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ABSTRACT: Scientists are attempting to use models of ever-increasing complexity, especially in medicine, where gene-based diseases such as
cancer require better modeling of cell regulation. Complex models suffer from uncertainty and experiments are needed to reduce this uncertainty.
Because experiments can be costly and time-consuming, it is desirable to determine experiments providing the most useful information. If a
sequence of experiments is to be performed, experimental design is needed to determine the order. A classical approach is to maximally reduce
the overall uncertainty in the model, meaning maximal entropy reduction. A recently proposed method takes into account both model uncertainty
and the translational objective, for instance, optimal structural intervention in gene regulatory networks, where the aim is to alter the regulatory logic
to maximally reduce the long-run likelihood of being in a cancerous state. The mean objective cost of uncertainty (MOCU) quantifies uncertainty
based on the degree to which model uncertainty affects the objective. Experimental design involves choosing the experiment that yields the
greatest reduction in MOCU. This article introduces finite-horizon dynamic programming for MOCU-based sequential experimental design and
compares it with the greedy approach, which selects one experiment at a time without consideration of the full horizon of experiments. A salient
aspect of the article is that it demonstrates the advantage of MOCU-based design over the widely used entropy-based design for both greedy and

dynamic programming strategies and investigates the effect of model conditions on the comparative performances.
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Introduction

A basic problem in genomic signal processing is to derive
intervention strategies for gene regulatory networks (GRNs) to
avoid undesirable states, in particular, cancerous phenotypes.
The problem goes back to the early days of genomics when 2
paradigms were introduced to force dynamical GRNs away
from carcinogenic states, dynamical intervention' and struc-
tural intervention.* Substantial work has been done since then
(see the work by Dougherty et al® for reviews). The goal of
dynamical intervention is to find a proper finite or infinite-
horizon control strategy for altering the regulatory output of
one or more genes at each time point. The goal of structural
intervention, which is the focus of this article, is to find a one-
time change in regulatory function for beneficially changing
the steady-state distribution (SSD) of a GRN. A solution for
optimal structure intervention via representation of logical
alterations of the regulatory functions is discussed in Xiao et al®
in the context of probabilistic Boolean networks (PBNs).” A
solution that applies Markov chain perturbation theory to
Markovian regulatory networks to find a structural interven-
tion that optimally reduces the steady-state mass of undesirable
states is presented in the work by Qian et al.?

The basic theory of structural intervention provides optimal
intervention under the assumption that the regulatory model is
known; however, in practice, this is generally not the case. For
instance, in a Boolean network (BN), or more generally a PBN,
it is commonly the case that certain regulatory relations are
unknown or at least not known with certainty. In this case, one
needs to reformulate the optimization problem to take into
account the uncertainty. While we are focusing here on GRNS,
this is a problem recognized as far back as the 1960s in control
theory.>11 More recently, it has been treated in signal process-
ing, first in a minimax framework!>* and then in a Bayesian
framework,’>1¢ and it has also studied in pattern recogni-
tion.1”18 In the case of GRNS, the problem has been addressed
in the work by Yoon et al'® using the mean objective cost of
uncertainty (MOCU), which quantifies the uncertainty based
on its effect on the objective, in this instance, the degree to
which the uncertainty reduces the phenotypical effect of the
intervention.

In all cases, one would like to reduce the uncertainty in
the model system to achieve better optimal performance.
Owing to cost and time, it is prudent to prioritize potential
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experiments based on the information they provide and then
conduct the most informative. This process is called experi-
mental design. Various methods employ entropy,?>2? the
MOCU,?* and the knowledge gradient.?® This article pro-
vides a comparison of entropy-based and MOCU-based
methods.

Because uncertainty can be quantified via entropy, a his-
torical approach to experimental design has been to choose an
experiment that maximally reduces entropy.??! Assuming
that the true model lies in an uncertainty class of models gov-
erned by a probability distribution, from a class of potential
experiments, the aim is to choose the one that provides model
information resulting in the greatest reduction of entropy rela-
tive to the distribution. In the case of a GRN, uncertainty
might relate to lack of knowledge concerning regulatory rela-
tions and the uncertainty class would consist of a collection of
GRNs with differing regulatory relations among some of the
genes. Potential experiments would characterize unknown
regulatory relations, thereby reducing the uncertainty class
and lowering entropy.

