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Abstract—In this paper, matching pairs of random graphs
under the community structure model is considered. The problem
emerges naturally in various applications such as privacy, image
processing and DNA sequencing. A pair of randomly generated
labeled graphs with pairwise correlated edges are considered.
It is assumed that the graph edges are generated based on the
community structure model. Given the labeling of the edges of
the first graph, the objective is to recover the labels in the second
graph. The problem is considered under two scenarios: i) with
side-information where the community membership of the nodes
in both graphs are known, and ii) without side-information where
the community memberships are not known. A matching scheme
is proposed which operates based on typicality of the adjacency
matrices of the graphs. Achievability results are derived which
provide theoretical guarantees for successful matching under
specific assumptions on graph parameters. It is observed that
for the proposed matching scheme, the conditions for successful
matching do not change in the presence of side-information.
Furthermore, a converse result is derived which characterizes
a set of graph parameters for which matching is not possible.

I. Introduction
The graph matching problem emerges naturally in a

wide range of applications including social network de-
anonymization, pattern recognition, DNA sequencing, and
database alignment. In this problem, an agent is given a cor-
related pair of randomly generated graphs: i) an ‘anonymized’
unlabeled graph, and ii) a ‘de-anonymized’ labeled graph. The
objective is to leverage the correlation among the edges of the
graphs to find the canonical labeling of the vertices in the
anonymized graph.

There has been extensive research investigating the fun-
damental limits of graph matching, i.e. characterizing the
necessary and su�cient conditions for successful matching.
The problem has been considered under various probabilistic
models capturing the correlation among the graph edges. In
its simplest form - where the edges of the two graphs are
exactly equal and are generated independently- it is called
graph isomorphism and has been studied in [1]–[3]. The
Erdős-Rényi model provides a generalization where the edges
in the two graphs are pairwise correlated and are generated
independently, based on identical distributions. More precisely,
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in this model, edges whose vertices are labeled identically,
are correlated through an arbitrary joint probability distri-
bution and are generated independently of all other edges.
Matching under the Erdős-Rényi model was considered in
[4]–[12]. The Erdős-Rényi model allows for arbitrary but
identical correlations among edge pairs in the two graphs.
Consequently, it does not model the community structure
among the graph nodes which manifests in many applications
[13]. As an example, in social networks, users may be divided
into communities based on various factors such as age-group,
profession, and racial background. The users’ community
memberships a↵ects the probability that they are connected
with each other. A matching algorithm may use the community
membership information to enhance its performance. In order
to take the users’ community memberships into account, an
extension to the Erdős-Rényi model is considered which is
called the community structure model. In this model, the
edge probabilities depend on their corresponding vertices’
community memberships. There has several works studying
graph matching schemes under the community structure model
[14], [15].

In this work, we consider the graph matching problem
under the community structure model. We build upon the
typicality matching scheme which was proposed in our prior
work [12] to construct a matching scheme under two scenarios:
i) with side-information, where the community membership
of the nodes in both graphs are given, and ii) without
side-information, where the community memberships are not
known in either graph. We derive necessary conditions on
graph parameters under which successful matching is possible.
Furthermore, we derive a converse result which characterizes
a set of graph parameters for which matching is not possible.

The rest of the paper is organized as follows: Section II
provides the mathematcial tools and background used in the
rest of the paper. Section III includes a result on the joint
typicality of permutations of pairs of correlated sequences.
Section IV provides achievability results for graph matching
under the community structure model. Section V includes a
converse matching result. Section VI concludes the paper.
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II. Preliminaries

This section describes the graph matching problem and
introduces the mathematical machinery used in the rest of
the paper. The first part of the section provides a formal
description of the graph matching problem under the commu-
nity structure model. The second part provides the necessary
background on the joint typicality of permutations of pairs
of correlated sequences which is the basis for our proposed
matching scheme.

A. Problem Formulation

We consider graphs whose edges take multiple values. An
edge which has an attribute assignment is called a marked
edge. The following defines an unlabeled graph with c com-
munities whose edges may take l di↵erent values, where c 2 N
and l � 2.

Definition 1 (Graph with Community Structure). An
(n, c, (ni)i2[c], l)-unlabeled graph with community structure
(UCS) g is the triple (V,C,E), where n, l, c, n1, n2, · · · , nc 2 N
and l � 2. The set V = {v1, v2, · · · , vn} is called the vertex
set. The set C = {C1,C2, · · · ,Cc} provides a partition for V
and is called the set of communities. The ith community is
written as Ci = {v j1 , v j2 , · · · , v jni

}. The set E ⇢ {(x, v j1 , v j2 )|x 2
[0, l � 1], j1 2 [1, n], j2 2 [1, n]} is called the (marked) edge
set of the graph. For the edge (x, v j1 , v j2 ), the variable ‘x’
represents the value assigned to the edge between vertices v j1
and v j2 . The set Ei1,i2 = {(x, v j1 , v j2 ) 2 E|v j1 2 Ci1 , v j2 2 Ci2 }
is the set of edges connecting the vertices in communities Ci1
and Ci2 .

