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Abstract— Most of the existing methodologies for control of
Gene Regulatory Networks (GRNs) assume that the immediate
cost function at each state and time point is fully known. In
this paper, we introduce an optimal control strategy for control
of GRNs with unknown or partially-known immediate cost
function. Toward this, we adopt a partially-observed Boolean
dynamical system (POBDS) model for the GRN and propose a
Inverse Reinforcement Learning (IRL) methodology for quan-
tifying the imperfect behavior of experts, obtained via prior
biological knowledge or experimental data. The constructed
cost function then is used in finding the optimal infinite-
horizon control strategy for the POBDS. The application of the
proposed method using a single sequence of experimental data is
investigated through numerical experiments using a melanoma
gene regulatory network.

I. INTRODUCTION

A fundamental problem in genomic signal processing is
the design of intervention strategies for gene regulatory
networks (GRNs), in order to beneficially alter network
dynamics. Several mathematical models have been developed
for modeling GRNs [1]-[4]. Several control strategies have
also been developed for various GRN models to reduce the
steady-state probability mass over undesirable states, such
as cell proliferation states, which may be associated with
cancer [5]-[8]. Boolean networks have been shown to be
effective in capturing much of the complex dynamics of
gene regulatory networks [9]-[12]. In Boolean networks, the
transcriptional state of each gene is represented by 0 (OFF)
or 1 (ON), and the relationship among genes is described
by logical gates updated at discrete time intervals [13], i.e.,
through a Boolean dynamical system. These models were
first introduced as a completely-observable, deterministic
model by Kauffman and collaborators [1]. Several variations
of original Boolean network models have been introduced in
the literature to account for the stochasticity in the behavior
of gene regulatory networks. These models include Random
Boolean Networks [1], Boolean Networks with perturbation
(BNp) [14], Probabilistic Boolean Networks (PBN) [15], and
Boolean Control Networks (BCN) [16], [17]. The Partially-
Observed Boolean dynamical system (POBDS) model unifies
and generalizes all of the aforementioned Boolean network
models. It is also more realistic, in that it allows the GRN
states to be hidden and only partially observable through
noisy measurements from gene-expression technologies such
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as cDNA microarrays, live cell imaging-based assays, and
RNA-Seq data [7], [18]-[21].

Most of the existing intervention techniques developed for
GRNs (e.g. [5]-[7]) are based on the restrictive assumption
that the immediate effects of taking interventions on the
gene transcriptional states are fully known. However, this
immediate cost function might not be available in practice.
This paper provides a methodology that uses a sequence
of intervention actions performed by an expert in an ex-
perimental setting to construct the immediate cost function.
More specifically, given a pair of sequences of observations
and interventions, we develop a methodology based on
Inverse Reinforcement Learning [22] for quantifying the
expert sequence to obtain the immediate cost function. We
demonstrate the application of the proposed method with
experiments based on a Boolean model of a melanoma gene
regulatory network, where the control objective is to drive
the system evolution away from the states associated with
metastasis.

II. POBDS MODEL

The system is described by a state process {Xy;k =
0,1,...}, where X; € {0,1}¢ represents the gene activa-
tion/inactivation state at time k. The system state is affected
by a sequence of control inputs {uy;k=0,1,...}, where uy,
is a vector of size d, which represents a purposeful control
input and takes its value from a finite set U. The states are
assumed to be updated at each discrete time through the
following nonlinear signal model:

X = f(Xp-1) ® wpm1 @ 0y, (D

for k=1,2,... where f: {0,1}?xU - {0,1}% is a Boolean
function, called the network function, ny, € {0,1}% is Boolean
transition noise, and “®” indicates componentwise modulo-
2 addition. The way that the control input influences state
evolution is that if ug_1(¢) is one, it flips the value of
ith bit of the Boolean state Xj. In practice, control would
be accomplished by means of drug interventions targeted
at those genes. We assume that the bits in nj are i.i.d.
(the general non i.i.d. case can be similarly handled, at the
expense of introducing more parameters), with P(ng(7) =
1)=p,fori=1,...,d. Parameter 0 < p < 1/2 corresponds to
the amount of “perturbation” to the Boolean state process;
the case p = 1/2 corresponds to the maximum uncertainty.
The states of the system are observed indirectly through
noisy gene-expression data sequence Yi.7 = (Y1q,...,Y7).
The relationship between the observation data and the
state process is specified by a conditional distribution



P (Yk | Xk), for k=1,...,T. For example, this conditional
distribution may be Gaussian in the case of cDNA microarray
data [23] or a Poisson distribution in the case of RNA-seq
count data [24].

