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Abstract

Multivariate Bernoulli autoregressive (BAR) pro-
cesses model time series of events in which the
likelihood of current events is determined by the
times and locations of past events. These pro-
cesses can be used to model nonlinear dynami-
cal systems corresponding to criminal activity, re-
sponses of patients to different medical treatment
plans, opinion dynamics across social networks,
epidemic spread, and more. Past work examines
this problem under the assumption that the event
data is complete, but in many cases only a fraction
of events are observed. Incomplete observations
pose a significant challenge in this setting because
the unobserved events still govern the underlying
dynamical system. In this work, we develop a
novel approach to estimating the parameters of
a BAR process in the presence of unobserved
events via an unbiased estimator of the complete
data log-likelihood function. We propose a com-
putationally efficient estimation algorithm which
approximates this estimator via Taylor series trun-
cation and establish theoretical results for both
the statistical error and optimization error of our
algorithm. We further justify our approach by
testing our method on both simulated data and a
real data set consisting of crimes recorded by the
city of Chicago.

1 Introduction

Discrete event data arises in a variety of forms including
crimes, health events, neural firings, and social media posts.
Frequently each event can be associated with a node in a
network, and practitioners aim to learn the relationships
between the nodes in the network from the event data. For
example, one might observe a sequence of crimes associated
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with different gangs and seek to learn which crimes are most
likely to spark retaliatory violence from rival gangs.

Such problems have attracted widespread interest in recent
decades and a variety of point process models have been
proposed to model such data. A central assumption of many
of these works is that all the events are observed. However,
in many cases we may observe only a subset of the events
at random. For example, while point process models have
been widely used to model crime incidence (Mohler (2014);
Mohler et al. (2016); Linderman and Adams (2014)), fre-
quently one only has access to reported crime data. For
many crimes the true number of incidents can be substan-
tially higher. The gap between the reported and true crime
rates is referred to as “the dark figure of crime” by re-
searchers in Sociology and Criminology who have stud-
ied this issue extensively (Biderman (1991); Langton et al.
(2012)). Unobserved events also pose a challenge in infer-
ence from Electronic Health Record (EHR) data which can
be incomplete for a number of different reasons (Wells et al.
(2013); Weiskopf and Weng (2013)).

The unobserved events still play a role in the dynamical sys-
tem governing the time series, making network estimation
with incomplete data particularly challenging. In this paper,
we contribute to the growing literature on modeling in the
presence of unobserved events by proposing a novel method
for network estimation when we only observe a subset of
the true events.

1.1 Problem Formulation

Many point process models of time series of discrete events
are temporally discretized either because event times were
discretized during the data collection process or for computa-
tional reasons. In such contexts, the temporal discretization
is typically such that either one or zero events are observed
in each discrete time block for each network node. With
this in mind, we model the true but unobserved observations
X1, . . . XT using a Bernoulli autoregressive process:

Yt = ν +A∗Xt−1

Xt ∼ Bernoulli
(

1
1 + exp(−Yt)

)
. (1.1)

Here Xt ∈ {0, 1}M is a vector indicating whether events
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occurred in each of the M nodes during time period t. The
vector ν ∈ RM is a constant bias term, and the matrix
A∗ ∈ RM×M is the weighted adjacency matrix associated
with the network we wish to estimate. We assume that each
row a of A∗ lies in the `1 ball of radius r, which we denote
B1(r). We generally consider a case where a is sparse and
the magnitude of all its entries are bounded, so that r is a
universal constant which is independent of M .

We observe Z1, . . . ZT , a corrupted version of (1.1) where
only a fraction p ∈ (0, 1] of events are observed as follows:

Wt,i
iid∼ Bernoulli(p)

Zt = Wt �Xt. (1.2)

Here � denotes the Hadamard product and Wt ∈ {0, 1}M
is a vector where each entry is independently drawn to be
one with probability p and zero with probability 1− p.

Our analysis of (1.1) and (1.2) can be naturally extended to
several more complex variants. Instead of assuming each
Xt,i is observed with probability p, we can assume events
from each node i are observed with a unique probability
pi. We consider only a first order AR(1) process but our
framework can be extended to incorporate more sophisti-
cated types of memory as in Mark et al. (2018). We omit
discussion of these extensions in the interest of clarity.

