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Abstract: In the present paper, we continue our recent studies on a two-fluid Rolie-Poly
approximation of entangled polymer solutions in simple shear flows. We review the existing
literature on shear induced demixing (SID) in two-fluid models and highlight the apparent
similarities to a thermodynamic model of demixing. Focusing on steady unidirectional simple
shear flows driven by a constant applied shear stress, we show that when the frictional drag
between solvent and polymer is asymptotically large, our two-fluid model is mathematically
equivalent to a thermodynamic model in terms of its long-time concentration dynamics. In
particular, we show that SID minimizes a Liapunov functional £ distinct from the system’s free
energy F. We apply our asymptotic model to make predictions regarding nucleation (finite
amplitude instabilities) and coalescence phenomena in SID. Numerical calculations with the full
model corroborate the asymptotic model predictions. Finally, we apply the same asymptotic
analysis to two flows in which a thermodynamic mapping fails. First, we consider steady simple
shear flows driven by a constant boundary velocity (as opposed to a constant boundary stress),
wherein the hydrodynamic instability appears to have the same character but can no longer be
mapped to an equivalent thermodynamic instability. Second, we consider unsteady simple shear
flows driven by an oscillating boundary stress, wherein the non-linear dynamics of demixing are

totally distinct from what a thermodynamic model predicts.
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1. Introduction

When a thermodynamically stable mixture of polymer and solvent is subjected to simple
shear flow, there are circumstances under which the material may become hazy/turbid, indicative
of compositional inhomogeneity present over long length scales. In some respects, the induced
turbidity resembles what emerges in a quiescent system approaching the cloud point of a phase
transition. Indeed, early explorations of this phenomena [1] considered the optical turbidity to be
a universal signature of an incipient phase transition, and explained its emergence in flow via a
relatively simple line of reasoning: (1) phase transitions occur to minimize the free energy of a
system, (2) polymers in flow have an elastic free energy not present at equilibrium, therefore (3)
the phase diagram for a polymeric system in flow must be shifted relative to its equilibrium
position. The subtle problem with this reasoning is that (1) is not generally true for externally
forced systems (e.g. systems under flow). Thus, while it is true that flow will change the free
energy of the system in some way, the free energy cannot necessarily be used to predict phase

transitions for systems under flow.

As the weaknesses of such quasi-thermodynamic ideas became apparent, attention turned
toward more general ‘two-fluid’ models of polymer solutions [2] [3] [4] [5] [6]. In a two-fluid
model, polymer migration arises naturally via competition between the elastic, osmotic, and drag
forces acting on the polymers. Through this new framework, it was discovered (and confirmed
experimentally) that flow-induced turbidity can occur by stress-enhanced concentration

fluctuations (SECF), with no need for an induced phase transition. It is worth noting, however,



that SECF does not explain all experimentally observed instances of flow-induced
inhomogeneity — some systems do seem to show that shear can induce the formation of a second

phase that persists for long times after the cessation of flow (see [1] and references therein).

More recent studies of two-fluid models in flow have shown that, under certain conditions,
one can predict the existence of a linear shear-induced demixing (SID) instability, where
demixing is in fact suggestive of a flow-induced shift in the equilibrium phase diagram [7] [8]
[91[10] [11][12][13][14][15]. These demixing instabilities are distinct from SECF in that the
system develops a ‘banded’ concentration profile that ages with time, and continuous
fluctuations are not required to maintain compositional inhomogeneity at steady state. For these
SID instabilities, an apparent similarity to quiescent phase transitions does not imply that SID is
thermodynamically driven in any sense, but thermodynamic intuitions of phase transitions seem
to describe most of the observed dynamics (at least for the case of steady simple shear flow).

Clear experimental evidence of SID can be found in the work of Migler, Liu, and Pine [16].

Overall, it seems that SID has a paradoxical nature of sorts — while the instability is not
thermodynamic in nature, for all practical purposes it seems to behave as though it were. In the
present report we consider this paradox and produce some new understanding; we show that for
a certain asymptotic limit of our two-fluid model, one can compute a Lyapunov functional
(distinct from the free energy) that is minimized during SID for steady simple shear flows driven
by a constant shear stress. This allows for an exact mapping between SID and the analogous
problem of demixing in quiescent systems. We then show that the resulting asymptotic model of
SID is in agreement with the full model predictions; the agreement is quantitative with respect to

stability boundaries and steady states, and qualitative with respect to the intermediate dynamics.
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Thus, the dynamics of the instability are mathematically similar to a thermodynamically driven

instability, in spite of the fact that the instability is not thermodynamic in nature.

A key point is that the asymptotic model of SID creates a useful link to results that are well
established for thermodynamically driven instabilities but are still open questions for SID. Two
of the most important outstanding questions for SID instabilities are the local stability of
inhomogeneous states (related to coarsening) and the local and global stability of homogeneous
states (related to nucleation and spinodal decomposition) for macroscopic systems. These can be
challenging problems to probe in a nonequilibrium system, but are essential for understanding

how SID is likely to manifest in experimental contexts.

On the first point, we shall see that the asymptotic model predicts that demixing instabilities
always lead to bulk phase separation, as any system containing many small bands is always
linearly unstable to further coarsening. On the second point, the asymptotic model predicts that
the stability boundary for SID may not be sharply resolved in experiments: finite amplitude
fluctuations can tip a locally stable system towards demixing when it is sufficiently ‘close’ to a
linear stability boundary. For SID in steady simple shear flow, numerical simulations of the full

model are consistent with these predictions.

In spite of the apparent success of thermodynamic intuitions for SID in simple shear flows, it
is critical that one remain cautious when extrapolating to systems for which the validity of such
intuitions has yet to be established. To this point, the present manuscript offers two examples for

further consideration.



As a first example, the above-mentioned results hold true for steady simple shear flows
driven by a constant shear stress, but it is as-yet unknown whether the global stability results still
hold true for shear flows driven by a constant wall velocity. When exchanging constraints
related to external forcing, a Legendre transformation does not yield a new potential to be
minimized (as it does for equilibrium systems). The complication is that shear stress and wall
velocity are not conjugate variables for inhomogeneous shear flows (i.e. he overall shear rate
bears no relation to how an ‘effective’ free energy responds to changes in the stress). As a result,
Legendre transforms cannot serve the same purpose for which they are often employed in
equilibrium systems. Therefore, in spite of the fact that simulations of SID show qualitatively
similar results for the two modes of deformation, it may be that SID is not mathematically

congruent to a thermodynamic phase separation under conditions of fixed overall shear rate.

As a second example, we show that steady simple shear flow appears to be a special case in
the sense that an asymptotic model is not necessarily predictive far from the relevant asymptotic
limit in other flow types. For a particularly telling example, we employ the same methods of
analysis to construct an asymptotic model of SID instabilities in large amplitude oscillatory shear
flows (LAOS) driven by an oscillating boundary stress. For this final case, we find that the
resulting asymptotic model is useful for predicting and explaining the onset of SID instabilities,

but generally inadequate for describing the dynamics that follow.



2. Background

2.1. The two-fluid model approximation and stress-induced migration

Two-fluid models are a phenomenological but historically successful means of describing
compositionally inhomogeneous complex fluids [17] [2] [6] [4]. For the present study, we focus
on a two-fluid model of semi-dilute entangled polymer solutions (very long chains that are well
entangled but present in low volume fractions) as considered in our previous work [9] [10] [18]
[13]. In a two-fluid model, the molecular details of each species (polymer and solvent) are
coarse-grained into a continuum model, in which all species are treated as co-continuous,
interpenetrating continuum fluids, coupled together by drag forces and by an incompressibility
constraint. In this framework, predictions of polymer migration arise naturally via a force

balance on the polymer fluid component.

The phenomenological two-fluid approximation is reasonably justified for the case of semi-
dilute entangled polymer solutions: the polymers do experience drag forces with the solvent, the
overall solution is nearly incompressible, and the mesh-like structure of the entangled polymers
makes the two components effectively co-continuous. In several notable cases, the predictions
of two-fluid models have been successfully validated against experiments on semi-dilute

polymer solutions [2] [4] [19] [20] [16].

2.2. Shear induced demixing in two-fluid models: Linear stability predictions

Simple shear flow is often considered to be free of stress gradients, and so it is not
immediately obvious how stress induced migration would be occur in such a flow. While it is

true that there are no macroscopic stress gradients from the geometry itself, stress gradients can
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still arise on microscopic length-scales through amplification of the effects of thermal
fluctuations in the system. For example, if the polymer concentration is slightly perturbed from
homogeneity by a thermal fluctuation, the velocity field will become slightly perturbed as well
(assuming a composition-dependent viscosity). This, in turn, perturbs the elastic stresses in the
system and creates the opportunity for stress-induced migration up concentration gradients [2].
This mechanism for stress induced migration in simple shear flows describes both SECF (where
all linear perturbations eventually decay) and SID (where some perturbations are linearly

unstable). Here, we are exclusively interested in the latter case.

SID instabilities in two-fluid models have been studied for a range of different entangled
polymeric materials, including wormlike micelles [7] [8], polymer blends [11] [12] [21], and
polymer solutions [9] [10] [13], and it is fair to say that this aspect of the phenomenon is well
understood. Although there are some subtle differences with regard to the underlying equations
and the resulting predictions, the most important qualitative predictions appear to be
transferrable among the three cases. For these materials, a linear instability to demixing first
develops at shear rates around the inverse reptation time, when normal stresses are large and
shear thinning is present. Under such conditions, the system exhibits a rheological “plateau”,
and small changes in concentration can lead to relatively large changes in shear rate, with regions
of low/high concentration having higher/lower shear rates. This leads to the polymer being more
deformed in regions of low concentration, and less deformed in regions of high concentration.
As aresult, the polymer’s normal stresses are larger in regions of lower concentration, which
promotes migration up concentration gradients, and a demixing instability is inevitable if

osmotic stresses are sufficiently weak (i.e. when the solvent quality is sufficiently poor) [13].



When a linear instability to demixing occurs, inhomogeneous domains develop with a
preferred wavelength (fastest growing linear mode), and unstable modes are always oriented in
the flow gradient direction [4]. The preferred wavelength in the linear regime is ultimately set
by a balance of capillary limitations (suppressing short wavelength modes) and diffusive
limitations (suppressing long wavelength modes). In purely diffusive systems, the lengthscale
for capillary effects (i.e. the solution correlation length §) sets the preferred wavelength for

demixing, but for viscoelastic systems the preferred wavelength is often substantially longer.

To understand how a preferred wavelength is selected in an entangled viscoelastic system, it
is worthwhile to consider the effects of ‘migration induced stress’: demixing arises via dilations
of the mesh, and these dilations are rightly viewed as a secondary deformation (hence the term
‘migration induced stress’) that feeds back into the absolute elastic stress and attenuates further
migration. In the context of selecting a preferred wavelength for demixing, the stress incurred by
migration must be allowed to relax before additional migration can take place. Stress relaxation
is generally growth limiting for perturbation wavelengths larger than the solution correlation
length ¢ (where capillary forces limit growth) but smaller than the ‘magic length’ £ (where
diffusion is growth limiting). The ‘magic length’ £ is simply the length-scale at which
diffusion and stress relaxation happen at the same time-scale [20], and can be defined relative to

the equilibrium diffusion coefficient D,, and terminal relaxation time 7, as P2 = DeqTp.

When the magic length is much longer than the solution correlation length, £./& > 1, the

preferred wavelength for demixing tends to scale as the geometric mean of the two, [£.&]*/2.
The effects of migration induced stress on wavelength selection have been previously

documented in demixing of viscoelastic mixtures, irrespective of whether demixing is driven by
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hydrodynamic or thermodynamic forces [8] [22] . Overall, the initial linear instability to SID in
two-fluid models is well understood at this time, but important aspects of the non-linear

dynamics require further attention.

2.3. Shear induced demixing in two-fluid models: Non-linear predictions

Although linear stability analysis is useful for determining the length scale and orientation at
which inhomogeneity first develops, at longer times the perturbation will grow to the point
where non-linear effects are important, and analysis of the linear instability is no longer
predictive. At this point, there are few (if any) established analytical results for the non-linear
dynamics of SID in two-fluid models, and most of what is known has been established via

numerical simulations.