Entropy does not take into account the objective for build-
ing a model. An experiment might reduce entropy but have
little or no effect on knowledge necessary for accomplishing
the desired objective. In the case of GRNG, structural interven-
tion involves altering gene regulation so as to reduce the steady-
state probability of undesirable states, such as cell proliferative
(carcinogenic) states. Given a model, one finds an optimal
structural intervention.® When there is model uncertainty, we
desire to reduce uncertainty relevant to determining an optimal
structural intervention. The MOCU," which provides a quan-
tification of uncertainty based on the degree to which model
uncertainty affects the translational objective, is used for exper-
imental design: choose the experiment that yields the greatest
reduction in MOCU.23

Typically, one might perform a sequence of experiments
to progressively reduce the uncertainty. What should be the
order of the experiments to get the best reduction in uncer-
tainty? Using MOCU, this problem has been addressed in
the context of GRNs in a greedy sequential fashion!®: at each
step, the optimal experiment is chosen from among the ones
not yet performed. In this article, we demonstrate the
strength of MOCU-based experimental design by consider-
ing optimal sequential experimental design in the context of
structural intervention in BN with perturbation (BNp). In
this framework, there are M unknown regulatory relations
and the aim is to sequentially choose optimal experiments to
reduce uncertainty. Notice that “sequential” refers to the
step-wise experiments that are taken over the uncertain reg-
ulations, which then lead to a better but still one-time struc-
tural intervention. We compare design via MOCU and
entropy for both greedy and dynamic programming—based
sequential design, which has not been previously used with

MOCU.

GRNs and Interventions

BNs: a brief overview

Several BN models have been developed in recent years for
studying the dynamics of GRNG,2728 for instance, the cell cycle
in the Drosophila fruit fly,?? in the Saccharomyces cerevisiae
yeast,30 and the mammalian cell cycle.3!

A binary BN on 7 genes is represented by a set of gene
expression, {X;,X,,..., X} and a set of Boolean functions,
{fi»-- f,}, that gives functional relationships between the
genes over time. The state of each gene is represented by 0
(OFF) or 1 (ON), where X, =1 and X, =0 correspond to
the activation and inactivation of gene i, respectively. The
states of genes at time step £ is denoted by a vector
X (%) = (X,(4),..., X, (k) . The value of the ith gene at time
step £+1 is affected by the value of the £ predictor genes at
time step % via X,(¢+1)= fl.(Xi1 (,é),Xi2 (k),...,Xi]z (%)) ,for

i=1,...,n.In a BNp, the state value of each gene at each time
point is assumed to be flipped with a small probability p.
This produces a dynamical model X(£+1)=F(X(k))®n(k),
where F=(f,...,f,), @ is component-wise modulo-2
addition, and n(&) = (n,(&),n,(%),...,n, (%)) with
n, (&) ~ Bernoulli( p), for i=1,...,n. Letting {xl,...,xzn} be
the set of all possible Boolean states, the transition probability
matrix (TPM) P of the Markov chain defined by the state

model is given by

2= P(X(/e+1) = x| X() :xf)
_ Pllx‘eF(x]MIl 1- P)H i @F (x| (1)

for i,7=1,...,2" ,where p; refers to the element in the ith
row and jth column of the TPM P, and ||-||; is the L,
norm. For a nonzero perturbation process (p>0), the corre-
sponding Markov chain of a BNp possesses a SSD 7 describing
the long-run behavior of system. The SSD can be computed
based on the TPM of the Markov chain as 77 =77 P, where
vl denotes the transpose of v and the ith element denotes
the steady-state probability of being at state x'.