2 Related Work

There is an extensive literature on the analysis of complete
discrete event data using various point process models. One
framework, the Hawkes process (Hawkes (1971)) is a popu-
lar continuous time approach which has been applied in a
number of different contexts (e.g., Zhou et al. (2013); Yang
et al. (2017); Chen et al. (2017); Xu et al. (2018)). In addi-
tion, other works have used a discrete time framework to
model time series event data (e.g., Linderman et al. (2016);
Fletcher and Rangan (2014); Bao et al. (2017)).

Corrupted or missing data in high-dimensional data sets is a
problem which appears in a number of different domains and
has attracted widespread interest over the past few decades
(see Graham (2009) for an application-focused overview).
Our focus is on a particular type of corrupted data: partially
observed sequences of discrete events. In recent years re-
searchers have started to focus on this problem (Xu et al.
(2017); Shelton et al. (2018); Le (2018)). The prior works
of which we are aware use a Hawkes process framework
and assume knowledge of the time periods when the data is
corrupted. In the context of (1.2) this amounts to knowledge
of W1, . . . ,WT . Our method can operate in a setting where
the researcher cannot differentiate between periods when
no event actually occurred, and when events potentially oc-
curred but were not recorded. Moreover, because we use
a discrete-time framework, we are able to derive sample
complexity bounds for the estimation procedure proposed in

Section 3. Our theoretical results complement the empirical
nature of much of the past work in this area.

This paper is also related to a variety of works on regu-
larized estimation in high-dimensional statistics, includ-
ing Bickel et al. (2009); Raskutti et al. (2010); Basu and
Michailidis (2015) and Jalali and Willett (2018). Many
of these works have derived sample complexity guaran-
tees using linear models, and some of these results have
been extended to autoregressive generalized linear models
(Negahban et al. (2010); Hall et al. (2016)). Another line
of research (Loh and Wainwright (2012); Agarwal et al.
(2012); Loh and Wainwright (2015); Loh (2017); Negahban
et al. (2010)) has formalized a notion of Restricted Strong
Convexity (RSC) which we leverage in Section 4.2. While
many loss functions of interest in high-dimensional statistics
are not strongly convex, these works have shown that they
frequently satisfy an RSC condition which is sufficient to
provide statistical and optimization error guarantees. The
main technical challenges in our setting lie in establishing
results similar to these RSC conditions.

2.1 Missing Data in a High-Dimensional Linear
Model

Loh and Wainwright (2012) straddles the missing data liter-
ature and high-dimensional statistics literature. The authors
consider a missing data linear model

Yi = X>i β
∗ + εi

Zi = Wi �Xi (2.1)

where Wi
iid∼ Bernoulli(p) and one observes pairs (Yi, Zi)

and aims to estimate β∗. The authors propose minimizing
a loss function Lmissing,Z,W of the observed data Z which
satisfies the property

E[Lmissing,Z,W (β)|X] = LLasso,X(β)

for any β. Here

LLasso,X := 1
2

T∑
i=1

(Yi −X>i β)2 + λ‖β‖1

denotes the classical Lasso loss function with the unob-
served data X and regularization parameter λ > 0. In other
words, the missing data loss function is an unbiased estima-
tor for the full data Lasso loss function we would ideally
like to minimize. This idea motivates our construction of a
loss function for the observed process (1.2).

Our problem can be viewed as an extension of Loh and
Wainwright (2012) to autoregressive BAR models without
knowledge of W .1 In particular, we cannot distinguish

1Note that Loh and Wainwright (2012) does consider AR pro-
cesses, but in a different context from our setting. Specifically, we
wish to estimate the AR process parameters, where as they con-
sider a special case of (2.1) where Xt+1 = AXt + εt but where
A is known and one aims to estimate β∗.
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events that were missed (Xt,j = 1 and Wt,j = 0) from
correctly observed periods with no events (Xt,j = 0). Loh
and Wainwright (2012) are able prove sample complexity
bounds as well as optimization bounds which are consistent
with the high-dimensional statistical literature in that they
scale with ‖β∗‖0 rather than the dimension of β∗. We are
able to prove analogous bounds for our estimator in Section
4.

2.2 Contributions

This paper makes the following contributions.

• We propose a novel method for network estimation
when only a subset of the true events are observed.
In contrast to previous work, our methods do not rely
on knowledge of when the data is potentially missing.
Our procedure uses Taylor series approximations to an
unbiased loss function, and we show that these approx-
imations have controlled bias and lead to accurate and
efficient estimators.