Indeed, in spite of the significant effort to simulate the nonlinear evolution of SID, the
present understanding of SID is still incomplete. What is lacking (and what will be the focus of
this paper) is an understanding of non-linear stability in homogeneous states (nucleation and
growth mechanisms for demixing) and linear stability of inhomogeneous states (long time
coarsening dynamics in macroscopic systems). In the paragraphs that follow, we discuss the
experimental relevance of these questions as well as the difficulty of addressing them through

numerical simulations alone.

First, when quasi-statically increasing the applied shear rate from zero, when does one first
encounter a demixed flow, and how does it form? Will the system only demix when the linear
stability boundary is encountered, or will a finite amplitude instability cause demixing to occur
prior to that point? For thermodynamically-driven demixing instabilities, it is well known that

9



macroscopic phase separation always reduces the system’s free energy, and homogeneous
systems that are locally stable but capable of being demixed will inevitably demix by finite
amplitude instabilities (nucleation) if given a sufficiently long waiting time. In equilibrium
systems, comparing the relative stability of locally stable systems is easy — one only needs to
compare the free energy of the two states. In non-equilibrium systems, however, this is generally
a much harder problem. However, if thermodynamic intuitions of SID are valid, then it should
be possible to use the mathematical tools of equilibrium thermodynamics to assess the relative

stability of all available steady states.

Second, after the onset of an SID instability, the perturbation grows until the flow is
comprised of distinct ‘bands’ of high/low polymer concentration, oriented in the flow gradient
direction. Transitions between high/low concentration bands develop over a small interfacial
length-scale (the solution correlation length ¢ for our model). After the bands form, simulations
show that there is a tendency (at least initially) for the bands to ripen together, decreasing the
total number of bands and increasing the average size of a band. Some simulations have
suggested that the ripening process terminates before bands become macroscopic, but these
simulations were of relatively short duration [11] [12] or contained thermodynamically
inconsistent interfacial stresses [10]. The open question is whether the system will ripen towards
a macroscopically banded state, or is there a preferred intermediate size for which the shear
bands are most stable? As we have already mentioned, existing simulations show a clear
tendency for bands to ripen initially but the long-time behavior is still an open problem, in our
opinion. Furthermore, it is unlikely that this question could be resolved with numerical

simulations alone; coarsening becomes prohibitively stiff (temporally and spatially) when the
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gap dimension is exceedingly large relative to the typical interfacial width. However, if
thermodynamic intuitions of SID are valid, then scaling laws for coarsening dynamics are well-

established [23] [24].

2.4. Dynamics of Demixing in a Fluid Mixture at Rest

To the reader familiar with thermodynamically driven demixing instabilities [15] [23] [25],
much of what we have described for SID may evoke strong parallels to the linear and non-linear
dynamics of thermodynamically-driven demixing instabilities. With regards to the linear
instability, both systems demix with a preferred wavelength that is set by a balance of diffusive
effects (favoring short wavelengths) and capillary effects (favoring long wavelengths). With
regards to nonlinear dynamics, both systems show a tendency to coarsen towards a state
involving two locally homogeneous regions.

To the reader unfamiliar with the dynamics of thermodynamically driven phase transitions,
we have provided an appendix to review a number of important ‘textbook’ results. Specifically,
we review predictions for model B of the Halperin-Honenberg classification scheme [25]. In the
appendix, we confirm that the free energy F is minimized by the dynamics of model B, we
derive the conditions for linear instability, and we show how a ‘common tangent’ construction

can be used to obtain the compositions of phases in equilibrium.

If an analogy between SID and model B phase transitions can be rigorously supported, then
the two important questions on SID, discussed above, can be trivially answered. For model B
systems, demixing is the most favorable state of the system whenever a phase separated solution

exists — if the same is true for SID, then (given a sufficiently long waiting time for a system with
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‘noise’) a high shear band will first nucleate at the lowest possible shear rate for which
inhomogeneous steady states exist. Second, for model B systems, any demixed state that is
incompletely coarsened is linearly unstable — if the same is true for SID, then SID will eventually

produce macroscopic shear banding if given sufficient time.

3. Flow-Induced Concentration Inhomogeneity in a Semi-Dilute Polymer Solution for

1D Shear Flows with a Constant Wall Shear Stress

3.1. Governing Equations for the 2-Fluid Model

The full tensorial governing equations for our two-fluid model of a semi-dilute entangled
polymer solution (good solvent conditions) have been derived in a series of previous papers from
our group [13]. The derivation largely follows the ‘Rayleighan’ method as outlined by Doi and
Onuki [5]. In keeping with our previous work, we will employ the so-called ‘1D’ approximation
in which spatial variations of composition, velocity, etc. are assumed to occur only in the flow
gradient direction. This ‘1D’ approximation greatly simplifies the problem, and is adequate to
describe both the conditions for linear instability and the ‘banded’ structure observed at long

times after demixing.

Here, we present the equations for study of ‘1D’ simple shear flows, where the homogeneous
state is a unidirectional shear flow, u(x, y, z) = u(y, t)i,, with a uniform polymer volume
fraction, ¢,. The flow is assumed to be inertialess, i.e. the Reynolds number is vanishingly small.
Relative to other two-fluid models of polymeric systems, our model primarily differs in its
choice of constitutive model (Rolie Poly), which is a modern standard for single-mode, tube-
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based models of entangled polymer rheology [26] [27]. The Rolie Poly model is best suited to
describe well-entangled and monodisperse linear chain polymer melts and solutions (e.g. more
than ten tube segments per chain). For polymers that are unentangled, weakly entangled,

polydisperse and/or branched, a different two fluid model should be employed.

The governing equations presented here have been nondimensionalized following an
appropriate selection of characteristic scales as outlined in our prior work [13]. The relevant
dimensionless groups governing the problem are the Weissenberg number Wi (strain rate
relative to reptation-based stress relaxation rate), viscosity ratio @ (solvent viscosity relative to
polymer viscosity), relaxation time ratio 8 (reptation time relative to Rouse reorientation time,
approximately equal to 3Z, where Z is the average number of ‘tube’ segments per chain), and
moduli ratio E (elastic modulus relative to osmotic modulus). There are also two metrics of the
system size, comparing the gap dimension to relevant microscopic length-scales: H/ (gap
dimension H relative to solution correlation length &), and H (gap dimension H relative to the
‘magic length’, £-). A full table of all variables used in the present report can be found in the

appendix.

For reference, the full governing equations are listed below, and variables are defined as

follows:

t = time (normalized by 7 (¢, ), the reptation time of a polymer solution at its mean

polymer volume fraction ¢,)
y = gap position (normalized by H, the system size)

¢ = polymer volume fraction (normalized by ¢,)
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up = polymer velocity in the flow direction (normalized by H /7 (¢,) so that the

dimensionless velocity at the moving wall is equal to the Weissenberg number, W)
ug = solvent velocity in the flow direction (normalized by H /T (¢,))

vp = polymer velocity in the flow gradient direction (normalized by ¢2 x5/ (¢,)H, where
x5! is the osmotic susceptibility and {(¢,) is the drag coefficient for polymer and solvent for a

polymer solution with polymer volume fraction ¢,)
Q;j = the ij component of the polymer conformation tensor.

I1;; = the ij component of the total polymer stress tensor (including both elastic and osmotic

effects).
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To represent an imposed flow, we are primarily interested in simple start-up protocols, where
a system begins at rest and is then deformed with a constant wall velocity or a constant applied

shear stress. In both cases, we set ug(y = 0) = 0, and for the former case, we use Qy,, +

wdug/dy = X, aty = 1 while the latter case uses ug(y = 1) = 1.

For the purposes of the present report, we solve equations (1) - (11) using Lees Edwards
boundary conditions [28], which are an analogue to periodic boundary conditions for systems in
simple shear flow. All variables except up and ug are assumed to be periodic, while up and ug
have a ‘jump’ discontinuity across the boundary [28], since the imposed deformation requires a
net increase in the flow velocity from y = 0 to y = 1. More details on the choice of boundary

conditions is given in an appendix for the interested reader.

Finally, the polymer concentration and conformation also require initial conditions; in

general, we choose to have the polymer conformation initialized at its equilibrium state while a
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small amount of random noise is introduced into an otherwise uniform initial concentration

profile.

From a cursory inspection, it is not immediately obvious that the governing equations of our
two-fluid model should be reducible to any thermodynamically driven model of demixing (as
numerical results seem to show). For comparision, model B of the Halperin-Honenberg
classification scheme [25] is a simple model for thermodynamically driven demixing
instabilities. For model B, transport occurs via migration down chemical potential gradients, and

in 1D the polymer volume fraction would evolve as:

d
Jt dy

M<¢>j—y[§—g]] (12)

where M > 0 is the species mobility, F is the system free energy, and ¢, y are temporal and
spatial coordinates. In the present paper we seek to illuminate an underlying relationship
between SID in the full two-fluid model (eqn. (1) - (11)) and thermodynamically driven

demixing as described by model B (eqn. (12)).

Having presented our version of a two-fluid model, the interested reader may wonder how
the conclusions of our paper can be generalized to other two-fluid systems. In our view, the
analysis that we perform here should be transferrable to any viscoelastic multi-fluid model free
of constitutive instabilities (i.e. homogeneous shear banding) [4] [7] [11] [29] [21] [30] [31].
There may be significant quantitative differences with regard to the conditions under which SID
instabilities occur, but the main qualitative conclusions (regarding whether SID resembles a

thermodynamically driven instability) should not be sensitive to one’s choice of two-fluid model.
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3.2. The Analogy Between SID and Model B

If there are mathematical similarities between model B phase separations and SID in our two-
fluid model, it is worthwhile to revisit insights of Rangel-Nafaile et al. and present a more
rigorous framing for their quasi-thermodynamic hypothesis of SID [1]. Their hypothesis,
roughly summarized, was that the system evolves to minimize its total free energy, even in the
presence of dissipative external forcing (flow). In the absence of any non-equilibrium dynamical
equations (such as those in the preceding section), this hypothesis may be a useful starting point,
but it has no actual basis in non-equilibrium thermodynamics or statistical mechanics. However,
given a set of dynamical equations for any arbitrary system, it is sometimes possible to find a
‘Lyapunov functional’ to those equations. In such cases, the Lyapunov functional can be used as
a non-equilibrium surrogate for thermodynamic intuitions of energy minimization [32] (e.g. the

state with the lowest value of the Lyapunov functional will always be the most stable)

For a given set of dynamical equations, a Lyapunov functional £ has the property of being
strictly non-increasing along any deterministic trajectory of the system, dL/dt < 0. In this
sense, one can say that the dynamics of the system evolve to minimize £. Stationary solutions to
the dynamics are found at local minimums of £, and the global stability of these stationary
solutions can be ranked in order of decreasing L. For a quiescent system (no external forcing),
the laws of thermodynamics require that dF /0t < 0 and so it is trivial to show that the free
energy of such a system is a Lyapunov functional for its dynamics. In this case, the criterion for

local and global stability distinguish true equilibrium states from thermodynamically unstable

17



and metastable states. By analogy, we can refer to a Lyapunov functional as an ‘effective’ free

energy for systems subject to external forcing.

With this in mind, we can reframe the hypothesis of Rangel-Nafaile et. al. [1] in a way that
requires no heuristic assumptions of non-equilibrium thermodynamics. Formally, we
hypothesize that the equations of motion for inhomogeneous polymer solutions in shear flow
possess a Lyapunov functional £ that differs from the equilibrium Lyapunov functional F by an
additive, local (bulk) contribution, A(¢, X), that depends only on the local composition and the

instantaneous flow protocol:

H
L= f dy (fu(@) + A5 + fun($.V9))  (13)
0

where X is the flow protocol defined in terms of an applied wall stress in this case. The
function A would represent a flow-induced shift to an effective free energy landscape governing
the dynamics of mixing/demixing within the system. Note, however, that £ is not the actual free
energy of the system. This is the key distinction between the analysis presented here and the
original work of Rangel-Nafaile et al. If such a form of £ exists for steady simple shear flow,
then for the 1D case there would be no mathematically discernible difference between SID and a
model B phase transition. For the remainder of this paper, the equivalence of SID and model B

in 1D is referred to as the quasi-thermodynamic hypothesis of shear induced demixing (QTH).