Structural intervention of GRINs

We now briefly review the solution that applies Markov chain
perturbation theory to the TPM to find a structural interven-
tion that optimally reduces the steady-state mass of undesirable
states.® Given a known BNp, under the rank 1 function pertur-
bation, the TPM P will be altered to P=P+ab” 8 where a
and b are arbitrary vectors and b’e=0 (e is the all unity
column vector). A special case of a rank 1 perturbation, called a
single-gene perturbation process, is considered in this article.
According to this process, the output state of a single-input state
changes and the output states of other states stay unchanged. Let
¥ be a class of potential interventions to the network. Let
F=( fl,..., fn) be the Boolean function after intervention. A
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single-gene perturbation for the input state J changes the out-
put value of the Boolean function: x* = F(x’) # F(x’) =x",and
IE‘(xi) =F(x'), for i=1,...,2" and i#;. We shall refer to
this as a (/,5) intervention. The TPM after perturbation, P,
is the same as P, except for 2j=2Pp~ (1-2)" and
2 =25 +(1=2)" The SSD of the system after perturbation
can be computed as follows®

(1_]’)””1'(2:{ )
1—(1—?)”(z5j _er) )

T,(j,8)=m, +

where 7(/,5) is the steady-state probability of the jth state of
the perturbed system following a (7,5) intervention,
Z=[1-P+ex”]" is the fundamental matrix of a BNp, 1
being the nx 7 identity matrix, and Zsi»%ri»%3>%; are elements
of Z.

If U is the set of undesirable Boolean states, then
ﬁU(j,s)=ZieU7fi(j,s) is the steady-state probability mass
of undesirable states after applying a (,s) intervention. The
optimal single-gene perturbation structural intervention
(/%,5") minimizes 7, (/,5):

(j5,s")= argmin 7,(j,s)

3)

7y5ef1,2,...,2"}

Experimental Design

The complex regulatory machinery of the cell and the lack of
sufficient data for accurate inference create significant uncer-
tainty in GRN models. Consider a GRN possessing M uncer-
tain parameters 0',0%,...,6™ . In our application, @’
corresponds to a regulatory relation of an uncertain type that
can take on 2 different values: “A” for activating regulation and
“S” for suppressive regulation. These unknown parameters
resultin 2 different BN models for the system that differs in
one or more of these uncertain regulations. Let® = {6, ,...,0 ,, }
be the uncertainty class of these network models, Wflere
0 {A,S8, for j=1,...,2"  The prior distribution over
BN models can be encoded into a single column vector:

* * 4
PO =| PO =06),....PO" =0 )|

where " is a vector containing the true values of the parameters.
For a given initial distribution p(0) and i=1,...,M, the
prior probability that the jth regulation is activating is

2M
P(Gl = -A) = Ep(O) [19(i)=¢4 :I = ZP/ (0)19/‘(1)=A
Jj=1

where 1, ,_, =1if 6,({)=A and 0 otherwise. The initial
belief statt is 5(0) =[P(0" = A),...,P(0™ = A)]" .

As in the work by Dehghannasiri et al,?® we assume that
there exist M experiments 73,...,7,,, where 7, determines
the regulation 0’ .More general experimental formulations are

possible; for instance, there is a probability that 7; can return
the wrong value.?®

Let b(%) be the belief state before conducting the 4th
experiment. Given that experiment 7} at time step 4 is per-
formed, if the outcome of the experiment shows that 0 =A,
then the ith element of the belief vector at time step £+1 will
get the value 1 and the other elements will get their previous
values: b,(4+1)=1, b,(£+1)=b,(k) for /=1,....,M,/ #i.
However, if 0 =S, then the ith element of the belief vector
will be 0 and the rest will be unaltered from time %4 to 2+1.

Thus, each of the M elements of the belief vector can take
3 possible values during the experimental design process and
the belief vector is of the form B=[b',.. .,bSM] , where
b(%) € B . We view transition in the belief space as a Markov
decision process with 3M states. The controlled transition
size 3" x3" . The element associated with the probability of
transition from state beB to state b’e B under experiment
T can be written as follows:

matrix in the belief space under experiment 7} is a matrix of

Tr,, (7)) = P(b(k+1) = b'|b(A) = b, T})

b, Ifb;=1and b, =D} for /=i (4)
=<1-b, Ifb;=0andb,=b)for/#i
0 0.W.

