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Introduction
A basic problem in genomic signal processing is to derive 
intervention strategies for gene regulatory networks (GRNs) to 
avoid undesirable states, in particular, cancerous phenotypes. 
The problem goes back to the early days of genomics when 2 
paradigms were introduced to force dynamical GRNs away 
from carcinogenic states, dynamical intervention1–3 and struc-
tural intervention.4 Substantial work has been done since then 
(see the work by Dougherty et  al5 for reviews). The goal of 
dynamical intervention is to find a proper finite or infinite-
horizon control strategy for altering the regulatory output of 
one or more genes at each time point. The goal of structural 
intervention, which is the focus of this article, is to find a one-
time change in regulatory function for beneficially changing 
the steady-state distribution (SSD) of a GRN. A solution for 
optimal structure intervention via representation of logical 
alterations of the regulatory functions is discussed in Xiao et al6 
in the context of probabilistic Boolean networks (PBNs).7 A 
solution that applies Markov chain perturbation theory to 
Markovian regulatory networks to find a structural interven-
tion that optimally reduces the steady-state mass of undesirable 
states is presented in the work by Qian et al.8

The basic theory of structural intervention provides optimal 
intervention under the assumption that the regulatory model is 
known; however, in practice, this is generally not the case. For 
instance, in a Boolean network (BN), or more generally a PBN, 
it is commonly the case that certain regulatory relations are 
unknown or at least not known with certainty. In this case, one 
needs to reformulate the optimization problem to take into 
account the uncertainty. While we are focusing here on GRNs, 
this is a problem recognized as far back as the 1960s in control 
theory.9–11 More recently, it has been treated in signal process-
ing, first in a minimax framework12–14 and then in a Bayesian 
framework,15,16 and it has also studied in pattern recogni-
tion.17,18 In the case of GRNs, the problem has been addressed 
in the work by Yoon et al19 using the mean objective cost of 
uncertainty (MOCU), which quantifies the uncertainty based 
on its effect on the objective, in this instance, the degree to 
which the uncertainty reduces the phenotypical effect of the 
intervention.

In all cases, one would like to reduce the uncertainty in  
the model system to achieve better optimal performance. 
Owing to cost and time, it is prudent to prioritize potential 
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experiments based on the information they provide and then 
conduct the most informative. This process is called experi-
mental design. Various methods employ entropy,20–22 the 
MOCU,23–25 and the knowledge gradient.26 This article pro-
vides a comparison of entropy-based and MOCU-based 
methods.

Because uncertainty can be quantified via entropy, a his-
torical approach to experimental design has been to choose an 
experiment that maximally reduces entropy.20,21 Assuming 
that the true model lies in an uncertainty class of models gov-
erned by a probability distribution, from a class of potential 
experiments, the aim is to choose the one that provides model 
information resulting in the greatest reduction of entropy rela-
tive to the distribution. In the case of a GRN, uncertainty 
might relate to lack of knowledge concerning regulatory rela-
tions and the uncertainty class would consist of a collection of 
GRNs with differing regulatory relations among some of the 
genes. Potential experiments would characterize unknown 
regulatory relations, thereby reducing the uncertainty class 
and lowering entropy.

Entropy does not take into account the objective for build-
ing a model. An experiment might reduce entropy but have 
little or no effect on knowledge necessary for accomplishing 
the desired objective. In the case of GRNs, structural interven-
tion involves altering gene regulation so as to reduce the steady-
state probability of undesirable states, such as cell proliferative 
(carcinogenic) states. Given a model, one finds an optimal 
structural intervention.8 When there is model uncertainty, we 
desire to reduce uncertainty relevant to determining an optimal 
structural intervention. The MOCU,19 which provides a quan-
tification of uncertainty based on the degree to which model 
uncertainty affects the translational objective, is used for exper-
imental design: choose the experiment that yields the greatest 
reduction in MOCU.23

Typically, one might perform a sequence of experiments 
to progressively reduce the uncertainty. What should be the 
order of the experiments to get the best reduction in uncer-
tainty? Using MOCU, this problem has been addressed in 
the context of GRNs in a greedy sequential fashion19: at each 
step, the optimal experiment is chosen from among the ones 
not yet performed. In this article, we demonstrate the 
strength of MOCU-based experimental design by consider-
ing optimal sequential experimental design in the context of 
structural intervention in BN with perturbation (BNp). In 
this framework, there are M  unknown regulatory relations 
and the aim is to sequentially choose optimal experiments to 
reduce uncertainty. Notice that “sequential” refers to the 
step-wise experiments that are taken over the uncertain reg-
ulations, which then lead to a better but still one-time struc-
tural intervention. We compare design via MOCU and 
entropy for both greedy and dynamic programming–based 
sequential design, which has not been previously used with 
MOCU.