• We prove bounds on both the statistical error and op-
timization error of our proposed estimation method.
The results hinge on showing that our loss function
satisfies a restricted strong convexity (RSC) condition.
Past work on linear inverse problems with corrupted
designs also establish RSC conditions, but these con-
ditions do not carry over to the autoregressive BAR
setting.

• We demonstrate the effectiveness of our methodology
on both simulated data and real crime data.

3 Proposed Estimation Procedure

Given the full data X = [X1, . . . , XT ], the negative log-
likelihood function LX(A) is decomposable in the M rows
of A. In other words, if

A =
[
a>1 a>2 · · · a>M

]>
then LX(A) =

∑M
m=1 LX(am) where am is the mth row

of A and LX(am) denote the loss function restricted to
a specific row. Throughout the paper we slightly abuse
notation and letLX(A) refer to the entire loss function when
A is a matrix, and let LX(am) refer to the loss function for
a specific row when am is a row vector.

The loss function for the mth row takes the form

LX(am) := 1
T

T∑
t=1

f(a>mXt)−Xt+1,m(a>mXt)

where f(x) = log(1 + exp(x)) is the partition function for
the Bernoulli GLM.

We do not have access to X and instead we aim to estimate
A using the corrupted data Z = [Z1, . . . , Zn]. As discussed
in Section 2.1, our strategy will be to construct a loss func-
tion of Z which is an unbiased estimator for LX . In other
words, we want to find some function LZ,p such that for any
am ∈ B1(r),

E[LZ,p(am)|X] = LX(am). (3.1)

In contrast to the Gaussian case discussed in Section 2.1,
the Bernoulli partition function f(x) = log(1 + exp(x))
is not a polynomial and constructing a function satisfying
(3.1) directly is challenging. We adopt a strategy of com-
puting unbiased approximations to truncated Taylor series
expansions of LX and arriving at LZ,p as a limit of such
approximations.

To do this, we first rewrite f using its Taylor series expan-
sion around zero

f(a>mXt) =

log(2) + a>mXt

2 + (a>mXt)2

8 − (a>mXt)4

192 + o((a>mXt)6).

The constant factor log(2) does not effect estimation in any
way so we ignore it for the remainder of our discussion in
the interest of simplicity. We let L(q)

X denote the degree q
Taylor truncation to LX . The Xt are binary vectors and
we assume each row am is sparse, so a>mXt ≤ ‖am‖1 will
not be too far from zero. Thus it is reasonable to hope that
for small q, L(q)

X (am) is a good approximation for LX(am)
whenever am ∈ B1(r). We bound the approximation error
in Lemma B.3 in the supplement.

We now consider the problem of constructing a function
L

(q)
Z,p such that

E[L(q)
Z,p(am)|X] = L

(q)
X (am) for all am ∈ B1(r). (3.2)

Once we construct L(q)
Z,p we can estimate the mth row of A∗

by attempting to solve

âm = arg min
a∈B1(1)

L
(q)
Z,p(a) + λ‖a‖1.

Key question we need to address with this approach include
(a) can we (approximately) solve this optimization problem
efficiently? (b) will the solution to this optimization problem
be robust to initialization? (c) will it be a strong estimate of
the ground truth?

3.1 Definition of L(2)
Z,p

We first derive an unbiased estimator of the degree-two
Taylor series expansion L(2)

X (am).

L
(2)
X (am) = 1

T

T∑
t=1

a>mXt

2 −Xt+1,m(a>mXt) + (a>mXt)2

8 .
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Note that there are straightforward unbiased estimates of
the first two terms:

E
[

1
p

a>mZt
2 |X

]
= a>mXt

2

E
[

1
p2Zt+1,m(a>mZt)|X

]
= Xt+1,m(a>mXt). (3.3)

For the third term, (a>mXt)2

8 =
∑
i,j am,iam,jXt,iXt,j , note

that

E[Zt,iZt,j |X] =
{
p2Xt,iXt,j if i 6= j

pXt,iXt,j if i = j
. (3.4)

Thus we must estimate the monomials with repeat terms
(i = j) differently from the monomials with all distinct
terms (i 6= j). Using Equations (3.3) and (3.4) we can
define L(2)

Z,p:

L
(2)
Z,p(am) := 1

T

∑
t

[
a>mZt

2p − Zt+1,m(a>mZt)
p2

+
∑
i6=j

am,iam,jZt,iZt,j
8p2 +

∑
i

a2
m,iZt,i

8p

]
. (3.5)

