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Abstract
Nonlinear state-space models are ubiquitous in mod-
eling real-world dynamical systems. Sequential Monte
Carlo (SMC) techniques, also known as particle meth-
ods, are a well-known class of parameter estimation
methods for this general class of state-space models.
Existing SMC-based techniques rely on excessive sam-
pling of the parameter space, which makes their com-
putation intractable for large systems or tall data sets.
Bayesian optimization techniques have been used for
fast inference in state-space models with intractable
likelihoods. These techniques aim to find the maximum
of the likelihood function by sequential sampling of
the parameter space through a single SMC approxima-
tor. Various SMC approximators with different fidelities
and computational costs are often available for sample-
based likelihood approximation. In this paper, we pro-
pose a multi-fidelity Bayesian optimization algorithm
for the inference of general nonlinear state-space mod-
els (MFBO-SSM), which enables simultaneous sequen-
tial selection of parameters and approximators. The ac-
curacy and speed of the algorithm are demonstrated by
numerical experiments using synthetic gene expression
data from a gene regulatory network model and real data
from the VIX stock price index.

Introduction
Nonlinear state-space models are a popular class of time
series models with numerous applications in fields such as
statistics, economics, biology and more [1, 2, 3]. Sequen-
tial Monte Carlo (SMC) techniques, also known as particle
methods [1, 4, 5], are the most well-known class of tech-
niques for estimation of parameters of general nonlinear
state space models from data. Several particle-based infer-
ence methodologies have been developed in recent years.
The methods can be divided into two main categories:
maximum-likelihood (ML) and Bayesian approaches. The
techniques based on the ML perspective either try to
maximize the regular (“incomplete”) log-likelihood func-
tion [6] or the “complete” log-likelihood function; in the
latter case, they are known as expectation maximization
(EM) techniques [7, 8]. Bayesian techniques include particle
marginal Metropolis-Hastings (PMMH) and particle-based
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Gibbs samplers [9, 10]. All aforementioned methods rely on
excessive sampling of the parameter space to avoid local op-
timum traps. However, for large systems and tall data sets,
the cost of approximation of the inference function per pa-
rameter sample point can be computationally expensive, ren-
dering intractable the computation of existing particle-based
techniques.

Several techniques employ Bayesian optimization to cope
with intractable likelihood functions, mostly in the context
of approximate Bayesian computing (ABC) [11, 12, 13].
The idea of these techniques is to construct a surrogate
model representing the log-likelihood function over the
parameter space, and efficiently search for its maximum
through a single approximator (e.g., a particle filter). The
speed and accuracy of these methods are directly impacted
by the particle sample size used by the SMC approximator.
Large particle sample sizes produce more accurate (high-
fidelity) approximators at larger computational time/cost,
while small particle sample sizes result in fast but less ac-
curate (low-fidelity) approximators.

In this paper, we introduce the MFBO-SSM algorithm,
a multi-fidelity Bayesian optimization method for the in-
ference of general nonlinear state-space models. The pro-
posed algorithm employs the knowledge gradient (KG) pol-
icy [14, 15, 16] for the simultaneous sequential selection of
parameters and approximators, in such a way to achieve the
largest single-period expected increase in the maximum of
the inference function per unit cost.

The MFBO-SSM algorithm offers several benefits:

• Fast and accurate inference due to the efficient simultane-
ous sequential selection of parameters and approximators;

• Applicability to arbitrary point-based estimators, such as
ML and MAP techniques;

• Possibility of considering risk in the inference process;

• Scalability to high-dimensional parameter spaces, due to
the closed-form solution provided by the KG policy.

The accuracy and speed of the MFBO-SSM algorithm are
demonstrated empirically by applying it to synthetic gene
expression data from a gene regulatory network model and
real data from the VIX stock price index.