Greedy-MOCU

Optimal experimental design using the MOCU, first proposed
in the work by Dehghannasiri et al,? is briefly described in this
section. Let &,(y) be the cost of applying the intervention
v €W to the network 0 €®. Using equation (3), for any
0 € ©, the optimal single-gene perturbation structural inter-
vention for a BNp defined by a given uncertainty vector 6 is
v, =(Jg,s,),where &,(y)2&,(y,) forany y e V.

The MOCU relative to an uncertainty class represented by
the belief vector b and a class W of interventions is defined as
follows:

My (O]b)= gy | & Wil) & wy)]

2M
- ZP? {591. (Wine) —& Wy, )} (5)

ob . Lo . . .
where l//H';R is an intrinsically Bayesian robust (IBR) intervention,

WM
ob _ . _ . b

Yme =argmin E, [£,(w)] = argmin E 6, (v)
[BR %e‘{’ bTee I%E‘P =1 Pj 9/ (6)

and Pb is the vector of posterior probabilities of network mod-
els for a belief vector b, which can be computed based on the
independency of the regulations as follows:
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M where the expectation is taken over stochasticities in belief
pj H{b 19 (i)= (1—b1~)19]_(,-)=5} 7) transition.
=1 Dynamic programming provides a solution for the minimi-
ol L. . : .
for j=1,...,2 The IBR intervention wib depends on the zation in equation (9). The method starts by setting the termi

belief state b, whereas the optimal intervention ¥ is designed
for a specific network model 6 € ®. The MOCU is the
expected cost increase that results from applying a robust inter-
vention over all networks in 0 instead of the optimal interven-
tion for the unknown true network.

The goal of sequential greedy MOCU-based experimental
design?), referred to herein as Greedy-MOCU, is to select an
experiment at each time point that results in the maximal
reduction in MOCU in the next time step. If b is the current
belief state, then the Greedy-MOCU decision is given by

i —argmmEb‘bT[M (®|b)-M (®|b]

ie{l,..

= argmin Y T, (7,)M, (O b)) ®

16{1 M} beB

where the second equality follows by expressing the expectation

E, T, in terms of Tr (7}), for b’eB, and then dropping
the terms unrelated to minimization. After makmg the decision
and observing outcomes, one needs to update the belief state
and repeat another experimental design process if necessary.

Dynamic programming MOCU

Greedy-MOCU uses the expected value of MOCU in the next
time step for decision making at the current time. If the num-
ber of experiments, IV, is known a priori, then all future exper-
iments (the remaining horizon) can be taken into account
during the decision-making process. In this section, we intro-
duce optimal finite-horizon experimental design based on
dynamic programming (DP),3 which we call DP-MOCU.

Let u,(b) be a policy at time step 4 that maps a belief vector
15,7, ). We define a
bounded immediate cost function at time step % corresponding
to transition from the belief vector b(%4)=b into the belief
vector b(£+1)=b" under policy p, as follows:

beB into an experiment in {

& (b, 11,(b)) = M, (O b')— M, (O] b)

for £=0,...,N -1, where g,(b,b’,11,(b))<0. The terminal
cost function is defined as g, (b) =M (®|b),forany beB.

Letting IT be the space of all possible policies, using the
definitions of the immediate and terminal cost functions, an
optimal policy, uMS" | is given by solving the minimization
problem:

argminE{Nz1 & (b(k),b(k +1), 1, (b(,é))) +gN (b(N))} )

Ho. -1 €11

nal cost function as N Y (b) = gn(b) for beB . Then,in a
recursively backward fashion, the optimal cost function can be
computed as follows:

]iv[OCU(b)_l. [rlnm Eble [gk(b b, T )+]£EOCU(b,)J

= min {ZTrbb (7))( g, (b6, T)+ 20V (b ))J

iefl,..