3.2 Higher-Order Expansions

The construction of L(2)
Z,p in the previous section suggests a

general strategy for constructing L(q)
Z,p satisfying (3.2). Take

any monomial
Xt,m1 · . . . ·Xt,md

depending on the counts in nodes m1, . . .md during time
period t. Wherever this monomial appears in L(q)

X (am), our
unbiased loss function will have a term

1
pk
Zt,m1 · . . . · Zt,md

where k denotes the number of unique terms in the mono-
mial. For example, in Equation (3.3) each degree two mono-
mial was unique so we scaled everything by 1

p2 . However,
in (3.5) some of the degree two monomials had repeated
terms and so they were scaled by 1

p . In order to formalize
these ideas and generalize our estimator to q > 2, we first
need to introduce additional notation.

3.2.1 Notation

Let Ud denote the set of all monomials of degree d. We
represent an element U ∈ Ud as a list containing d elements.
An element in the list corresponds to the index of a term in
the monomial. For an example, the monomial x2

1x3 can be
represented as the list (1, 1, 3).

For a polynomial function h we let cU,h denote the coeffi-
cient of the monomial U in h. Finally we define the order
of a list to denote the number of unique elements in the list,
so |(1, 2)| = 2 whereas |(1, 1)| = 1.

Example Consider the function h(x1, x2) = x2
1 + 4x1x2.

We can decompose h as

h(x1, x2) =
∑
U∈U2

cU,h
∏
u∈U

xu

where U2 = {(1, 1), (1, 2), (2, 2)} with corresponding coef-
ficients c(1,1),h = 1, c(1,2),h = 4 and c(2,2),h = 0.

Using this notation we can write

L
(q)
X (am) = 1

T

T∑
t=1

[
q∑
i=1

∑
U∈Ui

(
cU,f

∏
u∈U

Xt,u

∏
u∈U

am,u

)

−Xt+1,m(a>mXt)
]
.

3.2.2 Definition of L(q)
Z,p

The degree q likelihood is constructed as follows

L
(q)
Z,p(am) := 1

T

T∑
t=1

[
q∑
i=1

∑
U∈Ui

(
cU,f
p|U |

∏
u∈U

Zt,u
∏
u∈U

am,u

)

− Zt+1,m(a>mZt)
p2

]
.

Recall that |U | denotes the number of unique terms in the
monomial U . In other words, we adjust L(q)

X by scaling each
monomial according the the number of unique terms rather
than the number of overall terms. This definition clearly
satisfies (3.2). We show in the supplement that if r = 1
and p > 1

π then limq→∞ L
(q)
Z,p(am) converges uniformly

on B1(r) to a function we denote as LZ,p(am). Extending
this loss function on individual rows to an entire matrix,
we can define LZ,p(A) =

∑M
i=1 LZ,p(am). An additional

technical discussion in the supplement guarantees that LZ,p
actually satisfies the desired property in Equation (3.1).

3.3 Proposed Optimization

In practice we can only compute L(q)
Z,p for finite q. To esti-

mate A∗ we consider the following constrained optimiza-
tion:

Â ∈ arg min
A∈B1,∞(r)

L
(q)
Z,p̂(A) + λ‖A‖1 (3.6)

where p̂ is an estimate of the missingness parameter p and

B1,∞(r) = {A ∈ RM×M : ||am||1 ≤ 1 for all m}.

In general, L(q)
Z,p is not a convex function. However, we show

in Section 4.2 that under certain assumptions all stationary
points of (3.6) must lie near A∗. Thus we can approxi-
mately solve (3.6) via a simple projected gradient descent
algorithm.
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In order to apply our algorithm it is necessary to have an
estimate p̂ of the frequency of missed data. In many cases
one may have prior knowledge available. For example,
social scientists have attempted to quantify the frequency
of unreported crimes (Langton et al. (2012); Palermo et al.
(2014)). Moreover, a simulation study in Section 5 suggests
our strategy is robust to misspecification of p.

4 Learning Rates

In this section we address both the statistical and optimiza-
tion aspects of our proposed estimation procedure. Through-
out the section we assume p > 1

π and A∗ ∈ B1,∞(1). All
results in the section apply for the loss functions L(q)

Z,p for
q ∈ N ∪ {∞}. In the q =∞ case we recover the idealized
loss function LZ,p.