Framed in this way, it is easy to point out that QTH fails even for the kinetics of demixing
during the first stages of spinodal decomposition. When selecting a preferred wavelength for
demixing, the effects from migration-induced stress (selectively attenuating the growth of short

wavelength modes) cannot be reduced to a shift in the effective free energy of mixing, since the
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free energy penalty for such perturbations is assumed to be independent of the perturbation
wavelength. Therefore, we suggest that a better understanding of shear induced demixing may
be found in a weaker version of QTH (wQTH) that still preserves the original thermodynamic

intuition. In two parts, we propose wQTH as follows:
(a) QTH is true for some asymptotically limiting cases of SID

(b) Away from the relevant asymptotic limit in (a), the correspondence between SID and
model B is not exact, but any distinctions are strictly quantitative, and the essential qualitative

physics of the underlying transition and its dynamics are unchanged.

In the work that follows, we will show that there are some flow protocols for which wQTH
appears to hold true, some where it does not, and others where it is uncertain. Each of these
cases are interesting and important in their own right; when wQTH appears to be true (as we will
show for simple shear flow with constant shear stress), it allows us to answer questions about
global stability analysis and asymptotic coarsening dynamics, as previously discussed. When
wQTH is demonstrably false (as we will show for LAOS flows), it opens up opportunities for
experimental validation of non-trivial predictions from the numerical simulations. And finally,
for the case of fixed wall velocity (as opposed to fixed stress) wQTH is uncertain because the
well-developed tools for exchanging constraints in thermodynamic systems (Legendre

transforms) do not apply for exchanging constant shear stress for constant shear rate.

In the work that follows, we will prove QTH in simple shear flow for a two-fluid model in
the limit of high coupling friction (§ > 1 for fixed H/&). We will then compare simulations of
the asymptotic model with the full model for both large and small (realistic) coupling frictions,
with some discussion for why QTH appears to hold when the coupling friction is not large
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(hence demonstrating wQTH). This work allows for a concise resolution to several outstanding
problems in 1D SID, to which we have previously alluded. A representative set of simulation
results are also provided to support the conclusions of this analysis. Finally, the methods used
for proving wQTH in simple shear flow are applied to oscillatory shear flows, and supporting

simulation results are given.

3.3. The Limit of Large Coupling Friction: Proof of QTH for this Case in 1D Steady Shear

Flows

It has long been recognized that much of the essential behavior of a two-fluid model is
preserved under the so-called ‘adiabatic approximation’ [2] [4] [14]. Under this approximation,
the fluid’s viscoelastic constitutive behavior is replaced with a purely rate-dependent constitutive
law having the same steady state response. This approximation provides a sensible strategy for
slaving changes in stress to changes in composition, which greatly simplifies the governing
equations. Here, we show that for 1D steady simple shear flow, the adiabatic approximation can
be formally constructed by considering the asymptotic limit of large coupling friction between

the polymer and solvent.

In our 1D two-fluid model, the coupling friction controls the rate of diffusion but not the rate
of stress relaxation. When the coupling friction is made to be very large, the characteristic time-
scale for mass transport can be asymptotically separated from the characteristic timescale for
stress relaxation. On time-scales relevant to stress relaxation, mass transport effects can be
neglected — the coupling friction is so large that the polymer concentration appears to be ‘frozen’
in time. At longer time-scales, mass transport effects are evident, but viscoelastic transients are
not — the velocity profile and polymer conformation respond quasi-statically to changes in
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polymer concentration. Therefore, when the system is viewed on time-scales relevant to mass
transport, the asymptotic limit of large coupling friction is functionally equivalent to the classical

adiabatic approximation.

In our dimensionless two-fluid model, the coupling friction is encoded in the magic length
that appears in & and H. When the coupling friction is asymptotically large, the magic length
becomes asymptotically small, since polymers are unable to migrate any significant distance on
the time-scale of stress relaxation. Thus, in the high coupling friction limit, both & and H

become asymptotically large while their ratio remains fixed (i.e. £ > 1 for fixed H /).

In a physically realistic description of semi-dilute polymer solutions, the coupling friction
cannot be increased independently from the stress relaxation time, since the two are mutually
dependent on the solvent viscosity. If the polymer has a mesh size of ¢ and the solvent has a
viscosity ug, then the overall drag coefficient between the polymer and the mesh must be given
by { ~ us/&? [17]. Furthermore, by definition, the drag coefficient { must be related to the
magic length by:

_Poxo’ _tc
¢ Tp

Deq

where D, is the equilibrium coefficient of diffusion. Rearranging, we find:

— 52 t%

2 1 —

d))( JR— —_
o0A0 T

ﬁ_ Us _( Us ) G(¢o) — oF
02 p2xgtty  \G(Po)Tn/ \P2x5')

21



Thus, the quantity & = &/£, should be constrained by & ~ [Ew]*/?. Since semi-dilute
entangled polymer solutions typically have @w « 1, the asymptotic limit of high coupling friction
(€ > 1 for fixed £ /H) is the opposite of the physically relevant asymptotic limit (£ <« 1).
Nonetheless, we will show that the asymptotic model exactly captures stability boundaries in the
macroscopic limit (H > 1) and is quantitatively useful for predicting steady state banded
concentration profiles to O(@w). For the intermediate dynamics, changing the coupling friction
quantitatively effects the course of demixing (e.g. changing the timescales and lengthscales that
one observes) but does not generally change the available homogeneous/inhomogeneous steady
states or their linear stability. Therefore, the qualitative progressions of demixing and coarsening

are left intact, in spite of any potentially unrealistic choice of coupling friction.

To resolve composition changes in the limit of high coupling friction, we re-scale the
temporal axis to obtain a dimensionless diffusive timescale T = t/H?. After rescaling, the
momentum balance equations are unchanged, but the re-scaled transport equation (1) is now

given by:

da¢ _ d 14
Fri —@(qbvp) (14)

and the constitutive equations by:

1 aQi]-
ﬁ?-l_ P _Rij' (15)

For fixed £ /H, we can define a small parameter in the limit of asymptotically large coupling

friction as € = 1/H?. We then seek an asymptotic solution to the governing equations in the
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limit of € < 1. For the polymer volume fraction (and other independent variables), we define

the asymptotic series:

d(tr,y,€) = Fo(e)po(t,y) + F1(e)p1(1,y) + Fr(e)d (T, y) + - (16)

Here ¢, is the leading order solution (with gauge function Fy(€)), ¢ is the first correction
(with gauge function F; (€)) and so on. Asymptotic series for other variables are defined with the
same subscript notation. Because the polymer volume fraction is non-vanishing in the limit of

€ — 0, we know that Fy(e) = 1, and the O(1) equations are given by:

)0 0
6_'[0 = - @ (¢0VP,0) (17)
u
o =My + Ew a;O (18)
Upog = Uso (19)
a5 011
Upo = @y 302 aj;/,o (20)

u
2Qxy,0 % = Rxx,o (21)

0=Ryy0=Rzzo0 (22)
dup o
Qyy,0 Dy Ryyo (23)

The tensor components I1;; o and R;; o are defined as before, but now in terms of ¢, and Q;; ¢
instead of ¢ and Q;;. For boundary conditions, we choose Lees-Edwards and constant shear

stress, Xy, as described by equations Error! Reference source not found. - Error! Reference
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source not found.. We also solve the total momentum balance equation (18) in its integrated

form at each point.

One may note that highest order time derivatives have been lost in the governing equation for
the conformation tensor. This means that at T = 0 we can no longer impose an initial condition;
instead, there must be some temporal boundary layer within which the initial conditions can be
applied and viscoelastic start-up transients can be resolved. We therefore recognize the
approximate solution in terms of € < 1 as a singular asymptotic expansion. In the language of
such solutions, the expansion (16) is relevant to the "outer" - i.e. long-time - approximation. The
equations (1) - (11) in terms of time t (scaled with the reptation time) are the basis of the "inner"
asymptotic solution. Without knowledge of the ‘inner solution’ and a proof of matching with the
‘outer solution’, it is not a priori obvious that the governing equations presented above can be
considered a valid asymptotic description of the high coupling friction dynamics of the full
model. In the interest of concise exposition, we do not show the full details of the short-time
startup problem here, but we ask the interested reader to consult the appendices where this

analysis is given in detail, including the matching condition with the inner solution,
(inner solution);s,; < (outer solution),«; inthe limite — 0 (24)

In broad strokes, the matching process goes as follows: The inner solution resolves
viscoelastic transients but excludes polymer migration to leading order. At long times, the inner
solution approaches a steady state solution for the fixed (potentially inhomogeneous)
concentration profile. If this same concentration profile is used as the initial condition to the
outer solution, then at T = 0 the conformation tensor and velocity profile exactly match with the

steady state solution of the inner problem. For t > 0, as long as the initial perturbation is
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smooth, the dynamics of the outer solution are also smooth about T = 0. When the dynamics are
smooth, they can be Taylor expanded, and so the mismatch is found to be O(¢) for T << 1. This
mismatch determines the gauge function for the first correction to the inner solution, and further

corrections to the inner/outer solutions can be obtained.

Returning to the governing equations in the limit of high coupling friction (the outer
equations, (17)- (23)), we see from (19) that the polymer and solvent have the same velocity in
the direction of the undisturbed/base flow. Considering the total momentum balance equation
(18) and the constitutive equation (21) - (23), we also see that the polymer conformation

tensor is always at steady state with respect to the local composition and applied shear stress:
Qij,O(T: y) = ié;'s(flbo (T, ¥),Zo) (25)
The same is also true of the total polymer stress tensor:
Oij0(ty) = Hisjg(qbo (T, ¥),Zo) (26)

This is equivalent to the usual adiabatic approximation. We also point out that the preceding
steps have assumed a monotonic (invertible) relationship between the steady state shear stress
and shear rate. A more careful analysis of the € <« 1 limit is required for fluids with

homogeneous shear banding instabilities.

At this point, the concentration equation can be written as:

90 _ 94129

_ SS
aT ay ¢O ay Hyy (¢0’ 20) (27)

With periodic boundary conditions, the above is a well-posed PDE for the polymer volume

fraction in solution. By inspection, we may anticipate some similarities to the structure of model
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B, as defined in equation (12). It is perhaps intuitively obvious that there should be very similar
physics to model B in this limit where the viscoelastic stress (and flow) only evolve in response
to the slowly developing concentration distribution.

The expected similarities can be explicitly revealed through the following steps: recognizing
that Hisjs involves both elastic and osmotic stresses, we interpret the explicitly ¢-dependent

elastic stresses as an effective contribution to the osmotic pressure. Then, using the
thermodynamic relationship between a free energy and osmotic pressure, we back out an

‘effective’ free energy density, A(¢, Z,), from the elastic terms.

In the first step, we have:

—I135 (P0, Zo) = 15 (o) + T (o, Zo) (28)

1 2908 92py 5|0
735 (bo) = §¢5+<§) e [¢0 ay‘”" 4| o

0%¢ |6¢0
0 9y2 4

l (29)

(o Zo) = Ey* | ~(055 (B0 20) — 1)

5
+ 5 (r(@% (¢, %)) — 3 — In(det(Q* (¢, zo))))] (30)

In the second step, we look back to the derivation of our two-fluid model and see that the

osmotic pressure 7t and chemical potential u are defined in terms of the free energy F as follows:

ot du d OF

o %u " %mes OV

When the local contribution to the osmotic pressure, 7°(¢), is known, one can invert (31)

to solve for the corresponding value of the local (bulk) free energy of mixing f; (¢):
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d’ref d)
The value of ¢, may be chosen arbitrarily (corresponds to a constant of integration, and the

free energy is only defined to within a constant) so we typically choose ¢,..; = 1, corresponding

to the homogeneous concentration of the solution.
Away from equilibrium, we propose the existence of £ satisfying QTH, such that:

Jd 6L

d
— (95 + %) = pg——— (36)
ay( ry )= %o dy 5,

If £ satisfies QTH, then the above equation reduces to an expression for A (the flow-induced

shift to the effective free energy) in terms of ¢

om0
oy~ %5, 54,

omel %A

TN bo 992 (38)

Integrating as before, we obtain:

el ',2 _ el re:z
(n (¢',2o) ¢Z (Pres 0)) (39)
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Thus, we have proven part (a) of wQTH by showing the existence of A satisfying QTH in the

limit of high coupling friction. Specifically, we can now write equation (27) as:

o, _of o 40
a%—@ (¢o)@[5750] (40)

With M(¢y) = ¢, /2 and £ defined in a manner consistent with equation (13).