Background
Nonlinear State-Space Models:
We assume the general nonlinear state-space model:

xk = fk(xk−1,uk−1,nk, θ) ,

yk = gk(xk,vk, θ) ,
(1)

for k = 1, 2, . . . where xk ∈ X is the state variable,
uk ∈ U is the input to the system, and yk ∈ Y is the out-
put of the system. The nonlinear functions fk(.) and gk(.)
model the state and measurement dynamics, which are as-
sumed to be partially-known with the unknown parameter
vector θ ∈ Θ, where Θ denotes the parameter space. Fi-
nally, {nk,vk; k = 1, 2. . . .} are mutually independent i.i.d.
processes, which are also independent of x0. The parame-
ter vector θ models uncertainty in both state and measure-
ment processes. Equivalently, xk ∼ pθ(xk | xk−1,uk−1)
and yk ∼ pθ(yk | xk), where pθ(.) is a probability density
or probability mass function. Without loss of generality and
for the sake of simplicity, we will drop the input uk−1 in
what follows.

The inference problem consists of estimating the param-
eter vector θ given the sequence of observed measurements
y1:T = (y1, ...,yT ). The maximum-likelihood (ML) and
the maximum a posteriori (MAP) estimators are given by:

θ̂ML = arg max
θ∈Θ

log pθ(y1:T ) ,

θ̂MAP = arg max
θ∈Θ

p(θ | y1:T )

= arg max
θ∈Θ

[log p(θ) + log pθ(y1:T )] ,

(2)

where p(θ) denotes the prior distribution of the parameter.
Both ML and MAP estimators require the exact computation
of the data log-likelihood function:

LT (θ) = log pθ(y1:T )

= log pθ(y1) +

T∑
k=2

log pθ(yk | y1:k−1) ,
(3)

where

pθ(yk | y1:k−1) =

∫
pθ(yk | xk) pθ(xk | y1:k−1) dxk,

(4)
and

pθ(xk | y1:k−1) =

∫
pθ(xk | xk−1) pθ(xk−1 | y1:k−1) dxk−1.

(5)
The integrals in (4) and (5) need to be replaced by summa-
tions in the case of a discrete state space.

Sequential Monte Carlo: Auxiliary Particle Filter
The exact computation of (4) and (5) is not tractable in gen-
eral and approximate methods, such as sequential Monte-
Carlo (SMC), also known as particle filtering, must be used.
SMC methods comprise a general class of techniques for
inference of nonlinear state-space models [1, 4]. The idea
of these techniques is to approximate the target distribution

using a finite sample drawn from a proposal distribution, us-
ing the fact that sampling from the proposal distribution is
easier than from the target. The basic algorithm to perform
particle filtering is called sequential importance resampling
(SIR). Here, we briefly review a variation of the SIR tech-
nique called the Auxiliary Particle Filter (APF) [17].

The APF is an SMC method that efficiently predicts the
location of particles with high probability at time step k us-
ing information up to time step k − 1 via an auxiliary vari-
able ζk. The method first draws a sample of points (particles)
from the joint distribution pθ(xk, ζk | y1:k), then drops the
auxiliary variable to obtain particles from pθ(xk | y1:k).

Let {x̃k−1,i, wk−1,i}Ni=1 be N particles and their asso-
ciated weights at time k − 1 approximating pθ(xk−1 |
y1:k−1). The process is divided into two stages. The first
stage weights can be computed as:

vk,i = pθ(yk | µk,i)wk−1,i , (6)

for i = 1, . . . , N ; where µk,i is a characteristic of xk given
x̃k−1,i, which can be the mean, the mode or even a sample
from pθ(xk | x̃k−1,i) [17]. The auxiliary variables {ζk,i}Ni=1
are obtained by sampling from a discrete distribution:

{ζk,i}Ni=1 ∼ Cat({ṽk,i}Ni=1) , (7)

where {ṽk,i}Ni=1 are the normalized first-stage weights, and
Cat(a1, ..., aN ) represents a categorical distribution with
probability mass function f(ζ = i) = ai. Finally, the new
particles {x̃k,i}Ni=1 and associated second-stage weights
{wk,i}Ni=1 can be obtained as follows:

x̃k,i ∼ pθ(xk | x̃k−1,ζk,i
) , wk,i =

pθ(yk | x̃k,i)
pθ(yk | µk,ζk,i

)
. (8)

It is shown in [18] that:

pθ(yk | y1:k−1) ≈

(
1

N

N∑
i=1

vk,i

) (
1

N

N∑
i=1

wk,i

)
, (9)

where the above quantity can be used for approximating the
log-likelihood function in (3).

