
Classification of Single-Cell Gene Expression
Trajectories from Incomplete and Noisy Data

Alireza Karbalayghareh , Ulisses Braga-Neto , and Edward R. Dougherty

Abstract—This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous)

using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp,

which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values

of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the

unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in

Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times

yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages

over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-

cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to

classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the

wild-type and with a common mutation affecting p27.

Index Terms—Gene regulatory network, probabilistic Boolean network, trajectory classification, Bayes classifier, expectation maximization,

hidden Markov model, partially observed Boolean dynamical system, single-cell gene expression trajectory

Ç

1 INTRODUCTION

IN a previous paper we have characterized the Bayes clas-
sifier and Bayes error for classification of steady-state tra-

jectories observed in successive states in an original (wild-
type) or mutated gene regulatory network (GRN) modeled
via probabilistic Boolean networks (PBNs) [1]. In the present
paper we consider classification when the networks are only
partially known and the training data consist of labeled tra-
jectories from an original and mutated network modeled as
Boolean networks with perturbation (BNp), which is a spe-
cial case of a PBN, observed indirectly through noise. The
overall model is called a partially-observed Boolean dynam-
ical system (POBDS) [2].

Owing to heterogeneity across samples and patients, it
has long been recognized that it can be beneficial to use
groups of genes as features. This can help avoid redundant
information contained in selected genes, for instance, sev-
eral genes in a pathway regulated by a single master gene
[3]. The approach is to jointly analyze the expression levels
of genes related by functionality, which can be obtained via
transcriptome analysis [4], [5], [6], GO annotations [7], or
other sources. Several methods have been proposed to mea-
sure the activity of a particular pathway: mean or median
[8], first principle component [6], using a subset of genes in

the pathway [9], and combining log-likelihood ratios of
genes in the pathway [10] . Although these methods utilize
multiple-gene features, they still rely on single measure-
ments and do not take advantage of regulatory information
in trajectory data.

Single-cell gene expression has recently become popular,
as it is able to reveal the expressions of genes in many differ-
ent cells in parallel in a single experiment, instead of bulk
gene expression methods like conventional RNA-Seq in
which the reported expression level of a gene is actually an
average over cells with different states and possibly different
types [11]. As a result, it has been utilized and proven to be a
very effective alternative of bulk expression methods in vari-
ous research studies. For instance, [12] demonstrated single-
cell RNA-Seq (scRNA-Seq) as an effective strategy for classi-
fication of sensory neuron types. [13] used scRNA-Seq data
to classify low quality cells. A massively parallel single-cell
RNA profiling was used in [14] to classify retinal bipolar
cells, where 15 previously known and two novel types were
identified. Authors in [15] proposed a nonnegative matrix
factorization (NMF) method as a robust unsupervised learn-
ing of cell subtypes from single-cell gene expression data.
Zamanighomi et al. [16] proposed a method for unsuper-
vised clustering of single-cell epigenetic data using single-
cell ATAC-seq data.

Until recently, it has been difficult to obtain time-course
expression data owing to the necessity of purifying and syn-
chronizing a whole cell population [17]; however, new tech-
nologies are being developed for profiling single cells using
single-cell RNA-Seq or quantitative PCR [18]. Individual
cells can be captured via standard methods, such as flow
cytometry, glass capillaries, or laser [19], and be measured
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at various time points. For instance, in [20], between 49 and
77 cells have been collected at each time for 4 total time
points, and a software has been built to extract various
gene-expression trajectories of individual cells. Results
such as those obtained in the present paper, which demon-
strate the clear advantage of single-cell trajectory data, will
hopefully motivate the commercialization and extension of
such technologies.

Single-cell expression measurements have enabled gen-
erating and using time-series data and discovering the
regulatory information of genes, since bulk expression
measurements, like RNA-Seq or microarrays, destroy cru-
cial information by averaging signals from individual cells
together [11]. However, lower amounts of mRNA in indi-
vidual cells cause experimental issues which lead to drop-
out events [21], such that expressions of some genes are
missed in some cells. Accordingly, in this paper, we also
consider missing values of genes in order to better reflect
the real data. Wang et al. [22] proposed a differential expres-
sion method using single-cell RNA-Seq time-series data for
recovery of potential cell types from complex mixtures of
multiple cell types. BNP-Seq, proposed in [23], is a Bayesian
nonparametric differential expression analysis of count
data, which might be beneficial if applied to single-cell
RNA-Seq data to discover differentially expressed genes.
Furthermore, [24] presented a probabilistic model with a
Bayesian inference scheme to analyze single-cell time-series
data, which was used for pseudotime estimation. Single-cell
gene expression time-series measurements have also been
employed to infer gene regulatory networks; for instance,
single-cell expression measurements at four time points of
blood development were used in [25] to synthesize a Bool-
ean network model for 20 related transcription factors.

In this paper, gene regulation is modeled via BNps, in
which states are binary vectors, and 1 and 0 represent On
and Off, respectively (Binary representation is chosen
because it models switch-like gene behavior and because it
makes computation tractable, but the theory is directly
extendable to any number of expression levels.) We con-
sider a Gaussian observational model, in which the expres-
sion level of each gene given its state (hidden) follows a
normal density with some unknown mean and variance.
We observe the Gaussian expression values of n genes in m
consecutive time points; however, to take account of miss-
ing data, at each time point there is a probability, pmiss, of
not observing the expression of a gene. After observation of
such trajectories, we estimate the unknown network param-
eters as well as the unknown network connections, which
are partially known. For maximum likelihood estimation
and inference, we use the Expectation Maximization (EM)
approach to estimate the continuous parameters of the net-
works. We then plug in the estimated parameters and the
inferred networks to the Bayes classifier. We study the
effects of the different parameters on the average classifica-
tion error over many random networks using trajectory
data of different length and missing probability.

When gene-expression values are measured from tissues
containing many cells, with genes not synchronized, a gene
may be in different states at any time across the cell sample.
Expression data derived from a multiple-cell scenario is
approximated by average expression values across all

states. To treat multiple-cell averaging, we consider aver-
aged expression data and use a static model that does not
take into account the dynamics of the networks. We com-
pare the classification errors using trajectory data (single-
cell) and averaged data (multiple-cell) in the simulation
part and show that trajectories outperform averaged data if
the trajectory length is sufficient, even with missing data.

The remainder of the paper is organized as follows.
Section 2 provides an overview of a BNp and POBDS as the
underlying model. Section 3 studies the classification of the
single-cell trajectories of the gene expression data. Section 4
considers the case of the multiple-cell average expression
data and its classification. Section 5 demonstrates the simu-
lation results of each scenario, single-cell trajectories and
multiple-cell averaging, for different sets of networks and
parameters and also represents the comparisons between
them. Finally, Section 6 concludes the paper. Note that pre-
liminary results concerning some topics covered in the pres-
ent paper were reported in [26].

2 PRELIMINARIES

For a Boolean network (BN) on n genes, a truth table gives
the functional relationships between the genes [27]. Each
gene value xi 2 f0; 1g, for i ¼ 1; . . . ; n, at time kþ 1 is deter-
mined by the values of some predictor genes at time k via a
Boolean function fi : f0; 1gn ! f0; 1g in the truth table. In
practice, fi is a function of a small number of genes, Ki,
called the in-degree of the gene xi in the network. The in-
degree of the network is the maximum of Ki’s, that is,
K ¼ maxi¼1;...;nKi. A gene network can be represented as a
graph with vertices representing genes and edges represent-
ing regulations. There is a state diagram of 2n states corre-
sponding to the truth table of the BN, representing the
dynamics of the network. Given an initial state, a BN will
eventually reach a set of states, called an attractor cycle,
through which it will cycle endlessly. Each initial state cor-
responds to a unique attractor cycle, and the set of initial
states leading to a specific attractor cycle is known as the
basin of attraction (BOA) of the attractor cycle.

2.1 State Model

We allow stochasticity in our state model by using BNps
instead of deterministic BNs. For BNps, perturbation is
introduced with a probability p by which the state of the
network can be randomly changed at any time. Implicitly,
we assume that there is an independent identically distrib-
uted (i.i.d.) random perturbation vector at each time k,
denoted by nk 2 f0; 1gn, such that the ith gene flips at time k
if the i th component of nk is equal to 1. Therefore, the
dynamical model of the states can be expressed as

Xkþ1 ¼ fðXkÞ � nkþ1; k ¼ 0; 1; 2; . . . ; (1)

where Xk ¼ ½x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ�T is a binary state vector,
called a gene activity profile (GAP), at time k, in which xiðkÞ
indicates the expression level of the ith gene at time k (either
0 or 1); f ¼ ½f1; f2; . . . ; fn�T : f0; 1gn ! f0; 1gn is the vector of
the network functions, in which fi shows the expression
level of the ith gene at time kþ 1 when the system lies in
the state Xk at time k; nk ¼ ½n1ðkÞ; n2ðkÞ; . . . ; nnðkÞ�T is the
perturbation vector at time k, in which n1ðkÞ; n2ðkÞ; . . . ;
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nnðkÞ are i.i.d. Bernoulli random variables for every k with
the parameter p ¼ P ðniðkÞ ¼ 1Þ for every i ¼ 1; . . . ; n; and �
is component-wise modulo 2 addition.

