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Abstract—Partially-observed Boolean dynamical systems
(POBDS) are large and complex dynamical systems capable
of being monitored through various sensors. However, time,
storage, and economical constraints may impede the use of all
sensors for estimation purposes. Thus, developing a procedure
for selecting a subset of sensors is essential. The optimal
minimum mean-square error (MMSE) POBDS state estimator
is the Boolean Kalman Filter (BKF) and Smoother (BKS).
Naturally, the performance of these estimators strongly depends
on the choice of sensors. Given a finite subsets of sensors, for
a POBDS with a finite observation space, we introduce the
optimal procedure to select the best subset which leads to the
smallest expected mean-square error (MSE) of the BKF over a
finite horizon. The performance of the proposed sensor selection
methodology is demonstrated by numerical experiments with
a p53-MDM2 negative-feedback loop gene regulatory network
observed through Bernoulli noise.

Index Terms—Optimal Finite-Horizon Sensor Selection,
Partially-Observed Boolean Dynamical Systems, Boolean Kalman
Filter, Gene Regulatory Networks.

I. INTRODUCTION

Partially-observed Boolean dynamical systems
(POBDS) [1], [2] offer a rich framework for estimation and
prediction in fields as varied as genomics [3], robotics [4],
and digital communications [5], and more. The optimal
recursive minimum mean-square error (MMSE) POBDS state
estimators are the Boolean Kalman Filter (BKF) [2] and
Smoother (BKS) [6]. Several other tools have been developed
for the POBDS model in recent years, such as particle
filters for state and parameter estimation [7], schemes for
simultaneous state and parameter estimation [1], optimal filter
with correlated observation noise [8], network inference [9],
and control [10]-[13]. Most of these tools are freely available
through an open-source R package called “BoolFilter” [14],
[15].

POBDSs can be monitored through various sensors that
carry information about different parts of the system with
various degrees of uncertainty. However, the number of sensors
is often limited either by economical constraints (hardware
costs), or the availability of physical or storage space [16].
While the BKF is the optimal MMSE POBDS state estimator,
its performance strongly depends on the choice of sensors.
Therefore, selecting the appropriate subset of sensors before
starting the estimation process is crucial.

Sensor selection is widely discussed in the literature for
both linear [17]-[19] and nonlinear dynamical systems [16],
[20], [21]. These methods use various objective functions
such as the Chernoff and Kullback-Leibler distances [22],
information gain [23], and estimation error [24]. However, due
to the derivativeless nature of the Boolean state equation in a
POBDS, none of the mentioned sensor selection methods are
directly applicable here.

This paper introduces an optimal methodology for selecting
the best sensor to minimize the expected mean-square error
(MSE) of a BKF with finite measurement space over a finite-
horizon. Performance is investigated using a Boolean network
model of the p53-MDM?2 negative feedback loop network
observed through Bernoulli noise.

II. PARTIALLY-OBSERVED
BOOLEAN DYNAMICAL SYSTEMS

We assume that the system is described by a state process
{X;;r = 0,1,...,T}, for a finite horizon T, where X, ¢
{0,1}% is a Boolean vector of size d. The states are assumed to
be updated at each discrete time through the following Boolean
signal model:

Xr = f(Xr—laur) @ n,, (1)

for r = 1,...,T. Here, u, € {0,1}¢ is an input at time r
which is assumed to be deterministic and known, n,. € {0, 1}¢
is Boolean transition noise at time r, “®” indicates component-
wise modulo-2 addition, and f is the network function.

The states are observed indirectly through the observation
process {Y,;r=1,...,T}. In this paper, we assume a simple
additive-noise Boolean observation model:

Y, =X, ov,, 2

for r = 1,...,T, where v, € {0,1}¢ is Boolean observation
noise at time . Hence, Y, € {0,1}¢ is a Boolean observation
vector at time . Both noise processes {n,;r=1,...,T} and
{vp;r = 1,...,T} are assumed to be “white” in the sense
that the noises at distinct time points are independent. It is
also assumed that the noise processes are independent from
each other and from the initial state Xg; their distribution is
otherwise arbitrary.