Remark 1. In the context of Definition 1, an unlabeled graph
with binary valued edges is a graph for which l = 2. In
this case, if the pair vn,i and vn,i are not connected, we write
(0, vn,i, vn, j) 2 E, otherwise (1, vn,i, vn, j) 2 E.

Remark 2. Without loss of generality, we assume that for
any arbitrary pair of vertices (vn,i, vn, j), there exists a unique
x 2 [0, l � 1] such that (x, vn,i, vn, j) 2 E.

Remark 3. In this work, we often consider sequences of
graphs g(n), n 2 N, where g(n) has n vertices. In such instances,
we write g(n) = (V(n),C(n),E(n)) to characterize the nth graph
in the sequence.

Definition 2 (Labeling). For an (n, c, (ni)i2[c], l)-UCS g =
(V,C,E), a labeling is defined as a bijective function � :
V ! [1, n]. The pair g̃ = (g,�) is called an (n, c, (ni)i2[c], l)-
labeled graph with community structure (LCS). For the labeled
graph g̃ the adjacency matrix is defined as eG� = [eG�,i, j]i, j2[1,n]
where eG�,i, j is the unique value such that (eG�,i, j, vi, v j) 2 En,
where (vi, v j) = (��1(i),��1( j)). The submatrix eG�,Ci,C j =

[eG�,i, j]i, j:vi,v j2Ci⇥C j is the adjacency matrix corresponding to
the community pair Ci and C j. The upper triangle (UT)
corresponding to g̃ is the structure eGUT

� = [eG�,i, j]i< j. The
upper traingle corresponding to communities Ci and C j in
g̃ is denoted by eGUT

�,Ci,C j
= [eG�,i, j]i< j:vi,v j2Ci⇥C j .

Any pair of labelings are related through a permutation as
described below.

Definition 3. For two labelings � and �0, the (�,�0)-
permutation is defined as the bijection ⇡(�,�0), where:

⇡(�,�0)(i) = j, if �0�1( j) = ��1(i),8i, j 2 [1, n].

We consider graphs generated stochastically based on the
community structure model. In this model, the probability of
an edge between a pair of vertices is determined by their
community memberships as described below.

Definition 4 (Random Graph with Community Structure).
Let PX|Ci,Co be a conditional distribution defined on X⇥C⇥C,
where X = [0, l�1] and C is defined in Definition 1. A random
graph with community structure (RCS) gPX|Ci ,Co

is a randomly
generated (n, c, (ni)i2[c], l)-UCS with vertex set V, community
set C, and edge set E, such that

Pr((x, c j1 , c j2 ) 2 E) = PX|Ci,Co (x|C j1 ,C j2 ),8x 2 [0, l � 1],

where c j1 , c j2 2 C j1 ⇥C j2 , and edges between di↵erent vertices
are mutually independent.

Remark 4. For a given pair of communities (C j1 ,C j2 ), the
value of PX|Ci,Co (x|C j1 ,C j2 ) is the probability that a vertex in
C j1 is connected to the vertex in C j2 by an edge taking value
x. In this work, we only consider undirected graphs, as a
result, PX|Ci,Co (x|C j1 ,C j2 ) = PX|Ci,Co (x|C j2 ,C j1 ). The results can
be extended to directed graphs in a straightforward manner.

Remark 5. In Definition 4, if c = 1, then the random graph
becomes an Erdős-Rényi graph.

The objective in the graph matching problem is to match
the vertices of a pair of correlated RCSs. Two edges in a pair
of RCSs are correlated given that their corresponding vertices
have the same labeling, the edges are independent otherwise.
A pair of correlated RCSs is formally defined below.

Definition 5 (Correlated Pair of RCSs). Let PX,X0 |Ci,Co,C0i ,C
0
o

be a conditional distribution defined on X⇥X0⇥C⇥C⇥C0⇥C0,
where X = X0 = [0, l � 1] and (C,C0) are a pair of
community sets of size c 2 N. A correlated pair of ran-
dom graphs with community structure (CRCS) g̃

PX,X0 |Ci ,Co ,C0i ,C
0
o

=

(g̃PX|Ci ,Co
, g̃0PX0 |C0i ,C

0
o
) is characterized by: i) the pair of RCSs

(gPX|Ci ,Co
, g0PX0 |C0i ,C

0
o
), ii) the pair of labelings (�,�0) for the

unlabeled graphs (gPX|Ci ,Co
, g0PX0 |C0i ,C

0
o
), and iii) the probability

distribution PX,X0 |Ci,Co,C0i ,C
0
o , such that:

1)The graphs have the same set of vertices V = V0.
2) For any two edges e = (x, v j1 , v j2 ), e0 = (x0, v0j01 , v

0
j02

), x, x0 2
[0, l � 1], we have

Pr
�
e 2 E, e0 2 E0� =

8>><
>>:

PX,X0 |Ci,Co,C0i ,C
0
o (x, x0|C j1 ,C j2 ,C0j01 ,C

0
j02

), if �(v jl ) = �0(v0j0l )

PX|Ci,Co (x|C j1 ,C j2 )PX0 |C0i ,C0o (x|C0j01 ,C
0
j02

), Otherwise
,
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where l 2 {1, 2}, v j1 , v j2 2 C j1 ⇥ C j2 , and v0j01 , v
0
j02
2 C0 j01 ⇥ C0 j02 .