The existence of perturbation makes the corresponding
Markov chain of a BNp irreducible. Hence, the network pos-
sesses a steady-state distribution p describing its long-run
behavior. A BNp inherits the attractor structure from the orig-
inal BN without perturbation, the difference being that a ran-
dom perturbation can cause a BNp to jump out of an attractor
cycle, perhaps then transitioning to a different attractor cycle.
If p is sufficiently small, p will reflect the attractor structure
within the original network. We can derive the transition
probability matrix (TPM) if we know the truth table and the
perturbation probability of a BNp.As a result, the steady-state
distribution p can be computed aswell.

We assume that the networks are partially known, per-
haps from biological pathway knowledge or previous
partial inference, and the missing model parameters are
estimated from the new trajectory data. One could, in prin-
ciple, assume that nothing is known about the BNs except
the genes and depend entirely on the data, but we are gener-
ally interested in using prior knowledge to facilitate classi-
fier design.

Since we do a supervised classification between two clas-
ses, healthy and a specific mutated phenotype, the mutated
genes of that mutated phenotype determine the desired BN.
For example, in the paper we have considered a specific phe-
notype in which the gene p27 is mutated. As a result, we are
required to use a pathway and a BNwhich involves the gene
p27; one such BN is the known cell-cycle BN which we have
utilized as our healthy class and its mutated version of
knocked out p27 as the mutated class. In general, if we are
interested in a supervised classification between a healthy
class and a mutated class in which some genes are mutated,
we need to use a BNwhich involves thosemutated genes.

2.2 Observation Model

Our model for gene expression is the partially-observed
Boolean dynamical system [2], which is a special case of a
hidden Markov model (HMM). Having defined the state
transition model as a BNp, we now define the observation
model given the hidden states by assuming that the expres-
sion level of each gene at any time comes from a Gaussian
distribution whose mean value is specified by that gene’s
binary state value, which is hidden. In other words, depend-
ing on whether a gene is active or not, its expression value
comes from two Gaussian distributions with two different
means. The observation model for the jth gene at time k is

p yjðkÞjxjðkÞ
� � � N �þ djxjðkÞ; s2

� �
; j ¼ 1; 2; . . . ; n; (2)

where xjðkÞ is the hidden binary state (0 or 1Þ of the jth gene
at time k, and yjðkÞ is the observed expression value of the
jth gene at time k. The variance s2 is constant, but the mean
varies over time, as the value of xjðkÞ is changing according
to the state dynamics (1). This shows that when the jth gene
is off (suppressed) and on (expressed), its observed expres-
sion values come from Gaussian distributions with the
means of � and �þ dj, respectively, and with the same vari-
ance s2. In ( 2), � is the baseline expression level of the
genes, which depends on the sequencing technology, and dj

is the activation coefficient of the jth gene, which deter-
mines the level of the expression for the jth gene when it is
on. Although we can proceed with arbitrary values of dj for
different genes, for the sake of simplicity we assume the
same activation coefficient for all the genes, that is, dj ¼ d

for j ¼ 1; . . . ; n.
We denote the expression values of all n genes at time k

by the vector Yk ¼ ½y1ðkÞ; . . . ; ynðkÞ�T . If we assume that, at
any time point k, the expression value of each gene given its
binary state is independent of the expressions of other genes
given their corresponding binary states, we can write,

Yk ¼ �1n þ dXk þ �; k ¼ 1; 2; . . . ; (3)

where 1n is an n� 1 all-one vector and � � Nð0; s2InÞ is a
n� 1 multivariate Gaussian random variable of zero mean
and diagonal covariance matrix (In is n� n identity matrix)
showing the variability across the samples. The state vector
Xk in (3) is hidden (not observed), and the conditional distri-
bution of Yk given Xk is

pðYkjXkÞ � N ð�1n þ dXk; s
2InÞ; k ¼ 1; 2; . . . : (4)

Note that there are two types of variability: intra-subject
and inter-subject. Intra-subject variability is sometimes
called within-subject variability and refers to the variability
of the samples in one subject, for example, the variability
seen in the expression values of the genes in one individual
at different times. Subject in this context means either cell,
organism, or individual. Inter-subject variability is some-
times called between-subject variability and represents the
variability among the samples of different subjects. For
example, the variability seen in the expression values of the
genes in different individuals refers to inter-subject variabil-
ity. For avoiding confusion, we use the term “inter-cell vari-
ability” to refer to the variability across different cells of an
individual, which will be used in Section 4 for the analysis
of the multiple-cell scenario. In this section, we do single-
cell analysis and do not deal with inter-cell variability, since
each individual has a single cell to be used for expression
measurements. We should note that in (3), � accounts for
both the inter- and intra-subject variability.

3 CLASSIFICATION OF TRAJECTORIES WITH

MISSING DATA IN SINGLE-CELL SCENARIOS

Assume there are two BNps corresponding to the healthy
and mutated (cancerous) classes, each having n genes, and
we partially know the networks but do not know the model
parameters p, �, d, and s2. The healthy and mutated net-
works may have distinct model parameter values. Using D
observed trajectories, Y ¼ fYð1Þ;Yð2Þ; . . . ;YðDÞg, we infer the
unknown parameters and connections of each network. Y
may be incomplete, meaning that there may be missing
data. Without missing data, each trajectory YðdÞ, for
d ¼ 1; . . . ; D, has the expression values of the n genes in m
consecutive time points. However, if each gene at each time
point has the probability pmiss of being missed, then each

observed trajectory has the form YðdÞ ¼ ½YðdÞ
i1
; . . . ;Y

ðdÞ
imðdÞ �,

where T
ðdÞ
obs ¼ fi1; . . . ; imðdÞg is the set of time points at which

at least one gene is observed.
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For the maximum likelihood (ML) problem, the search
space consists of both discrete and continuous parts. The
space of network functions is discrete and that of the param-
eters is continuous. Suppose F ¼ ff1; f2; . . . ; fMg is the
uncertainty set of M network functions containing the
unknown true network function in (1). We wish to infer
the true network function using the observation data. In
each class, healthy or mutated, we assume an uncertainty
set of network functions F. Although there are many biolog-
ically confirmed gene pathways from which Boolean net-
works can be constructed, we are likely to be uncertain
about some regulations and interactions between some
genes. In such cases, we can form an uncertainty class F of
network functions, each being a possible network function
which would be inferred from the observed data. For
instance, assume we know that the gene A regulates the
gene B but are not sure about the type of regulation, that is,
activator or suppressor. As such, in our uncertainty class of
network functions we let f1 and f2 be the network functions
for the cases that regulator A to B is activator and suppres-
sor, respectively. In a similar way, we can consider any kind
of uncertainty in the network structure, and the true net-
work is inferred from the observed trajectories.

Suppose the model parameters are defined as the vector
u ¼ ½p; �; d; s2�T . For any given network function fi,
i ¼ 1; . . . ;M, we employ the EM algorithm to find the opti-
mal parameters u by

ûi ¼ argmax
u

pðYjfi; uÞ; (5)

where pðYjfi; uÞ is the likelihood of the observation trajec-
tory set Y given that the network function is fi and the
parameter is u. The ML inferred network function and esti-
mated parameters are then derived as

ð̂f; ûÞ ¼ arg max
ðf;uÞ2fðf1;û1Þ;...;ðfM;ûM Þg

pðYjf; uÞ: (6)

3.1 EM Algorithm for Finding u

In (5), the network function is given, and we are supposed
to find the ML estimation for u. To ease notation, suppose
the network function in (5) is denoted by f. As there are hid-
den states in the model, we employ the EM algorithm to
estimate the parameters. The EM algorithm can be
described simply as repeating the following steps until
convergence:

1- E-step: Qðu; uðsÞÞ ¼PX log ½pðX;YjuÞ�P ðXjY; uðsÞÞ,
2- M-step: uðsþ1Þ ¼ argmaxuQðu; uðsÞÞ,

where X ¼ fXð1Þ; . . . ;XðDÞg contains the hidden state trajec-
tories corresponding to D observed trajectories, such that
XðdÞ ¼ ½XðdÞ

1 ; . . . ;XðdÞ
m � are the hidden states of the dth trajec-

tory from time 1 tom.