Related Work
Particle-Based Maximum-Likelihood (ML) Techniques:
Existing particle-based ML techniques for inference of
general nonlinear state-space models can be divided into
three main categories:

Direct Gradient-Based ML Techniques: The idea here is to
maximize the log-likelihood function using gradient-ascent
or quasi-Newton techniques [6]. These methods start by
drawing an initial sample point from the parameter space,
approximating the log-likelihood function and moving to
another sample point based on the approximated gradient
at the current sample. The computational complexity of
approximating the log-likelihood is of order O(N(T + 1)),
where N is the number of particles and T is the length
of the time series data. However, the unavoidable “resam-
pling” step of particle filtering renders the approximated
log-likelihood function discontinuous in θ even if the exact



log-likelihood function LT (θ) is continuous [6]. Several
importance-sampling methods have been introduced for
approximation of the gradient function [19, 20, 21].
While some of these have computational complexity
of order O(N(T + 1) logN), successful methods are
O(N2(T + 1)) [4, 6]. In addition, these techniques require
extensive sampling of the parameter space to avoid local
optimum traps.

Expectation-Maximization Techniques: Unlike direct ML
techniques, which attempt to maximize the “incomplete”
log-likelihood function LT (θ) = log pθ(y1:T ), expectation-
maximization (EM) considers instead the “complete”
log-likelihood function log pθ(x0:T ,y1:T ). The logic be-
hind this is that maximizing the complete log-likelihood
is easier than the incomplete one. The EM algorithm
thus consists of picking an initial guess θ = θ(0) and
iterating two steps: 1) E-Step: Compute Q(θ, θ(n)), 2)
M-Step: Find θ(n+1) = argmaxθ∈ΘQ(θ, θ(n)), where
Q(θ, θ(n)) = Ex0:T

[
log pθ(x0:T ,y1:T ) | y1:T , θ

(n)
]
.

These steps need to be performed iteratively until a stopping
criterion is met. Exact computation of the E-step is not
possible for general nonlinear state-space models and one
needs to use particle methods for its approximation. Two
popular particle smoothers are the backward simulation
smoother [22] and the reweighting particle smoother [23],
which have lead to two different particle-based EM algo-
rithms for general nonlinear state-space models introduced
in [7] and [8] respectively. The computational complexity
of both methods are of order O(N2(T + 1)). It should also
be noted that the closed-form solution for the M-step might
not be achievable in general, posing another expensive
computation. Similar to direct ML techniques, this class of
estimators requires several iterations to avoid local optimum
traps.

Particle-Based Bayesian Techniques: There are several
particle-based Bayesian techniques for the inference of gen-
eral nonlinear state-space models. An important representa-
tive is the particle marginal Metropolis-Hastings (PMMH)
method [9]. Given that θ is the current sample and pθ(y1:T )
is the approximated likelihood by a particle filter (e.g.,
APF) associated with θ, one needs to draw a new sample
parameter θ′ ∼ q(θ′ | θ) from the proposal distribution and
run a particle filter to approximate the likelihood pθ′(y1:T ).
Then, the new parameter θ′ gets accepted with probability
min {1, pθ′(y1:k) p(θ′) q(θ | θ′)/pθ(y1:k) p(θ) q(θ′ | θ)}.
This process continues for a large enough (usually pre-
specified) number of iterations in order to ensure good
inference performance.

All the aforementioned techniques in the first two cate-
gories require extensive sampling of the parameter space to
approximate the complete/incomplete log-likelihood func-
tion. For large systems, which require a large number of
particles, and for tall data sets, the computational cost of ap-
proximating the log-likelihood function per parameter sam-
ple point can be prohibitive.