GRNs and Interventions
BNs: a brief overview

Several BN models have been developed in recent years for 
studying the dynamics of GRNs,1,27,28 for instance, the cell cycle 
in the Drosophila fruit fly,29 in the Saccharomyces cerevisiae 
yeast,30 and the mammalian cell cycle.31

A binary BN on n  genes is represented by a set of gene 
expression, { , , , }1 2X X Xn  and a set of Boolean functions, 
{ , , }1f fn , that gives functional relationships between the 
genes over time. The state of each gene is represented by 0 
(OFF) or 1 (ON), where Xi = 1  and Xi = 0  correspond to 
the activation and inactivation of gene i , respectively. The 
states of genes at time step k  is denoted by a vector 
X k X k X kn( ) ( ( ), , ( ))= 1  . The value of the ith  gene at time 
step k +1  is affected by the value of the ki  predictor genes at 
time step k  via X k f X k X k X ki i i i iki

( ) ( ( ), ( ), , ( ))+ =1
1 2

 , for 
i n= 1, , . In a BNp, the state value of each gene at each time 
point is assumed to be flipped with a small probability p .  
This produces a dynamical model X k F X k k( ) ( ( )) ( )+ = ⊕1 η , 
where F = ( , , )f fn1  , ⊕  is component-wise modulo-2 
addition, and η η η η( ) ( ( ), ( ), , ( ))k k k kn= 1 2   with 
ηi k p( ) ( )∼ Bernoulli , for i n= 1, , . Letting { , , }1 2x x

n
 be 

the set of all possible Boolean states, the transition probability 
matrix (TPM) P  of the Markov chain defined by the state 
model is given by

	
p P k k

p p

ij
i j

i j n i j

= + = =( )
= −⊕ − ⊕

X X( 1) ( )

(1 )|| ( )||1 || ( )||

x x
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11 	 (1)

for i j n, , ,= 1 2 , where pij  refers to the element in the ith  
row and jth  column of the TPM P , and ||.||1  is the L1  
norm. For a nonzero perturbation process ( )p > 0 , the corre-
sponding Markov chain of a BNp possesses a SSD π describing 
the long-run behavior of system. The SSD can be computed 
based on the TPM of the Markov chain as π πT T= P , where 
vT  denotes the transpose of v  and the ith  element denotes 
the steady-state probability of being at state xi .

Structural intervention of GRNs

We now briefly review the solution that applies Markov chain 
perturbation theory to the TPM to find a structural interven-
tion that optimally reduces the steady-state mass of undesirable 
states.8 Given a known BNp, under the rank 1 function pertur-
bation, the TPM P  will be altered to P P ab= + T ,8 where a  
and b  are arbitrary vectors and b eT = 0  ( e  is the all unity 
column vector). A special case of a rank 1 perturbation, called a 
single-gene perturbation process, is considered in this article. 
According to this process, the output state of a single-input state 
changes and the output states of other states stay unchanged. Let 
Ψ  be a class of potential interventions to the network. Let 
� � … �F = ( , , )1f fn  be the Boolean function after intervention. A 
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single-gene perturbation for the input state j  changes the out-
put value of the Boolean function: x F x F x xs j j r= ≠ = ( ) ( ) , and 
F x F x( ) ( )i i= , for i n= 1 2, ,  and i ≠ j. We shall refer to  

this as a ( , )j s  intervention. The TPM after perturbation, P,  
is the same as P , except for p p pjr jr

n= − −( )1  and 
p p pjs js

n= + −( )1 . The SSD of the system after perturbation 
can be computed as follows8

	
π π

π
i i

n
j si ri
n

sj rj

j s
p z z

p z z
( , )

( ) ( )
( ) ( )

= +
− −

− − −

1
1 1 	 (2)

where π~i( , )j s  is the steady-state probability of the ith  state of 
the perturbed system following a ( , )j s  intervention, 
Z I P e= − + −[ ] 1πT  is the fundamental matrix of a BNp, I  
being the n n×  identity matrix, and z z z zsi ri sj rj, , ,  are elements 
of Z .