3.1.1 E-Step

Since the D trajectory observations are i.i.d., we can write
the joint log-likelihood of X and Y as

log ½pðX;YjuÞ� ¼
XD
d¼1

log ½pðXðdÞ;YðdÞjuÞ�: (7)

The joint likelihood of each dth observed trajectory YðdÞ

and its corresponding hidden trajectory XðdÞ can be fac-
tored as

pðXðdÞ;YðdÞjuÞ ¼ P ðXðdÞ
1 Þ

Ym�1

k¼1

P ðXðdÞ
kþ1jXðdÞ

k Þ
Y

k2T ðdÞ
obs

pðYðdÞ
k jXðdÞ

k Þ; (8)

where, under the usual biological assumption of steady-
state observations, P ðXðdÞ

1 Þ is the steady-state probability of
state X

ðdÞ
1 . Let xi denote the n� 1 binary vector of the state i,

for i ¼ 1; . . . ; 2n. For example, if n ¼ 4, then x1 ¼ ½0; 0; 0; 0�T
and x10 ¼ ½1; 0; 1; 1�T . Denote the steady-state distribution
by the 1� 2n vector p ¼ ½p1; . . . ;p2n �, where pi is the steady-
state probability of being in the ith state. Then
P ðXðdÞ

1 ¼ xiÞ ¼ pi for any d ¼ 1; . . . ; D and i ¼ 1; . . . ; 2n.
Should we drop the steady-state assumption, then P ðXðdÞ

1 Þ is
an arbitrary distribution to be estimated from the observed
data. The second term in (8) is the probability of transition-
ing from state X

ðdÞ
k at time k to state X

ðdÞ
kþ1 at time kþ 1, which

using (1) can be written as

P ðXðdÞ
kþ1jXðdÞ

k Þ ¼ pdðX
ðdÞ
kþ1

;fðXðdÞ
k

ÞÞð1� pÞn�dðXðdÞ
kþ1

;fðXðdÞ
k

ÞÞ; (9)

where dðXðdÞ
kþ1; fðXðdÞ

k ÞÞ denotes the Hamming distance
between the two binary vectors X

ðdÞ
kþ1 and fðXðdÞ

k Þ. The proba-
bilities in ( 9) are the entries in the transition probability

matrix. The third term in (8), pðYðdÞ
k jXðdÞ

k Þ, is the likelihood of

the gene-expression vector Y
ðdÞ
k at time k given its corre-

sponding hidden state vector X
ðdÞ
k . In the absence of missing

data, Y
ðdÞ
k contains the expression values of all n genes, but

with missing data some expression values may not appear

in Y
ðdÞ
k . Let G

ðdÞ
k denote the set of genes whose expressions

have been observed at time k of the d th trajectory. Then

from (4), we have,

pðYðdÞ
k jXðdÞ

k Þ

¼
Y

j2GðdÞ
k

ð2ps2Þ�1
2 exp

� y
ðdÞ
j ðkÞ � �� dx

ðdÞ
j ðkÞ

� �2
2s2

2
64

3
75: (10)

Using (7) (8) (9) and (10)–(10), the joint log-likelihood can be
written as in (11).

log ½pðX;YjuÞ� ¼
XD
d¼1

(
logP ðXðdÞ

1 Þ þ
Xm�1

k¼1

h
dðXðdÞ

kþ1; fðXðdÞ
k ÞÞlog p

þ ½n� dðXðdÞ
kþ1; fðXðdÞ

k ÞÞ�log ð1� pÞ
i

þ
X
k2T ðdÞ

obs

X
j2GðdÞ

k

"
� 1

2
log 2ps2 �

y
ðdÞ
j ðkÞ � �� dx

ðdÞ
j ðkÞ

� �2
2s2

#)
:

(11)

Now we can compute Qðu; usÞ. After some straightfor-
ward simplifications and dropping the constant parts,
Qðu; usÞ can be derived as in (12),
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Qðu; uðsÞÞ ¼
XD
d¼1

X2n
i¼1

log ðpiÞPðd;sÞ
i ð1Þ þ

XD
d¼1

Xm�1

k¼1

X2n
i¼1

X2n
j¼1

dðxj; fðxiÞÞlog pþ ½n� dðxj; fðxiÞÞ�log ð1� pÞ� �
Xðd;sÞ
i;j ðkÞ

þ
XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

� 1

2
log s2 �

y
ðdÞ
j ðkÞ � �� dxij

� �2
2s2

2
64

3
75Pðd;sÞ

i ðkÞ:

(12)

where,

P
ðd;sÞ
i ðkÞ ¼ P ðXðdÞ

k ¼ xijYðdÞ; uðsÞÞ; (13)

for any i ¼ 1; . . . ; 2n, k ¼ 1; . . . ;m, and d ¼ 1; . . . ; D, is the
posterior probability of the state i at time k after the obser-
vation of the dth trajectory, and given the parameter vector
uðsÞ. Furthermore, in (12),

Xðd;sÞ
i;j ðkÞ ¼ P ðXðdÞ

k ¼ xi;X
ðdÞ
kþ1 ¼ xjjYðdÞ; uðsÞÞ; (14)

for any i; j ¼ 1; . . . ; 2n, k ¼ 1; . . . ; m� 1, and d ¼ 1; . . . ; D, is
the posterior probability of two consecutive states being i
and j; respectively, at times k and kþ 1 after the observation
of the dth trajectory and given the parameter vector uðsÞ.

3.1.2 M-Step

Having derived Qðu; uðsÞÞ, we address the second step of the

EM method, which is the maximization of Qðu; uðsÞÞ. We
take the derivative of Qðu; uðsÞÞwith respect to u. The deriva-
tives of Qðu; uðsÞÞwith respect to p, �, d, and s2 are

@Q

@p
¼
XD
d¼1

X2n
i¼1

p0
i

pi
P

ðd;sÞ
i ð1Þ

þ
XD
d¼1

Xm�1

k¼1

X2n
i¼1

X2n
j¼1

dðxj; fðxiÞÞ
pð1� pÞ � n

1� p

� 	
Xðd;sÞ
i;j ðkÞ;

(15)

@Q

@�
¼ 1

s2

XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

y
ðdÞ
j ðkÞ � �� dxij

� �
P

ðd;sÞ
i ðkÞ;

(16)

@Q

@d
¼ 1

s2

XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

xij y
ðdÞ
j ðkÞ � �� dxij

� �
P

ðd;sÞ
i ðkÞ;

(17)

@Q

@s2
¼ �1

2s2

XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

1�
y
ðdÞ
j ðkÞ � �� dxij

� �2
s2

2
64

3
75Pðd;sÞ

i ðkÞ;
(18)

respectively. p0
i in (15) is the derivative of the steady-state

distribution of the state i with respect to p, that is, p0
i ¼ @pi

@p .
To find p0, we start with the fact that the steady-state distri-
bution p ¼ ½p1;p2; . . . ;p2n � satisfies

p ¼ pA; (19)

X2n
i¼1

pi ¼ 1; (20)

where A is the TPM with the corresponding entries (9),

Ai;j ¼ pdðx
j;fðxiÞÞð1� pÞn�dðxj;fðxiÞÞ: (21)

Taking the derivative of both sides in (19) and (20) with
respect to p yields

p0ðI �AÞ ¼ pA0; (22)

X2n
i¼1

p0
i ¼ 0; (23)

where A0 is the derivative of the TPM with respect to p and,
using (21), can be written in terms of A as

A0
i;j ¼

dðxj; fðxiÞÞ � np

pð1� pÞ

 �

Ai;j: (24)

p0 is easily found from the linear Equations (22) and (23).
Given the derivatives in (16), (17), and (18), thanks to the

specific form of the Gaussian distribution, we can derive
closed-formed solutions for �, d, and s2 by setting the deriv-
atives equal to zero. Such closed-form solutions consider-
ably reduce the complexity of the EM algorithm because
they eliminate the iterative computations required for the
algorithms like gradient descent in every M-step. Define r1
and r2 by

r1 ¼
XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

y
ðdÞ
j ðkÞPðd;sÞ

i ðkÞ

¼
XD
d¼1

X
k2T ðdÞ

obs

X
j2GðdÞ

k

y
ðdÞ
j ðkÞ;