(10)

with an optimal policy, MOV (b), given by

i€{l,...M}| pyeB

argmin {Z Tr,, (T)(g,é (b b, 7T )+]£f10CU(b ))} (11)

for beB and 2=N-1,...,0, where Tr(7}) is defined in
equation (4). Unlike Greedy-MOCU, the DP-MOCU
policy decides which uncertain regulation should be
determined at each step to maximally reduce the uncer-
tainty relative to the objective after conducting all N
experiments.

Greedy entropy

The idea of entropy-based experimental design?®?! is to reduce
the amount of the entropy, which quantifies the uncertainty of
the system. While MOCU-based techniques take action to
reduce the uncertainty with respect to an objective, entropy-
based techniques do not take into account the objective during
decision making. Performance comparisons are made in sec-
tion “Results.”

The entropy for belief vector b is H(b) = Z pj ngP/ ,
where p" is the posterior probability of network models under
the belief state b defined in equation (7). The maximum value
of the entropy is M , which corresponds to a uniform prior
over the network models, and the minimum value is 0, which
corresponds to certainty.

The Greedy-Entropy approach sequentially chooses an exper-

iment to minimize the expected entropy at the next time step:

it = argmm] Eyp, , [H(b )— H(b)]

ie{l
(12)
= argmm —Z:Trbb (T, )Zp Iogzp]

il ,M}|  peB

where the second equality is obtained by removing constant
terms.
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Dynamic programming entropy

The Greedy-Entropy approach takes into account only the
entropy in the next step for selecting the experiment to be per-
formed at the current step. If the number NV of experiments is
known a priori, then the DP technique is used for finding an
optimal entropy-based solution. In the work by Huan and
Marzouk,?? an approximate DP solution based on the entropy
scheme for cases with a continuous belief space is provided.
Here, we employ the optimal DP solution because the belief
space is finite. Again letting u,(b):b—{T},...,T;,} be a pol-
icy at time step %, we define a bounded immediate cost func-
tion at time step £ corresponding to transition from the belief

vector b(%£) =b to the belief vector b(£+1)=b' under policy
1 by

Z.(b,b', (b)) = H(b")— H(b)

tor £=0,...,N—1. Define the terminal cost function by
&y (b)=H(b), for any beB . Using the immediate and ter-
minal cost functions & and &n instead of & and &, for

£=0,...,IN -1, in the DP process, the optimal finite-horizon

policy, uEn™P (b) ,for b e B, based on the entropy,is obtained.

It is called the DP-Entropy policy.

Results

Simulation setup

According to the majority vote rule for generating BN models
of GRN, the jth Boolean predictor is given by

1 If > R, X ,(4)>0

X (k+1) = £,(X(®)=10 If iRij X (£)<0

X&) If iRij X,(B=0

for i=1,...,n,where R, can take 3 values: R, = +1 if there is
an activating regulation (A ) from gene J to gene i1, Ry =-1
if there is suppressive regulation (S ) from gene J to gene i,
and R; =0 if gene J is not an input to gene ;.3

We employ the symmetric Dirichlet distribution for gener-

ating the initial distribution over various network models:

o)
b0) ~ (2 0)9) = [ 2@
PO~ f(p — H?

where I' is the gamma function and ¢ >0 is the parameter of
the symmetric Dirichlet distribution. The expected value of the
initial distribution for any value of ¢ is a vector of size M
with all elements 1/2Y . ¢ specifies the variability of the ini-
tial distributions; the smaller ¢ is, the more the initial distribu-
tions deviate from the uniform distribution.

Performance evaluation based on synthetic BNps

To evaluate performance, simulations based on synthetic BNps
have been performed. A total of 100 random BNps of size 6
with a single set of M unknown regulations for each network
have been considered. The perturbation probability is set to
P =0.001. Different values of P have been tried and similar
results, as presented in the sequel, have been observed. The
states with upregulated first gene are assumed to be undesirable
(U ={x',...,x**}). Three different values are considered for
the Dirichlet parameter: ¢ =0.1,1,and 10 . From each ¢, 500
initial distributions are generated.