Remark 6. In Definition 5, we have assumed that both graphs
have the same number of vertices. In other words, the vertex
set for both graphs is V = V0 = {v1, v2, · · · , vn}. We further
assume that the community memberships in both graphs are
the same. In other words, we assume that v j 2 Ci ) v0j0 2 C0i
given that �(v j) = �0(v0j0 ) for any j, j0 2 [n] and i 2 [c].
However, the results presented in this work can be extended to
graphs with unequal but overlapping vertex sets and unequal
community memberships.

In the graph matching problem, a pair of correlated random
graphs are given, where the first graph is labeled and the
second graph is not labeled. The objective is to identify the
canonical labeling of the second graph based on the edge
correlations. It is assumed that the matching algorithm has
access to the edge statistics. Furthermore, it may or may not
have access to the community memberships of the vertices in
the two graphs. The following definitions formally describe
the graph matching scenarios considered in this paper.

Definition 6 (Graph Matching Problem). For a given
sequence of conditional distributions P(n)

X,X0 |Ci,Co,C0i ,C
0
o
, n 2 N,

a graph matching problem is characterized by a pair of
partially labeled graphs with community structure (PLCS)
g

P(n)
X,X0 |Ci ,Co ,C0i ,C

0
o

= (g̃P(n)
X|Ci ,Co
, g0

P(n)
X0 |C0i ,C

0
o

) consisting of: i) the pair of

unlabeled graphs with community structure (gP(n)
X|Ci ,Co
, g0

P(n)
X0 |C0i ,C

0
o

),

ii) a labeling �(n) for the unlabeled graph gP(n)
X|Ci ,Co

, such

that there exists a labeling �0(n) for the graph g0P(n)
X0 |C0i ,C

0
o

for

which (g̃P(n)
X|Ci ,Co
, g̃0

P(n)
X0 |C0i ,C

0
o

) is a CRCS with joint distribution

P(n)
X,X0 |Ci,Co,C0i ,C

0
o
, where g̃0

P(n)
X0 |C0i ,C

0
o

, (g0
P(n)

X0 |C0i ,C
0
o

,�0(n)).

Remark 7. We assume that the size of the communities in the
graph sequence grows linearly in the number of vertices. More
precisely, let ⇤(n)(i) , |C(n)

i | be the size of the ith community,
we assume that ⇤(n)(i) = ⇥(n) for all i 2 [c]. Furthermore, we
assume that the number of communities c is constant in n.

Definition 7 (Matching Algorithm). A matching algorithm
is defined under the following two scenarios:

• With Side-information: A matching algorithm operating
with complete side-information is a sequence of functions
f CS I
n : (g

P(n)
X,X0 |Ci ,Co ,C0i ,C

0
o

,C(n),C0(n)) 7! �̂
0(n), n 2 N, where

g
P(n)

X,X0 |Ci ,Co ,C0i ,C
0
o

is a PLCS with n vertices.

• Without Side-information: A matching algorithm oper-
ating without side-information is a sequence of functions
f WS I
n : g

P(n)
X,X0 |Ci ,Co ,C0i ,C

0
o

7! �̂0(n), n 2 N.

The output of a successful matching algorithm satisfies
P

⇣
�0(n)(v0J(n) ) = �̂0

(n)(v0J(n) )
⌘
! 1 as n! 1, where the random

variable J(n) is uniformly distributed over [1, n] and �0(n) is
the labeling for the graph g0

P(n)
X0 |C0i ,C

0
o

for which (g̃P(n)
X|Ci ,Co
, g̃0

P(n)
X0 |C0i ,C

0
o

)

is a CRCS, where g̃0
P(n)

X0 |C0i ,C
0
o

, (g0
P(n)

X0 |C0i ,C
0
o

,�0(n)).

Remark 8. Note that the output of a successful matching
algorithm �̂0(n) does not necessarily satisfy �̂0(n)

= �0(n). In
other words, the pair (g̃P(n)

X|Ci ,Co
, ĝ0

P(n)
X0 |C0i ,C

0
o

) is not necessarily a

CRCS, where ĝ0
P(n)

X0 |C0i ,C
0
o

, (g0
P(n)

X0 |C0i ,C
0
o

, �̂0
(n)). Rather, the algorithm

finds the correct labeling for almost all of the vertices in
g0

P(n)
X0 |C0i ,C

0
o

.

The following defines an achievable region for the graph
matching problem.

Definition 8 (Achievable Region). For the graph matching
problem, a family of sets of distributions eP = (Pn)n2N is
said to be in the achievable region if for every sequence
of distributions P(n)

X,X0 |Ci,Co,C0i ,C
0
o
2 Pn, n 2 N, there exists a

matching algorithm. The maximal achievable family of sets
of distributions is denoted by P⇤.
B. Permutations and Typical Sequences

We use standard results on the joint typicality of correlated
sequences to propose schemes for matching pairs of correlated
random graphs with community structure. In the following we
provide a brief background on mathematical tools used in the
rest of the paper. For a more detailed summary the reader is
referred to [12].