If U  is the set of undesirable Boolean states, then 
 π πU ii U

j s j s( , ) ( , )=
∈∑  is the steady-state probability mass  

of undesirable states after applying a ( , )j s  intervention. The 
optimal single-gene perturbation structural intervention 
( , )j s∗ ∗  minimizes π~U ( , )j s :

	
( , ) ( , )

, {1,2, ,2 }

j s j s
j s n

U
∗ ∗

∈

= argmin
…

�π
	 (3)

Experimental Design
The complex regulatory machinery of the cell and the lack of 
sufficient data for accurate inference create significant uncer-
tainty in GRN models. Consider a GRN possessing M  uncer-
tain parameters θ θ θ1 2, , ,

M . In our application, θ i  
corresponds to a regulatory relation of an uncertain type that 
can take on 2 different values: “” for activating regulation and 
“ ” for suppressive regulation. These unknown parameters 
result in 2M  different BN models for the system that differs in 
one or more of these uncertain regulations. Let Θ = { , , }θ θ1 2

 M  
be the uncertainty class of these network models, where 
θ j

M∈ { , }A S , for j M= 1 2, , . The prior distribution over 
BN models can be encoded into a single column vector:

p P P M

T
( ) ( ), , ( )0 1 2

= = =





∗ ∗θ θ θ θ

where θ∗  is a vector containing the true values of the parameters.
For a given initial distribution p(0)  and i M= 1, , , the 

prior probability that the ith  regulation is activating is

P E pi
p i j j i

j

M

( ) ( )( ) ( ) ( )θ θ θ= =   == =
=
∑  0

1

2

1 0 1

where 1 1θ j i( )= =  if θ j i( ) =  and 0  otherwise. The initial 
belief state is b P P M T( ) [ ( ), , ( )]0 1= = =θ θ  .

As in the work by Dehghannasiri et  al,23 we assume that 
there exist M  experiments T TM1, , , where Ti  determines 
the regulation θ i . More general experimental formulations are 

possible; for instance, there is a probability that Ti  can return 
the wrong value.25

Let b( )k  be the belief state before conducting the kth  
experiment. Given that experiment Ti  at time step k  is per-
formed, if the outcome of the experiment shows that θ i = , 
then the ith  element of the belief vector at time step k +1  will 
get the value 1  and the other elements will get their previous 
values: bi k( 1) 1+ = , b bl lk k( 1) ( )+ =  for l M l i= ≠1, , ,

. 
However, if θ i =  , then the ith  element of the belief vector 
will be 0  and the rest will be unaltered from time k  to k +1 .

Thus, each of the M  elements of the belief vector can take 
3 possible values during the experimental design process and 
the belief vector is of the form  = [ , , ]1 3b b

M
, where 

b( )k ∈ . We view transition in the belief space as a Markov 
decision process with 3M  states. The controlled transition 
matrix in the belief space under experiment Ti  is a matrix of 
size 3 3M M× . The element associated with the probability of 
transition from state b∈  to state ′∈b   under experiment 
Ti  can be written as follows:

	
Trbb i i

i i l l
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(4)

Greedy-MOCU

Optimal experimental design using the MOCU, first proposed 
in the work by Dehghannasiri et al,23 is briefly described in this 
section. Let ξ ψθ ( )  be the cost of applying the intervention 
ψ ∈Ψ  to the network θ ∈Θ . Using equation (3), for any 
θ ∈Θ , the optimal single-gene perturbation structural inter-
vention for a BNp defined by a given uncertainty vector θ  is 
ψθ θ θ= ∗ ∗( , )j s , where ξ ψ ξ ψθ θ θ( ) ( )≥  for any ψ ∈Ψ .