We use a . b to mean a ≤ Cb and a � b to mean a = Cb
where C is a universal constant. Define s := ‖A∗‖0 and
ρ := maxm ‖a∗m‖0.

4.1 Statistical Error

We first address the statistical error of our estimator. The fol-
lowing theorem controls the statistical error of our proposed
estimator.

Theorem 4.1 (Accuracy of L(q)
Z,p). Suppose

Â ∈ arg min
A∈B1,∞(1)

L
(q)
Z,p(A) + λ‖A‖1

where λ � log(MT )√
T (pπ−1) + 1

(pπ)q . Then

‖Â−A∗‖2
F .

s log2(MT )
T (πp− 1)2 + s

(pπ)2q

for T & ρ2 log(MT ) with probability at least 1− 1
T .

When q = ∞ the rate ‖Â − A∗‖2
F = O

(
slog2(MT )

T

)
matches the minimax optimal rate for sparse high-
dimensional linear regression up to log factors (Raskutti
et al. (2011)). The two terms in the upper bound of Theo-
rem 4.2 have a natural interpretation. The first represents
the error for the idealized estimator LZ,p, while the second
represents the error due to the Taylor series truncation. Our
error scales as (πp−1)−2 which is reasonable in the context
of our algorithm because LZ,p(A) := limq→∞ L

(q)
Z,p(A) is

only well-defined when p > 1
π (see Remark 2 in the sup-

plement). An interesting open question which arises from
Theorem 4.1 is whether the process described in (1.1) and
(1.2) is unidentifiable for p ≤ 1

π or something specific to
our methodology fails for p below this threshold.

The proof of Theorem 4.1 uses ideas from the analysis of
high-dimensional GLMs (Hall et al. (2016); Mark et al.

(2018)) as well as ideas from the analysis of missing
data in the linear model (Loh and Wainwright, 2012) and
Gaussian linear autoregressive processes (Jalali and Wil-
lett, 2018). The key technical challenge in the proof lies
in controlling the gradient of the error term R(q)(A) :=
LX(A)− L(q)

Z,p(A). This is done in Lemmas B.2-B.6 in the
supplement.

4.2 Optimization Error

We next focus on the optimization aspects of Equation (3.6).
Our loss function L(q)

Z,p is non-convex, so at first glance it
may appear to be a poor proxy loss function to optimize.
However, a body of research (see Agarwal et al. (2012);
Loh and Wainwright (2015, 2012); Loh (2017)) has studied
loss functions satisfying a properties known as restricted
strong convexity (RSC) and restricted smoothness (RSM).
These works have shown that under certain conditions, the
optimization of non-convex loss functions may be tractable.
The formal definitions of the RSC and RSM conditions we
use are as follows.

Definition 1 (Restricted Strong Convexity). Let TL(v, w)
denote the first order Taylor approximation to a loss func-
tion L centered at w. A loss function L satisfies the RSC
condition with parameters α, τ if

TL(v, w) ≥ α

2 ‖v − w‖
2
2 − τ‖v − w‖2

1

for all v, w ∈ B1(1).

Definition 2 (Restricted Smoothness). A loss function L
satisfies the RSM condition with parameters α, τ if

TL(v, w) ≤ α

2 ‖v − w‖
2
2 + τ‖v − w‖2

1

for all v, w ∈ B1(1).

We are able to show these conditions are satisfied for α �
1 and τ �

√
log(MT )

T + (pπ)−q. This in turn gives the
following result. As in Theorem 4.1 we assume p > 1

π .

Theorem 4.2. Suppose A∗ ∈ B1,∞(1) and ‖a∗m‖0 > 0 for
at least MC rows of A∗ where C is a universal constant. Let
Ã ∈ B1,∞(1) be any stationary point of L(q)

Z,p(A) + λ‖A‖1

where λ � log(MT )√
T (pπ−1) + 1

(pπ)q . Then

‖Ã−A∗‖2
F .

s

pπ − 1

√
log(MT )

T
+ s

(pπ)q

with probability at least 1 − log(T )
T 2 for T & ρ2 log(MT )

and q & log(ρ)
log(πp) .

As in Theorem 4.1 the first term in our bound can be inter-
preted as the error for the idealized estimator LZ,p while the
second term can be thought of as the error due to the Taylor
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series truncation. The assumption that ‖a∗m‖0 > 0 for at
least MC rows of A∗ says that at least a constant fraction of
nodes are influenced by other nodes in the network. This
assumption allows us to state Theorem 4.2 in terms of s -
the support of A∗. In extreme cases where almost all nodes
in the network fire independently of the other nodes it is
possible for the optimization error to have a slower scaling
than s.