(25)

r2 ¼
XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

P
ðd;sÞ
i ðkÞ ¼

XD
d¼1

X
k2T ðdÞ

obs

X
j2GðdÞ

k

1; (26)

where we have used the fact that the summation of the pos-
terior probabilities of the states is one,

P2n

i¼1 P
d;s
i ðkÞ ¼ 1, for

any d and k and s. Define r3 and r4 by

r3 ¼
XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

xijP
ðd;sÞ
i ðkÞ; (27)

r4 ¼
XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

xijy
ðdÞ
j ðkÞPðd;sÞ

i ðkÞ: (28)

Setting the derivatives in (16) and (17) equal to zero yields
two linear equations for � and d:

r2�þ r3d ¼ r1; r3�þ r3d ¼ r4: (29)
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If r3 6¼ 0, then

�ðsþ1Þ ¼ r1 � r4
r2 � r3

; (30)

dðsþ1Þ ¼ r2r4 � r1r3
r2r3 � r23

: (31)

If r3 ¼ 0, then r4 ¼ 0, �ðsþ1Þ ¼ r1
r2
, but d cannot be found. In

this case, we define dðsþ1Þ ¼ dðsÞ. Now define r5 by

r5 ¼
XD
d¼1

X
k2T ðdÞ

obs

X2n
i¼1

X
j2GðdÞ

k

y
ðdÞ
j ðkÞ � �ðsþ1Þ � dðsþ1Þxij

� �2
P

ðd;sÞ
i ðkÞ:

(32)

Setting the derivative in (18) equal to zero gives the follow-
ing solution for s2:

s2ðsþ1Þ ¼ r5
r2

: (33)

To find a closed-form solution for p note that the deriva-
tive of Q with respect to p in (15) consists of two terms. In
the first term, p and p0 are not explicit functions of p, which
means that we are unable to derive a closed-form solution
for p by setting the derivative equal to zero. From simula-
tions, we found that the second term in (15) plays a much
more important role than the first term, that is, has a much
larger value. Hence, a good approximation results from
omitting the first term in (15) and setting the second to zero,
which gives the following approximate closed-form solu-
tion for p (we tested its accuracy and it can correctly esti-
mate the real p)

pðsþ1Þ ¼ r6
nDðm� 1Þ ; (34)

where r6 is defined as

r6 ¼
XD
d¼1

Xm�1

k¼1

X2n
i¼1

X2n
j¼1

dðxj; fðxiÞÞXðd;sÞ
i;j ðkÞ: (35)

Note that in deriving (34) we have used the fact thatP2n

i¼1

P2n

j¼1 X
ðd;sÞ
i;j ðkÞ ¼ 1 for any k, d, and s, since Xðd;sÞ

i;j ðkÞ is
the posterior probability of two consecutive states being i
and j at times k and kþ 1; respectively.

3.1.3 Computing the Posterior Probabilities

of the States

As our model is an HMM, the posterior probabilities in (13)
and (14) can be efficiently computed using the forward-
backward algorithm, whose complexity is linear in m. From
Bayes rule, we know that the posterior probabilities of states
such as those in (13) and (14) can be computed using the

joint distribution of the states X and observation trajectories
Y, which are factored as in (8). A joint distribution (8) for an
HMM can be represented by a factor graph as in Fig. 1 [28].
In this figure, the circles show the state variable from time 1
to m; the factor nodes (black) between the state nodes
denote the transition probabilities between two consecutive
states; the factor nodes under the state nodes represent the
likelihood of each observation given its corresponding state.
The rightmost factor node is an all-one vector and the left-
most factor node is the initial distribution of the states,
which based on our assumption is the steady-state distribu-
tion. The message-passing is done through the graph by
defining so-called forward, G, and backward parameters, D .
It can be shown that the posteriors in (13) and (14) can be
derived as [28]

P
ðd;sÞ
i ðkÞ ¼ G

ðd;sÞ
i ðkÞDðd;sÞ

i ðkÞP2n

r¼1 G
ðd;sÞ
r ðkÞDðd;sÞ

r ðkÞ ; (36)

Xðd;sÞ
i;j ðkÞ ¼ G

ðd;sÞ
i ðkÞAðsÞ

i;j D
ðd;sÞ
j ðkþ 1ÞFðd;sÞ

j ðkþ 1ÞP2n

r¼1 G
ðd;sÞ
r ðmÞ ; (37)

where A
ðsÞ
i;j ¼ P ðXkþ1 ¼ xjjXk ¼ xi; u ¼ uðsÞÞ is the transition

matrix defined in (21), and Fðd;sÞðkÞ is a 2n � 1 vector at
time k, whose jth entry is defined as F

ðd;sÞ
j ðkÞ ¼ pðYðdÞ

k j
X
ðdÞ
k ¼ xj; u ¼ uðsÞÞ, which can be computed using (10). Fur-

thermore, G
ðd;sÞ
i ðkÞ and D

ðd;sÞ
i ðkÞ are respectively the forward

and backward parameters, defined and recursively com-
puted by

G
ðd;sÞ
i ðkÞ ¼ pðYðdÞ

1 ; . . . ;Y
ðdÞ
k ;X

ðdÞ
k ¼ xijuðsÞÞ;

G
ðd;sÞ
i ð1Þ ¼ p

ðsÞ
i F

ðd;sÞ
i ð1Þ;

G
ðd;sÞ
j ðkþ 1Þ ¼ F

ðd;sÞ
j ðkþ 1Þ

X2n
i¼1

G
ðd;sÞ
i ðkÞAðsÞ

i;j ;

(38)

and

D
ðd;sÞ
i ðkÞ ¼ pðYðdÞ

kþ1; . . . ;Y
ðdÞ
m jXðdÞ

k ¼ xi; uðsÞÞ;
D
ðd;sÞ
i ðmÞ ¼ 1;

D
ðd;sÞ
i ðkÞ ¼

X2n
j¼1

D
ðd;sÞ
j ðkþ 1ÞAðsÞ

i;jF
ðd;sÞ
j ðkþ 1Þ;

(39)

for any k ¼ 1; . . . ;m� 1.
Define the vectors Gðd;sÞðkÞ ¼ ½Gðd;sÞ

1 ðkÞ; . . . ;Gðd;sÞ
2n ðkÞ�T and

Dðd;sÞðkÞ ¼ ½Dðd;sÞ
1 ðkÞ; . . . ;Dðd;sÞ

2n ðkÞ�T . From (38) and (39), we
have the following recursions in vector-matrix form

Gðd;sÞð1Þ ¼ pðsÞT �Fðd;sÞð1Þ;
Gðd;sÞðkþ 1Þ ¼ AðsÞTGðd;sÞðkÞ

h i
�Fðd;sÞðkþ 1Þ;

(40)

Fig. 1. Factor graph of the HMM.
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and

Dðd;sÞðmÞ ¼ 12n ;

Dðd;sÞðkÞ ¼ AðsÞ Dðd;sÞðkþ 1Þ �Fðd;sÞðkþ 1Þ
h i

;
(41)

where 12n is the all-one column vector of length 2n and �
denotes the Hadamard product (or component-wise prod-
uct). The superscript T denotes transpose. Now suppose
that Pðd;sÞðkÞ and Xðd;sÞðkÞ are respectively a 2n � 1 vector
and 2n � 2n matrix whose entries are given in (36) and (37).
Then,

Pðd;sÞðkÞ ¼ Gðd;sÞðkÞ � Dðd;sÞðkÞ
k Gðd;sÞðkÞ � Dðd;sÞðkÞ k1

; k ¼ 1; . . . ;m; (42)

Xðd;sÞðkÞ ¼
Gðd;sÞðkÞDðd;sÞðkþ 1ÞT
h i

�AðsÞ �FFðd;sÞðkþ 1Þ
k Gðd;sÞðmÞ k1

;

(43)

k ¼ 1; . . . ;m� 1, where FFðd;sÞðkÞ is the 2n � 2n matrix

FFðd;sÞðkÞ ¼ Fðd;sÞðkÞ; . . . ;Fðd;sÞðkÞ
h iT

: (44)

In the case of missing data, if there is a time point k at which
no expression of the n genes is observed (k 62 Tobs), then
pðYkjXk ¼ xiÞ ¼ 1 for any i ¼ 1; . . . ; 2n , and FðkÞ ¼ 12n in
Fig. 1, as well as in all the Equations (36), (37),(38), (39), (40),
(41), (42), (43) and (44) ; however, if at least one gene expres-
sion is observed at time k (k 2 Tobs), then pðYkjXkÞ, and thus
FjðkÞ ¼ pðYkjXk ¼ xjÞ, is computed from (10).