The MOCU relative to an uncertainty class represented by 
the belief vector b  and a class Ψ  of interventions is defined as 
follows:

	

M E

p j j j j

Ψ ΘΘ( ) ( ) ( )

( ) (

| |
|b b

b b

= −





= −

b

|

ξ ψ ξ ψ

ξ ψ ξ ψ

θ
θ

θ θ

θ
θ
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1

2

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
=

∑
j

M

	 (5)

where ψθ
IBR

|b  is an intrinsically Bayesian robust (IBR) intervention,

       
ψ ξ ψ ξ ψθ

ψ
θ

ψ
θIBR argmin argmin|b b= =

∈ ∈ =
∑

Ψ Ψ
E p j j

j

M

b[ ( )] ( )
1

2

	 (6)

and pb  is the vector of posterior probabilities of network mod-
els for a belief vector b , which can be computed based on the 
independency of the regulations as follows:
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	 p j
i

M

i j i i j i
b b b= + −



=

= =∏
1

( ) ( )1 (1 )1θ θA S 	 (7)

for j M= 1 2, , . The IBR intervention ψθ
IBR

|b  depends on the 
belief state b , whereas the optimal intervention ψθ  is designed 
for a specific network model θ ∈Θ . The MOCU is the 
expected cost increase that results from applying a robust inter-
vention over all networks in θ  instead of the optimal interven-
tion for the unknown true network.

The goal of sequential greedy MOCU-based experimental 
design23), referred to herein as Greedy-MOCU, is to select an 
experiment at each time point that results in the maximal 
reduction in MOCU in the next time step. If b  is the current 
belief state, then the Greedy-MOCU decision is given by

	

i E M M
i M

Ti

i

∗

∈
′

∈

= ′ − 

=

argmin

argmin

{1, , }
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b b b b| | |Ψ ΨΘ Θ
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iT MTrbb

b
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′∑ Ψ Θ|


	 (8)

where the second equality follows by expressing the expectation 
E Ti′b b| ,  in terms of Trbb′( )Ti , for ′∈b  , and then dropping 
the terms unrelated to minimization. After making the decision 
and observing outcomes, one needs to update the belief state 
and repeat another experimental design process if necessary.

Dynamic programming MOCU

Greedy-MOCU uses the expected value of MOCU in the next 
time step for decision making at the current time. If the num-
ber of experiments, N , is known a priori, then all future exper-
iments (the remaining horizon) can be taken into account 
during the decision-making process. In this section, we intro-
duce optimal finite-horizon experimental design based on 
dynamic programming (DP),32 which we call DP-MOCU.

Let µk(b) be a policy at time step k  that maps a belief vector 
b∈  into an experiment in { , , }1T TM . We define a 
bounded immediate cost function at time step k  corresponding 
to transition from the belief vector b b( )k =  into the belief 
vector b b( 1)k + = ′  under policy µk as follows:

g M Mk kb b b b b, , ( ) ( ) ( )′( ) = ′ −µ Ψ ΨΘ Θ| |

for k N= −0 1, , , where gk k( , , ( )) 0b b b′ ≤µ . The terminal 
cost function is defined as g MN ( ) ( )b b= Ψ Θ| , for any b∈ .

Letting Π  be the space of all possible policies, using the 
definitions of the immediate and terminal cost functions, an 
optimal policy, µ0: 1N −

MOCU , is given by solving the minimization 
problem:

    
argmin
µ

µ
0: 1 0

1

( ), ( 1), ( ( )) ( ( ))
N

k k N
k

N

E g k k k g N
− ∈ =

−

+( ) +


∑

Π
b b b b






	
(9)

where the expectation is taken over stochasticities in belief 
transition.

Dynamic programming provides a solution for the minimi-
zation in equation (9). The method starts by setting the termi-
nal cost function as J gN N

MOCU ( ) ( )b b=  for b∈ . Then, in a 
recursively backward fashion, the optimal cost function can be 
computed as follows:

J E g T Jk
i M

Ti k i k
MOCU MOCU( ) , , ( )

{1, , }
, 1b b b bb b= ′( ) + ′ ∈

′ +


min |

== ′( )(





+ ′ )
∈

′
′∈

+∑
i M

i k i kT g T J
{1, , }

1( ) , , ( )


min Trbb
b

b b b


MOCU 


  (10)

with an optimal policy, µk
MOCU (b), given by

	 argmin MOCU

i M
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	 (11)

for b∈  and k N= −1 0, , , where Tr( )Ti  is defined in 
equation (4). Unlike Greedy-MOCU, the DP-MOCU  
policy decides which uncertain regulation should be  
determined at each step to maximally reduce the uncer-
tainty relative to the objective after conducting all N  
experiments.

Greedy entropy

The idea of entropy-based experimental design20,21 is to reduce 
the amount of the entropy, which quantifies the uncertainty of 
the system. While MOCU-based techniques take action to 
reduce the uncertainty with respect to an objective, entropy-
based techniques do not take into account the objective during 
decision making. Performance comparisons are made in sec-
tion “Results.”

