executable as a query,Macneto infers
a relevant keyword coordinates, where the pure PCA and
the naïve approaches fail to offer meaningful keyword.
• se.danielj.geometridestroyer: This application exe-
cutable is a game app [15], but its description does not
mention any words relevant to łgamež: łRemove the green
objects but don’t let the blue objects touch the groundž.
However,Macneto predicts two relevant words of łgamež,
game and libgdx (which is a framework to develop An-
droid game app) to describe this executable. The naïve
approach predicts these two keywords as well, where the
pure PCA approach does not offer any relevant words.
• net.bierbaumer.otp_authenticator: This application
executable offers a two-factor authentication functional-
ity to users, which users can scan QR code to log in. The
description of this application is łOTP Authenticator is a
two-factor authentication...Simply scan the QR code...ž.
While the naïve approach predicts a relevant word pri-

vacy, Macneto infers two relevant words, QR and se-

curity, which precisely describe this app. The pure PCA
approach fails to offer any relevant words.

WhileMacneto is able to provide at least one meaningful
keyword for 14/20 obfuscated executables in the testing
set, the naïve approach and the pure PCA approach can
only achieve 7/20 and 4/20, respectively. Determining the

27



Obfuscation Resilient Search through Executable Classification MAPL’18, June 18, 2018, Philadelphia, PA, USA

relevance of a keyword to an executable can be subjective,
so we plan to conduct user studies to examining the efficacy
of Macneto on the executable understanding in the future.
Result 2: Macneto has the potential to infer meaningful

humanwords for developers/program analysts to understand
an unknown executable, even it is obfuscated and has no
human descriptions.

5.4 Discussions

We discuss the limitations of Macneto and the potential
solutions as follows. In this paper, we have shown thatMac-

neto can search for relevant executables, even they are ob-
fuscated by control flow transformation and anonymization.
However, while Macneto relies on instruction distributions
(ICs) to search for relevant executables, adding noisy in-
structions that change the IC dramatically without affecting
the functionality of an executable may not be handled by
Macneto. If two executables have totally different function-
alities, but their ICs become similar after adding some noises,
Macneto will falsely detect them as similar programs. A po-
tential solution is to leverage data flow analysis at instruction
level to collect useful instructions that can influence outputs
of executables to compute ICs forMacneto. Another rele-
vant concern is that while we believe that Macneto can be
a generic approach to tackle various obfuscators, we only
discuss one in this paper. We plan to collect more obfusca-
tors to conduct further experiments to prove the efficacy of
Macneto in general.

While optimizing the hyper parameters, such as the layer
number, of deep learning technique is out of the scope of this
paper, we want to discuss the trade-off between precision
and training time of Macneto. Adding more layers in Mac-

neto can possibly enhance the search precision, but this will
also increase training time. For deciding the layer number,
we follow [45] to start from fewer layers (3 in this paper),
which facilitate us verifying the effectiveness of Macneto

in a timely fashion. In the future, after we collect more ob-
fuscators, we believe thatMacneto would definitely need
more layers to classify executables.
In this paper, we use principal components as a proxy

(representation) of executable behaviors. We plan to explore
more techniques, such as autoencoders [10], to extract and
represent executable behaviors.

6 Related Work

Although in a programming language identifier names can be
arbitrary, real developers usually use meaningful names for
program comprehension [29]. Allamanis et al.[3] reported
that code reviewers often suggest to modify identifier names
before accepting a code patch. Thus, in recent years, naming
convention of program identifiers drew significant attention
for improving program understanding and maintenance [3,
6, 13, 27, 32, 48]. Among the identifiers, a good method name

is particularly helpful because they often summarize the
underlying functionalities of the methods [4, 19]. Using a
rule-based technique, Host et al. [19] inferred method names
for Java programs using the methods’ arguments, control-
flow, and return types. In contrast, Allamanis et al. used
a neural network model for predicting method names of
Java code [4]. Although these two studies can suggest better
method names in case of naming bugs, they do not look at
the obfuscated application executables that can even change
the structure of the program.
JSNice [42] and DeGuard [11] apply statistical models to

suggest names and identifiers in JavaScript and Java code, re-
spectively. These statistical models work well against so
called łminimizersž Ð obfuscators that replace identifier
names with shorter names, without making any other trans-
formations. These approaches may not be applied to obfus-
cators that modify program structure or control flow.
WhileMacneto uses PCA as a proxy for application be-

havior, a variety of other systems use input/output behavior
[21, 22, 47], call graph similarity [16, 46], or dynamic sym-
bolic execution [26, 28, 35] at method level.Macneto is most
similar to systems that rely on software birthmarks, which
use some representative components of a program’s execu-
tion (often calls to certain APIs) to create an obfuscation-
resilient fingerprint to identify theft and reuse [8, 30, 34, 43,
49, 52]. One concern in birthmarking is determining which
APIs should be used to create the birthmark: perhaps some
API calls are more identifying than others.Macneto extends
the notion of software birthmarking by using deep learning
to identify patterns of APIs and instruction mix, allowing it
be an effective executable search engine.

7 Conclusion

We present Macneto, which leverages deep learning and
PCA techniques at the executables level (bytecode) to search
for programs (in a known corpus) similar to a given obfus-
cated executable. In a large scale experiment, we show that
Macneto can achieve up to 84% precision to search for rele-
vant Android executables even when the query executable is
obfuscated by anonymization and control flow transforma-
tion. Compared with a naïve approach relying on instruction
distribution to search for relevant executables, Macneto

improves search precision by up to 29%. We also show the
potential of Macneto to infer meaningful keywords for
unknown executables without human descriptions.
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