Five experimental design strategies are considered: (1)
Greedy-MOCU, (2) DP-MOCU, (3) Greedy-Entropy, (4)
DP-Entropy, and (5) Random. A successful experimental
design strategy has the ability to effectively reduce the cost of
intervention. Thus, the robust intervention based on the result-
ing belief state of each strategy is applied to the true (unknown)
network and the cost of intervention (total steady-state mass in
undesirable states) is used as a metric. For a given belief state
b(£) computed before taking the 4th experiment, the cost is
59* (l//féll’z(k)) . H(b(%)) represents the amount of remaining
uncertainty in the system for a given belief state b(£) . Thus, we
define the intervention gain of conducting the chosen experi-
ment over a random experiment by 59* (l//fél;;ndw) =& o (l//lgfl;}’{(k)))
and the entropy gain as H((b™ (2))— H(b(%)), where b(#) is
the belief state after performing the 4th experiment deter-
mined via experimental design (Greedy-MOCU, DP-MOCU,
Greedy-Entropy, or DP-Entropy), and b™ (%) is the belief
vector before performing the 4th experiment during the ran-
dom experimental design process.

Figure 1 shows the average gain of intervention with respect
to the horizon length N strategies for different numbers of
unknown regulations (M) and Dirichlet parameters (¢) . The
figure shows curves for M =2,3,5,7 and ¢ =0.1,1,10 . The
curves end at gain value 0 when A7 = v, so that all regula-
tions have been identified. In practice, the number of unknown
regulations is usually more than the number of experiments
which can be performed. In these cases, large intervention
gains have been attained by the MOCU-based strategies in
comparison with entropy-based techniques, thus demonstrat-
ing the effectiveness of MOCU-based strategies in reducing
network uncertainty relevant to the objective.

The maximum amount of gain in MOCU-based strategies
is achieved for ¢ =10 (maximum uncertainty). In contrast, the
intervention gains in entropy-based strategies are very close to
0 when the initial distribution is closer to uniform (¢ =10)
and increase as this distribution deviates from uniform
(¢ =0.1). Indeed, as ¢ gets larger (initial distributions get
closer to uniform), the Entropy scheme does not discriminate
between potential experiments and performs like a random
selection approach. Thus, entropy-based strategies slightly per-
form better than the random strategy for nonuniform prior
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Figure 1. The average intervention gain with respect to the total number of experiments, N , for randomly generated synthetic 6-gene Boolean networks

with 2, 3, 5, 7 uncertain regulations (M) . (A) $=10, (B) $=10, and (C) ¢$=10.

distributions, with their performance being far worse than
MOCU-based techniques. In addition, the peak in the inter-
vention gain is shifted slightly into the left side as ¢ decreases.
This is due to the fact that in the presence of a nonuniform
initial distribution, the MOCU-based strategies are capable of
selecting the first most effective experiments in early steps to
reduce the intervention cost.

In Figure 1, DP-MOCU outperforms Greedy-MOCU in
all cases with respect to the cost of intervention because future
experiments are taken into account for decision making in
DP-MOCU, as opposed to Greedy-MOCU, which only con-
siders one-step look-ahead. When the total number of experi-
ments (N) is 1, Greedy-MOCU and DP-MOCU are
equivalent and the same gain can be seen for both strategies.
The highest gain difference is achieved when the horizon length
N isless than M , the number of uncertain parameters.

To better appreciate the performance of entropy-based tech-
niques, the gain in entropy is reported in Figure 2. Once again,

the figure shows curves for M =2,3,5,7 and ¢=0.1,1,10.

Comparison between Figures 1 and 2 shows that the maximum
entropy reduction by the entropy-based strategies does not
necessarily result in the highest reduction in the cost of inter-
vention, which is the main objective of performing experimen-
tal design. Interestingly, although DP-Entropy is more
successful in reducing the entropy value in comparison with
Greedy-Entropy (as expected), it does not outperform Greedy-
Entropy relative to average gain in intervention.