The entropy for belief vector b  is H p pj jj

M
( ) 21

2
b b b= −

=∑ log , 
where pb  is the posterior probability of network models under 
the belief state b  defined in equation (7). The maximum value 
of the entropy is M , which corresponds to a uniform prior 
over the network models, and the minimum value is 0,  which 
corresponds to certainty.

The Greedy-Entropy approach sequentially chooses an exper-
iment to minimize the expected entropy at the next time step:
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2

2T p pi
j

M

j jlog
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(12)

where the second equality is obtained by removing constant 
terms.
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Dynamic programming entropy

The Greedy-Entropy approach takes into account only the 
entropy in the next step for selecting the experiment to be per-
formed at the current step. If the number N  of experiments is 
known a priori, then the DP technique is used for finding an 
optimal entropy-based solution. In the work by Huan and 
Marzouk,22 an approximate DP solution based on the entropy 
scheme for cases with a continuous belief space is provided. 
Here, we employ the optimal DP solution because the belief 
space is finite. Again letting µk MT T( ) : { , , }1b b→   be a pol-
icy at time step k , we define a bounded immediate cost func-
tion at time step k  corresponding to transition from the belief 
vector b b( )k =  to the belief vector b b( 1)k + = ′  under policy 
µk by

g H Hk k( , , ( )) ( ) ( )b b b b b′ = ′ −µ

for k N= −0 1, , . Define the terminal cost function by 
g HN ( ) ( )b b= , for any b∈ . Using the immediate and ter-

minal cost functions gk  and gN  instead of gk  and gN , for 
k N= −0 1, , , in the DP process, the optimal finite-horizon 
policy, µ0: 1 ( )N −

Entropy b , for b∈ , based on the entropy, is obtained. 
It is called the DP-Entropy policy.

Results
Simulation setup

According to the majority vote rule for generating BN models 
of GRNs, the ith  Boolean predictor is given by

X k f X k

R X k

R X k

X k R X

i i

ij j
j

ij j
j

i ij

( ) ( )

( )

( )

( )

+ = ( ) =
>

<

∑
∑1

1 0

0 0

If

If

If jj
j

k( ) =












 ∑ 0

for i n= 1, , , where Rij  can take 3 values: Rij = +1  if there is 
an activating regulation ( ) from gene j  to gene i , Rij = −1  
if there is suppressive regulation (  ) from gene j  to gene i , 
and Rij = 0  if gene j  is not an input to gene i .33

We employ the symmetric Dirichlet distribution for gener-
ating the initial distribution over various network models:

p f p p
M

M j
j

M
b b(0) ( (0); )

2

( )
(0)

2

1

1

2

∼ =
( ) −

=
∏φ

φ

φ

φ
Γ

Γ

b

where Γ  is the gamma function and φ > 0  is the parameter of 
the symmetric Dirichlet distribution. The expected value of the 
initial distribution for any value of φ  is a vector of size 2M  
with all elements 1 / 2M . φ  specifies the variability of the ini-
tial distributions; the smaller φ  is, the more the initial distribu-
tions deviate from the uniform distribution.

Performance evaluation based on synthetic BNps

To evaluate performance, simulations based on synthetic BNps 
have been performed. A total of 100 random BNps of size 6  
with a single set of M  unknown regulations for each network 
have been considered. The perturbation probability is set to 
P = 0.001. Different values of P  have been tried and similar 
results, as presented in the sequel, have been observed. The 
states with upregulated first gene are assumed to be undesirable 
(U = { , , }1 32x x

). Three different values are considered for 
the Dirichlet parameter: φ = 0 1 1. , , and 10 . From each φ , 500 
initial distributions are generated.