III. PROBLEM FORMULATION

In this section, the infinite-horizon control policy for
GRNs with directly observed states is outlined. In the
infinite-horizon control problem, the goal is to select the
appropriate control inputs ug € U at time point k, in such
a way that the system spends the least amount of time, on
average, in undesirable states at a small cost of control. In
formal terms, let ¢(Xy,uy) be the bounded immediate cost
of applying control input u; when the state of the system
is Xy. Let also control policy 7:{0,1}? - U be a function
which associates a control input to each Boolean state, and
II be the space of all possible policies. The infinite-horizon
control cost function for a given policy 7 € II is defined as:

J™(x) = F

S AP e (Xp, m(Xy)) ‘Xo = X} )]
k=0

for x € {0, 1}¢; where the discount factor + places a premium
on minimizing the costs of early interventions as opposed to
later ones, which is sensible from a medical perspective [6],
and the expectation is taken over the stochasticity of the
Boolean state transition under policy 7. Let 7* be the optimal
policy. The optimal cost function is denoted by J*(x) =
J™ (x), for x € {0,1}%, which satisfies J*(x) < J™(x), for
any 7€ IT and x € {0,1}<.

According to the theory of dynamic programming [25],
the optimal value function satisfies the following Bellman
equation:

J*(x) = 111116%1 [c(x, u) +7 Exixu [J*(x')]] , 3

for x € {0,1}%, where the expectation Eyjx.u is taken over
all successor Boolean states x’ if the current state is x and
control input u is taken.

Another convenient way of representing the cost function
under policy 7 is to use the joint Boolean state and inter-
vention spaces as:

Q" (x,u)

= E C(XQ,U()) + Z ’}/TC(XT,W(XT)) ‘XO =X,Up = u] ,
r=1

“4)

for x € {0,1}¢ and u € U; where the Q-function Q™ :

{0,1}2x U — R of the policy 7 for every pair (x,u), gives

the expected return when starting from state x, applying u,

and following 7 thereafter. This cost function satisfies the
following Bellman equation:

Q™ (x,1u) = c(x,u) +7 Exxu [Q" (X, 7(x')], (5

for x € {0,1}¢ and u e U.
The optimal Q-function can be computed by searching
over the set of all possible policies IT as:

Q" (x,u) = min Q" (x,u). ©)

which leads to the following optimal policy:

7 (x) = argmin Q* (x,u), 7
uel
for x € {0,1}4.

The immediate cost function, c¢(x,u), is not usually
known and one needs to approximate it using the available
experimental data recorded by an expert. In the next section,
an efficient methodology for quantification of the immediate
cost function will be discussed.

IV. QUANTIFICATION OF THE IMMEDIATE COST
FUNCTION USING INVERSE REINFORCEMENT LEARNING

Let us assume the realistic case where the immediate cost
function ¢(x,u) is unknown or partially-known. Let the
uncertainty in the immediate cost function be represented
in a parametric form as cy(x,u); where 6 is a vector of
parameters in an arbitrary space ©. It should be noted that
this parametric representation of the immediate cost function
does not impose any limitation on the form of the immediate
cost function. For instance, if no information regarding the
immediate cost function exists, 8 will be a vector of size
24 x U], the element of which are the costs for all possible
states and control inputs.

Inverse reinforcement learning (IRL) is a technique for
recovering the unobserved underlying immediate cost (or
reward) function from the behavior of an expert [22]. The
original idea of IRL method is introduced in [22] followed
by several variations of it [27]-[30]. In this paper, we assume
no prior information regarding the unknown parameters of
the immediate cost function exists.

Let 6 be a realization of the parameter vector. The Q-
function corresponding to the optimal immediate cost func-
tion associated to 6 is denoted by Q. This Q-function can be
computed by performing a dynamic programming technique,
such as Value Iteration or Policy Iteration method [25], using
the immediate cost function corresponding to the parameter
vector §. Assuming the Boltzmann softmax policy [31], we
have:

P(u]x,0) o< exp(nQg(x,u)), (8)

for x € {0,1}¢ and u e U; where 7 > 0 represents our
confidence on the expert decision. The smaller the value of
7, the more “imperfect” the expert is expected to be.