Next, we consider the effect of the initial distribution on the
performance of various experimental design strategies. The
horizon length and the number of unknown regulations are set
tobe N =4 and M =7 respectively. The initial distribution
is a vector of size 2’ . The entropy of this initial distribution
specifies the amount of initial uncertainty in the system. The
closer this value is to its maximum value 7, the closer the ini-
tial distribution is to the uniform distribution. In the figure, we
observe that as the entropy of the initial distribution increases,
the performance of both Greedy-MOCU and DP-MOCU
increases as well. This growth is higher for DP-MOCU compared
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Figure 2. The average entropy gain with respect to the total number of experiments, N , for randomly generated synthetic 6-gene Boolean networks with

2, 3, 5, 7 uncertain regulations (M) . (A) $=10, (B) $=10, and (C) $=10.
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Figure 3. The average intervention gain with respect to the entropy of
the initial distribution, p(0) , for randomly generated synthetic 6-gene
Boolean networks with 7 unknown regulations and total number of
experiments (N) equalto 4.

with Greedy-MOCU, which shows the superiority of DP-

MOCU in reducing the intervention cost in the presence of

high uncertainty in the system. However, note the reduction
trend in the amount of intervention gain for the entropy-based
techniques as the entropy of the initial distribution increases.
This is due to the fact that the entropy-based strategies are
unable to discriminate between potential experiments in the
presence of the uniform initial distribution and perform like
random selection (Figure 3).

The average cost of robust intervention with respect to the
number of conducted experiments for different experimental
design strategies is shown in Figure 4. DP-MOCU has the
lowest average cost of robust intervention at the end of the
horizon (after taking all IV experiments); however, Greedy-
MOCU has the lowest cost before reaching the end of the
horizon. This observation can be understood by looking at the
finite-horizon DP policy. DP-MOCU finds a sequence of
experiments from time 0 to N —1 to minimize the expected
sum of the differences of MOCUs throughout this interval.
The expected value of MOCU after conducting the last experi-
ment plays the key role in the decision making by the DP
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Figure 5. A gene regulatory network model of the mammalian cell cycle.
Normal arrows represent activating regulations and blunt arrows
represent suppressive regulations.

policy. Thus, the capability of DP-MOCU in planning for
reducing MOCU at the end of the horizon, as opposed to
Greedy-MOCU which takes only the next step into account

for decision making, results in the lowest average cost of robust

intervention by DP-MOCU at the end of horizon. Both
DP-MOCU and Greedy-MOCU are equivalent for horizon
length N =1 and behave differently for other cases. When the
number of experiments is not known a priori, Greedy-MOCU
may be preferred to DP-MOCU because, as presented in
Figure 4, the intervention gain in DP-MOCU might be lower
than Greedy-MOCU before conducting the total number of

experiments.

Performance evaluation based on the mammalian
cell cycle network

The mammalian cell cycle involves a sequence of events
resulting in the duplication and division of the cell. It occurs
in response to growth factors and under normal conditions; it
is a tightly controlled process. A regulatory model for the
mammalian cell cycle, proposed in Fauré et al,3! is shown in
Figure 5. This model contains 10 genes: CycD, Rb, p27, E2F,
CycE, CycA, Cdc20, Cdhl, UbcH10, and CycB. The blunt
and normal arrows represent suppressive (S) and activating
(A) regulations, respectively. Mammalian cell division is
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Figure 6. The average intervention gains of various experimental strategies versus the random strategy for the mammalian cell cycle network for 2 to 6

unknown regulations (M) and ¢=1.

coordinated with the overall growth of the organism via
extracellular signals that control the activation of CycD in the
cell. Cell division happens due to the positive stimuli activat-
ing cyclin D (CycD). When CycD is upregulated, it inacti-
vates the tumor suppressor Rb protein via phosphorylation.
Rb can also be expressed if gene p27 and either CycE or
CycA is active. The activation of Rb in the absence of stim-
uli causes cell proliferative (cancerous) phenotypes. States
with downregulated CycD, Rb, and p27 (X, =X, = X, =0)
are undesirable, representing cancerous phenotypes. The
goal is to reduce the steady-state probability mass of the set
of undesirable states, U ={x!,...,x'*®}, via structural
intervention.