3.2 Learning Algorithm

In the previous section, we demonstrated that, given the
network function, we can estimate the parameters by the
EM method. Let ûi denote the estimated parameter vector,
defined in (5) and derived via the EM algorithm when f ¼ fi

for i ¼ 1; . . . ;M. The final estimates for both the network
function, f̂, and the parameter vector, û, can be determined
from (6). Let lðYjf; uÞ ¼ log pðYjf; uÞ be the log-likelihood of
the observed trajectories. Since all D observations are inde-
pendent,

lðYjf; uÞ ¼
XD
d¼1

log pðYðdÞjf; uÞ: (45)

For d ¼ 1; . . . ; D, pðYðdÞjf; uÞ is derived by marginalizing the
joint distribution of the states and observations over the
states as

pðYðdÞjf; uÞ ¼
X
XðdÞ

pðXðdÞ;YðdÞjf; uÞ; (46)

where pðXðdÞ;YðdÞjf; uÞ is given by (8) with the factor-graph

shown in Fig. 1. Computing pðYðdÞjf; uÞ only requires the for-

ward parameter G and recursions up to time m. In fact, the
desired likelihood for the dth trajectory is the summation of

the entries of GðdÞðmÞ, that is,

pðYðdÞjf; uÞ ¼k GðdÞðmÞ k1; (47)

where GðdÞðmÞ can be computed in the same way as in (40),
assuming the parameter vector u and the network function
f. From (45) and (47), we can write

lðYjf; uÞ ¼
XD
d¼1

log k GðdÞðmÞ k1 : (48)

Then, according to (6), the final estimate for the network
function and parameters is given by

ðf̂; ûÞ ¼ arg max
ðf;uÞ2fðf1;û1Þ;...;ðfM;ûM Þg

lðYjf; uÞ: (49)

We summarize the algorithm for learning the network func-
tion and model parameters in Algorithm 1.

Algorithm 1. Learning Algorithm

1: Inputs: the number of genes n, the length of trajectories m,

the set of D observations Y ¼ fYð1Þ;Yð2Þ; 	 	 	 ;YðDÞg, the set

of uncertain network functions F ¼ ff1; . . . ; fMg, and a con-

vergence threshold, t, for the EM.
2: Outputs: f̂ and û, the estimated network function and

model parameters u ¼ ½p; �; d; s2�T .
3: procedure
4: for i ¼ 1 toM do
5: � s ¼ 0
6: � f ¼ fi

7: � Initialize uð0Þ ¼ 0
8: � Randomly initialize uð1Þ

9: while k uðsþ1Þ � uðsÞ k> t do
10: � s ¼ sþ 1
11: E-step:
12: � Compute Pðd;sÞðkÞ for any k ¼ 1; . . . ; m, and d ¼

1; . . . ; D via (42).
13: � Compute Xðd;sÞðkÞ for any k ¼ 1; . . . ; m� 1, and

d ¼ 1; . . . ; D via (43).
14: M-step:
15: � Compute rj for j ¼ 1; . . . ; 6, via (25), (26), (27), (28),

(32), and (35).
16: � Compute �ðsþ1Þ via (30).
17: � Compute dðsþ1Þ via (31).
18: � Compute s2ðsþ1Þ

via (33).
19: � Compute pðsþ1Þ via (34).

20: � uðsþ1Þ ¼ pðsþ1Þ; �ðsþ1Þ; dðsþ1Þ; s2ðsþ1Þh iT
21: end while
22: � ûi ¼ uðsþ1Þ

23: end for
24: � Get f̂ and û via (48) and (49).
25: end procedure

3.3 Plug-In Bayes Classifier

Let labels 0 and 1 refer to the healthy and mutated classes,
respectively, let Y0 and Y1 denote the respective training
trajectory sets, and let F0 and F1 denote the respective uncer-
tain network function sets for the two classes. We apply
Algorithm 1 to both classes, with corresponding Y and F, to
derive the learned network functions f̂0 and f̂1, and the esti-
mated parameters û0 and û1, for the healthy and mutated
classes, respectively. These are plugged into the Bayes clas-
sifier. For any new trajectory Y ¼ ½Y1; . . . ;Ym� of n genes
with any arbitrary length m and possibly missing data, the
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classifier is defined by

cDðYÞ ¼ 1; ĉ1pðYĵf1; û1Þ 
 ĉ0pðYĵf0; û0Þ
0; ĉ1pðYĵf1; û1Þ < ĉ0pðYĵf0; û0Þ;

�
(50)

where ĉ0 and ĉ1 are the estimated values of the prior proba-
bilities of the healthy and mutated classes, respectively.
These can be estimated by the number of training trajecto-
ries for each class divided by the total number of training
trajectories D; however, this estimate is unreliable for small
samples [29]. Often there are substantial data regarding the
proportions of healthy and pathological phenotypes–for
instance, false negative rates resulting from preliminary
testing such as mammography and needle biopsies, so that
excellent estimates of ĉ0 and ĉ1 are available for genomic
classification following prelimineary testing. We assume
the equiprobable case, ĉ0 ¼ ĉ1 ¼ 1

2, which makes classifica-
tion most challenging.

In the simulations we generate an equal number of train-
ing trajectories for each class, jY0j ¼ jY1j ¼ D

2 . The likeli-
hoods pðYĵf0; û0Þ and pðYĵf1; û1Þ in (50) can be computed, as
in (47), by

pðYĵfi; ûiÞ ¼ k GðiÞðmÞ k1; i ¼ 0; 1; (51)

where GðiÞðmÞ can be computed by forward computations,
as in (40), by

GðiÞð1Þ ¼ pðiÞT �FðiÞð1Þ;
GðiÞðkþ 1Þ ¼ AðiÞTGðiÞðkÞ

h i
�FðiÞðkþ 1Þ;

(52)

where pðiÞ, AðiÞ, and FðiÞ are computed for the class i ¼ 0; 1,
assuming f ¼ f̂i and u ¼ ûi.

4 CLASSIFICATION OF AVERAGED STEADY-STATE

EXPRESSION DATA IN MULTIPLE-CELL

SCENARIOS

In the absence of single-cell technology, when measuring
expressions in a nonsynchronized multiple-cell setting, at
each time point the measured expression value of each gene
is an average over 2n different states. The underlying state
model for the evolution of the genes in each cell is the same
BNp model (1); however, since the observations are static
expression data in the steady-state and not trajectories, we
use the state model (1) only for calculating the steady-state
distribution p.

4.1 Observation Model

Suppose that the expression values of the genes in every
individual are measured from a tissue consisting of N cells.
As mentioned previously, the variability existing in the dif-
ferent cells of an individual is inter-cell variability. Accord-
ing to (4), in every cell c of an individual, the expression
values of the n genes, YðcÞ ¼ ½yðcÞ1 ; . . . ; yðcÞn �T , given the state

X ¼ ½x1; . . . ; xn�T in the steady-state, follow a Gaussian
model

pðYðcÞjXÞ � N �1n þ dX; s2
icIn

� �
; c ¼ 1; . . . ; N; (53)

where s2
ic denotes the inter-cell variability across the differ-

ent cells of an individual. In the multiple-cell scenario we
do not observe expression values of the genes in every sin-
gle cell but only observe the expression averaged over N
cells, namely,

SN ¼
PN

c¼1 Y
ðcÞ

N
: (54)

We can obtain the distribution of YðcÞ from (53) by marginal-
izing over the states X, which have the steady-state distribu-
tion p. Doing so, the distribution of YðcÞ for any c is

pðYðcÞÞ ¼
X2n
i¼1

pðYðcÞjX ¼ xiÞpi; (55)

which is a Gaussian mixture distribution with 2n compo-
nents. Since the YðcÞ’s are independent for different cells and
have the same mean and covariance matrix, we can use the
central-limit theorem to approximate the distribution of SN .
The mean and covariance matrix of YðcÞ are given by

m ¼ E YðcÞ
h i

¼ E E YðcÞjX
h ih i

¼ E �1n þ dX½ � ¼ �1n þ d
X2n
i¼1

xipi;
(56)

SY ¼ cov YðcÞ
� �

¼ cov EðYðcÞjXÞ
� �

þ Eðcov YðcÞjXÞ
� �

¼ covð�1n þ dXÞ þ Eðs2
icInÞ ¼ d2SX þ s2

icIn;
(57)

where SX is the covariance matrix of the states in the steady-
state,

SX ¼ covðXÞ ¼ EðXXT Þ � EðXÞEðXÞT

¼
X2n
i¼1

xixi
T
pi �

X2n
i¼1

xipi

 ! X2n
i¼1

xipi

 !T

:
(58)