The RSC and RSM conditions are closely related to ideas
used in our statistical error bounds in Theorem 4.1. Lemma
D.2 shows that the conditions are satisfied for τ on the order
of 1√

T
which leads to an overall optimization error bound

of the same order. This is a slower convergence rate than
in the linear case; whether stronger rates can be obtained in
the autoregressive GLM setting is an open question.

In order to prove Theorem 4.2 we first establish that the
RSC/RSM conditions hold for reasonable constants in
Lemma D.2. This proofs relies on the technical machin-
ery built up in Lemmas B.2-B.6. We then combine our
RSC/RSM results with Theorem 2 in Agarwal et al. (2012)
to conclude that all stationary points of L(q)

Z,p(A) + λ‖A‖1
lie in a small neighborhood of A∗ with high probability.

5 Simulations

In this section we evaluate the proposed method on synthetic
data. We generate A∗ ∈ R50×50 with s = 50 nonzero
entries with locations chosen at random. Each nonzero
entry is chosen uniformly in [−1, 1] and ν = 0. We then
generate a “true" data set X and an “observed” data set
Z according (1.1) and (1.2) with λ = .75√

T
. We perform

projected gradient descent with a random initialization and
show a median of 50 trials.

Figure 1 shows mean squared error (MSE) vs T for p = .6
(top) and p = .75 (bottom). Our method is shown in red. It
uses the loss function L(2)

Z,p on the partially observed data
Z. Our method is compared to the loss function LX using
both the full data X (i.e., an oracle estimator with access to
the missing data) and the partially observed data Z (i.e. a
naive estimator that ignores the possibility of missing data).
As expected, with access to the complete data one can get a
more accurate estimate of A∗ than either method using the
partially observed data. However, our method outperforms
the full data likelihood when given the partially observed
data. In particular, note that the accuracy for the full data
likelihood stalls after some time due to the inherent bias
in using the corrupted data on the true data likelihood. In
contrast our unbiased method continues to converge to the
solution, as suggested by the results in Section 4. Finally,
observe that for large T there is little variation between
trials when using L2

Z even though each trial was initialized
randomly. This agrees Theorem 4.2 which states that all
stationary points of L(q)

Z,p lie near one another.
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(b) p = p̂ = .75

Figure 1: MSE vs T for p = .6 (top) and p = .75 (bottom). The
blue line uses regularized MLE on full data – i.e. data unavailable
in our setup – and represents a kind of oracle estimator. The red
line uses incomplete data with L(2)

Z,p (our proposed method). The
yellow lines corresponds to minimizing the full data likelihood
over the incomplete data – that is, this estimator naively ignores
the issue of missing data. Median of 50 trials is shown and error
bars denote sample standard deviations.

In practical applications one may have strong reason to
believe some events are unobserved, but pinning down a
precise estimate of the missingness parameter p might be
unrealistic. Therefore it is important to see how our algo-
rithm performs as a function of the misspecification p̂− p.
We examine this in Figure 2. We generate data as in the pre-
vious section but with p = .7. We then apply our algorithm
with the loss function L(2)

Z,p̂ and varying values of p̂.

Figure 2 shows that our method is highly robust to small mis-
specification of the missingness parameter p. Interestingly,
underestimating p by more than 10% leads to poor results
but our method is still robust to overestimation of over 10%.
This suggests there is value in applying our techniques with
a conservative estimate of the amount of missed data, even
when one has only a rough estimate of the frequency of
missed events.

As a final experiment we measure how MSE varies as a
function of the Taylor series truncation level q. Calculating
L

(4)
Z,p takes a significant amount of time for high-dimensional

problems, so we randomly generate A∗ ∈ R20×20 with
s = 20 nonzero entries compared to 50 in the previous
simulations and run 30 trials. We set p = p̂ = .7.
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Figure 2: Robustness to missestimation of p using a true value of
p = .7. Median of 50 trials is shown and error bars denote sample
standard deviations.
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Figure 3: MSE vs T using different loss functions in (3.6).
LX , L

4
X and L2

X use the full data X while L(4)
Z,p and L(2)

Z,p use
the missing data Z. Plots suggest that Taylor series truncations
produce nearly identical results to complete loss functions.