Surrogate-Based Techniques: This class of techniques
has been developed for fast inference in SSMs with in-

tractable likelihood functions [11, 12, 13]. The idea of these
methods is to use Gaussian process regression for log-
likelihood approximation, and apply Bayesian optimization
techniques for efficient exploration of the maximum of the
log-likelihood function using a single SMC approximator
(i.e., a particle filter with a fixed particle sample size). The
computational complexity of these techniques is of order
O(N(T + 1)) for each function evaluation. Despite the suc-
cess of these techniques, their accuracy and speed are highly
impacted by the choice of particle sample size. Large par-
ticle sample size N makes the inference process very slow,
while improving accuracy. On the other hand, small particle
sample size reduces accuracy, while accelerating the speed
of the inference process. The main focus of the current pa-
per is an efficient strategy for simultaneous parameter and
approximator selection at each iteration of the learning pro-
cess to achieve fast and accurate inference.

Proposed Algorithm
Modeling the Inference Function by a Gaussian
Process:
We account for the correlation in the inference function by
employing Gaussian process regression [24]. Let z(θ) be the
inference function at parameter θ ∈ Θ approximated by a
particle filter with N particles associated with parameter θ
(e.g., z(θ) refers to the approximate log-likelihood and log-a
posteriori probability for ML and MAP techniques respec-
tively). Note that z(θ) is a stochastic process, due to the un-
certainty arising by the use of a particle filter.

The following model is considered here for the inference
function:

z(θ) ≈ h(θ) + ∆hN , (10)
where h(θ) is a Gaussian process (GP) over the parame-
ter space Θ, and ∆hN is a zero-mean Gaussian residual
with variance σ2

N , which models, for all parameters, the
uncertainty arising from the use of a particle filter with
N particles. Large particle sample sizes N correspond to
smaller σ2

N .
The following prior distribution is assumed for the GP:

h(θ) = GP (µ(θ), k(θ, θ)) , (11)
where µ(θ) denotes the mean and k(., .) is a real-valued ker-
nel function, which encodes our prior belief on the correla-
tion between θ and θ′. A common kernel choice for a contin-
uous parameter space is the well-known exponential kernel
function [24].

Let θm = (θ(1), . . . , θ(m)) be a sample from the param-
eter space, with the approximated inference function com-
puted by running m particle filters with particle sample
sizes nm = (N1, ..., Nm), and evaluated objective function
zm = [z(θ(1)), . . . , z(θ(m))]T . The posterior distribution of
h(θ) in equation (11) can be obtained as [24]:

h(θ) | θm,nm, zm ∼ N
(
h̄m(θ), covm (θ, θ)

)
, (12)

where
h̄m(θ) = µ(θ) + Kθ,θm

(Kθm,θm
+ Σnm

)
−1

(zm − µ(θm)),

covm(θ, θ) = k(θ, θ)−Kθ,θm
(Kθm,θm

+ Σnm
)
−1

KT
θ,θm

,
(13)



Σnm is a diagonal matrix of size m with ith diagonal ele-
ment (Σnm)ii = σ2

Ni
, and

Kθ,θ′ =

k(θ1, θ
′
1) . . . k(θ1, θ

′
n)

...
. . .

...
k(θl, θ

′
1) . . . k(θl, θ

′
n)

 , (14)

for θ = {θ1, ..., θl},θ′ = {θ′1, ..., θ′n}. Using the above for-
mulation, the inference function before observing any data
is modeled by a zero-mean Gaussian process with covari-
ance k(θ, θ), while at iteration m, the inference function is
predicted based on the sequence of queried samples θm, the
approximate inference function values zm, and the particle
sample sizes nm used for these approximations. The uncer-
tainty in the inference function, which is modeled by the co-
variance function in equation (12), decreases as more points
are sampled from the parameter space and added to the GP.

The hyperparameters of the Gaussian process, such as the
parameters of the kernel function or the mean function, can
be estimated at each time point using the marginal likelihood
function [24]:

zm | θm,nm∼N (µ(θm),Kθm,θm
+ Σnm

) . (15)

Notice that, due to the difficulty of choosing a proper model
for the mean function and its impact on the inference accu-
racy, a possible option is to use µ(θ) = mini=1,...,m zm(i).
This adaptive constant mean avoids the challenging task of
picking a proper parametric model for the mean function,
and also prevents over-estimation of the objective function
over regions that have not been explored well.