According to the central-limit theorem, when N is large
(having many cells), the distribution of SN converges to the
multivariate normal

SN � N m;
SY

N


 �
; (59)

where m and SY are given in (56) and (57).
Since SN is the averaged expression values of the genes

over many cells in only one individual and our samples
come from different individuals, we should also take into
account the inter-subject variability between different indi-
viduals. As a result, in the multiple-cell scenario, the expres-
sion values of the n genes, denoted by the vector
Z ¼ ½z1; . . . ; zn�T , can be modeled by

Z ¼ SN þ �; (60)

where � provides the inter-subject variability. Since in the
single-cell scenario we assumed that � � Nð0; s2InÞ, we
assume the same here. Since SN and � are multivariate
Gaussian and independent of each other, Z has a multivari-
ate Gaussian distribution,
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pðZÞ � N m;
SY

N
þ s2In


 �
: (61)

Usually there are many cells (large N) in the tissues from
which the expressions are measured. N is typically large in
practice, for instance, according to [30], there are millions of
cells in bulk RNA-Seq experiments. Hence, the first part of
the covariance matrix of Z, that is, SY

N , has negligible entries,
and we can well approximate the distribution of Z by

pðZjm; s2Þ � N m ¼ �1n þ d
X2n
i¼1

xipi; s
2In

 !
: (62)

4.2 Plug-In Bayes Classifier

To use the Bayes plug-in classifier, we need to estimate the
parameters using the training data, but since the class-con-
ditional densities in (62) are Gaussian and s2 may be differ-
ent in the two classes, the Bayes plug-in classifier is
quadratic discriminant analysis (QDA). Hence, we need
only estimate m and s2 in (62), not �, d, and p. This reduces
the complexity because we skip the cumbersome optimiza-
tion problem of finding p (for estimating p), which would
have been done for each of M possible network functions
fðiÞ, for i ¼ 1; . . . ;M, for each class. Moreover, we do not
even need to partially know the network functions in the
classifier, which is beneficial when we have no knowledge
of network structures. In other words, although m in (62) is
a function of �, d , p, and f (two last determine p), we do not
need to estimate them to estimate m, which we can directly
estimate from the observed data.

The ML estimates of m and s2 in (62) from observed data
Z ¼ ½Zð1Þ; . . . ;ZðDÞ� are

m̂ ¼
PD

d¼1 Z
ðdÞ

D
; (63)

ŝ2 ¼
PD

d¼1 k ZðdÞ � m̂ k22
nD

; (64)

respectively. The log-likelihood (after dropping the constant
parts) of any expression vector Z from (62) is

lðZjm; s2Þ ¼ �n

2
log s2 � k Z� m k22

2s2
: (65)

Let Z0 and Z1 denote the training data sets of the healthy
and mutated classes, respectively, the total number of data
points being D. Suppose m̂i and ŝ2

i are the estimated values
(using (63) and (64)) for the class i ¼ 0; 1 using Zi. We
assume ĉ0 ¼ ĉ1 ¼ 1

2 and jZ0 j ¼ jZ1 j ¼ D
2 . The Bayes plug-

in classifier (QDA) for Z ¼ ½z1; . . . ; zn�T is

cDðZÞ ¼
1; lðZjm̂1; ŝ

2
1Þ 
 lðZjm̂0; ŝ

2
0Þ

0; lðZjm̂1; ŝ
2
1Þ < lðZjm̂0; ŝ

2
0Þ;

(
(66)

where lðZjm̂i; ŝ
2
i Þ can be computed from (65) for each class

i ¼ 0; 1.

4.3 Classification Difficulty

We wish to quantify classification difficulty relative to
attractor structure. From (62), the expression values of the n

genes in classes 0 and 1 are modeled as

pðZðjÞÞ � N mj; s
2
j In

� �
; j ¼ 0; 1: (67)

If we assume that � and d are the same in the two clas-
ses, then

mj ¼ �1n þ d
X2n
i¼1

xip
ðjÞ
i ¼ �1n þ dXpðjÞT ; j ¼ 0; 1; (68)

whereX ¼ ½x1; . . . ; x2n � is the n� 2n binary matrix represent-
ing the binary states, its i th column being the i th binary state.

In the Gaussian settings, the means and covariance
matrices affect classification error. We focus on the distance

� ¼ ðm0 � m1ÞT ðm0 � m1Þ
¼ d2 pð0Þ � pð1Þ

� �
XTX pð0Þ � pð1Þ

� �T (69)

between the means because this distance is directly relatable
to the attractors. If the perturbation probability p is very
small and each class has only one attractor cycle, then the
steady-state distributions are accurately approximated by

p
ðjÞ
i ¼ 1

jAjj 1ði 2 AjÞ; j ¼ 0; 1; i ¼ 1; . . . ; 2n; (70)

where Aj is the set of the attractor states of class j, 1ð:Þ is the
indicator function (equals to 1 if its argument is true and
equals to 0 otherwise), and jAjj 2 f1; . . . ; 2ng is the attractor
length for class j [31].

For any attractor lengths we find networks having mini-
mum (� ¼ 0) and maximum distances, where a network is
identified with its attractor states because according to the
preceding equation � depends only on these. Letting SðAjÞ
denote the sum of the values in Aj, if jA0j ¼ jA1j and
SðA0Þ ¼ SðA1Þ, then � ¼ 0. We represent minimum � and
maximum � cases by ðAf

0 ;Af
1Þ (f for failure) and ðAo

0;Ao
1Þ

(o for optimal), respectively, where

ðAf
0 ;Af

1Þ ¼ A0;A1 : pð0Þ � pð1Þ
� �

XTX pð0Þ � pð1Þ
� �T

¼ 0

� 

; (71)

ðAo
0;Ao

1Þ ¼ arg max
A0;A1

pð0Þ � pð1Þ
� �

XTX pð0Þ � pð1Þ
� �T

: (72)

Letting l0 ¼ jA0j and l1 ¼ jA1j denote the lengths, the num-

bers of sets A0 and A1 are
2n

l0

� �
and 2n

l1

� �
, respectively. Note

that there are ðl0 � 1Þ! and ðl1 � 1Þ! cyclic permutations of

each set, which lead to different attarctors, but we do not

consider them since they all have the same average and

thus are equivalent in the current sense. Hence, the size of

the search space for solving (71) and (72) is 2n

l0

� �
2n

l1

� �
. In

general, the solutions are not unique.

5 SIMULATION RESULTS AND DISCUSSION

As this is the first paper which studies supervised classifica-
tion of single-cell gene expression trajectories under the
framework of Boolean networks with perturbations, there is
not a similar trajectory-based method to compare it with.
However, we compare the performance of our proposed
trajectory-based classifier, using single-cell gene expression
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trajectories as its input, with that of a multiple-cell averag-
ing classifier which uses bulk gene expression data, like
RNA-Seq or microarray, as its input. We have set the model
parameters to do a fair comparison between these two
methods. The comparisons show a clear advantage of the
first method, especially in high-noise scenarios.

5.1 Some Specific Networks

Let A ¼ fa1; a2; . . . ; alg be the set of attractor states with the
length l, in which order matters, such that the attractor cycle
is a1 ! a2 ! 	 	 	 ! al ! a1. We consider three specific cases
as examples and compare the two methods of classification,
single-cell trajectories and multiple-cell averaging. In all
the cases, we assume n ¼ 4, p ¼ 0:001, pmiss ¼ 0, � ¼ 10,
and d ¼ 30.

Case 1. Suppose the failure case with l0 ¼ 5 and l1 ¼ 5.
We choose A0 ¼ f1; 6; 11; 15; 7g and A1 ¼ f1; 16; 15; 5; 3g.
Since jA0j ¼ jA1j and SðA0Þ ¼ SðA1Þ, � ¼ 0. Hence, we
expect that averaging cannot perform well. Fig. 2a repre-
sents the classification error of the two methods, single-cell
trajectories and multiple-cell averaging, for s ¼ 5 and
s ¼ 20. It can be seen that for any value of s, averaging has

the maximum classification error 0.5. However, the single-
cell trajectory method has the error 0 (perfect classification
for all m) for s ¼ 5, and a decreasing error as a function of
m for s ¼ 20.