Definition 9 (Type). Let X = {1, 2, · · · , |X|} be
a given alphabet. The |X|-length vector T (xn) =
(T1(xn),T2(xn), · · · ,T|X|(xn)) is called the type of the vector xn

where Ti(xn) is the number of occurrences of the ith symbol
in xn, i.e. Ti(xn) =

P
j2[n] (x j = i), i 2 [1, |X|]. Let PX be a

probability distribution on |X|. We write T (xn) .= n(PX ± ✏) if
the following inequalities hold:

n(PX(i) � ✏)  Ti(xn)  n(PX(i) + ✏), i 2 [|X|].
Definition 10 (Joint Type). For a pair of vectors (xn, yn)
defined on the alphabet Xn ⇥Yn, the |X|⇥ |Y| matrix T (xn, yn)
is called the joint type of (xn, yn), where Ti, j(xn, yn), i, j 2
[1, |X|] ⇥ [1, |Y|] is the number of simultaneous occurrences
of the ith symbol in xn and the jth symbol in yn.

Definition 11 (Typicality). Let the pair of random variables
(X,Y) be defined on the probability space (X⇥Y, PX,Y ), where
X and Y are finite alphabets. The ✏-typical set of sequences
of length n with respect to PX,Y is defined as:

An
✏ (X,Y) =

n
(xn, yn) :

����
1
n

N(↵, �|xn, yn) � PX,Y (↵, �)
����  ✏,8(↵, �) 2 X ⇥Y

o
,

=
n
(xn, yn) : T (xn, yn) .= n(PX,Y (↵, �) ± ✏),8(↵, �) 2 X ⇥Y

o

where ✏ > 0, n 2 N, and N(↵, �|xn, yn) =Pn
i=1 ((xi, yi) = (↵, �)).

Definition 12 (Permutation). A permutation on the set of
numbers [1, n] is a bijection ⇡ : [1, n] ! [1, n]. The set of all
permutations on the set of numbers [1, n] is denoted by Sn.
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Definition 13 (Cycles). A permutation ⇡ 2 Sn, n 2 N is called
a cycle if there exists m 2 [1, n] and ↵1,↵2, · · · ,↵m 2 [1, n]
such that i) ⇡(↵i) = ↵i+1, i 2 [1,m � 1], ii) ⇡(↵n) = ↵1, and
iii) ⇡(�) = � if � , ↵i,8i 2 [1,m]. The variable m is called
the length of the cycle. The element ↵ is called a fixed point
of the permutation if ⇡(↵) = ↵. We write ⇡ = (↵1,↵2, · · · ,↵m).
The permutation ⇡ is called a non-trivial cycle if m � 2.

Lemma 1. [16] Every permutation ⇡ 2 Sn, n 2 N has
a unique representation as a product of disjoint non-trivial
cycles.

Definition 14. For a given sequence yn 2 Rn and permutation
⇡ 2 Sn, the sequence zn = ⇡(yn) is defined as zn = (y⇡(i))i2[1,n].

Definition 15 (Parameters of a Permutation and Standard
Permutations). For a given n,m, r 2 N, and 1  i1  i2 
· · ·  ir  n such that n =

Pr
j=1 i j + m, an (m, r, i1, i2, · · · , ir)-

permutation is a permutation in Sn which has m fixed points
and r disjoint cycles with lengths i1, i2, · · · , ir, respectively.

The (m, r, i1, i2, · · · , ir)-standard permutation is defined as
the (m, r, i1, i2, · · · , ir)-permutation consisting of the cycles
(
Pk�1

j=1 i j + 1,
Pk�1

j=1 i j + 2, · · · ,Pk
j=1 i j), k 2 [1, r]. Alternatively,

the (m, r, i1, i2, · · · , ir)-standard permutation is defined as:

⇡ = (1, 2, · · · , i1)(i1 + 1, i1 + 2, · · · , i1 + i2) · · ·

(
r�1X

j=1

i j + 1,
r�1X

j=1

i j + 2, · · · ,
rX

j=1

i j)(n � m + 1)(n � m + 2) · · · (n).

The following proposition was proved in [12].

Proposition 1. Let (Xn,Yn) be a pair of i.i.d sequences defined
on finite alphabets. We have:
i) For an arbitrary permutation ⇡ 2 Sn,

P((⇡(Xn), ⇡(Yn)) 2 An
✏ (X,Y)) = P((Xn,Yn) 2 An

✏ (X,Y)).

ii) let n,m, r, i1, i2, · · · , ir 2 N be permutation parame-
ters as described in Definition 15. Let ⇡1 be an ar-
bitrary (m, r, i1, i2, · · · , ir)-permutation and let ⇡2 be the
(m, r, i1, i2, · · · , ir)-standard permutation. Then,

P((Xn, ⇡1(Yn)) 2 An
✏ (X,Y)) = P((Xn, ⇡2(Yn)) 2 An

✏ (X,Y)).

III. Typicality of Permuted Sequences
In this section, we study the typicality of permutations of

pairs of correlated sequences. More precisely, let (Xn,Yn) be
a pair correlated sequences of independent and identically
distributed (i.i.d) random variables distributed according to
PX,Y and let ⇡ 2 Sn be an arbitrary permutation acting on
n-length sequences. We provide bounds on the probability
of joint typicality of the pair (Xn, ⇡(Yn)) with respect to the
distribution PX,Y .