Simultaneous Sequential Selection of Parameter
and Particle Sample Size:
To boost the speed of the inference process and overcome
the computational intractability of existing techniques, we
introduce a multi-fidelity Bayesian optimization algorithm
for the inference of general nonlinear state-space models
(MFBO-SSM).

Let σ2
N be the variance of the objective function approx-

imated by a particle filter with N particles. The value of
the noise statistics σ2

N mainly depends on the particle sam-
ple size N for the log-likelihood approximation. This value
can be quantified in three possible ways: 1) running mul-
tiple particle filters with a fixed particle sample size at an
arbitrary sample of the parameter space and computing the
sample variance of the approximated log-likelihood values;
2) using available theoretical upper bounds on the approx-
imation error of a particle filter with a fixed particle sam-
ple size [25, 26]; 3) treating the noise parameters as hyper-
parameters and learning them on the fly according to the
marginal likelihood in (15).

The variance issue is linked to the computational com-
plexity cN of particle filtering algorithms, which increases
linearly with the number of particles. Thus, large N corre-
sponds to an approximator with smaller variance (high- fi-
delity) and high computational complexity, whereas smallN
models an approximator with large uncertainty (low-fidelity)
but low computational complexity.

To better understand the intuition behind the proposed al-
gorithm, let us consider a simple nonlinear continuous state-
space model [5, 22]:

xk+1 = 0.5xk + θ
xk

1 + x2
k

+ 8 cos(1.2k) + nk ,

yk = 0.05x2
k + vk,

(16)

where nk ∼ N (0, 0.001), vk ∼ N (0, 0.01), and θ is the
only parameter of the system, with true value θ∗ = 25. For
a time series of length 100, the exact log-likelihood is plot-
ted in black in Figure 1. The Gaussian process approximated
by 10 sample points from the parameter space with particle
sample size N1 = 20 is plotted in Figure 1(a). This low-
fidelity approximator has variance σN1

= 10,000. It can be
seen that 10 sample points from the parameter space have
properly captured the log-likelihood function with this ap-
proximator. Figure 1(b) displays the constructed GP with
N2 = 100 and two sample points from the parameter space.
For this high-fidelity approximator, σN2

= 500. These two
approximations have the same computational complexity,
since cN1/cN2 = N1/N2 = 20/100. However, the mean
of the GP corresponding to the high-fidelity approximator is
far from the exact log-likelihood function.
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Figure 1: GP approximation for the log-likelihood function
using a) 10 parameter samples and a low-fidelity particle fil-
ter with N1 = 20, and b) 2 parameter samples and a high-
fidelity particle filter with N2 = 100, for the system in (16).

We conclude from the previous example that, in order to
achieve a solution that is both accurate and fast, one needs to
select simultaneously good sample points in the parameter
space and good approximators of the log-likelihood func-
tion during the learning process. Finding an optimal (fi-
nite or infinite horizon) strategy is a challenging task. In
the next paragraphs, we describe how a Bayesian optimiza-
tion framework, in particular the knowledge gradient pol-
icy [14, 15], can be employed for tackling this problem.

Let θm = (θ(1), ..., θ(m)) be a sample from the param-
eter space with associated approximated inference function
values zm = [z(θ(1)), ..., z(θ(m))]T computed by particle
filters with particle sample sizes nm = (N1, ..., Nm). By
constructing a GP given all available information up to iter-
ation m, a given sample point θ ∈ Θ has expected inference
function h̄m(θ) = E[h(θ) | θm,nm, zm], according to (13),
and

θ̂∗GP = argmax
θ∈Θ

h̄m(θ). (17)



If an additional pair of parameter and approximator is to be
selected from the parameter space and set of approximators,
we would like to choose the pair with the highest single-
period expected increase in the maximum of the inference
function per unit cost. This policy, which is referred to as a
multi-fidelity knowledge gradient policy, can be formulated
as:

(θ(m+1), Nm+1) = argmax
(θ,N)∈(Θ,N)

1

cN

Em
[
max
θ′∈Θ

E
[
h(θ′) | θm,nm, zm, θ(m+1) = θ,Nm+1 = N

]
−max
θ′∈Θ

E [h(θ′) | θm,nm, zm]

]
,

(18)
where N denotes a finite set of particle sample sizes corre-
sponding to a finite number of approximators, and Em de-
notes expectation over the unobserved inference function at
point θ(m+1) approximated by a particle filter (approxima-
tor) with Nm+1 particles, given all available information up
to iteration m.