Five experimental design strategies are considered: (1) 
Greedy-MOCU, (2) DP-MOCU, (3) Greedy-Entropy, (4) 
DP-Entropy, and (5) Random. A successful experimental 
design strategy has the ability to effectively reduce the cost of 
intervention. Thus, the robust intervention based on the result-
ing belief state of each strategy is applied to the true (unknown) 
network and the cost of intervention (total steady-state mass in 
undesirable states) is used as a metric. For a given belief state 
b( )k  computed before taking the kth  experiment, the cost is 
ξ ψ
θ

θ
∗ ( )|

IBR
b( )k . H k( ( ))b  represents the amount of remaining 

uncertainty in the system for a given belief state b( )k . Thus, we 
define the intervention gain of conducting the chosen experi-
ment over a random experiment by ξ ψ ξ ψ

θ

θ

θ

θ
∗ ∗−( ) ( )| |

IBR
rnd

IBR
b b( ) ( )k k , 

and the entropy gain as H k H k( ( )) ( ( ))b brnd − , where b( )k  is 
the belief state after performing the kth  experiment deter-
mined via experimental design (Greedy-MOCU, DP-MOCU, 
Greedy-Entropy, or DP-Entropy), and brnd ( )k  is the belief 
vector before performing the kth  experiment during the ran-
dom experimental design process.

Figure 1 shows the average gain of intervention with respect 
to the horizon length N  strategies for different numbers of 
unknown regulations ( )M  and Dirichlet parameters ( )φ . The 
figure shows curves for M = 2 3 5 7, , ,  and φ = 0 1 1 10. , , . The 
curves end at gain value 0  when M N= , so that all regula-
tions have been identified. In practice, the number of unknown 
regulations is usually more than the number of experiments 
which can be performed. In these cases, large intervention 
gains have been attained by the MOCU-based strategies in 
comparison with entropy-based techniques, thus demonstrat-
ing the effectiveness of MOCU-based strategies in reducing 
network uncertainty relevant to the objective.

The maximum amount of gain in MOCU-based strategies 
is achieved for φ = 10  (maximum uncertainty). In contrast, the 
intervention gains in entropy-based strategies are very close to 
0  when the initial distribution is closer to uniform ( )φ = 10  
and increase as this distribution deviates from uniform 
( . )φ = 0 1 . Indeed, as φ  gets larger (initial distributions get 
closer to uniform), the Entropy scheme does not discriminate 
between potential experiments and performs like a random 
selection approach. Thus, entropy-based strategies slightly per-
form better than the random strategy for nonuniform prior 
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distributions, with their performance being far worse than 
MOCU-based techniques. In addition, the peak in the inter-
vention gain is shifted slightly into the left side as φ  decreases. 
This is due to the fact that in the presence of a nonuniform 
initial distribution, the MOCU-based strategies are capable of 
selecting the first most effective experiments in early steps to 
reduce the intervention cost.

In Figure 1, DP-MOCU outperforms Greedy-MOCU in 
all cases with respect to the cost of intervention because future 
experiments are taken into account for decision making in 
DP-MOCU, as opposed to Greedy-MOCU, which only con-
siders one-step look-ahead. When the total number of experi-
ments ( )N  is 1 , Greedy-MOCU and DP-MOCU are 
equivalent and the same gain can be seen for both strategies. 
The highest gain difference is achieved when the horizon length 
N  is less than M , the number of uncertain parameters.

To better appreciate the performance of entropy-based tech-
niques, the gain in entropy is reported in Figure 2. Once again, 
the figure shows curves for M = 2 3 5 7, , ,  and φ = 0 1 1 10. , , .  

DP-MOCU                          Greedy-MOCU                            DP-Entropy                              Greedy-Entropy

A

B

C
Figure 1.  The average intervention gain with respect to the total number of experiments, N , for randomly generated synthetic 6-gene Boolean networks 

with 2, 3, 5, 7 uncertain regulations ( )M . (A) φ = 10, (B) φ = 10, and (C) φ = 10.

Comparison between Figures 1 and 2 shows that the maximum 
entropy reduction by the entropy-based strategies does not 
necessarily result in the highest reduction in the cost of inter-
vention, which is the main objective of performing experimen-
tal design. Interestingly, although DP-Entropy is more 
successful in reducing the entropy value in comparison with 
Greedy-Entropy (as expected), it does not outperform Greedy-
Entropy relative to average gain in intervention.