Theorem 1. Let (Xn,Yn) be a pair of i.i.d sequences defined
on finite alphabets X and Y, respectively. For any permutation
⇡ with m 2 [n] fixed points, the following holds:

P((Xn, ⇡(Yn)) 2 An
✏ (X,Y)) (1)

 2�
n
4 (D(PX,Y ||(1�↵)PX PY+↵PX,Y )�|X||Y|✏+O( log n

n )),

where ↵ = m
n , and D(·||·) is the Kullback-Leibler divergence.

The proof is provided in the Appendix. An alternative
method for bounding the probability in Equation (1) was
presented in [12]. The arguments provided in this paper lead to
a significant simplification of the proof and can be extended
to problems involving more than two sequences of random
variables in a straightforward manner.

Remark 9. The upper bound in Equation (1) goes to 0 as
n! 1 for any non-trivial permutation (i.e. ↵ bounded away
from one) and small enough ✏, as long as X and Y are not
independent.

Remark 10. The exponent in Equation (1) can be interpreted
as follows: for the fixed points of the permutation (↵ fraction
of indices), we have Zi = Yi. As a result, the joint distribution
of the elements (Xi,Zi) is PX,Y . For the rest of the elements,
Zi are permuted components of Yn, as a result (Xi,Zi) are
an independent pair of variables since Xn and Yn are i.i.d.
sequences. Consequently, the distribution of (Xi,Zi) is PXPY
for (1�↵) fraction of elements which are not fixed points of the
permutation. The average distribution is (1� ↵)PXPY + ↵PX,Y
which appears in the exponent in Equation (1).

IV. Matching Pairs of Correlated Graphs

In this section, we describe the typicality matching scheme
and provide achievable regions for the the matching scenarios
formulated in Definition 7.

A. Matching in Presence of Side-information

First, we describe the matching strategy under the complete
side-information scenario. In this scenario, the community
membership of the nodes at both graphs are known prior to
matching. Given a CRCS g̃

PX,X0 |Ci ,Co ,C0i ,C
0
o

, the scheme operates

as follows. It finds a labeling �̂0, for which i) the set of
pairs (eG�,Ci,C j ,fG0�̂0,C0i ,C0j ), i, j 2 [c] are jointly typical each
with respect to PX,X0 |Ci,Co,C0i ,C

0
o (·, ·|Ci,C j,C0i ,C0j) when viewed

as vectors of length nin j, i , j, and ii) the set of pairs
(eGUT
�,Ci,Ci

,fG0
UT
�̂0,C0i ,C0i ), i 2 [c] are jointly typical with respect

to PX,X0 |Ci,Co,C0i ,C
0
o (·, ·|Ci,Ci,C0i ,C0i) when viewed as vectors of

length ni(ni�1)
2 , i 2 [c]. Specifically, it returns a randomly picked

element �̂0 from the set:

b⌃C.C0 = {�̂0|(eGUT
�,Ci,Ci

,fG0
UT
�̂0,C0i ,C0i ) 2 A

ni (ni�1)
2

✏ (PX,X0 |Ci,Ci,C0i ,C0i ),8i 2 [c],

(eG�,Ci,C j ,fG0�̂0,C0i ,C0j ) 2 Anin j
✏ (PX,X0 |Ci,C j,C0i ,C0j ),8i, j 2 [c], i , j},

where ✏ = !( 1
n ), and declares �̂0 as the correct labeling.

We show that under this scheme, the probability of incorrect
labeling for any given vertex is arbitrarily small for large n.

Theorem 2. For the typicality matching scheme, a given
family of sets of distributions eP = (P(n))n2N is achiev-
able, if for any constant � > 0 and every sequence
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of distributions P(n)
X,X0 |Ci,Co,C0i ,C

0
o
2 Pn, and community sizes

(n(n)
1 , n

(n)
2 , · · · , n

(n)
c ), n 2 N:

8↵ 2 [0, 1 � �] : 4(1 � ↵)
log n

n
 max

[↵i]i2[c]2A↵
X

i, j2[c],i< j

n(n)
i n(n)

j

n2 ·

D(P(n)
X,Y |Ci,C j

||(1 � �i, j)P(n)
X|Ci,C j

P(n)
Y |Ci,C j

+ �i, jP(n)
X,Y |Ci,C j

)

+
X

i2[c]

n(n)
i (n(n)

i � 1)
2n2 ·

D(P(n)
X,Y |Ci,Ci

||(1 � �i)P(n)
X|Ci,Ci

P(n)
Y |Ci,Ci

+ �iP(n)
X,Y |Ci,Ci

), (2)

as n ! 1, where A↵ = {([↵i]i2[c]) : ↵i  n(n)
i
n ,

P
i2[c] ↵i = ↵},

and �i, j =
n2

n(n)
i n(n)

j
↵i↵ j, i, j 2 [c] and �i =

n↵i(n↵i�1)
n(n)

i (n(n)
i �1)
, i 2 [c]. The

maximal family of sets of distributions which are achievable
using the typicality matching scheme with complete side-
information is denoted by P f ull.