Case 2. Figs. 2b, 2c, 2d, and Fig. 2e, which show results for
optimal attractor sets derived from ( 72), relate to l0 ¼ l1 ¼ 1
(single attractors), l0 ¼ l1 ¼ 3, l0 ¼ l1 ¼ 5, and l0 ¼ 2; l1 ¼ 3,
respectively. There are many solutions to (72). We only
select the first solution to show the results, the selected opti-
mal attractor sets A0 and A1 being written at the top of each
figure. For example, in Fig. 2b (l0 ¼ l1 ¼ 1), A0 ¼ f1g and
A1 ¼ f16g, meaning that the attractor cycles in class 0 and
class 1 are ½0; 0; 0; 0�T ! ½0; 0; 0; 0�T and ½1; 1; 1; 1�T !
½1; 1; 1; 1�T , respectively. For the low noise levels (s ¼ 5),
both methods yield zero classification error. For s ¼ 10, the
trajectory method still has zero error for every m, but aver-
aging has nonzero error, even though its difference with
zero is slight. For s ¼ 20, the trajectory method has nonzero
error for small m, but it is still much less than the error of
the averaging method. No matter the size of s, the error of
the trajectory method will converge to 0 for sufficiently
large m. In sum, the trajectory method is more robust real-
tive to the noise level than the averaging method.

Case 3. The only scenario in which averaging can work
better than the trajectory method is when there are similar
trajectories in the attractor cycles of the two classes. In such
situations, the trajectory method may make a mistake in
classifying short trajectories, while the averaging method
may be able to classify better. For example, consider
l0 ¼ l1 ¼ 5 with A0 ¼ f9; 5; 3; 2; 1g and A1 ¼ f9; 5; 3; 2; 16g.
The trajectory 9 ! 5 ! 3 ! 2 exists in the both attractor
cycles. As a result, we expect that for short observed trajec-
tories, the trajectory method will perform poorly. Fig. 2f
shows the results in this case for s ¼ 2; 5; 20. For s ¼ 2, the
averaging method yields zero error but the trajectory
method has nonzero error for m � 4. For s ¼ 5, the averag-
ing method still has better performance than the trajectory
method with m � 3 , but for s ¼ 20, the trajectory method
outperforms averaging for any m. This again shows that the
averaging method cannot work in high noise regimes,
whereas the trajectory method can result in a very low error
if the observed trajectories are long enough.

5.2 Random Synthetic Networks

To evaluate performance on random synthetic networks, we
randomly generate 500 Boolean networks for each case of
n ¼ 4; 6; 8 genes and consider a maximum in-degree of
K ¼ 2, meaning that each gene has 1 or 2 randomly
assigned predictors. If the ith gene has in-degree Ki, its 2

Ki

outputs are selected from a Bernoulli distribution with
parameter pbias ¼ 0:5. A single-bit mutation is applied to all
healthy networks to obtain the corresponding 500 mutated
networks. Specifically, we randomly pick a gene, say gene i,
and randomly flip the value of one of its 2Ki outputs, 0 ! 1
and 1 ! 0. This mutation changes the output of 2n�Ki states
in the truth table of the healthy BN. We restrict the gener-
ated healthy and mutated BNs to have a single attractor
cycle, with the minimum length of the two attractor cycles
being L. The simulations will demonstrate that L is an
important parameter in determining the sufficient trajectory
length in low-noise scenarios. In all simulations, we use the

Fig. 2. Classification error of single-cell trajectory method versus m. The
classification error of the multiple-cell averaging method is also included
in the plots for comparison.
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same parameter values, p, �, d, s2, for both the healthy and
mutated networks: � ¼ 10, d ¼ 30, and M ¼ 2. We use three
different values for the observation noise level: s ¼ 5 (low
noise), s ¼ 10 (medium noise), and s ¼ 20 (high noise).

Fig. 3, in which s ¼ 10, shows average classification error
versus D, the total number of training trajectories for both
the healthy and mutated BNs, for different numbers of
genes n, trajectory length m, minimum attractor length L,
gene perturbation probability p, and gene missing probabil-
ity pmiss. As expected, missing observations deteriorate clas-
sifier performance in all cases. Average error decreases with
more training trajectories and converges to a fixed value
when D becomes large enough. The value of D required for
a converged error rate depends on n, m, and pmiss. For a
given network size, having larger m and lower pmiss can
speed up estimation of the network parameters, so that
smaller D is required to achieve the converged error. Fur-
thermore, for larger networks, the required value of D
increases. Note that we have assumed that we partially
know the networks, so that the search space is limited to M

functions. Hence, the error curves have fairly fast conver-
gence realtive to D. In the absence of network knowledge,
more training data would be required to correctly learn the
networks and convergence would be slower.

Fig. 4 demonstrates the behavior of the average classifica-
tion error versus m, where based on the results in Fig. 3, we
assume D ¼ 40 training trajectories to achieve the con-
verged error. We set pmiss ¼ 0 in Fig. 4. Figs. 4a and 4b show
the error for n ¼ 4 gene networks when p ¼ 0:001 and
p ¼ 0:01, respectively, assuming different values of L ¼ 2; 4
and s ¼ 5; 20. Figs. 4c and 4d present the error for n ¼ 6
gene networks when p ¼ 0:001 and p ¼ 0:02, respectively,
assuming different values of L ¼ 4; 6 and s ¼ 5; 20. In all
figures for every value of m and L, the error increases with
increasing s. Moreover, the error curves are always mono-
tonically decreasing in terms of m. There is a special case in
which the error gets fixed after some m. This is when p is
close to 0 and s is small. In such conditions, the sufficient m
to achieve the least possible error is Lþ 1 because when
p � 0 the BNps tend to BNs, which are deterministic, mean-
ing that the observations occur only in the attractor states
and circulate inside the attractor cycles. In such a case, the
maximum length of a trajectory that can help distinguish
the two networks is Lþ 1, where L is the minimum length
of the attractor cycles in the two networks. When p is con-
siderable, there is a nonnegligible probability of jumping
states, so that longer trajectories can help. In Figs. 4a and 4c,
where p ¼ 0:001, when s ¼ 5, the error curves flatten out
after m ¼ Lþ 1 ¼ 3; 5; 7; corresponding to L ¼ 2; 4; 6,
respectively. In Figs. 4a and 4c, in which observation noise
is high, s ¼ 20, the error curves still converge to a constant
value, but the convergence is much slower and longer tra-
jectories are required (> Lþ 1). In Figs. 4b and 4d, where

Fig. 3. Average classification error of the trajectory classifier over 500
synthetic BNs versus D with K ¼ 2 and pbias ¼ 0:5. Parameter values
are p ¼ 0:01, � ¼ 10, d ¼ 30, s ¼ 10, (a) n ¼ 4, L ¼ 3, m ¼ 4, (b) n ¼ 4,
L ¼ 5, m ¼ 6, (c) n ¼ 6, L ¼ 3, m ¼ 4, (d) n ¼ 6, L ¼ 5, m ¼ 6, and
(e) n ¼ 8, L ¼ 3,m ¼ 4.

Fig. 4. Average classification error of the trajectory classifier over 500
synthetic BNs versus m with K ¼ 2 and pbias ¼ 0:5. Parameter values
are pmiss ¼ 0, � ¼ 10, d ¼ 30, D ¼ 40, (a) n ¼ 4, p ¼ 0:001, (b) n ¼ 4,
p ¼ 0:01, (c) n ¼ 6, p ¼ 0:001, and (d) n ¼ 6, p ¼ 0:02.
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p ¼ 0:01; 0:02; respectively, the error curves are perma-
nently decreasing with increasing m and do not converge to
a fixed value, even in the low-noise cases.

Fig. 5 depicts the average errors versus D in multiple-cell
scenarios, where there is no trajectory data but only aver-
aged expression data. Figs. 5a and 5b show the error
curves in 4-gene networks for p ¼ 0:001 and p ¼ 0:01,
respectively, and different values of L ¼ 2; 4 and
s ¼ 5; 20. Figs. 5c and 5d show similar results in 6-gene
networks for p ¼ 0:001 and p ¼ 0:02, respectively, and dif-
ferent values of L ¼ 4; 6 and s ¼ 5; 20. The error is higher
in high-noise cases and it decreases to converge to a fixed
value. The convergence rate depends on s. When s is low
(high), the convergence is fast (slow).