The optimal filtering problem consists of, given observations
Y, =(Yy,...,Y,), for r <T, finding an estimator XITV‘IT,S of
the state X, that minimizes the conditional mean-square error

(MSE):
MSE(Xyj, | Y1) = B[[Xpye - X[ [ Y1 ], )

where ||[v|?> = £%, v(i)? is the square of the Ly norm of vec-
tor v. Clearly, for Boolean vectors, ||v|[? = ||v]|; = %, [v(3)|
is the L1 norm of v.

We present next a recursive algorithm to compute Xlrvllrs,

known as the Boolean Kalman Filter (BKF) [2], [13]. Define
the conditional probability distribution vectors:

Hr\r(i) = P(Xr =x' ‘ Yl:r) ,
), (i) = P(Xp =x' [ Y1),

“4)

fori=1,...,2% and r = 1,.... Notice that ILy is the initial
(prior) distribution of the states at time zero.

Let M, be the transition matrix of the Markov chain defined
by the state model, specified by:

(M,)ij = P(X, =x" [ X, = %)

. . 5
:P(nT:f(xj,ur)eaxZ), ©)
for 4,7 = 1,...,2% Additionally, given a value of the obser-
vation vector Y. at time 7, the update matrix T,.(Y,) of size
24 x 2% is a diagonal matrix defined by:

(T:(Y,))ii = P(Y, X, =%, (6)

fori=1,...,2%

Finally, let A = [x"-x2"] be a dx2¢ matrix with all possible
state vectors as columns. In addition, for a vector v of size
d, define v € {0,1}¢ via V(i) = v(iys1/2 for i =1,....d,
and v© € {0,1}¢ via v°(i) = 1 - v(4), for i = 1,...,d; where
Iy (iy>1/2 returns 1 if v(4) > 1/2 and 0 otherwise.

The full procedure of the BKF is presented in Algorithm 1.

Algorithm 1 Boolean Kalman Filter
1: Initialization: (Ig); = P (Xo=x"), fori=1,...,2%

Forr=1,...,T, do:
2: Prediction: 1L,y = M, 1T}y
3: Update: 8, = T,.(Y,) I,
4: Filtered Distribution Vector:
L. = B3,./18,Ih
5: MMSE Estimator Computation:
XMS _ m

rlr
6: Optimal Conditional MSE:
MSE(XMS | Ylﬂ“) = H min{AHrh‘a (AHMT)C}Hl

r|r

III. FINITE-HORIZON SENSOR SELECTION

Suppose that one would like to select among M available
sensors, where each sensor is a fixed vector function of the
observation vector Y,.. In this paper, we consider a simple
case where each sensor corresponds to a different subset of the
measurements in Y., but linear and nonlinear combinations of
all or a subset of the measurements may be considered as well.
Hence, we have M sensors Y™ = {y™! . . y™Y"I} for
m = 1,..., M, which are different subsets of the available
observation vector Y. The value obtained by the mth sensor
at time 7 is:

Y =X"ev", @)

where X" and v;"* are the corresponding subsets of the state
X, and observation noise v, at time r. The goal is to select a
sensor, before the start of the filtering process, to use over the
entire interval » = 1,...,7 while achieving the best possible
performance, as defined below. The problem of scheduling
different sensors at different times will be considered in future
work.