We consider various cases with 2 to 6 unknown regula-
tions (M) . We randomly select 100 different sets of M reg-
ulations from the network, for which we assume their regulatory
information is not known and apply various experimental
design strategies to predict the experiment to be performed. A
total of 500 initial distributions have been generated from the
Dirichlet distribution with parameter ¢ =1.

The average intervention gains for various experimental
design strategies are presented in Figure 6, which shows that
curves for M =2,...,6 . DP-MOCU and Greedy-MOCU
have the highest average intervention gain in comparison
with the entropy-based strategies. DP-MOCU is clearly
superior to Greedy-MOCU for cases with larger numbers of
unknown regulations and when the number of experiments is
smaller than the number of unknown regulations (1< N < M).
Both Greedy-Entropy and DP-Entropy perform poorly in all

cases.

C’ompumz‘ional complexity analysis

Consider a network with 7 genes, in which the states 2" to
2" are undesirable. Structural intervention requires 2"
searches over 2" x 2" state pairs. This gives complexity O(2°")
for the optimal intervention process for a single network. Given
M uncertain parameters, which poses 2™ different network
models, the complexity of Greedy-MOCU is of order
0™ x2°") . However, DP-MOCU has an extra step for the
DP process. The complexity of the DP process is of order
0(3*™ x N), where N is the horizon length. Thus, the

Table 1. Comparing the approximate processing times (in seconds) of
various experimental design methods for networks of size n with M
uncertain regulations, and N =3.

Greedy-MOCU M=4 250 2651 32933
M=5 493 5210 65208
M=6 967 10264 127397
DP-MOCU M=4 272 2696 32989
M=5 490 5294 65323
M=6 1002 10314 127413
DP-Entropy M=4 5 1 21
M=5 15 29 63
M=6 44 86 173
Greedy-Entropy M=4 6 13 25
M=5 18 36 69
M=6 50 99 184

Abbreviations: DP, dynamic programming; MOCU, mean objective cost of
uncertainty.

complexity of DP-MOCU is O(max{3*" x N,2" x2*}) . In
contrast to the MOCU-based strategies, the complexities of
the entropy-based techniques are independent of the interven-
tion process. Greedy-Entropy and DP-Entropy have complex-
ities  02M x2") and  O(max{3* x N,2" x2"}),
respectively.

Table 1 shows approximate processing times for networks of
different size with various numbers of regulations. Simulations
have been run on a machine with 16 GB of RAM and Intel
Core i7 CPU, 3.6 GHz. The running time of the MOCU-
based strategies grows exponentially as the number of genes
increases. It also increases with increases in the number of
unknown regulations. It can be seen that the running time of
DP-MOCU is slightly higher than that of Greedy-MOCU
owing to the extra DP recursion in DP-MOCU.
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Clearly, computational complexity is an issue. The issue has
been addressed in the context of structural intervention in the
work by Dehghannasiri et al,?> where computation reduction
tor MOCU-based design is achieved via network reduction
schemes. These result in suboptimal experimental design, but
they are still superior to random design.

Conclusions

By taking into account the operational objective, MOCU-
based experimental design significantly outperforms entropy-
based design. Our aim in this article has been 2-fold: to
demonstrate this advantage and to propose and examine the
effect of using finite-horizon DP for sequential design. The
simulations show that if one has a fixed number of experiments
in mind, then DP provides improved results because it takes
into account experiments over the full horizon, but for the
same reason, it can be disadvantageous if one is interested in
stopping experimentation once MOCU reduction falls below a
given threshold, meaning that further experimentation is not
worth the cost. Although our focus in this article has been
intervention in GRN, it should be recognized that Greedy-
MOCU has been used for optimal experimental design in
other environments such as the development of optimally per-
forming materials** and optimal signal filtering.®> Dynamic
programming can be applied for these problems in the same
way it has been done here.
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