In Figure 3 we show MSE as a function of T for the full data
loss function at three different truncation levels: L2

X , L
4
X

and LX . Recall that LX and LZ,p has no odd degree terms
other than 1, so L(3)

X = L
(2)
X and L(3)

Z,p = L
(2)
Z,p. We see that

the second and fourth degree truncations perform essentially
the same as the full data likelihood. We also plot MSE as
a function of T for the truncated missing data loss func-
tions L(2)

Z,p and L(4)
Z,p. As expected, using the full data gives

stronger results than the partially observed data. We again
see that the second and fourth order truncations perform
nearly the same. The sample standard deviations are also
similar - e.g. when T = 2000 the standard deviations using
LX , L

2
X and L4

X are .184, .178 and .186 respectively while
the standard deviations using L2

Z and L4
Z are .322 and .311.

The experiments in Figure 3 involving L(4)
Z,p take approx-

imately 16 times longer than those involving L(2)
Z,p. The

similarity between the second and fourth order truncation
levels suggests that choosing one of these truncation levels
will give us a strong approximation to LZ,p. Since L(4)

Z,p

takes significantly longer to compute, we use the second
order approximation in the first two experiments. In general
we expect the cost of computing L(q)

Z,p to scale exponentially

in q, so computing L(q)
Z,p for large q will not be tractable.

6 Chicago Crime Data

This section studies a data set consisting of crimes commit-
ted in Chicago between January 2001 and July 2018 (City
of Chicago (2018)). Point process models have been applied
to this data set in the past (Linderman and Adams (2014)).
In a missing data setting, in order to validate our model
it is important to have a “ground truth” data set. For this
reason we limit our study to homicides within the data set.
For other crimes recorded data is known to be incomplete
(Langton et al. (2012); Biderman (1991)), but we assume
that nearly every murder is observed. This allows us to cre-
ate an incomplete data set by removing murders randomly
while still maintaining a ground truth data set for validation.
The goal of this section is to illustrate how one might apply
our method to extract more signal from real data than would
be possible using a naive method. However, we want to
emphasize that crime data may be corrupted in ways beyond
those that are considered in this paper. Using statistical
models to guide policy without a more systematic attempt to
control for various biases in crime data can lead to a number
of pitfalls (see Hao (2019) for further discussion).

The city is divided into 77 community areas and the commu-
nity area where each murder occurred is recorded. The ma-
jority of these community areas experience few murders so
we focus on the nine areas with the most murders since 2001.
These areas form two clusters: one on the west side of the
city and another on the south side. We discretize the events
using one week bins, so Xt,i = 1 if a murder occurred in
community area i during week t and Xt,i = 0 otherwise.
This gives a data matrix X ∈ {0, 1}9×918 which we di-
vide into a train set Xtrain ∈ {0, 1}9×600 containing the first
600 weeks in the period, and a test set Xtest ∈ {0, 1}9×318

containing the final 318 weeks. We then create an incom-
plete data set Ztrain = W �Xtrain where W ∈ {0, 1}9×318

contains independent realizations of a Bernoulli random
variable with mean p = .75.

We learn parameters νX ∈ R9 and ÂX ∈ R9×9 using the
training set Xtrain and the full data likelihood LX . We also
learn parameters νZ,p̂ ∈ R9 and ÂZ,p̂ ∈ R9×9 using the
incomplete train data Ztrain and the missing data likelihood
L2
Z,p̂ for various values of p̂.

We compare the log-likelihood of these parameters on the
test set Xtest. The results are shown in Figure 4. The miss-
ing data estimates perform nearly as well as the full data
estimate when p̂ is close to the true value of .75. Note that
L2
Z,1 = L2

X closely approximates the full data likelihood
LX and the hold out likelihood is substantially worse for
L2
Z,1 compared to L2

Z,p̂ for p̂ close to .75. In other words, ig-
noring the missing data entirely gives a weaker estimate than
applying the techniques this paper introduces, even when p̂
is not a perfect estimate of p. Finally, observe that LZ,p̂ is
more robust to misspecification when p̂ > p compared to
when p̂ < p. This is a trend which also appears in Figure 2
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Figure4: TestperformanceonChicagocrimedata. Log-
likelihoodofeventsonholdoutsetusingfulldatawithLX (yel-
low)andpartialdatawithL2Z,p̂forvariousvaluesof̂p,where
p=0.75(blue).For̂pnearp,theproposedestimatorperforms
nearlyaswellasanoracleestimatorwithfullaccesstothemissing
data,andsignificantlybetterthananaivemethodthatignoresthe
possibilityofmissingdata.

andsuggeststhereisvalueinusingconservativeestimates
oftheamountofmisseddatainpracticalapplications.