Let O;" be the space of observation sequences Y. pro-
vided by the mth sensor up to time r. Note that in the setting
assumed in this paper, O™ is finite, with |O™] = 2/Y" X" Let
XT’G, be the set of all estimators of X, based on observations
Y. € O, for m =1,...,M. Before execution, we do not
know the specific realization Y. for any of the sensors.
Therefore, we consider the expected MSE and define the
optimal estimator:

X:TTMS = argmin E[MSE(XW [YT)]- (8)
Xm exm

S

We then select the sensor that achieves the best average
expected MSE over the interval r=1,...,T"
* . 1 I o m,MS m
m* = argmin — > E[MSE(th- YD, )
m=1,...,M T r=1

From Algorithm 1, we have that:

E[MSE(XTS | 7))
= B[ min{AIL},, (ATL},)) 1]
= Z P(YT) || min{ AIL}

r|ro
m m
YI.eOn

(10)
(ATLE )3 -

Calculating E[MSE(X;TT’MS | YT.)] exactly thus requires, in
principle, the computation of the conditional MSE given all
possible sequences of measurements. Since the observation
space O]" is finite, this computation is possible, as described
next, provided that the sensor dimensionalities |[Y,,| and
horizon T' are small enough. Approximations for the case of
large sensor dimensionalities and long horizons will be dealt
with in future work.

Given that I is the initial distribution vector, the posterior
distribution at time 1 associated to measurement y"*/ can be
computed using the Bayes’ rule as:

Ti(y™7) My g

7 = P(Xy | Y] =y™7) = ,
KoY =™ = [ () s T

11

, (I



for j =1, ...,2‘Ym|. (Notice that there is no superscript “m”
over X;.) The probability of observing y™/ at time step 1
can be computed as follows:

wi = P(Yy=y™ | Hgp) = ITy(y™7) My g1,
(12)
forj=1,..., 21Y™I This process can be continued recursively
to compute all needed probabilities, as illustrated in Figure 1.

Fig. 1: Posterior distribution tree for mth sensor.

The entire process of finite-horizon sensor selection for the
BKF is presented in Algorithm 2.

Algorithm 2 Optimal Finite-Horizon Sensor Selection for the
BKF
1: Posterior Distributions Computation:
For m e {1,..., M}, do:
— Initialization: ngal = I, wit =1
Forr=1,....k, do:
For i=1,...,2Y" 1= do:

-t = M, I

rlr-1 r—1|r-1°

: Y™ .

For j=1,....2¥"1 do:
3 Hm,(i71)2‘yml+j _ Ty-(ym”J)Hﬁﬁf‘fgil
rlr T (ym™ ) I [

rlr

- ™. . . .
_ W:}%(z 1)2 +j_ {Wﬁ’fHTr(ym’J)H;Tf_1||1}~

2: The Optimal Selected Sensor:
k2"

m”* = argmin )y Zw;’”|
me{1,...M} =1 i=1

min{ AII""*

rlr?

(AL Hh

rlr

IV. NUMERICAL EXPERIMENTS

In this section, we describe an application of our method-
ology to Boolean gene regulatory networks observed through
noisy measurements. We base our experiments on the well-
known p53-MDM?2 negative-feedback gene regulatory network
[25]. The pathway diagram for this network is presented in
Fig. 2. The p53 gene codes for the tumor suppressor protein
pS3 in humans, and its activation plays a critical role in
cellular responses to various stress signals that might cause

genome instability. The gene regulatory network consists of
four genes: ATM, p53, Wipl, and MDM?2, and the input
“dna_dsb”, which indicates the presence of DNA double strand
breaks. The Boolean function is represented by the following
logic functions:

ATM;, = WIP1,_; AND dna_dsb
p53, = ATMy_1; AND WIPl;_; AND MDM2;_;
WIP1, = p53,_,

MDM2;, = (ATMj; AND (pS3,_, OR WIP1,1))
OR (p53,_; AND WIPl,_;)

DNA DSBs

ATM

WIP1 >

MDM?2

Fig. 2: Activation/repression pathway diagram of the P53-
MDM?2 negative feedback loop Boolean network.

The process noise is assumed to have independent compo-
nents distributed as Bernoulli, with intensity p, so that all genes
are perturbed with a small probability. We assume the states
are observed through i.i.d. Bernoulli noise with parameter g the
same for all genes. Four sensors are assumed in this numerical
experiment (M = 4), in which each sensor consists of the noisy
observation of one of the genes in the network.