All that is available for quantification of the immediate
cost function is a sequence of observed states and control
inputs taken by the expert:

D = {tr, Yir) . ©)

One has only the expert sequence in (9) to quantify the
unobserved immediate cost function required for deriving a
proper intervention process.

The Boolean Kalman Smoother (BKS) provides the op-
timal minimum-square state estimator given the entire data
sequence [18], [26]. Given D, we apply the BKS as state
observer:

~ ~ BKS =~ - =
D ={upr,Yr.r} — D ={uo7, X0} " (10)



Now, assuming the input control u;; depends only on X,

and not on previous states, for r = 0,...,7T’; then it is easy
to verify that the data joint likelihood is given by:
L(6) = P(D|6)

N (1n)
= P(Xo;T) Hp(uk | Xk79)7
k=0

with P(uy | Xk,é) given by (8). The log of the likelihood
in (11) after removing terms independent of 6 can be
expressed as:

T
log L(9) o< A(0) = ) loglk(6), (12)
k=0
where _
- Q* X a~
() = eXP( 1 Qp (X uk)) (13)

Zu’eU exp (_77 Q; (Xka ul))
The maximum likelihood estimate of the parameter is

0* = argmax A(0).
0e®

(14)

Unfortunately, the maximization in (14) cannot be solved
analytically. Here, we propose a gradient-based optimization
procedure for finding a local maximum of the log-likelihood.
The gradient of the log-likelihood in (12) is given by

T a(0)
VoA(6)); = —_ (15)
(VoA(0)): ];)lk(e) 20,
fort=1,...,|6|, where
eXP(—nQZ(Xmﬁk))
Me(0) Swerexp(-nQp(Xiw))
o0, o0,
eXP(‘ﬂQé(Xk,ﬁk))
=-n —=
[Ywevexp(-nQj (X, u’))]? (16)

l ZUGXP(—U Qi(Xp, )

) (6Q§(Xk,ﬁk) ) OQ;(Xk,u’))]
00, 00, '

Thus, one needs to compute the gradient of Q}(Xy,u), for

k=0,...,7T and u € U, with respect to parameter 6.

Let the optimal cost function corresponding to 6 be
represented by J;, and let (xl,...,x2d) be an arbitrary
enumeration of the possible state vectors. It is easy to show
that:

JB = C7r§+'yp7r; J97 (17)

where Crs is a vector of size 2¢ with ith element given by

ery (i) = co (X, 75 (x)) | (18)
and P+ is a matrix of size 2¢ x 27 given by:
Py = My (m3(x")) | (19)

where M}, is the controlled transition matrix of the under-
lying Markov state process, given by

(Mi(u))ij = P(Xp =x" | Xpo1 =%/, w1 = 11)

= P(m = f(x') ouox’) (20)
- pllf(x")@uexilh (1 _p)d—llf(xj)eaueaxi\\l’
fori,j=1,...,2¢ and ueU.
Solving equation (17) for Jj leads to
Jy = Tcy: 21
where
T = (Tye -7 Prs) ™", (22)

with Ios denoting the identity matrix of size 2¢. On the other
hand, the Q-function associated with @ for a pair of (x?,u’)
can be written as:

2(1

Qs (x7,u) = co(x!,u") + 3 (M ()i (Jg )i -

=1

(23)

Replacing (21) into (23) leads to the following expression:

] ] 2d 2d
Qs (X, u') = co(x!,u') +7 Y (My(a))is Y Tir ey (1)
=1 =1

(24)
Now, assuming that a small change in a particular component
of the parameter does not induce a change in a component
of the policy, we can use the following approximation

0Q; (x7,u’) N Jco(x7,u")
T

24 24
+ 92 (M(u"))i; Y Ty
=1 =1

dco(xt, 75 (x"))
00,
(25)
The previous calculations specify the gradient Vo A(9) in
(15), which is then used in the parameter update:

0k+1 = Hk + o Vg A(a), (26)

where «ay; is a step length at time step k.
A schematic diagram and pseudocode of the proposed
method are presented in Algorithm 1 and Fig. 1, respectively.