The proof is provided in the Appendix.

Remark 11. Note that the community sizes
(n(n)

1 , n
(n)
2 , · · · , n

(n)
c ), n 2 N are assumed to grow in n

such that limn!1
nn

i
n > 0.

Theorem 2 leads to the following achievable region for
matching of pairs of Erdős-Rènyi graphs (i.e. c = 1).

Corollary 1. For the typicality matching scheme, a given
family of sets of distributions eP = (P(n))n2N is achievable, if
for every sequence of distributions P(n)

X,X0 2 Pn, n 2 N, and any
constant � > 0:

8↵ 2 [0, 1 � �] :8(1 � ↵)
log n

n


D(P(n)
X,Y ||(1 � ↵)P(n)

X P(n)
Y + ↵P(n)

X,Y ),

as n! 1.

B. Matching in Absence of Side-information
The scheme described in the previous section can be ex-

tended to matching graphs without community memberships
side-information. In this scenario, it is assumed that the
distribution PX,X0 |Ci,Co,C0i ,C0o is known, but the community mem-
berships of the vertices in the graphs are not known. In this
case, the scheme sweeps over all possible possible community
membership assignments of the vertices in the two graphs. For
each community membership assignment, the scheme attempts
to match the two graphs using the method proposed in the
complete side-information scenario. If it finds a labeling which
satisfies the joint typicality conditions, it declares the labeling
as the correct labeling. Otherwise, the scheme proceeds to the
next community membership assignment. More precisely, for
a given community assignment (Ĉ, Ĉ0), the scheme forms the
following ambiguity set

b⌃Ĉ,Ĉ0 = {�̂0|(eGUT
�,Ĉi,Ĉi

,fG0
UT
�̂0,Ĉ0i ,Ĉ0i ) 2 A

ni (ni�1)
2

✏ (PX,X0 |Ĉi,Ĉi,Ĉ0i ,Ĉ0i ),8i 2 [c],

(eG�,Ĉi,Ĉ j
,fG0�̂0,Ĉ0i ,Ĉ0j ) 2 Anin j

✏ (PX,X0 |Ĉi,Ĉ j,Ĉ0i ,Ĉ0j ),8i, j 2 [c], i , j}.

Define b⌃0 as follows:

b⌃0 = [(Ĉ,Ĉ0)2Cb⌃Ĉ,Ĉ0 .

where C is the set of all possible community membership
assignments. The scheme outputs a randomly and uniformly
chosen element of b⌃0 as the correct labeling. The following
theorem shows that the achievable region for this scheme is
the same as the one described in Theorem 2.

Theorem 3. Let P0 be the maximal family of sets of achievable
distributions for the typicality matching scheme without side-
information. Then, P0 = P f ull.

The proof is provided in the Appendix.

V. Converse Results
In this section, we provide conditions on the graph parame-

ters under which graph matching is not possible. Without loss
of generality, we assume that (�,�0) are a pair of random
labelings chosen uniformly among the set of all possible
labeling for the two graphs. The following theorem is proved
in the appendix.

Theorem 4. For the graph matching problem under the
community structure model with complete side-information,
the following provides necessary conditions for successful
matching:

n log n 
X

i, j2[c],i< j

nin jI(X, X0|Ci,C j,C0iC0j)

+
X

i2[c]

ni(ni � 1)
2

I(X, X0|Ci,Ci,C0i ,C0i),

where I(X, X0|Ci,C j,C0iC0j) is defined with respect to
PX,X0 |Ci,C j,C0iC0j .

The proof is provided in the Appendix. For Erdős-Rènyi
graphs, the following corollary is a direct consequence of
Theorem 4.

Corollary 2. For the graph matching problem under the
Erdős-Rènyi model, the following provides necessary condi-
tions for successful matching:

2 log n
n
 I(X, X0).

VI. Conclusion
We have considered the problem of matching of correlated

graphs under the community structure model. We have studied
two matching scenarios: i) with side-information where the
community membership of the nodes in both graphs are
given, and ii) without side-information where the community
memberships are not known. We have proposed a matching
scheme which operates based on typicality of the adjacency
matrices of the graphs. We have derived achievability results
which provide theoretical guarantees for successful matching
under specific assumptions on graph parameters. We have
shown that the performance of the proposed scheme is the
same with and without side-information. Furthermore, we have
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provided a converse result which characterizes a set of graph
parameters for which matching is not possible.

Appendix

A. Proof of Theorem 1

Define the following partition for the set of indices [1, n]:

A0 = {1, i1 + 1, i1 + i2 + 1, · · · ,
r�1X

j=1

i j + 1},

A1 = {k|k is even, & k < A0, & k 
rX

i=1

i j},

A2 = {k|k is odd, & k < A0, & k 
rX

i=1

i j},

A3 = {k|k >
rX

i=1

i j}.