The average expected optimal MSE of the BKF over a time
horizon 10 for various sensors are presented in Table I. The
average expected optimal MSE is larger for larger observation
noise. Furthermore, one can also see that the average expected
error is larger in the case of an active dna_dsb input in
comparison to an inactive one. This can be explained by the
attractor structure of the p5S3-MDM2 Boolean network in the
presence and absence of external input, in which the system
has a singleton and cyclic attractor in the absence and presence
of DNA damage, respectively. For more information, see [13].

The optimal sensor is specified by bold numbers in Table 1.
One can see that in the case of an inactive dna_dsb input,
MDM2 is the best choice in all cases. With an active dna_dsb
input, either ATM, p53 or Wipl sensors are the best choices,
depending on the parameters of the system. For example,
the choices of optimal sensor in the case of small process
and observation noise are different for two initial distribution
vectors. The similar trend can be seen in the case of large
measurement noise. From the results of Table I, one can clearly
understand the importance of the sensor selection process, and
its dependency on the initial distribution, the values of noise
and input to the system.



TABLE I: Optimal Finite-Horizon Sensor Selection Results for Horizon 7" = 10.

No stress (dna_dsb = 0)

DNA damage (dna_dsb = 1)

q p Initial Distribution ATM p53 Wipl Mdm2 ATM p53 Wipl Mdm2

[%, e %]T 0.2750741  0.2638027  0.1656234  0.1068837 1.474933  1.495893  1.443079  1.733152

0.01 [o,..., 117 0.3759515  0.3700666  0.336286  0.2862778 1.557895  1.564755  1.569989  1.709767

009 [%, e %]T 0.7762779  0.7450073  0.5673365  0.4586170 1.218192  1.371414 1.25308 1.480116
0.1 [o,..,11%7 0.8456097  0.8206338  0.6542587  0.5223727 1.261300  1.395272  1.284143  1.431346

[%6, . %]T 0.2763222  0.2666612  0.187685  0.1429032 1.582349  1.546739  1.520243  1.767097

0.15 0.01 [o,...,1]7 0.3771996  0.3721163  0.3515226  0.3258301 1.682476  1.650215  1.658933  1.753322
[%,. ,%]T 0.7896947  0.7643199  0.6193023  0.5399353 1.351779  1.420585  1.342386  1.528136

0.1 [o,..,11% 0.8590265  0.8387905  0.7193224  0.6283275 1.388158  1.443909  1.383008  1.509838

The effect of the length of horizon on the choice of
optimal sensor is investigated next. The parameters used are
Iy = [0,...,1]%, p = 0.01, ¢ = 0.05 and dna_dsb = 1. The
average expected MSE over time-horizon of the optimal filter
for different choices of sensors and various time-horizons is
presented in Fig. 3. As it is clear in Fig. 3, for time-horizons
1, 6-8, 11-13 and 15, observing the Wipl gene will result
in the minimum expected MSE of the BKF, for time steps
2 and 3, Mdm?2 has the lowest expected optimal MSE, and
for the intervals 4-5, 9-10 and 14 the best sensor is ATM.
This emphasizes the difficulty and importance of the sensor
selection procedure.

N —_— ATM
w p53
S Wip1l
° Mdm2
o <«
o <« |
U ~
(0]
Q
x
[NN]
&
© 24
(0]
>
<
N

1 5 10 15
Time-Horizon

Fig. 3: Average expected optimal MSE for different choices
of sensors and time-horizons.

V. CONCLUSION

We developed an optimal finite-horizon sensor selection
procedure for state estimation for POBDS models with a
finite observation space. The sensor selected by the developed
method is guaranteed to yield the minimum expected mean-
square error (MSE) for the optimal filter. Performance was

investigated using a model of the p5S3-MDM?2 negative feed-
back loop network. Future work will include the use of more
complex sensor models and approximations for large sensor
dimensionality and long time horizons.
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