Exact computation of (18) is not possible over an infinite
parameter space. However, given a finite set of alternatives
A ⊂ Θ, we can write the approximation:

(θ(m+1), Nm+1) = argmax
(θ,N)∈(A,N)

1

cN
EI (θ,N), (19)

where

EI (θ,N) =

Em
[
max
θ′∈A

E
[
h(θ′) | θm,nm, zm, θ(m+1) = θ,Nm+1 = N

]
−max
θ′∈A

E [h(θ′) | θm,nm, zm]

]
,

(20)
for θ ∈ A and N ∈ N. The knowledge gradient algo-
rithm [14, 15] provides a closed-form solution for compu-
tation of the expected increase EI (θ,N) in the maximum
of the objective function in (20). The feature of the knowl-
edge gradient policy to account for the uncertainty in the
log-likelihood function approximation is a reason of choos-
ing this acquisition function over other Bayesian optimiza-
tion techniques, such as expected improvement [27] and en-
tropy search [28].

The finite set of alternatives A ⊂ Θ should be selected
based on the goal of the inference process. In particular, the
set of alternatives for ML estimation can be obtained using
hypercube sampling [29], whereas for MAP estimation, the
alternative set could be provided by a sample drawn from the
prior distribution. The set of particle sample sizes (number
of approximators) needs to be chosen based on the size of
the system and the amount of data. However, the algorithm
is fairly robust against this choice: in our numerical experi-
ments, we observed that “small”, “medium” and “large” par-
ticle sample sizes all lead to good inference accuracy and
speed.

After selection of θ(m+1) and Nm+1 using (19), a par-
ticle filter with Nm+1 particles associated with parameter

θ(m+1) is run and the Gaussian process is updated based
on θm+1 = (θm, θ

(m+1)), nm+1 = (nm, Nm+1), and
zm+1 = [zm, z(θ

(m+1))]T . This procedure continues until a
stopping criterion is met, which might be a threshold for the
change in the maximum of the mean of the constructed GP
in consecutive iterations, or a pre-specified limit on the num-
ber of iterations. It should be noted that the complexity of
the MFBO-SSM algorithm at iteration m is approximately
O(max{Nm+1(T + 1),m3}), where Nm+1 is the number
of particles used for the objective function approximation,
and T is the length of the time series data.

The Gaussian processes constructed over the log-
likelihood function for the system in (16) at different iter-
ations of the proposed algorithm are plotted in Figure 2. It
can be seen that all 9 initial sample parameters prescribed by
MFBO-SSM are from the low-fidelity approximator (N1 =
20), but the last three sample parameters are evaluated by
the high fidelity approximator (N2 = 100). Indeed, the low-
fidelity approximator with 5 times less computational com-
plexity has been initially used for proper exploration of the
parameter space. Then, as the expected increase in the max-
imum of the inference function per unit cost using the use of
first approximator becomes small, the high-fidelity approx-
imator is performed for proper exploitation. As we will see
in the next section, this key feature of the MFBO-SSM al-
gorithm results in an inference process that is both fast and
accurate, as compared to the existing techniques.

Algorithm 1 MFBO-SSM Algorithm
1: Set the alternative set A, and the particle set N, the cost cN

and variance σ2
N of the particle filter with N ∈ N particles.

2: Construct a GP over parameter θ.

3: m = −1, θ0 = {}, n0 = {}, z0 = {}.
While stopping criterion is not met

4: m = m+ 1.

5: (θ(m+1), Nm+1) = argmax(θ,N)∈(A,N)
1
cN

EI (θ,N) where
EI (θ,N) is defined in Eq. (20).