L= Hf dy [fL(¢o) + Ao, Zo) + far <¢o;% )] (41)

The interested reader may wonder how the expression for A(¢q, o) compares to the actual
elastic free energy density of the system. In our two-fluid model derivation, we assume an

elastic free energy density f¢ from Rubber elasticity theory [33], such that in our dimensionless

units:

1
fe1($, @) = 5E¢**(tr(Q) — 3 —In(det(Q)))  (42)

Thus, the elastic free energy density f¢ is only indirectly related to the elastic contribution in
L, since ones choice of f¢ determines the elastic stresses that appear in the momentum balances.
Our analysis conclusively shows that SID in a two-fluid model does not minimize a quantity that

is equivalent to the total free energy of the system.

4. Relationship Between the O(1) Asymptotic Equations and the Full 2-Fluid Model for

1D Shear Flows with a Constant Wall Shear Stress

The asymptotic limit of high coupling friction (£ > 1 for fixed /H) may be a useful

construct for demonstrating a relationship between model B and SID, but it is certainly not
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representative of the real systems that our 2-fluid model is intended to describe (§~w!/? « 1).
Therefore, in this section, we seek to understand how the asymptotic model differs from the full
model for € varying from the high friction limit to more realistic values of é~w /2. If part (b) of
wQTH holds true, then the high coupling friction limit will still provide a meaningful qualitative

description of the underlying physics for realistic coupling friction.

4.1. Linear Stability Results

To limit the scope of our investigation, we will be primarily concerned with studying the
demixing instability that manifests in the range of 1 < Wi < 6, where the steady state shear
stress depends weakly on the applied shear rate [13]. For this study, we choose the following set
of material parameters to characterize a well-entangled semi-dilute polymer solution: 8 =
120,E = 0.15,@ = 10~*. Unless otherwise specified, we choose a gap dimension of H/¢ =
100. For a more complete discussion of how each of these parameters qualitatively influences
the system’s linear stability to SID, the reader may refer to our previous work on the subject
[13], and to related work by other authors [8]. In this section, we are primarily concerned with

determining how the predictions of the asymptotic model differ from those of the full model.

We begin by considering the linear stability of the asymptotic and full models. We perform
the linear stability analysis in the standard way, as outlined in our previous work [10].
Considering both the asymptotic model (¢ > 1) and the full model (finite &) we first assess the
stability of the longest wavelength mode that fits in the system, k = 2m, and then test additional

modes to determine whether the two models are in agreement with respect to the conditions
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under which SID can be observed. Note that k has been non-dimensionalized by 1/H here, and

k = 2m is the longest wavelength mode that can be accommodated by our boundary conditions.

The stability of the asymptotic model can be determined from the corresponding model B,
i.e. equation (40). The unstable window is locally bounded to a range of applied shear
stresses, 0.60 < £, < 0.64, corresponding to dimensionless strain rates of 3.2 < Wi < 11.5 in
the homogeneous base state. Within this unstable window, there is always a preferred (fastest
growing) wavelength at which inhomogeneity will develop. In analogy with model B, very near
the upper and lower limits of the unstable window, the k = 2w mode is preferred, but shorter
wavelengths are preferred in the interior of the unstable window. Furthermore, as with model B,
the location of the stability boundary depends only on the ratio £/H, and not on the values of &

and H independently.

By contrast, in the full model we find that the stability boundaries depend on & even for fixed
values of £/H (i.e. stability boundaries depend on the coupling friction). However, the
dependence on £ is extremely weak, and the numerical values of % at the upper and lower
bounds of the unstable window are in close (but not perfect) agreement with the asymptotic
model; the stability boundaries only disagree at the fourth decimal digit in this case, and more

generally to O(w/H?), as we will soon show.

In the Figure 1 below, we plot the lower critical shear stress for linear instability, 2§, as a
function of & for fixed H/& = 100. For large values of ¢ (high coupling friction), Z§ at the
lower stability window converges to the limiting value predicted by the asymptotic model. As &
decreases below 1073, a small departure is apparent, and a second asymptote is encountered for

sufficiently small values of the coupling friction.
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Figure 1: When the coupling friction is not asymptotically large (finite £), the position of the
system’s neutral stability boundary is not entirely independent of the coupling friction. As an example,
the figure above considers the lower critical shear stress for instability, 2§, as a function of ¢ for fixed
6 =120, = 10™*, and H/& = 100. Here, we find that the unstable window becomes slightly broader
with decreasing coupling friction (decreasing ). This effect may be attributed to the loss of a stabilizing
viscous contribution from the solvent, i.e. the friction is low enough for the polymer to shear band

without having to force the solvent to shear band as well.

For an explanation of this change in the stability boundary, recall that lower values of &
represent a reduced coupling friction in the present context. With a sufficiently weak coupling
friction, the Newtonian solvent is free to retain a linear velocity profile irrespective of any
demixing or shear banding of the polymer. Since the solvent’s resistance to shear banding is
stabilizing against SID, a reduced coupling friction (lower &) lessens the solvent’s influence and
slightly broadens the range of X, for which demixing will occur. However, it is clear from Figure

1 that this effect is very weak.
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If the governing equations of the full model are modified to prevent the two fluids from
having different shear rates (i.e. us = up for all conditions) then we find that the instability
window no longer depends on the coupling friction at all (i.e. stability only depends on &/H).
Considering equation (3) we see that the characteristic scale of the difference between ug and

Up OES as:

1 01, oE d%us k\?
w w5t ~ gy 0|7 (7) (43)

Thus, the unstable window of the k = 2w mode in the asymptotic model and the full model
differ by O(Ew/H?). For H = 1, as considered here, we have seen that the asymptotic model
offers a good prediction of the neutral stability boundary (accurate to O (@), where @ = 10™* in
this case) but any disagreement between the two becomes vanishingly small in the macroscopic

limit, represented asymptotically by H > 1 and fixed é~w /2.

Although the full model and the toy model agree with respect to the stability boundary of
k = 2m perturbations, it is not necessarily true that the broadest window of instability is
determined by the k = 2m mode (as is predicted by the asymptotic model). In other words, to
establish full agreement with respect to the boundaries of linear stability, we must confirm that
there are no experimentally relevant situations for which a k = 2m perturbation is stable but a

k > 2m perturbation is unstable.

As an example, we consider the same set of material parameters but for a larger system,
H/& = 10%, and a much lower coupling friction (§ = 10™* « @w'/?). Setting X, to a value that
is intermediate to the limiting unstable X, at low/high coupling friction (e.g. ¥; = 0.595 in

Figure 1), we find that the system is only unstable to perturbations of k = 2nm with n = 25 —
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122. Returning to the analysis of equation (43), we see that the stabilizing contribution of the
solvent viscosity is lost when k? ~ H? /@, coinciding with the lower bound of unstable k values.
The upper end of the unstable range is set by a resistance to forming concentration gradients on

length-scales below the solution correlation length, k~0O (H /£).

In this example, we have allowed an unphysically low coupling friction, and the intrusion of
unstable modes at short wavelength should be considered likewise unphysical. For realistic
values of the coupling friction, @ ~ &2, the wavelength at which solvent effects are lost should
be the same as the wavelength at which interfacial stresses become dominant, k? ~ H? /&2,
Furthermore, the loss of solvent viscous stabilization should generally be negligible O (@)
compared to the O (1) stabilizing effect that emerges from interfacial stresses, so in our view
there is no physical basis to argue that short wavelength modes can be unstable while longer

wavelength modes are not.

Overall, it seems that for any physically reasonable treatment of the coupling friction and the
interfacial stresses, the k = 2m mode should always have the broadest unstable window.
Furthermore, because the full model and the asymptotic model agree on the k = 2 stability
boundary for macroscopic systems, the asymptotic model and the full model are in agreement

with respect to the linear stability boundaries of SID.

Finally, it is worth noting that migration induced stress, which is absent in the asymptotic
model but present in the full model, has no influence on the absolute stability of the system.
When the rate of mass transport is slow (as is true at a neutral stability boundary), the
viscoelastic forces from migration induced stress are predominantly viscous. These viscous

stresses can attenuate — but never reverse — the velocity of migration within the system.
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4.2. Simulations and Nonlinear Dynamics for 1D Shear Flows with Constant Wall Shear

Stress

Now, for conditions that fall within the unstable window, we numerically solve the full
model and the asymptotic model for a range of &, spanning values that are realistic (§~@/?) to
unrealistic, but relevant to the asymptotic model (§ > 1). By means of these simulation results,

we confirm qualitative agreement of SID dynamics across all values of .

For a macroscopic system with realistic coupling friction, H > 1, &~w'/2, we have shown
that the full model and asymptotic model are in quantitative agreement with respect to the values
of Xy for which there exists a linear instability to SID. In this section, we will show that there is
also qualitative agreement in the non-linear dynamics that follow the initial demixing instability.
In particular, we show that for a range of &, there are coarsening dynamics and inhomogeneous
steady states in the full model that directly correspond to the coarsening dynamics and

inhomogeneous steady states predicted by the asymptotic model (and thus also model B).

The transient evolution of velocity and concentration profiles during demixing has been
discussed in detail in our previous work [10] [13]. We will summarize some of that work here,
but in the interest of concise exposition, we will primarily focus only on (1) changes in scalar
metrics of inhomogeneity and (2) the final concentration profile at steady state. For a metric of

the overall departure from a uniform concentration, we use the L2 norm of ¢ — 1:
1 1/2
Lo =|[ aya-or| (44)
0
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One might also want to consider the extent to which a departure from global homogeneity
involves regions where the concentration profile is varying in space. For this, we consider a

local metric of inhomogeneity, based on the L2 norm of V¢:

1/2

1 Kl ¢ 2
Lve=|[ v (32) | (45)

In Figure 2, we see that during the initial linear growth of inhomogeneity, both L,¢ and
L,V are increasing. In the terminal stages of demixing, both of these metrics begin to saturate.
Shortly thereafter, coarsening processes reduce the number of interfaces, which leads to
infrequent and abrupt increases in L, ¢ with a matching decrease in L,V¢. This process

continues until only two interfaces remain within the system (the minimum number that will

satisfy periodic boundary conditions).
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Figure 2: Illustrating the growth of global (a) and local (b) inhomogeneity during the course of a SID
instability. These simulations consider start-up flow of the asymptotic model (equations (17) - (23)) for
6 =120,E = 0.15,@ = 107% H/§ = 100, and X, = 0.6225. The imposed shear stress would
correspond to Wi = 7 for this system in homogeneous flow conditions. Simulations begin from an initial
concentration profile that is mostly homogeneous except for a small, O (10~>) perturbation of random
Gaussian noise. At short times, T < 0.1, both measures of inhomogeneity are increasing in time. At
longer times, T > 0.1, the global metric (a) continues to increase while the local metric (b) begins to
decrease with step-like changes. These step-like changes correspond to coarsening events wherein the
system reduces the number of interfaces that it contains.
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In Figure 3- Figure 5 below, we provide snapshots of the concentration profile at relevant
times for the simulation represented in Figure 2. These simulations correspond to solutions of
the asymptotic model with = 120,E = 0.15,@ = 107%, H/<,E = 100, deformed at £, = 0.6225
(corresponding to Wi = 7 in the associated homogeneous state). As an initial condition, the
polymer conformation tensor is assumed to be at rest (Q = I) and a small amount of random

Gaussian noise is applied to the concentration profile.