Next, we consider the effect of the initial distribution on the 
performance of various experimental design strategies. The 
horizon length and the number of unknown regulations are set 
to be N = 4  and M = 7 , respectively. The initial distribution 
is a vector of size 27 . The entropy of this initial distribution 
specifies the amount of initial uncertainty in the system. The 
closer this value is to its maximum value 7 , the closer the ini-
tial distribution is to the uniform distribution. In the figure, we 
observe that as the entropy of the initial distribution increases, 
the performance of both Greedy-MOCU and DP-MOCU 
increases as well. This growth is higher for DP-MOCU compared 
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with Greedy-MOCU, which shows the superiority of DP- 
MOCU in reducing the intervention cost in the presence of 

high uncertainty in the system. However, note the reduction 
trend in the amount of intervention gain for the entropy-based 
techniques as the entropy of the initial distribution increases. 
This is due to the fact that the entropy-based strategies are 
unable to discriminate between potential experiments in the 
presence of the uniform initial distribution and perform like 
random selection (Figure 3).

The average cost of robust intervention with respect to the 
number of conducted experiments for different experimental 
design strategies is shown in Figure 4. DP-MOCU has the 
lowest average cost of robust intervention at the end of the 
horizon (after taking all N  experiments); however, Greedy-
MOCU has the lowest cost before reaching the end of the 
horizon. This observation can be understood by looking at the 
finite-horizon DP policy. DP-MOCU finds a sequence of 
experiments from time 0  to N −1  to minimize the expected 
sum of the differences of MOCUs throughout this interval. 
The expected value of MOCU after conducting the last experi-
ment plays the key role in the decision making by the DP 

DP-MOCU                          Greedy-MOCU                            DP-Enrtropy Greedy-Entropy

A

B

C
Figure 2.  The average entropy gain with respect to the total number of experiments, N , for randomly generated synthetic 6-gene Boolean networks with 

2, 3, 5, 7 uncertain regulations ( )M . (A) φ = 10, (B) φ = 10, and (C) φ = 10.

Figure 3.  The average intervention gain with respect to the entropy of 

the initial distribution, p(0) , for randomly generated synthetic 6-gene 

Boolean networks with 7  unknown regulations and total number of 

experiments ( )N  equal to 4 .
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policy. Thus, the capability of DP-MOCU in planning for 
reducing MOCU at the end of the horizon, as opposed to 
Greedy-MOCU which takes only the next step into account 
for decision making, results in the lowest average cost of robust 

intervention by DP-MOCU at the end of horizon. Both 
DP-MOCU and Greedy-MOCU are equivalent for horizon 
length N = 1  and behave differently for other cases. When the 
number of experiments is not known a priori, Greedy-MOCU 
may be preferred to DP-MOCU because, as presented in 
Figure 4, the intervention gain in DP-MOCU might be lower 
than Greedy-MOCU before conducting the total number of 
experiments.

Performance evaluation based on the mammalian 
cell cycle network

The mammalian cell cycle involves a sequence of events 
resulting in the duplication and division of the cell. It occurs 
in response to growth factors and under normal conditions; it 
is a tightly controlled process. A regulatory model for the 
mammalian cell cycle, proposed in Fauré et al,31 is shown in 
Figure 5. This model contains 10 genes: CycD, Rb, p27, E2F, 
CycE, CycA, Cdc20, Cdh1, UbcH10, and CycB. The blunt 
and normal arrows represent suppressive ( )  and activating 
( )  regulations, respectively. Mammalian cell division is 

DP-MOCU                          Greedy-MOCU                            DP-Entropy                              Greedy-Entropy                            Random

A

B

C
Figure 4.  The average cost of robust intervention with respect to the number of conducted experiments obtained by various experimental design 

strategies for randomly generated synthetic BNps with 7  unknown regulations ( )M  and φ = 0 1110. , , . (A) φ = 10, (B) φ = 10, and (C) φ = 10.

Figure 5.  A gene regulatory network model of the mammalian cell cycle. 

Normal arrows represent activating regulations and blunt arrows 

represent suppressive regulations.
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coordinated with the overall growth of the organism via 
extracellular signals that control the activation of CycD in the 
cell. Cell division happens due to the positive stimuli activat-
ing cyclin D (CycD). When CycD is upregulated, it inacti-
vates the tumor suppressor Rb protein via phosphorylation. 
Rb can also be expressed if gene p27 and either CycE or 
CycA is active. The activation of Rb in the absence of stim-
uli causes cell proliferative (cancerous) phenotypes. States 
with downregulated CycD, Rb, and p27 ( )X X X1 2 3 0= = =  
are undesirable, representing cancerous phenotypes. The 
goal is to reduce the steady-state probability mass of the set 
of undesirable states, U = { , , }1 128x x , via structural 
intervention.