6: Run a particle filter tuned to θ(m+1) with particle size Nm+1

to get z(θ(m+1)).

7: θm+1 = {θm, θ(m+1)}, nm+1 = {nm, Nm+1}, zm+1 =

{zm, z(θ(m+1))}.
8: Update GP according to (θm+1, nm+1, zm+1).

End While
9: θ̂∗GP = argmaxθ∈Θ h̄m(θ), where h̄m(θ) is the mean of the

final GP.

Experiments
All experiments have been conducted on a PC with an Intel
Core i7-4790 CPU@3.60-GHz clock and 16 GB of RAM.

Stochastic volatility model: To assess the performance
of the proposed algorithm in the presence of tall data, the
time-varying stochastic volatility model is considered. This
model, which is often used as a benchmark for inference
of nonlinear state-space models, describes the behavior of
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Figure 2: Constructed GP and estimated parameter at different iterations of MFBO-SSM for the system in (16).

moderate to high-frequency financial data [30, 31]. The state
and observation processes of this model are:

xk = φxk−1 + (1− φ)µ+ σnk, nk ∼ N (0, 1)

yk = β exp(xk/2) vk, vk ∼ N (0, 1).
(21)

The performance of the MFBO-SSM algorithm is as-
sessed using both synthetic and real data. For synthetic data,
100 time series of length 4000 are drawn from the model in
(21) with initial state x0 ∼ N (0, σ2/1− φ2). While there is
only a single state variable, the time-varying process neces-
sitates the use of a large number of particles. MFBO-SSM
algorithm uses N1 = 100, N2 = 1000, N3 = 5000, corre-
sponding to “small,” “medium,” and “large” particle sam-
ple sizes. Other methods use a fixed particle sample size
N = 1000. We are interested in estimating the true param-
eter θ∗ = (σ∗, φ∗, β∗, µ∗) = (0.97, 0.55, 0.95, 0.1) from
synthetic data, where Θ = [0, 2]× [−1, 1]× [0, 10]× [0, 5].
The results of the MFBO-SSM algorithm are compared
with the Bayesian optimization (expected improvement)
method with fixed particle sample size proposed in [11], the
PMMH algorithm [9], a particle-based ML algorithm [6],
and particle-based EM algorithms [8]. A Gaussian proposal
distribution is used with the PMMH algorithm. The MFBO-
SSM, BO, EM, and ML algorithms all stop when the change
in the estimated value of all parameters over a window of
length 20 falls bellow 5% of their range, whereas the PMMH
algorithm continues over a fixed number of 6,000 iterations.
Figure 3 displays the average MSE of estimation of the dif-
ferent parameters against running time in minutes. One can
observe that the accuracy at the same speed achieved by
MFBO-SSM is significantly higher than for the other meth-
ods.

Real data with length 3273 from the VIX stock price in-
dex recorded between March 2005 and March 2018 have
also been used in our analysis. The data are displayed in
the left panel of Figure 4. The average maximum of the
log-likelihood function against running time is displayed in
the right panel of Figure 4. One can observe that the log-
likelihood is maximized faster by the MFBO-SSM algo-
rithm than by the other methods. The average number of
particles used by the MFBO-SSM algorithm against itera-
tion number is displayed in Figure 5. It can be seen that the
MFBO-SSM algorithm picks the low-fidelity approximator
(i.e., the particle filter with N1 = 100) most of the time
at early iterations, for cheap exploration, while selecting

the two other expensive approximators with particle sample
sizes N2 = 1000 and N3 = 5000 only at later iterations, for
better exploitation.