The set A1 is the set of indices at the start of each cycle in
⇡, the sets A2 and A3 are the sets of odd and even indices
which are not start of any cycles and A4 is the set of fixed
points of ⇡. Let Zn = ⇡(Yn). It is straightforward to verify that
(Xi,Zi), i 2 A j, j 2 [3] are three sequences of independent
and identically distributed variables which are distributed
according to PXPY . The reason is that the standard permutation
shifts elements of a sequence by at most one position, whereas
the elements in the sequences (Xi,Zi), i 2 A j, j 2 [3] are at
least two indices apart and are hence independent of each
other (i.e. Zi , Yi). Furthermore, (Xi,Zi), i 2 A4 is a sequence
of independent and identically distributed variables which are
distributed according to PX,Y since Zi = Yi. Let T j, j 2 [4]
be the type of the sequence (Xi,Zi), i 2 A j, j 2 [4]. We are
interested in the probability of the event (Xn,Zn) 2 A✏n (X,Y).
From Definition 11 this event can be rewritten as follows:

P((Xn,Zn) 2 A✏n (X,Y))
= P(T (Xn,Yn) .= n(PX,Y (↵, �) ± ✏))
= P(↵1T 1 + ↵2T 2 + ↵3T 3 + ↵4T 4

.
= n(PX,Y (↵, �) ± ✏)),

where ↵i =
|Ai |

n , i 2 [4] and addition is defined element-wise.
We have:

P((Xn,Zn) 2 A✏n (X,Y)) =
X

(t1,t2,t3,t4)2T
P(T i = ti, i 2 [4]),

where T = {(t1, t2, t3, t4) : ↵1t1 + ↵2t2 + ↵3t3 + ↵4t4
.
=

n(PX,Y (↵, �)±✏)}. Using the property that for any set of events,
the probability of the intersection is less than or equal to the
geometric average of the individual probabilities, we have:

P((Xn,Zn) 2 A✏n (X,Y))


X

(t1,t2,t3,t4)2T

4
q
⇧i2[4]P(T i = ti).

Since the elements (Xi,Zi), i 2 A j, j 2 [4] are i.i.d, it follows
from standard information theoretic arguments [17] that:

P(T i = ti)  2�|Ai |(D(ti ||PX PY )�|X||Y|✏), i 2 [3],
P(T 4 = t4)  2�|A4 |(D(t4 ||PX,Y )�|X||Y|✏).

We have,

P((Xn,Zn) 2 A✏n (X,Y))


X

(t1,t2,t3,t4)2T

4p
2�n(↵1D(t1 ||PX PY )+↵2D(t2 ||PX PY )+↵3D(t3 ||PX PY )+↵4D(t4 ||PX,Y )�|X||Y|✏)

(a)


X

(t1,t2,t3,t4)2T

4p
2�n(D(↵1t1+↵2t2+↵3t3+↵4t4 ||(↵1+↵2+↵3)PX PY+↵4PX,Y )�|X||Y|✏)

= |T | 4p
2�n(D(PX,Y ||(1�↵)PX PY+↵PX,Y )�|X||Y|✏)

(b)
 2�

n
4 (D(PX,Y ||(1�↵)PX PY+↵PX,Y )�|X||Y|✏+O( log n

n )),

where the (a) follows from the convexity of the divergence
function and (b) follows by the fact that the number of joint
types grows polynomially in n [17].

B. Proof of Theorem 2

Let ✏n = O( log n
n ) be a sequence of positive numbers. Fix

n 2 N and let ✏ = ✏n. For a given labeling �00, define the event
B�00 as the event that the sub-matrices corresponding to each
community pair are jointly typical:

B�00 : (eGUT
�,Ci,Ci

,fG0
UT
�00,C0i ,C0i ) 2 A

ni(ni�1)
2

✏ (PX,X0 |Ci,Ci,C0i ,C0i ),8i 2 [c],

(eG�,Ci,C j ,fG0�00,C0i ,C0j ) 2 Ani·n j
✏ (PX,X0 |Ci,C j,C0i ,C0j ),8i, j 2 [c], i , j},

Particularly, ��0 is the event that the sub-matrices are jointly
typical under the canonical labeling for the second graph.
From standard typicality arguments it follows that:

P(B�0 )! 1 as n! 1.

So, P(b⌃C.C0 = �)! 0 as n! 1 since the correct labeling is a
member of the set b⌃C.C0 . Let (�n)n2N be an arbitrary sequence of
numbers such that �n = ⇥(n). We will show that the probability
that a labeling in b⌃C.C0 labels �n vertices incorrectly goes to 0
as n! 1. Define the following:

E = {�02
����||�2 � �02||1 � �n},

where || · ||1 is the L1-norm. The set E is the set of all labelings
which match more than �n vertices incorrectly.