For the purposes of this work, we define the transition from spinodal decomposition to
coarsening as the time at which L,V¢ is globally maximized, here occurring roughly around t =
0.10. The concentration profile at this time is provided in Figure 3. At t = 0.1, the system has
selected a preferred (fastest growing) wavelength for inhomogeneity, and as the amplitude
saturates, coarsening begins. Typically it is the narrowest peaks/valleys that vanish first (in this

case, the peak near y = 0.55).
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Figure 3: Snapshot of the polymer concentration profile, taken at T = 0.1 after start-up. These
simulations consider start-up flow of the asymptotic model (equations (17) - (23)) for 8 = 120,E =
0.15,w = 10™*, H/& = 100, and %, = 0.6225. Beginning from an initial condition of small amplitude
random Gaussian noise, the system has selected a preferred (fastest growing) mode. The perturbation is
now roughly sinusoidal with wavenumber k = 107.
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At T = 1, the system has undergone several coarsening steps; the average spacing between
interfaces has increased, and we can clearly see an early indication of saturated amplitudes in the

concentration profile (in this case, most evident around y = 0.9):
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Figure 4: Snapshot of the concentration profile at T = 1.0 after start-up. Comparing to Figure 3, we
see that there are fewer bands (and fewer interfaces) than before. These simulations consider start-up
flow of the asymptotic model (equations (17) - (23)) for 8 = 120,E = 0.15,@ = 10~ H/& = 100, and
Yo = 0.6225.

Each coarsening step becomes successively slower than the last, but by T = 1000, we
observe the final coarsening step possible for our present system size. At this point, only two

interfaces remain:
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Figure 5: steady state concentration profile (t = 10%). Comparing to Figure 3 and Figure 4, we see
that the system has continued to coarsen, eliminating interfaces until there are only two remaining (the
minimum number possible for periodic boundary conditions). These simulations consider start-up flow
of the asymptotic model (equations (17) - (23)) for 8 = 120,E = 0.15,@ = 10~ H/& = 100, and
Yo = 0.6225.

The preceding simulation was performed using MatLab’s odel5s solver, N = 200 grid
points, and Fourier collocation for computing spatial derivatives. The spatial resolution provides
~20 grid points per interface, which yields a solution that is spatially and temporally converged.
However, with N = 100 (~10 grid points per interface) the system encounters a locally stable
stationary solution that is not completely coarsened (coarsening is arrested prematurely). In this
case, we have found that there is a modest (though perhaps initially surprising) constraint on the
spatial resolution required for fully converged dynamics. Demands on spatial resolution
becomes more problematic for larger systems, in which the coarsening dynamics become
increasingly slow. This is therefore a salient example where analytic results from the model B
literature are quite valuable: from the model B literature, we know that any incompletely

coarsened stationary state must be unstable, and the average domain size grows very slowly [23].
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Next, we compare the simulation results of the asymptotic model with the full model for & =
0.01,0.1, and 1. In each case, we initialize the system from the same random seed that was used
for the preceding simulations results described for the asymptotic model. For the largest value,
& = 1, the results are nearly indistinguishable from the asymptotic model (§ > 1). For the
smaller value of £ = 0.01, however, we see a significant departure at short times. The departure

at short times can be explained in terms of the effects of migration-induced strain on the

selection (and growth rate) of the preferred wavelength for demixing.
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Figure 6: comparing the global metric of inhomogeneity during the course of start-up for the
asymptotic model, and for the full model across a range of coupling frictions. These simulations consider
start-up flow of the asymptotic model (equations (17) - (23)) for 8 = 120,E = 0.15,@ = 1074, H/¢ =
100, and X, = 0.6225. For the largest value of § = 1, we find that the asymptotic model and the full
model are nearly indistinguishable from one another. With decreasing coupling friction, however, the

onset of demixing is increasingly delayed to longer times in . We attribute this delay to migration
induced stress causes the system to demix with a longer preferred wavelength and a slower overall growth
rate. After the initial spinodal period, however, the coarsening dynamics tend to look similar across all

values of & considered.

Similar trends are observed in a comparison of L,V¢ for all four cases. We have also
compared the steady state concentration profiles for the four cases in terms of the maximum and

minimum values of ¢ that appear within the system. In all four models, the maximum and
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minimum concentrations are in agreement to at least four decimal digits; the maximum and
minimum values are around ¢ = 1.04 and ¢ = 0.98, respectively. For the range of € considered
here, there is a small O (@) disparity in the steady state concentration due to the fact that the
asymptotic model does not account for differences in the polymer and solvent shear rate across

the interface between shear bands.

Overall, the numerical simulations provide evidence that the late stages of coarsening are
similar for the full model and the asymptotic model over the range of conditions considered.
Since we know that the asymptotic model (and model B) never show arrested coarsening at long

times, it is reasonable to expect that the full model will follow the same behavior.

If future studies encounter arrested coarsening in simple shear flow (excluding attribution to
inadequate spatial resolution) we speculate that the most likely underlying cause would be
related to differences in the polymer and solvent shear rate across the interface between bands.
For the moment, however, arrested coarsening seems like an unlikely scenario. We argue that
the O (@) effects of the solvent primarily serve to encourage a more linear velocity profile.
Coarsening events decrease the number of interfaces (where the velocity profile is locally non-
linear), and so we speculate that any O (@) effects neglected by the asymptotic model will only

serve to encourage coarsening rather than arrest it.

5. Using the Lyapunov Functional to Obtain New Results

In section 3 of this paper, we proved part (a) of WQTH: in the asymptotic limit of high
coupling friction, the leading order dynamics of SID in our two-fluid system are equivalent to the

dynamics of a model B phase separation. Then, in sections 4.1 and 4.2 of this work, we
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presented evidence that part (b) of wQTH holds as long as the coupling friction is not reduced
below values that are experimentally attainable, € ~ w'/2, and as long as the system can be
considered macroscopic, H > 1. Under such conditions, the asymptotic model predicts stability
boundaries with vanishingly small errors, O(w/H?). After the onset of a demixing instability,
we also find that the subsequent non-linear dynamics are in qualitative agreement, and the
eventual steady states are in quantitative agreement to O(@). At this point, we remind the reader
that we have only demonstrated these results for the case of simple shear flows driven by a

constant applied stress.

In many respects this work only serves to confirm what a number of researchers have long
suspected, namely that SID in a two-fluid model is indicative of a flow-induced change in the
potential responsible for mixing/demixing phenomena [1] [34] [28] [11] [35]. But now, we can
properly quantify that change in terms of A(¢, Z). In this section, we compute the Lyapunov
functional £ in terms of an effective bulk free energy density f, = f;, + A in the limit of §/H «
1. We then use tools from equilibrium thermodynamics to analyze the local and global stability

of both homogeneous and inhomogeneous steady states for different values of X.

In the limit of a macroscopic system, £/H <« 1, we are primarily interested in comparing
homogeneous steady states and fully coarsened inhomogeneous steady states (since all other
steady states are known to be unstable). For such systems, one can approximate the
concentration profile as two locally homogeneous regions of concentrations ¢! and ¢!/

connected by an interface of width O(§/H). For a fully homogeneous system, ¢! = ¢!/
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When computing £ or F for such a system, any contribution from the narrow interface can be
neglected to leading order, so that the relevant potential is only dependent on the state of the

system in the extended locally homogeneous regions:

L/H =y fa(¢",20) + ¥ fa(@",Z0) + O(/H)  (46)
where y! is the volume fraction of the system at ¢’ and y!! = 1 — y! is the volume fraction

of the system at ¢p'!. Furthermore, y is related to ¢! and ¢!’ by the conservation of mass

equation (lever rule):
'y +"(1 -y =1 (47)
Most importantly, there is only a finite set of admissible values for ¢! and ¢!’ at any given

Y. As a first constraint on ¢! and ¢!/, the polymer normal stress in the gradient direction must

be equal in each of the two bands to ensure that no further changes in concentration occur:
I35 (9", o) = M55, (4", Zo) (48)

A second, more subtle, constraint is that there must exist a valid solution for the interface
connecting the two locally homogeneous regions (i.e. the polymer normal stresses and shear
stresses must be balanced across the interface). For these kinds of problems, one often has to
solve an ‘inner solution’ that resolves the interface and uniquely determines the ‘outer solution’
(composition of bulk phases) via a matching condition. The correct outer solution is the one that

matches the inner solution far from the location of the interface.

One cannot usually obtain the matching condition without solving the entire inner solution,
but this case presents a fortunate exception to that rule. To satisfy a matching constraint, the

inner solution must become free of concentration gradients (locally homogeneous) very far from
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the interface. With this constraint in mind (and an appropriate integrating factor) the governing

equations of the inner solution can be integrated to obtain a constraint on ¢! and ¢!’ [36]:

0= de e (49)

11
¢ 1135 (¢, Zo) — M5, (¢, Zo)
¢I

The two constraints (48) and (49) on ¢! and ¢!’ can be equivalently represented as a
common tangent construction on the effective free energy density, f,, wherein the effective

osmotic pressure 1, and the effective chemical potential 1y must be balanced between the two

shear bands:

U

= 26 A = Ppip — fa (50)

U

Equation (48) is equivalent to w5 (¢p) = m,(¢p!") and equation (49) is equivalent to
pua (@) = pp(@p™). This can be contrasted with the selection rule proposed by Jou et. al., in
which a Gibbs free energy was assumed (but not proven) to be the relevant minimized quantity

(see equations (6.12), (6.32-34), (6.79) in Jou et. al., 2011 [35]).

With these constraints on the steady banded solutions, there are only a finite set of states

(defined in terms of band compositions ¢! and ¢*") for which £ may be computed at a given X,.

For a first case, we consider a shear flow where the polymer is not substantially deformed
from its equilibrium conformation, £, = 0.01 (Wi = 0.01 in the homogeneous base state). For
this flow, we plot f, versus ¢ in Figure 7. We see that f, is a globally convex function of ¢, so
no inhomogeneous steady states exist (i.e. there is no line of common tangents that can produce a

lower free energy state), and so the homogeneous steady state is necessarily globally stable:
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fa(0.01,9)

Figure 7: Graphical representation of the global stability of a homogeneous steady state for low rates
of deformation. The effective free energy density, f,, is a globally convex function of ¢ for £, = 0.01
given § = 120,E = 0.15,@ = 10™* and H/¢ > 1. As such, the system only possesses a single steady
state conformation (homogenous flow) and this conformation is not susceptible to SID.

For stronger deformations, the system approaches a neutral stability boundary near £, =
0.60. In the asymptotic model (as in model B) one must consider the existence of finite
amplitude instabilities, where phase separation occurs via a mechanism of nucleation and growth
as opposed to spinodal decomposition. Here, we consider £, = 0.59 (corresponding to Wi = 3
in the homogeneous base state). For small departures from homogeneity (i.e. ¢ = 1), f, is
locally convex, and therefore the homogeneous base state is stable to disturbances of sufficiently
small amplitude. However, as shown in Figure 8, over a wider range of ¢ we find that f, has a

double-well structure that indicates the existence of an inhomogeneous steady state:
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fa(0.59,¢9)

Figure 8: Graphical representation of the global stability of a homogeneous steady state for low rates
of deformation for £, = 0.59 given # = 120,E = 0.15, = 10™* and H/& > 1. The effective free
energy landscape is locally convex about ¢p = 1, indicating that the homogeneous state is locally stable to
sufficiently small amplitude perturbations. However, a common tangent line reveals the existence of a
shear banded solution that is more stable.

By eye, one may apply a common tangent construction to see that the compositions in the
locally homogeneous regions are around ¢! = 0.95 and ¢!/ = 1.01. For this shear banded state,
L/H = —2.3 - 1075 which is lower than the value £ = 0 for the homogeneous state. Thus, a
numerical simulation of this system with stochastic forcing by thermal noise should eventually
show demixing that proceeds via nucleation and growth. As an inexpensive substitute for a full
stochastic study of nucleation in the full model (finite &), we apply a relatively large amplitude
perturbation to the concentration at t = 0 and observe its subsequent evolution. The perturbation

d¢ crudely approximates a square wave, in keeping with the approximation of equation (46):

8¢ = 1072 tanh (5 cos <2n ( - %))) (51)

This perturbation is applied at t = 0 and a constant shear stress of £, = 0.59 is enforced

thereafter. The evolution of the concentration profile is given in the figure below. At short
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times, the perturbation decays because it is not optimally shaped for nucleation. At longer times,
the concentration profile begins to form a clear ‘crease’ at its minimum value, indicating the
nucleation of a high shear band. The nucleated band grows until it eventually saturates and
broadens to reach the final inhomogeneous steady state predicted by the common tangent

construction.
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Figure 9: Snapshots of the concentration profile during the course of nucleation and growth of a
shear band from a finite amplitude initial perturbation. For a system of = 120,E = 0.15, = 10~* and
H /¢ = 100, we apply a sustained deformation of £, = 0.59. Under these conditions, the system is
linearly stable when homogeneous, but a sufficiently large amplitude perturbation will push the system
towards a (preferred) shear banded state. At short times, our perturbation appears to decay, but a low-
concentration band is successfully nucleated, causing the perturbation to grow at longer times. At steady
state, the system is banded, as predicted by the analysis supporting Figure 8.