Fig. 6 shows average classification error versus m for dif-
ferent values of pmiss ¼ 0 (no missing), pmiss ¼ 0:2 (low

missing probability), and pmiss ¼ 0:5 (high missing probabil-
ity). For the sake of comparison, we have also included in
Fig. 6 the error of the multiple-cell scenarios for the same
parameter values. Fig. 6a shows the results for 4-gene net-
works when L ¼ 4, p ¼ 0:001, s ¼ 5, and D ¼ 40. In this
figure, smaller pmiss always yields a lower error rate for
every value of m, but the differences decrease as m grows.
The salient point of Fig. 6a is that one can always get a lower
error rate by using the single-cell trajectory data, even with
missing data, than by using the multiple-cell averaged
data. In the case of Fig. 6a, the trajectory data with
pmiss ¼ 0; 0:2; 0:5 has lower error than multiple-cell data
when m 
 3, m 
 3, m 
 5, respectively. We previously
mentioned that when p � 0 and s is small, the error curves
flatten out after m ¼ Lþ 1; Fig. 6a shows that that is true
when there are no missing data (pmiss ¼ 0). With missing
data, convergence is slow and longer trajectories are
required to reach the converged error. Fig. 6b shows similar
results for 6-gene networks when L ¼ 6, p ¼ 0:01, s ¼ 10,
and D ¼ 40. Again, classification using trajectory data, even
with high probability of missing data, can considerably
lower the error rate as opposed to using multiple-cell aver-
aged data.

5.3 Real Network: Mammalian Cell-Cycle BN

For an illustration using a real network, we use the wild-
type mammalian cell-cycle BN, whose GRN [32] is shown
in Fig. 7. This GRN has ten genes. The regulating functions
are defined in Table 1 [32]. According to [32], one mutated
situation is that the gene p27 is always off and cannot be
activated. As a result, we derive the healthy BN from Table 1
and for the mutated/cancerous BN we put the value of p27
in Table 1 to zero, that is, f3 ¼ 0. This means that in the
cancerous scenario the value of p27 does not obey the regu-
lating functions and is always zero. The gene CycD is deter-
mined by extracellular signals. As we do not know the
value of CycD, we haveM ¼ 2 candidate network functions
for each of the healthy and mutated networks, which are

Fig. 5. Average classification error of the multiple-cell classifier over 500
synthetic BNs versus D with K ¼ 2 and pbias ¼ 0:5. Parameter values
are � ¼ 10, d ¼ 30 , (a) n ¼ 4, p ¼ 0:001, (b) n ¼ 4, p ¼ 0:01, (c) n ¼ 6,
p ¼ 0:001, and (d) n ¼ 6 , p ¼ 0:02.

Fig. 6. Average classification error of the trajectory classifier and multi-
ple-cell classifier over 500 synthetic BNs versus m with K ¼ 2 and
pbias ¼ 0:5. Parameter values are � ¼ 10, d ¼ 30, D ¼ 40, (a) n ¼ 4,
L ¼ 4, p ¼ 0:001, s ¼ 5, and (b) n ¼ 6, L ¼ 6, p ¼ 0:01, s ¼ 10.

Fig. 7. Mammalian cell-cycle gene regulatory network.
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corresponding to f1 ¼ 0 and f1 ¼ 1 in Table 1. If f1 ¼ 0, then
the healthy and mutated networks have the singleton
attractor cycles A0 ¼ f389g and A1 ¼ f261g, respectively. If
f1 ¼ 1, both the healthy and mutated networks have the
same attractor cycle A0 ¼ A1 ¼ f516; 524; 527; 583; 613;
629; 561g. Consequently, the multiple-cell averaging
method cannot classify the two networks when f1 ¼ 1. In
the simulations, we assume that the trajectory expression
data are generated from the networks with f1 ¼ 0 in both
the healthy and mutated networks.

Figs. 8a and 8b show the classification error of the trajec-
tories of length m ¼ 6 with p ¼ 0:05 and two values of
pmiss ¼ 0; 0:2 versus D for low-noise (s ¼ 5) and high-noise
(s ¼ 20) scenarios, respectively. A higher probability of
missing data deteriorates classifier performance, as does
higher observation noise s. Convergence of the error curves
is faster for lower s. The classification error of the healthy
and mutated mammalian cell-cycle networks when using
averaged expression data in the multiple-cell scenario is
shown in Figs. 8c and 8d for s ¼ 5; 10; 20, when p ¼ 0:01
and p ¼ 0:05; respectively. In Figs. 8c and 8d, the classifier
based on the multiple-cell expression data can only work
well in the low-noise scenarios and is very susceptible to
observation noise. Convergence of the error curves versus
D gets slower as s increases. For a given s, the error of the
multiple-cell classifier decreases with decreasing p, the rea-
son being that larger p makes the steady-state distributions
of the healthy and mutated cell-cycle BNs similar to each
other, so that the means of two normal distributions for the
two classes get closer to each other, leading to a larger error.

Figs. 8e and 8f present the error versus m in the mamma-
lian cell-cycle networks for p ¼ 0:05, D ¼ 40 and different
values of pmiss ¼ 0; 0:2; 0:5 when s ¼ 5 and s ¼ 20; respec-
tively. Similar to the synthetic networks, the error curves
have a decreasing trend as m increases. In Figs. 8e and 8f,
the error of the multiple-cell classifier is shown for the same
parameter values. In the low-noise scenario of Fig. 8e, the
error of the multiple-cell classifier is better than that of the
trajectory classifier when m is small, the extent depending
on the probability of missing data in the trajectory data;
however, for longer trajectories (larger m), the error of the
trajectory classifier is less. We observe in Fig. 8f that the per-
formance of the multiple-cell classifier is very bad in the
high-noise scenario, the error of the multiple-cell classifier

TABLE 1
Definitions of Boolean Functions for the Wild-Type Mammalian Cell-Cycle BN with 10 Genes

Order Gene Regulating function

x1 CycD f1 ¼ Extracellular signals

x2 Rb f2 ¼ ðCycD ^ CycE ^ CycA ^ CycBÞ _ ðp27 ^ CycD ^ CycBÞ
x3 p27 f3 ¼ ðCycD ^ CycE ^ CycA ^ CycBÞ _ ðp27 ^ ðCycE ^ CycAÞ ^ CycD ^ CycBÞ
x4 E2F f4 ¼ ðRb ^ CycA ^ CycBÞ _ ðp27 ^Rb ^ CycBÞ
x5 CycE f5 ¼ ðE2F ^RbÞ
x6 CycA f6 ¼ ðE2F ^Rb ^ Cdc20 ^ ðCdh1 ^ UbcH10ÞÞ _ ðCycA ^Rb ^ Cdc20 ^ ðCdh1 ^ UbcH10ÞÞ
x7 Cdc20 f7 ¼ CycB

x8 Cdh1 f8 ¼ ðCycA ^ CycBÞ _ Cdc20 _ ðp27 ^ CycBÞ
x9 UbcH10 f9 ¼ Cdh1 _ ðCdh1 ^ UbcH10 ^ ðCdc20 _ CycA _ CycBÞÞ
x10 CycB f10 ¼ ðCdc20 ^ Cdh1Þ

Fig. 8. Classification errors of the trajectory and multiple-cell classifiers in
the mammalian cell-cycle BN. The fixed parameters are n ¼ 10, � ¼ 10,
d ¼ 30. (a) Classification error of the trajectory classifier versus D. The
parameters are m ¼ 6, p ¼ 0:05, s ¼ 5. (b) Classification error of the tra-
jectory classifier versus D. The parameters are m ¼ 6, p ¼ 0:05, s ¼ 20.
(c) Classification error of the multiple-cell classifier versusD. The param-
eter is p ¼ 0:01. (d) Classification error of themultiple-cell classifier versus
D. The parameter is p ¼ 0:05. (e) Classification error of the trajectory and
multiple-cell classifiers versus m. The parameters are D ¼ 40, p ¼ 0:05,
s ¼ 5. (f) Classification error of the trajectory and multiple-cell classifiers
versusm. The parameters areD ¼ 40, p ¼ 0:05, s ¼ 20.
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being much greater than that of the trajectory classifier for
every value ofm and even for high pmiss.

6 CONCLUSION

This paper has studied classification of gene-expression tra-
jectories coming from two classes, healthy and mutated
(cancerous) using Boolean networks with perturbation
(BNps) to model the dynamics of each class at the state
level, meaning that each class has its own BNp, which we
partially know based on gene pathways. We employ a
Gaussian model at the observation level to show the expres-
sion values of the genes given the hidden states at each time
point. We use the expectation maximization methodology
to learn the BNps and the unknown model parameters,
derive closed-form updates for the parameters, and propose
a learning algorithm. After learning, a plug-in Bayes classi-
fier is used to classify the unlabeled trajectories. The effect
of missing data has been considered.

From the biological perspective, measuring gene expres-
sions at different times yields trajectories onlywhen themeas-
urements come from a single cell. In multiple-cell scenarios,
the expression values of the genes are averages over many
cells with possibly different states. Consequently, using the
central-limit theorem, we have proposed another model for
expression data in multiple-cell scenarios. Using simulations,
it has been demonstrated that single-cell trajectory data can
outperform multiple-cell average expression data in terms of
the classification error, especially in high-noise situations.
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