We show the following:

P(E \b⌃C.C0 , �)! 0, as n! 1.
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We use the union bound on the set of all permutations along
with Theorem 1 as follows:

P(E \b⌃C.C0 , �) = P(
[

�00:||�0��00 ||1��n

{�00 2 b⌃C.C0 })

(a)


nX

k=�n

X

�00:||�0��00 ||1=k

P(�00 2 b⌃C.C0 )

(b)
=

nX

k=�n

X

�00:||�0��000 ||1=k

P(��00 )

(c)


nX

k=�n

X

�02:||�2��02 ||0=k

2O(nlogn))⇥

Y

i, j2[c],i< j

2
� ni ·n j

4 (D(PX,X0 |Ci ,C j ,C0i ,C
0
j
||(1��i, j)PX|Ci ,C j PX0 |C0i ,C

0
j
+�i, jPX,X0 |Ci ,C j ,C0i ,C

0
j
))⇥

Y

i2[c]

2�
ni (ni�1)

8 (D(PX,X0 |Ci ,Ci ,C0i ,C
0
i
||(1��i)PX|Ci ,Ci PX0 |C0i ,C

0
i
+�iPX,X0 |Ci ,Ci ,C0i ,C

0
i
)

(d)


nX

k=�n

 
n
k

!
(!k) max

[↵i]i2[c]2A
(2�

n2
4 (�([↵i]i2[c])+O( log n

n )))

 max
↵2[0,1� �nn ]

max
[↵i]i2[c]

(2�
n2
4 (�(1�↵) log n

n +�([↵i]i2[c])+O( log n
n ))),

where A = {([↵i]i2[c]) : ↵i  ni
n ,

P
i2[c] ↵i =

n��n
n } and

�([↵i]i2[c]) =
X

i, j2[c],i< j

nin j·

D(PX,X0 |Ci,C j,C0i ,C0j ||(1 � �i, j)PX|Ci,C j PX0 |C0i ,C0j + �i, jPX,X0 |Ci,C j,C0i ,C0j )

+
X

i2[c]

ni(ni � 1)
2

·

D(PX,X0 |Ci,Ci,C0i ,C0i ||(1 � �i)PX|Ci,Ci PX0 |C0i ,C0i + �iPX,X0 |Ci,Ci,C0i ,C0i ),

and �i, j =
n2

nin j
↵i↵ j and �i =

n↵i(n↵i�1)
ni(ni�1) . Here, ↵i is the number

of fixed points in the ith community divided by n, and �i is
the number of fixed points in G0UT

�00,C0i ,C0i
divided by ni(ni�1)

2 , and
�i, j is the number of fixed points in G0UT

�00,C0i ,C0j
divided by nin j.

Inequality (a) follows from the union bound, (b) follows from
the definition of b⌃C.C0 , in (c) we have used Theorem 1, in (d)
we have denoted the number of derangement of sequences of
length i by !i. Note that the right hand side in the (d) goes to
0 as n! 1 as long as (2) holds.

C. Proof of Theorem 3
The proof is similar to that of Theorem 2. We provide an

outline. It is enough to show that |b⌃0| has the same exponent
as that of |b⌃C.C0 |. To see this note that the size of the set of
all community membership assignments C has an exponent
which is ⇥(n):

|C|  2cn.

On the other hand,

|b⌃0|  |C| · |b⌃C.C0 |  2nc · 2⇥(n log n) = 2⇥(n log n).

The rest of the proof follows by the same arguments as in
Theorem 2.

D. Proof of Theorem 4

For asymptotically large n, and ✏ > 0, let G and G0 be
the adjacency matrices of the two graphs under a pre-defined
labeling. Let �̂ be the output of the matching algorithm. Let

C be the indicator of the event that the matching algorithm
mislabels at most ✏ fraction of the vertices. Note that �̂ is a
function of �0,G,G0. So:

0 = H(�̂|�,G,G0)
(a)
= H(�0, �̂, C |�,G,G0) � H(�0, C |�̂,�,G,G0)
= H(�0, �̂, C |�,G,G0)�

H(�0| C , �̂,�,G,G0) � H( C |�̂,�,G,G0)
(b)
� H(�0, �̂, C |�,G,G0) � H(�0| C , �̂,�,G,G0) � 1
= H(�0, �̂, C |�,G,G0)�

P( C = 1)H(�0| C = 1, �̂,�,G,G0)�
P( C = 0)H(�0| C = 0, �̂,�,G,G0) � 1
(c)
� H(�0, �̂, C |�,G,G0) � ✏n log n � Pen log n � 1
(d)
� H(�0|�,G,G0) � (✏ + Pe)n log n � 1,

where in (a) we have used the chain rule of entropy, in (b)
we have used the fact that C is binary, in (c) we define
the probability of mismatching more than ✏ fraction of the
vertices by Pe, and (d) follows from the fact that entropy is
non-negative. As a result, H(�0|�,G,G0) . ✏n log n. We have,

n log n ⇡ log n! = H(�0) ⇡ I(�0;�,G,G0).

We have:

n log n ⇡ I(�0;�,G,G0)
= I(�0; G0) + I(�0;�,G|G0)
(a)
= I(�0;�,G|G0)
= I(�0; G|G0) + I(�0; G|G0,�)
(b)
= I(�0; G|G0,�)
(c)
 I(�0,G0; G|�)
(d)
= I(G0; G|�,�0)
(e)
=

X

i, j2[c],i< j

nin jI(X, X0|Ci,C j,C0iC0j)

+
X

i2[c]

ni(ni � 1)
2

I(X, X0|Ci,Ci,C0i ,C0i),

where (a) follows from �0 |=G0, (b) follows from the fact that
�0 |=G,G0, (c) is true due to the non-negativity of the mutual
inforamtion, (d) follows from �,�0 |=G, and (e) follows from
the fact that the edges whose vertices have di↵erent labels are
independent of each other given the labels.
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