Similar sub-critical instabilities will exist all the way down to £y = 0.57 (Wi = 2.25), which
is the lowest X, for which an inhomogeneous steady state exists in the stress plateau region.
These nucleation events have been observed in simulations previously: for example, Cromer et.
al. observed that banded and homogeneous steady states were both possible from the same initial
condition, depending on whether the deformation protocol involves a fast or slow ramp to the

target deformation rate [10]. This ramp-rate dependence was initially attributed to transient
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enhancement of the instability during stress overshoot, but a simpler explanation seems more
likely now: a perturbation that is large enough to nucleate a demixing event may survive through
the transients of a rapid start-up protocol, but will trivially decay by diffusion for a slow start-up

protocol.

Finally, under the same conditions (£, = 0.59), we evaluate f, over an even broader window
to determine whether any other inhomogeneous steady state could be more favorable than the

steady state observed in Figure 8. In fact, we find that such a state does exist:

[ fa(0.59,¢)

f(0.59,¢)

i
-

Figure 10: Graphical representation of the global stability of a homogeneous steady state for low
rates of deformation for £, = 0.59 given 8 = 120,E = 0.15, = 10~* and H/& > 1. This is an
expanded view of the analysis contained in Figure 8 (inset). The shear banded concentration profile of
Figure 8 and Figure 9 is locally stable but still susceptible to nucleation of a band with even lower
concentration.

By eye, one can apply a common tangent construction to see that the compositions in the
locally homogeneous regions are around ¢! = 0.3 and ¢!/ = 1.1. For this state, L/H = —4.8 -
1073, which is even more negative (and therefore more stable) than the inhomogeneous steady
state represented in Figure 8 and Figure 9. Whereas the shear banded steady state from that case

is associated with the unstable window in the stress plateau (as has been the primary focus of this
47



paper) this second shear banded steady state corresponds to an inhomogeneous steady states that
one would usually encounter via the /inear instability window at high Wi (as discussed in our
previous work [13]). To the extent that the two-fluid model provides a faithful representation of
SID in semi-dilute polymer solutions, this means that there could be conditions under which a
linear instability leads to SID in the stress plateau and then, at much later times, a secondary SID

event will nucleate and grow in a low-¢ domain.

The construction of so-called ‘flow-phase diagrams’ in analogy to the spinodal/binodal phase
diagrams of model B is an interesting exercise, and we refer the interested reader to earlier work
by Fielding and Olmstead for a more complete discussion [7]. The flow-phase diagrams that we
find for our model are qualitatively similar to what has already been reported there. As an
example, we present a flow-phase diagram for our system below (8 = 120,@ = 107, E =
0.15,6/H » 1 for ¢ = ¢,). The dashed line corresponds to the boundary of linear stability
(spinodal) while the solid curve corresponds to the set of coexisting shear bands (binodal). The
dotted contours corresponding to the homogeneous constitutive curves for ¢ /¢, = 0.9,1, and
1.1 are superimposed on the flow phase diagram for added context. Note that the unstable
window intersects the homogeneous constitutive curve for ¢ = ¢, at shear stresses around
29~0.62 and Wi ~ 3 — 10, and shear banded steady states can be observed between Wi ~ 2 and

Wi ~ 20.
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Figure 11: The flow phase diagram for a system with 8§ = 120,E = 0.15,and @ = 10~* at absolute
polymer volume fraction ¢p = ¢,. On the vertical axis, we plot the shear stress, X, which is the absolute
shear stress normalized by the shear modulus of a homogeneous system with concentration ¢,. On the
horizontal axis, we plot the Wi corresponding to homogeneous flow, where the relaxation time
Tp(¢)depends on the polymer concentration. The dotted lines represent homogeneous constitutive curves
for /¢, = 1.1,1.0 and 0.9. Note that varying the ratio of ¢p/¢, mostly shifts the homogeneous
constitutive curve vertically relative to the ‘spinodal’ and ‘binodal’ boundaries of our flow phase diagram.

Consistent with earlier findings, we observe a lower critical concentration for shear induced
demixing of semi-dilute entangled polymer solutions. For more concentrated solutions (beyond
the capabilities of our semi-dilute model) an upper critical concentration for shear induced

demixing must exist as well, since SID cannot occur in the pure melt state.

As a closing discussion on this section, we make a final note that the Lyapunov stability
analysis presented here is ultimately derived from a force balance on the constituent fluids. We
have not assumed (nor have we found) that the system demixes to minimize its free energy or

maximize/minimize its entropy production.

Having investigated flows with constant imposed shear stress, we will briefly consider some
more surprising results that emerge when these same methods of analysis are applied to

seemingly similar flow protocols. First, we look at the case of simple steady shear flows driven
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by a constant wall velocity, and second, we consider the problem of large amplitude oscillatory

shear flows (LAOS) driven by periodic oscillations of the boundary shear stress.

6. Steady simple shear with constant wall velocity

A consideration of shear flows driven by a constant boundary velocity turns out to be much
more difficult because it introduces a second conserved variable in addition to concentration.
Repeating the same derivation of an asymptotic model in the limit of high coupling friction, we

obtain a final set of equations:

o, _of, . oL -
a%—@ (%)a_y[%]zo (52)

[avisGosn=wi 3

Note that here L[¢y, Z,] is still defined as in equation (41), but the shear stress X, is no
longer constant in time. Instead, the shear stress changes in response to changes in the whole

concentration profile (¥, is a functional of ¢, and Wi).

One might intuit that shear stress and shear rate are conjugate variables (like
pressure/volume, temperature/entropy, or stress/strain in an elastic solid) and that a Legendre
transformation would yield a Lyapunov functional for the conserved shear rate case. However, it
turns out that there is already a family of variables conjugate to shear stress, none of which is

equivalent to the Weissenberg number. The conjugate variables to shear stress, S, have the form:

. oL
S=— (6_20>¢, +gE) EWi (54)
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where £ is the Lyapunov functional for constant shear stress and g(Z,) is an arbitrary function
of X,. Thus, a naive attempt at a Legendre transformation (£ = £ — WiZ;) does not yield a
potential that is minimized when the shear rate is conserved. It may be possible to find a
Lyapunov functional for the problem of SID at constant Wi, but our efforts to that end have so

far proven fruitless.

Nonetheless, it turns out that all linear stability results from the constant shear stress case
transfer to the case of constant overall shear rate. Under constant shear stress conditions, one can
show that for a linear instability to demixing (homogeneous steady states) or a linear instability
to coarsening (inhomogeneous steady states) the overall shear rate does not change to linear
order. The shear rate increases where the concentration decreases (and vice versa) such that, to
linear order, the conservation of concentration implies a conservation of shear rate. Thus,
whatever makes the system unstable at constant stress will also make the system unstable at

constant shear rate.

Likewise, the equations used to predict shear banded steady states at constant applied stress
can also be used to predict steady states at constant shear rate. The shear stress X, must be
treated as an additional unknown but the ‘conservation of shear rate’ presents an additional

constraint so that the problem remains well-posed:

Vs(Zo, Dy + V5o, ¢y = Wi (55)
So far, there is no evidence (whether from simulations or experiments) to suggest that the
metastable branch of homogeneous solutions under constant shear stress conditions will behave
qualitatively differently under constant boundary velocity conditions. For shear banding

wormlike micelles, there is experimental evidence showing no practical difference between the
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two choices of boundary conditions [37], and so it may be worthwhile to repeat this experimental

study for SID in polymer solutions.

7. Large Amplitude Oscillatory Shear Flows

In this final section, we will consider the problem of SID in large amplitude oscillatory shear
(LAOS) flows. In previous works [10] [13], we have considered the ways in which SID
phenomena manifest in practical experimental geometries, with Couette flow as the primary
focus. However, while Couette flows are well-suited for experimental study of shear induced
migration in general, they are not ideally suited for studying the most fundamental aspects of
SID. Macroscopic stress gradients make it difficult to isolate a dominant cause of polymer
migration, and curved streamlines can introduce elastic instabilities that disrupt a 1D idealization
of the flow. Experimental interest in LAOS flows is also growing [38] [39], and so we suggest
that planar LAOS may be a better choice for future studies of SID phenomena in semidilute

polymer solutions.
The LAOS flow of interest is a sinusoidally oscillating shear stress:
X(t) = X, sin(2rwt) (56)

where w is the dimensionless frequency of the oscillation (scaled by the polymer reptation time).
This flow protocol is often referred to as LAOStress to distinguish from the more common
strain-controlled protocol (LAOStrain). For the study presented here, we exclusively focus on
LAOStress flows because (as we will show) it is relatively easy to construct a Lyapunov function

for this protocol in the limit of large frictional couplings. The LAOStrain protocol shows similar
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tendencies for SID but (as with the rate-driven steady flows) does not easily allow for

comparison to an equivalent model B phase transition.

Before moving forward, we remind the reader that our calculations are a ‘1D’ approximation
of the flow, and we explicitly assume no variations in the direction of flow and vorticity. This
has been established as a reasonable approximation for studying steady simple shear flow, but it
is not yet known whether this approximation yields good predictions in oscillating flows. All the
same, we believe that the 1D approximation is a suitable starting point for understanding certain

key differences between the physics of SID in steady and unsteady flow protocols.

For the same material as before, 8 = 120,E = 0.15,@ = 1074, = 0.01 and H = 1, we
have performed a linear stability analysis using standard Floquet methods for oscillatory systems
[40]. Briefly, we summarize the procedure by which this analysis was done. (i) First, we solved
for a limit cycle (periodic) solution to a homogeneous flow for a given X, and w. The time
domain was discretized uniformly across a single period, and temporal derivatives were
approximated using Fourier collocation. Limit cycle solutions were found numerically using
Newton’s method. (ii) With a limit cycle solution in hand, we linearized the governing equations
about the limit cycle and evolved a complete set of orthogonal perturbations through a single
cycle. (iii) We then performed an eigenvalue analysis of the evolved perturbations to determine
whether any eigenmodes experienced a net growth through the limit cycle. (iv) Finally, we used
the limit cycle obtained in (i) as an initial guess for the next deformation (incrementing X, or w)

until we covered the full range of deformation protocols of interest to the analysis.
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For the material of interest (8 = 120,E = 0.15,w = 10™%,& = 0.01), the Floquet stability
analysis reveals that there is a bounded unstable window in the plane of ¥, and w. In Figure 12
below, the regions in grey represent conditions that are unstable to demixing.
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Figure 12: Linear stability boundary to SID in LAOS. The shaded region corresponds to unstable
flow conditions for a system with 8 = 120, @ = 104 FE = 0.15, and 17/5 > 1.

As in the case of steady, simple shear there is also a second unstable window at higher X,
associated with the high Wi instability window of simple shear flow [13]. For now, we will

restrict our analysis to the unstable window shown above.

We can obtain a preliminary picture of the demixing instability through a full numerical
simulation at one particular set of conditions. As an example, we consider a deformation with
Yo = 0.67 and w = 0.50. In many respects, the resulting demixing instability is remarkably
similar to what has been previously observed for steady simple shear flows. Beginning from a
small amount of random noise (amplitude of 10~°), the system selects a preferred wavelength

for the growth of inhomogeneity. Figure 13 below shows the polymer concentration profile at

t = 20:
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Figure 13: Snapshot of the concentration profile 20 reptation times after start-up for a system with
%o =0.67,w=0.560 =120, =10"%E = 0.15, = 0.01,and H = 1. As with the case of steady
simple shear flow, we find that the system selects a preferred wavelength for demixing.