GivenestimatesofAandpwecanusedensitypropagation
topredictthelikelihoodofhomicidesduringweeknbased
onobservedhomicidesuptoweekn−1. Wedothisfor
ÂZ,.75learnedfromtheincompletedataZtrainwithp̂=.75

aswellasÂZ,1learnedfromZtrainbutwithp̂=1,which
correspondstoassumingthereisnomissingdata.Weuse
particlefilteringtoconstructestimates

p(Xn=1|̂AZ,.75,Z1,...Zn−1)

and

p(Xn=1|̂AZ,1,Z1,...Zn−1).

Theseprobabilitiescorrespondtothelikelihoodofhomi-
cidesduringthenthweekbasedontheobservationsover
thefirstn−1weeks. Weconstructsuchestimatesfor
eachweekinthe318weektestset.AsexpectedÂZ,.75
assignshigherlikelihoodsofhomicides,with960expected
homicidesintotalcomparedto748forÂZ,1.Asanaive
methodofcorrectingformissingdata,wedividep(Xn=
1|̂AZ,1,Z1,...Zn−1)byaconstantscalingfactorof0.75
andreporttheselikelihoodsbelow;bydoingthis,weensure
thatbothpredictionsyieldsimilaraveragenumbersofhomi-
cides,sodifferencesinperformancebetweentheproposed
andnaiveestimatorarenotduetoasimpledifferenceinav-
erages,butratherbecausetheproposedmethodiscapturing
theunderlyingdynamicsofthesystem.

Figure5displaystheselikelihoodsforCommunityArea
25(Austin)whichhasthelargestnumberofhomicides
recordedduringthetestperiod.WeuseGaussiansmooth-
ingtohelpvisualizethetrends.Thetoppanelshowsthe
predictedprobabilityofeventsusingÂZ,.75(inred)andthe

scaledpredictedprobabilityofeventsusingÂZ,1(inblue).
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Figure5:ResultofdensitypropagationonChicagocrimedata
forCommunityArea25(Austin).Afteratrainingperiodusedto

estimateÂZ,.75(proposedestimator)andÂZ,1(naiveestimator
thatdoesn’taccountformissingdata),densitypropagationisrunin
subsequenttestweekstopredictthelikelihoodofeachcommunity
areahavingahomicideattimenbasedonobservationsuptotime
n−1.Thetoppanelshowsthepredictedlikelihoodofahomicide
occurringintheAustincommunityareaofChicago.Thenetwork

ÂZ,.75predicts960totalhomicidesintheninecommunityareas

duringthetestperiod,comparedto748forÂZ,1.Theactual
numberofhomicideswas1035.Thebottompanelshowsthetrue
eventsaswellasthepartiallyobservedevents(afterGaussian
smoothingusedforvisualization).

eventsduringthetestperiod.Thetrueeventsgenerally
peakattimesinwhichthepredictedeventsforÂZ,.75peak.
Forexample,boththepredictedeventandtrueeventcharts
havepeaksaroundweeks60and210.Incontrast,thepre-
dictedeventsforÂZ,1arenearlyconstantovertime.Sinceit
doesnotaccountforthemissingdata(exceptviaauniform
scalingfactor),thenetworkÂZ,1isnotabletocapturethe
dynamicsoftheprocessandsoitcannotpredicteventswith
asmuchprecisionasÂZ,.75.

7 Conclusion

WeproposeanovelestimatorforBernoulliautoregressive
modelswhichaccountsforpartially-observedeventdata.
Thismodelcanbeusedinavarietyofcontextsinwhich
discreteeventdataexhibitsautoregressivestructure. We
providemeansquarederrorboundswhichsuggestthatour
methodcanaccuratelycaptureanetwork’sstructureinthe
presenceofmissingevents.Simulationsandarealdata
experimentshowthatourmethodyieldssignificantimprove-
mentcomparedwithignoringthemissedeventsandthat
ourmethodisrobusttomisspecificationoftheproportion
ofmissedevents.Theframeworkdescribedinthispaper
suggestsastrategyforaddressingregressionproblemswith
corrupteddatainotherGLMs,althoughfurtherworkis
neededtoextendourtheoreticalanalysisbeyondbinary
observations.
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