We consider various cases with 2  to 6  unknown regula-
tions ( )M . We randomly select 100  different sets of M  reg-
ulations from the network, for which we assume their regulatory 
information is not known and apply various experimental 
design strategies to predict the experiment to be performed. A 
total of 500 initial distributions have been generated from the 
Dirichlet distribution with parameter φ = 1 .

The average intervention gains for various experimental 
design strategies are presented in Figure 6, which shows that 
curves for M = 2 6, , . DP-MOCU and Greedy-MOCU 
have the highest average intervention gain in comparison 
with the entropy-based strategies. DP-MOCU is clearly 
superior to Greedy-MOCU for cases with larger numbers of 
unknown regulations and when the number of experiments is 
smaller than the number of unknown regulations ( )1 < <N M .  
Both Greedy-Entropy and DP-Entropy perform poorly in all 
cases.

Computational complexity analysis

Consider a network with n  genes, in which the states 2 1n−  to 
2n  are undesirable. Structural intervention requires 2 1n−  
searches over 2 2n n×  state pairs. This gives complexity O n(2 )3  
for the optimal intervention process for a single network. Given 
M  uncertain parameters, which poses 2M  different network 
models, the complexity of Greedy-MOCU is of order 
O M n(2 2 )3× . However, DP-MOCU has an extra step for the 
DP process. The complexity of the DP process is of order 
O NM(3 )2 × , where N  is the horizon length. Thus, the 

DP-MOCU                          Greedy-MOCU                            DP-Entropy                              Greedy-Entropy

Figure 6.  The average intervention gains of various experimental strategies versus the random strategy for the mammalian cell cycle network for 2 to 6 

unknown regulations ( )M  and φ =1.

Table 1.  Comparing the approximate processing times (in seconds) of 
various experimental design methods for networks of size n  with M  
uncertain regulations, and N = 3 .

n =10 n =11 n =12

Greedy-MOCU M = 4 250 2651 32 933

M = 5 493 5210 65 208

M = 6 967 10 264 127 397

DP-MOCU M = 4 272 2696 32 989

M = 5 490 5294 65 323

M = 6 1002 10 314 127 413

DP-Entropy M = 4 5 11 21

M = 5 15 29 63

M = 6 44 86 173

Greedy-Entropy M = 4 6 13 25

M = 5 18 36 69

M = 6 50 99 184

Abbreviations: DP, dynamic programming; MOCU, mean objective cost of 
uncertainty.

complexity of DP-MOCU is O NM M n(max{ , })3 2 22 3× × . In 
contrast to the MOCU-based strategies, the complexities of 
the entropy-based techniques are independent of the interven-
tion process. Greedy-Entropy and DP-Entropy have complex-
ities O M n(2 2 )×  and O NM M n(max{ , })3 2 22 × × , 
respectively.

Table 1 shows approximate processing times for networks of 
different size with various numbers of regulations. Simulations 
have been run on a machine with 16 GB of RAM and Intel 
Core i7 CPU, 3.6 GHz. The running time of the MOCU-
based strategies grows exponentially as the number of genes 
increases. It also increases with increases in the number of 
unknown regulations. It can be seen that the running time of 
DP-MOCU is slightly higher than that of Greedy-MOCU 
owing to the extra DP recursion in DP-MOCU.
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Clearly, computational complexity is an issue. The issue has 
been addressed in the context of structural intervention in the 
work by Dehghannasiri et al,23 where computation reduction 
for MOCU-based design is achieved via network reduction 
schemes. These result in suboptimal experimental design, but 
they are still superior to random design.

Conclusions
By taking into account the operational objective, MOCU-
based experimental design significantly outperforms entropy-
based design. Our aim in this article has been 2-fold: to 
demonstrate this advantage and to propose and examine the 
effect of using finite-horizon DP for sequential design. The 
simulations show that if one has a fixed number of experiments 
in mind, then DP provides improved results because it takes 
into account experiments over the full horizon, but for the 
same reason, it can be disadvantageous if one is interested in 
stopping experimentation once MOCU reduction falls below a 
given threshold, meaning that further experimentation is not 
worth the cost. Although our focus in this article has been 
intervention in GRNs, it should be recognized that Greedy-
MOCU has been used for optimal experimental design in 
other environments such as the development of optimally per-
forming materials34 and optimal signal filtering.35 Dynamic 
programming can be applied for these problems in the same 
way it has been done here.
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