As the perturbation grows, however, the system encounters a locally stable attractor
characterized by a periodically oscillating inhomogeneous state. In place of a more detailed

representation of the long-time limit cycle solution, we simply present snap-shots of the

concentration profile at the points within the limit cycle where L, ¢ is largest (mod(t, 1/2w)
0.6) and smallest (mod(t,1/2w) = 0.3). Simulations were run to t ~ 120, and the limit cycle

shown below is clearly established by t~40.
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Figure 14: Snapshot of the concentration profile after more than 100 reptation times,
continued from Figure 13. This oscillating concentration profile appears to be a stable attractor,
and shows no signs of coarsening.

Oscillations in the amplitude of inhomogeneity are large in comparison to the mean, and
there is a conspicuous lack of coarsening. Oscillations are to be expected, given that the driving
force for demixing is periodic, but the lack of coarsening is more unusual; it is as though the
system has become ‘trapped’ in the late stages of spinodal decomposition . Unlike the simple

shear flow case, this result persists with increasing spatial resolution (at least up to N = 500) and

appears to be a true solution to the governing equations rather than a numerical artifact.

We can force the system to a more coarsened state by seeding with a large perturbation that
suppresses the growth of shorter wavelength modes (¢(0,y) = 1072 cos(2my)). However, to
observe the formation of bulk shear bands (within which the concentration does not oscillate),
we must also consider a much larger gap dimension. The driving force for demixing (like the
imposed deformation itself) is oscillatory in nature, and so the period of oscillation encodes a
characteristic diffusive lengthscale below which bulk shear bands cannot be observed. In our
dimensionless units, this length-scale goes approximately as [2wH?]~1/2, which for w ~ 0(1) is

much larger than the interfacial length-scale set by non-local osmotic stresses, § /H. Therefore,
H » 1/y2w is required to establish bulk shear bands in the present test-case.

In the simulation below, we consider H = 16. At t = 100, the system has nearly attained its
periodic solution, and the concentration profile that emerges is somewhat unusual. Once again,

we plot the system at maximum/minimum points of inhomogeneity within the (nearly) periodic

solution:
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Figure 15: Snapshot of the concentration profile more than 100 reptation times after start-up. This
system is sixteen times larger than the system considered in Figure 13 and Figure 14. Here, we have
brought the system to a more coarsened state by initializing the system with a very large amplitude
perturbation initially (comparable to half the amplitude of the fully demixed state). Here, the system
appears to be converging towards a limit cycle with extended, locally homogeneous shear bands with
polymer concentrations around ¢ = 0.98 and ¢ = 1.02.

The concentration profile in-between the two shear bands is non-monotone, which is unusual

in the context of bulk demixing. Here, we find that the oscillatory driving force introduces a

diffusive length-scale for the interface (dimensionless width [ﬁ m]—uz) that in this case is
much longer than the solution correlation length. If the concentration profile across the
broadened interface were smooth and monotone, then a range of concentrations would be
unstable to further break-up. This prevents the formation of an interface that is both smooth and
broad. Instead, the otherwise broad interface develops a sharp ‘crease’ of width 0(5 /H ), and as
the ‘crease’ sharpens and broadens throughout the cycle, the ensuing migration-induced stresses
are able to stabilize the interface to its broader overall width. With a stable interface, the system
is able to establish bulk shear bands within which the concentration is not substantially changing

throughout the deformation cycle.
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Overall, it seems that the driving force for coarsening is suppressed when there is a conflict
between the characteristic diffusive and thermodynamic length-scales for the interface. For
LAOS flows that can undergo SID at higher frequencies, w > 1/&?2, it may be that one can
recover the usual coarsening dynamics, but this is beyond our scope of interest for the present

report.

It may also be worth noting that Figure 14 and Figure 15 show that the mean peak-to-trough
amplitude of band concentrations decreases with increasing band width. Surprisingly, this is
consistent with the condition for arrested coarsening dynamics in certain models of 1D

coarsening dynamics [41]

Overall, there is visual evidence that SID is initially very similar for steady and oscillatory
flows (i.e. in its linear behavior), but it is evident that the non-linear aspects of SID in LAOS
flows cannot be trivially extrapolated from observations of SID in steady simple shear flows. As
such, wQTH does not generally hold for all LAOS flows, but it may not be immediately obvious
why the two problems should look similar under some conditions (initial instability) but not
others (non-linear dynamics). The simulations above offer useful insights, but it is worth
pursuing a more general understanding of how and why the thermodynamic analogy breaks

down in this particular case.

To pursue a proof of wQTH(a) in LAOS, we consider the same limit as before, with € =
1/H? « 1. However, if one attempts to use the asymptotic model of steady simple shear flows,
as defined in equations (17) - (23), then the integrated form of the total momentum balance

equation is given by:
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= X, sin (27ra) E) (57)

This is clearly problematic to evaluate for T > 0 in the limit of € = 0. Having
asymptotically separated the stress relaxation time-scale and the mass transport time-scale, we
have also asymptotically separated the mass transport timescale from the characteristic period of
an oscillation. Because of this, the long-time solution must have persistent and non-trivial short
time dynamics embedded. In situations like this, the leading order equations of the ‘outer
solution’ can be solved via the method of multiple scales. We will treat the mass transport
timescale T and oscillatory timescale t,, = 2mwt as orthogonal time-scales in the asymptotic

solution. Formally, we write our asymptotic expansion as:

¢(t, Y 6) = ¢0(twa) + F1(6)¢1(ta)1‘[) + (58)

We insert this asymptotic form of the solution into the governing equations of the full model
and group all terms of equal order in e. When performing these operations, one must take care in

evaluating d/dt derivatives because of the assumed orthogonality of t,, and t:

do, (0T

%(Ibo(twﬂ) = _(_>tw +

e (a0), e (50) = e am !

atw ? = 6? + Zﬂwa (59)

With this change, the integrated momentum balance equation is no longer problematic:

dug

dy

[yyot@ = %, sin(t,,) (60)

All other momentum balance equations identically follow with the asymptotic model for steady
simple shear flow. The leading order concentration equation predictably indicates no changes in

concentration occurring over the oscillatory timescale:
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E 0 (61)

Finally, we consider the leading order solution of the constitutive equation. Migration
velocities are still eliminated from the deformation terms (thereby eliminating migration induced
stresses) but the viscoelasticity of the material is not lost over oscillatory timescales (i.e. time

derivatives do not vanish):

0Qij0
at,,

+ = —Ri;(Qij0 o) (62)

2w

Although it would seem that we have not lost the ability to apply an arbitrary initial condition
(since we still have time derivatives for all variables which had time derivatives to begin with),
this is not actually the case. In the method of multiple scales, we pursue solutions that are
periodic in t,,, and an arbitrary initial condition at t,, = 0 will not generally satisfy this
constraint. Thus, we are still dealing with a singular asymptotic problem for which we must
confirm that the behavior of the ‘inner solution’ at long times matches with the behavior of the
outer solution at short times. This analysis follows predictably from the matching procedure in
steady simple shear flow, so in the interest of concise exposition, we refer the reader to the

supplementary section on the matching condition for details.

Returning to the analysis of our leading order equations of the ‘outer’ solution, we see that
the leading order solution does not include any derivatives in 7, but does have the full set of
derivatives in t,,, and so a periodic solution in t,, can be found. By inspection, we observe that
the solution in ¢, allows a few simplifications. Most importantly, since ¢,is not changing with
ty, it must be that ¢, (t,,, 7) = ¢, (7). This is not surprising, since the characteristic mass

transport timescale is much longer than the oscillation period in our asymptotic limit.
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Next, we find that the conformation tensor and velocities vary in t,, following a limit cycle

solution to the imposed deformation given the present concentration ¢, (7):

Qijo(tw,T) = Qi (tw$0)  (63)
And similarly for the polymer stress tensor:
Mijo(te, T) = HiLjC(tw’ $o) (64)
Next, we seek to understand how the leading order solution changes in 7. Since the -
dependence of the conformation tensor and velocity fields is slaved to the T-dependence of ¢, it

is sufficient to learn how ¢, is changing in . For this, we look to the 0(F1 (6)) = 0(e)

equation for mass transport:

091 a¢o_ 0 = 4 _% 0 LC
27w at. + 3 ay(flbov()) = ay(qbo aynij,O(ta»Qbo) (65)

Since t and t,, are orthogonal and ¢, is periodic in t,,, we can average the entire equation

over a single period in t,, to eliminate all explicit t,, dependencies:

0o 0 ( _1p2 0
9t 9y <¢0 dy (HiLfo (¢0)>) (66)

1
(TTEC, (b)) = j Ny (to do) (67
0

From this point, it is trivial to reconstruct the mapping to model B following the procedure
outlined in equations (27)-(41). We also point out that a first correction to the polymer
concentration profile predicts periodic oscillations at the interface as the system moves through

portions of the limit cycle that favor mixing/demixing.
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9 0 ( 1720
% T a_y (¢0 2 @ [HiLfo (taw Po) — (HiLfo(qu)) ]> (68)

This oscillatory behavior of the interface is a small correction to the leading order dynamics
in the high coupling friction limit, but it becomes an O (1) effect at the interface when the

coupling friction is set to a lower, more realistic value (as demonstrated by the earlier numerical

simulation).

Looking towards a proof of wQTH(b) under LAOS flows, we first consider whether the
existence and location of the SID instability are identical for the asymptotic model and the full
model. Following the same series of arguments posed for the simple shear case, one can show
that the boundaries of the unstable window will always match the asymptotic model predictions
when the system is macroscopic and the coupling friction is assigned a realistic value. This

result has been confirmed numerically as well.

Next, we consider whether the non-linear predictions of the asymptotic model are in
agreement with the predictions of the full model. For the simple shear flow case, there was good
agreement; steady state predictions only differed by negligible O (@) solvent effects. In the
oscillatory flow case, however, the dynamics at the interface between shear bands can differ by
0(1) effects from the ‘breathing” modes. These disparities at the interface are actually very
important: in any demixing event that allows the formation of bulk regions, the interfacial
stresses are responsible for driving coarsening and selecting the composition in the limiting bulk

regions.

Finally, we confirm that the asymptotic model predictions for bulk shear band

concentrations, ¢/, ¢!’ are substantially different from what is observed in the full model
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calculations. In Figure 18 below, for example, we plot the predicted limiting concentrations as
dotted lines, superimposed over the concentration profiles observed around t = 117, as
described in Figure 15. At this time, the system has not yet converged to a perfectly periodic
solution, but it is close enough that the existence of a stable attractor is evident and the
quantitative differences in the two predictions are representative. Despite the quantitative
disparity, it is worth noting that the oscillations at the interface do not disallow the existence of

bulk shear banded steady states, as predicted by the asymptotic model.

1.02 ;

0.98 - i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 16: Superimposing the predicted shear band concentrations (dashed lines) from the asymptotic
model on the observed concentration profile from the full model. Note that the disparity between the two
predictions is now much larger than O (@), owing to the 0(1) effects of migration-induced stresses acting
at the interface.

Overall, we find that our asymptotic model provides an insightful description of the leading
order physics relevant to LAOS SID in our two-fluid model, especially as pertains to the
boundaries of the unstable window. In the limited context, we may regard wQTH as true for
LAOS flows. More generally, however, thermodynamic intuitions do not predict non-linear

aspects of SID instabilities in LAOS.

Finally, we recognize that the study of LAOS induced demixing we present here has been

necessarily limited in scope, and there are a number of very interesting directions for future work
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on this subject. With respect to future studies that focus on two-fluid model predictions, we
suggest that the most profitable topics for future research will be (1) 2D and 3D resolution of the
demixing instability, and (2) a more detailed understanding of the mechanism by which
fluctuations of an interface create viscoelastic stresses. The former question will be relevant for
comparison to experimental studies of SID in LAOS, while the latter could have broader
applications for viscoelastic phase separation phenomena (e.g. the ‘moving droplet phase’

observed in quiescent phase separations [22]).

8. Summary and Conclusions

We have studied the non-linear dynamics of shear induced demixing instabilities as modelled
by a two-fluid model of a semi-dilute entangled polymer solution in 1D simple shear flow.
Reviewing the existing literature on the subject, we describe a sort of paradox: shear induced
demixing instabilities are not thermodynamically driven, but for practical purposes they can
behave as though they were.