0 Q}§ s 77;
Value Iteration SR

Gradient VoA(0)]o=0,

Computation

k=k+1

Parameter Update

0* =0,

Fig. 1: Schematic diagram of the proposed method for
quantification of the immediate cost of GRN control.



Algorithm 1 Proposed method for quantification of the
immediate cost of GRN control.

1: Map the noisy expert’s sequence D = {ﬁo;mYl;T} to a
sequence D = {dgr,Xor} using the Boolean Kalman
Smoother [26]:

D = {1, Yir} iy, {07, Xo:r} -
2: Initial guess §’.
3: do
4: 0«0

Value Iteration

50 Jp(x?)=0,forj=1,...,2%
6: do
7: Jo(x7) = Jp(x7), for j=1,...,2%
8: Forj=1,..l,2d,do
. . 2d .
Joe') = min | eo (' 0) + 3 DM ()i o)
9: while max;_; 2d(|j0(xj) - JG(Xj)‘) > B

10:  Forj=1,...,2% do: .,
. . 2 .
Q;(Xj>u) = CB(XJ>u)+VZ(M(u))’U JG(XZ)7f0r ueU,
i=1
d

DM (w)ij Jo(x) |-

Ty (x)) = argn&in co(x?,u) + v
ue =1

Gradient Computation
11: Crx (i) = co (x',m5(x")), fori=1,...,2%
12 (Per)ij = (Ms (wg(xj)»ij,i,j: 1,...,2%
132 T= (I -vPe)"
14: fort=1,...,|0| do

15: for ue U do
16: fori=1,...,2% do
17: Qi (i) = 2elex)
X2 (M ()i £F T %ﬁ(x”)
18: end for
19: end for

20: end for
21: dLogL,(t) =0, fort=1,...,|6|.
22: for r=0,...,7 do

eXP(*”I Qg(xk,ﬁk))

23: 1-(0) = ~ .
©) Surey exp(-1Qf (X))
24: fort=1,...,|0| do
) _ eXP(_WQg(s(ksﬁk))
25: 90()=00(t) = N Gy 5 aremp (- Q5 (R DT

[Suveoexp (-1 Q5 (X)) (4Q%, (X0) - dQly (X))
26: end for
27: end for
Parameter Update
28: 0« 60+ adp.
29: while 0" — 0] > €
30: 6=0.

31: Estimatied Cost function c;(x’,u), fori = 1,...

,2¢andu e U.

V. NUMERICAL EXPERIMENTS

In this section, we report the results of numerical
experiment using a Boolean model for a gene regulatory
network implicated in metastatic melanoma [32]. The
network contains 7 genes: WNTSA, pirin, S100P, RETI,
MART1, HADHB and STC2. The Boolean regulatory
relationships for this network are displayed in Table 1. The
ith output binary string specifies the output value for the
ith input gene(s) in binary representation. For example, the
last row of Table I specifies the value of STC2 at current
time step k from different pairs of (pirin, STC2) values at
previous time step k — 1:

(pirin=0, STC2=0);,_; — STC2;=1
(pirin=0, STC2=1);,_; — STC2;=1
(pirin=1, STC2=0),_; — STC2;,=0
(pirin=1, STC2=1);,.; — STC2;=1

TABLE I: Boolean regulatory relationships for the melanoma
gene regulatory network.

Genes Input Gene(s) Output
WNTS5A  HADHB 10

pirin pirin, RET1, HADHB 00010111
S100P S100P, RET1, STC2 10101010
RET1 RETI1, HADHB, STC2 00001111
MART1 pirin, MART1, STC2 10101111
HADHB  pirin, S100P, RET1 01110111
STC2 pirin, STC2 1101

Fig. 2: Melanoma gene regulatory network

The goal is preventing WNT5A gene to be upregulated.
For more information about the biological rationale for
this, the reader is referred to [32]. In our experiments, the
intervention is applied to either RET1 or HADHB. The
control space associated to control inputs RET1 and HADHB
are as follows:

URET! - £(0,0,0,1,0,0,0),(0,0,0,0,0,0,0)},
UHADHB _ £(0,0,0,0,0,1,0),(0,0,0,0,0,0,0)} .