Cell-Cycle Gene Regulatory Network Example: In the
second experiment, we consider the cell cycle gene regula-
tory network model in [32]. This is a Boolean network con-
sisting of 14 genes, where each gene can be activated or in-
activated. Hence, there are 214 = 16384 different possible
system states. The pathway diagram for this gene regulatory
network is displayed in Figure 6. Normal arrows represent
activating regulations and dash arrows represent suppressive
regulations. With vector xk containing the expression state
of all 14 genes at time k, the Boolean state process can be
written as:

xk = Axk−1 ⊕ nk , (22)
where v maps the positive elements of vector v to 1 and oth-
ers to 0, nk is the process noise, andA = [aij ] is the connec-
tivity matrix. Parameter aij specifies the type of regulation
from gene j to gene i: it is equal to +1 for the activating
regulation, −1 for the inactivating regulation and 0 for no
regulation. The process noise nk is assumed to have inde-
pendent components distributed as Bernoulli(p), where the
noise parameter p gives the amount of “perturbation” to the
Boolean state process. In our simulation, we set p = 0.01.
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Figure 6: Pathway diagram for the cell-cycle gene regulatory
network model.

We assume a Gaussian linear observation model:

yk = µ +Dxk + vk , k = 1, 2, . . . (23)

where vk ∼ N (0, σ2I) is an uncorrelated zero-mean Gaus-
sian noise vector, µ is a vector of baseline gene expressions
(corresponding to the “zero” state for each gene) and D is a
diagonal matrix containing differential expression values for
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Figure 3: Average MSE against running time in minutes for different inference algorithms using synthetic data from the stochas-
tic volatility model.

Table 1: Results for the cell-cycle gene regulatory network.
Average MSE (running time per minutes)

N BO [11] EM [8] ML [6] PMMH [9] MFBO-SSM

20,000 9.412 (88.15) 9.473 (166.98) 10.238 (199.39) 10.991 (354.45)
6.904 (35.59)

40,000 6.902 (189.24) 6.862 (341.92) 7.827 (418.09) 7.618 (722.90)
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Figure 4: Daily return data for the VIX stock price index and
average maximum log-likelihood against running time in
minutes for different inference algorithms using these data.

each gene along the diagonal (these indicate by how much
the activated state of each gene is over-expressed over the
inactivated state). Such a Gaussian linear model is an ap-
propriate model for many important gene-expression mea-
surement technologies, such as cDNA microarrays [33] and
live cell imaging-based assays [34]. Here, we assume that
µ = [µ, . . . , µ]T and D = δI , so that the parameter vec-
tor is θ = (µ, δ, σ). The true value of the parameter is
θ∗ = (30, 20, 10) and the parameter space is assumed to
be Θ = [5, 40] × [5, 40] × [5, 20]. The prior distribution
is uniform over Θ. Given 100 time series of length 100, the
sum of the average MSE of estimation for all parameters and
running time for different algorithms are displayed in Ta-
ble 1. Three approximators with N1 = 1,000, N2 = 10,000
and N3 = 20,000 are used with the MFBO-SSM algorithm,
whereas the particle sample size N = 10,000 is used with
the other methods. The MFBO-SSM, EM and ML algo-
rithms stop when the change in the estimated value of all
parameters over a window of 20 consecutive iterations falls
bellow 5% of their range, whereas the PMMH algorithm
runs over a fixed number of 10,000 iterations.

In Table 1, we can observe that for both particle sample

Figure 5: Average number of particles used by the MFBO-
SSM algorithm against iteration number for the daily return
data for the VIX stock price index.

sizes, the MFBO-SSM algorithm achieves good accuracy
with a much smaller running time than the other algorithms.
Indeed, MFBO-SSM is 2.5 times faster than the fastest com-
petitor for N = 20,000 and 5 times faster for N = 40,000.
These results demonstrate the ability of MFBO-SSM in
speeding up inference for both large systems and tall data
sets, at similar or better accuracy levels.

Conclusion
In this paper, we introduced the MFBO-SSM algorithm for
fast and accurate inference of parameters of nonlinear state-
space models. The proposed algorithm can handle large sys-
tem sizes and tall data sets. MFBO-SSM alleviates the com-
putational expense associated with sample-based approxi-
mations of the inference function by constructing a Gaus-
sian process for modeling the correlation in the inference
function, and learns the maximum of this surrogate model
by simultaneous selection of sample parameters and parti-
cle sample sizes for its SMC approximation. In numerical
experiments using real and synthetic data, the proposed al-



gorithm performed significantly faster than competing algo-
rithms, at similar or better accuracy levels.
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