Since the goal of control is preventing WNTSA gene to be
upregulated, we assume the following reference immediate

27)



cost function:
c(x? ) = {

where the cost of control is assumed to be 1 for any taken
intervention and O when there is no intervention, and the cost
of activation of WNT5A gene is assumed to be 5.

In all the numerical experiments, we assume the same
fixed set of values for the system parameters, summarized
in Table II. All average results presented in the numerical
experiments are computed over 1000 independent runs. In
this paper, a new version of the “Augmented Lagrange
Method” [33] is used for the optimization process.

5+ |[ull,
[[ullx

if WNT5A is 1 for state j,

if WNTSA is O for state j, (28)

TABLE II: Parameter values used in all experiments.

Parameter Value
Number of genes d 7
Transition noise intensity p 0.01
Initial probability P(Xo = x"), i=1,...,128 1/128
Expression mean m%m},j =1,...,7 30, 60
Expression standard deviation a? = ajl-, j=1,...,7 10
Discount factor ~y 0.95
Stopping threshold e 0.001
Expert confidence n 0.1, 1, 10
Value iteration threshold 8 1076

We assume the cost function presented in (28) is only
partially known,

co(x?,u) = {

where the parameter 6 denotes the (unknown) cost of observ-
ing activation of WNTS5A (i.e. undesirable states). On the
other hand, we assume that the expert confidence parameter
n in (8) is known.

RET1 gene is considered as a control gene and the process
noise is assumed to be p = 0.01. The average absolute
difference between the estimated parameter 6* computed
by the proposed method (Algorithml) and the reference
parameter §* = 5 for various choices of 1 and different
lengths of expert’s sequence 7T is displayed in Fig.3. One can
see that the average difference is converging to zero as the
length of expert’s sequence increases. The effect of parameter
n is also presented in Fig. 3. As mentioned previously, the
larger 7 is, the more accurate the expert’s policy will be, and
therefore the average difference is smaller for larger 7.

In this section, we demonstrate the application of the
proposed method in the design of a simple state-feedback
controller, namely the V_BKF controller [20], [34], to shift
the dynamics of the melanoma network away from states
associated with metastasis.

0 +|ul[y
[[ully

if WNTSA is 1 for state 7,

if WNT5A is O for state 7, (29)

Average Absolute Error (E[|§ — 6*])

150 200

50 100
Expert’s Sequence Length

— -

Fig. 3: The average absolute difference between the esti-
mated parameter 6 and true value * = 5.

TABLE III: Average results for V_.BKF method with both
known and unknown immediate cost functions.

V_BKF with Unk. Cost

Control P T =50 T =100 V_BKF  No-Control
0.01 0.19 0.16 0.12 2.28
RET1
0.05 0.80 0.75 0.67 2.33
0.01 0.50 0.44 0.38 2.28
HADHB
0.05 1.33 1.20 1.11 2.33

In fact, after quantification of the parameters of the imme-
diate cost function using the proposed method, any controller
can be designed for either finite or infinite horizon control of
the partially-observed GRN. We select the V_BKF controller
here for its simplicity.

In this part of experiment, the performance of the V_BKF
with unknown and known immediate cost functions as well
as the system without control are compared. Two different
expert’s sequence lengths are considered here: T' = 50, and
T =100. RET1 and HADHB are both considered as control
genes.

We can observe that the performance of the V_BKF with
unknown immediate cost function is better for larger expert
sequence lengths. The reason is that the parameters of the
immediate cost function under larger expert sequences can
be estimated better which can lead to better performance
of control process. For large process noise intensities, the
performance of all cases decreases. This reduction is more
obvious for system with unknown cost function and specifi-
cally small expert sequence. Moreover, the RET1 gene seems
to be a better control input for reducing the activation of
WNTS5A, as lower cost can be seen under the RET1 control
gene in comparison to the HADHB gene in all cases.



VI. CONCLUSION

In this paper, we proposed a methodology for quan-
tification of the cost function of the gene regulatory net-
works (GRNs) through an expert’s behavior. The well-known
Boolean network model was employed for modeling GRNSs.
Given a single sequence of Boolean states and interventions
by an expert, we proposed a maximum likelihood approach
for quantification of the cost function based on the inverse
reinforcement learning technique. The ability of the proposed
methodology to obtain a good control policy was demon-
strated by numerical experiments involving a Boolean model
of a melanoma gene regulatory network.
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