To resolve this paradox, we derive an asymptotic limit of the two-fluid model that preserves
the essential character of the instability while simplifying the governing equations to the point
where a Liapunov functional £ can be determined. This Liapunov functional is a non-
equilibrium analogue to the free energy, in the sense that the dynamics of the system can be
interpreted in terms of a tendency to minimize the value of L.

Using the Liapunov functional, we explore questions pertaining to the onset of SID
instabilities, the selection of an inhomogeneous steady state, and the intermediate dynamics in-

between. We also consider predictions of finite amplitude instabilities in homogeneous shear
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flow. In each case, the predictions of the asymptotic model are qualitatively consistent with
numerical simulations of the full model.

Finally, we have presented two counter-examples where thermodynamic intuitions of SID are
apparently not correct. In the first example, we consider simple shear flows driven by a constant
boundary velocity (as opposed to a constant shear stress). In this case, the exchange of
constraints cannot be handled via the usual method of Legendre transforms because shear stress
and shear rate are not conjugate variables in inhomogeneous shear flow. In the second example,
we consider simple shear flows driven by an unsteady (oscillatory) boundary shear stress. Here,
the time-dependence of the deformation protocol introduced a diffusive length-scale to compete
with the natural thermodynamic length-scale at which an interface is expected to form. Asa
result, we observed a conspicuous lack of coarsening following the initial demixing instability.

Overall, we believe that the present work offers a well-reasoned and relatively complete
consideration of SID (and its relation to thermodynamic instabilities) as modelled by a two-fluid
model of semi-dilute entangled polymer solutions in ‘1D’ simple shear flow. This work is an
essential pre-requisite for future studies that explore the character of SID instabilities in 2D and

3D, as is needed for a complete comparison to experiments.
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Appendix

A.1 Matching procedure for Asymptotic Model
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Here, we present the details of matching the ‘inner solution’ and ‘outer solution’ for the
dynamics of SID under asymptotically large coupling friction (¢ = 1/H? <« 1 for fixed £/H).

For the inner solution, we seek an asymptotic solution of the form:

oty €) = )Pt y) + f ()P (6, y) + -

And likewise for all other dynamical variables in the problem. Note that we distinguish the
inner solution from the outer solution by the use of superscripts instead of subscripts. As was
true for the outer solution, we know that f°(e) = 1 because the polymer concentration is not

vanishing in the limit of € = 0. Therefore, the leading order equations of the inner solution are

given by:
0¢°
a5 = 0 (69)
0 ou?
20 = ny + E(D'W (70)

up —ud =0 (71)

ony,
vp= (D=2 (72)

y
0Q2, oup
Fraie ZQSyW = —R3y (73)
0Qyy
=Ry, (74
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0Qz;
= —R? 75
at zZZ ( )

0Qzy

0
o Oup
ot — Nyy

—y = —R3, (76)

The inner solution retains a full complement of time derivatives, so one can determine how
the system evolves from an arbitrary initial condition. Considering the polymer concentration,
¢°, we see that the initial condition is frozen in for all t. The polymer conformation tensor, on
the other hand, undergoes a complex series of viscoelastic transients before it eventually
converges towards the steady state solution for the frozen-in concentration profile. Fortunately,
for any reasonable choice of initial conditions in the conformation tensor, the system always

tends toward the same steady state solution, Q55 (¢°, Z,):
tli_)I}DIO[QO(QO(t =0),¢%t,Z0)] = Q% (¢° Z) (77)

Next, we return to a consideration of the outer solution to the problem, where time is rescaled

to T = et and the asymptotic solution has the form:

d)(‘l,',y, 6) = F0(€)¢O(T,y) + F1(€)¢1(T,y) + - (78)

As before, we recognize that F;(¢) = 1 because the fraction of polymer in the system is not

vanishing as € — 0. Once again, the leading order equations for the outer solution are given by:

do 0
a_TO = @ (¢0VP,O) (79)

Ous
dy
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20 = ny‘o + Ew
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Upog = Uspo (81)

]
Upo = 03/2_yy, (82)

2Qxy,0 W = Rxx,o (83)

0= Ryy,O = RZZ,O (84)
dup o
Qyy,0 Dy Ryyo (85)

At t = 0, the initial condition of the outer solution must match with the long time behavior

of the inner solution. Formally, we write:
lim[¢°(t,y) + 0(f*(e))] © lim[¢o(z,y) + O(Fi(e))] ase >0
T

And likewise for all other time-dependent variables.

At time T = 0, the initial condition for ¢, in the outer solution must be identical to the initial

condition for ¢° in the inner solution, since £1>£r11 d°(t,y) = ¢°(0,y).

Considering the conformation tensor, we once again see the importance of the matching
procedure. The conformation tensor is set by the polymer concentration and applied shear stress,
Qo = Qy (g, Zy), but when such a solution is not unique (i.e. multiple stationary solutions exist)
it is not a-priori obvious which branch of solutions applies to the dynamics of the problem. The

matching condition resolves this conundrum, specifying the physically meaningful branch of
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solutions as the branch which matches the long-time dynamics that follow after a start-up with

fixed concentration:
Qo (o, Zo) = tli_)fg[QO(QO(t =0), o, t,Z0)] = Q%°(¢o, Zo)

This matching procedure establishes agreement between the inner and outer solution at t —
o and 7 = 0, but we must also determine how the mismatch vanishes for t > 1 and T < 1 when
€ — 0. For this, we note that a smooth initial condition in ¢, gives dynamics that are smooth at
T = 0. In other words, provided ¢, is smooth, time derivatives of all orders are computable at

every point in space at T = 0:

d¢o

0
ot dy

0 6L
M(¢0)@ [E

0%y 0 [< oM a¢0) d [SL N ]
a2 ayl\ag, ar /aylse

And so on. Since all other variables are slaved to the concentration, those dynamics are
likewise smooth, provided the underlying constitutive behavior is also smooth and monotonic

(invertible). For example, the time derivatives at T = 0 for the conformation tensor can be

computed by:

2Q, 0Q5°\ 99
ot

do, 5 0t

02Qy _ (0Q3°\ 0%*po (9%Q5°\ (9¢o\’
oz ~\9g, ), o7 T\ o9z 20(61)
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And so on. Thus, for all dynamical variables in the outer solution, we can say that in the
limit of T = 0, any change occurring within the system must be linear in 7 to leading order. For

example, in the concentration profile, we must have:

. a¢0 2
lim(#o(r) = ¢00.) +7(F2)  +0G?)
And likewise for all other dynamical variables in the problem. Returning to the matching

condition, we then find that the mismatch is O(€), since T = et:

lim[¢°(0,y) + 0(f(e))] & lim :qu(O, Y+ (%) B + 0(12)] ase - 0

t>1 TK1 ot

%i;r}[(?(fl(e))] S £i<r<r% :T (%) B + 0(12)] ase >0

file) =«

From this point, one can proceed to compute higher order corrections to the inner/outer
solutions. For steady simple shear flows, the leading order equations of the inner and outer
solutions are useful and informative, so higher order corrections are less important. However,
this will not always be the case: for complex 2D/3D flows in macroscopic geometries, it is not
always easy (or interesting) to evaluate an outer solution. However, if one can obtain a leading
order inner solution and its first correction, this can provide insights for understanding the effects

of stress/concentration coupling and stress-induced migration.
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3.2. Lees Edwards Boundary Conditions

Solving these equations for a macroscopic system is computationally prohibitive due to
both spatial and temporal stiffness concerns (§/H ~ 107°). In such cases is often better to
simulate a basis set of representative ‘small’ systems, from which one can extrapolate the
behavior of a macroscopic system. For studies of model B phase separations, periodic boundary
conditions are a preferred means of selecting smaller systems for two reasons: first, for studying
bulk demixing behavior periodic boundary conditions eliminate any influence of solid walls, and
second, periodic boundary conditions permit the use of very efficient computational strategies

(e.g. fast Fourier transforms for spatial differentiation).

Therefore, for the purposes of this report, we will use Lees-Edwards boundary conditions;
all variables except up and ug are assumed to be periodic, while up and ug have a ‘jump’
discontinuity across the boundary [28], since the imposed deformation requires a net increase in
the flow velocity from y = 0 to y = 1. In practice, we eliminate the jump discontinuity by

solving for ys = 0y ug and yp = 0, up, replacing equation (3) with its spatial derivative:

1
H?

) . d _;anxy 86
Yp— Vs = @[Qb ay] (86)

Periodic boundary condition are then assigned for all variables:
Py =0=9¢( =1 Qy=0=0r=1 (87)

Vp(y=0)=7yp(y=1) ¥s(v=0)=ys(y=1) (88)

A.2 Brief review of 1D phase transitions in model B
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In the main body of this work, we have shown that there are important mathematical
similarities between the linear and non-linear dynamics of SID and the simplest class of
continuum phase separations in a non-flowing system: model B of the Halperin-Honenberg
classification scheme [25]. Model B describes phase separations through purely diffusive
transport down chemical potential gradients. Here, we employ a 1D version of model B so that
variations in composition are constrained to occur only in one direction (as is approximately seen

in 2D simulations of SID [11]).

For model B in 1D, the tranpport equation for a species with volume fraction ¢ is given by :

d
Jt dy

M(cp);—y [g—g]l (89)

where M > 0 is the species mobility, F is the system free energy, and t, y are temporal and
spatial coordinates. The free energy typically entails both a local (bulk) free energy of mixing f;,

and a non-local (interfacial) free energy fy; due to gradients in concentration:

F= f AyIfi(d) + fun @, Y] (90)

A simple functional form for fy; (¢, V) is [42]:

1
fuL :EF(¢)|V¢|2 91)

where I'(¢) is related to the free energy of forming an interface (e.g. abrupt change in
concentration). Assuming a rigid wall on either side of the system, we use boundary conditions

that ensure no-flux:
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d 6F

We further assume that the rigid wall is a neutrally interacting surface (i.e. chemically

reflecting) so that gradients in concentration vanish at the boundary:

op
-0

We can confirm that deterministic trajectories of ¢ never increase the system free energy at

any time, and the model is therefore thermodynamically consistent:

%:jdy[g—gi—‘f] = - jdy [M(dJ) (;—y[g—g )2] <0 (99

In the general language of non-linear dynamics, we have confirmed that the free energy is a
Lyapunov functional for the dynamics (to within an added constant). This property of the free
energy ensures that thermodynamic intuitions about stable and metastable states will be rightly
reflected in the model’s dynamics (i.e. the system evolves to minimize its free energy, and the

lowest free energy state is always most stable).

It is a short but worthwhile exercise to reproduce the 1D linear stability analysis of model B.
Supposing a homogeneous base state, ¢ = ¢,, we apply an infinitesimal perturbation, ¢p =
¢o + 6¢. The transport equation for §¢p then becomes:
02 0%f, 02
0:6¢ = M(qbo)a—yz 8¢ 392 s - F(¢o)a—yz5¢ (95)
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This is a linear PDE equation with solutions of the form 8¢ ~e®t cos(ky), with growth rate
o and wave-number k = nr/H forn = 1, 2,3, ... and system size H. Inserting this functional
form for ¢ into equation (95), we obtain a dispersion relationship for the growth rate ¢ in

terms of the wave-number, k:

0*fi
d¢?

0= _M(¢o)k2 [( ) + F(¢o)k2] (96)
b= oo

The system is linearly unstable to demixing when o > 0, which implies:

2

0%f, T
<a¢§>¢=¢o+ Mo (5) <0 (97

The first term represents the condition for bulk thermodynamic instability, and the second
term is a correction for confinement over a finite system size H. Note that it is the longest
wavelength (k = m/H) that determines the stability boundary. When a demixing instability
occurs, there is a preferred wavelength, A,,, over which variations in concentration are most

likely to emerge. This wavelength can be derived from o /dk = 0:

-1/2
e N
/’lM—Zn[ 2r(¢0)(a¢2>¢=¢0] (98)

In the context of model B, the exponential growth in amplitude of inhomogeneity with a
preferred wavelength is called ‘spinodal decomposition’, and the boundaries within which this
instability develops are called the ‘spinodal lines’. In the terminal stages of spinodal

decomposition, the perturbation amplitude saturates to a banded structure (in 1D) with extended,
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locally homogeneous regions alternating between a high and low concentration state. Over much
longer time-scales, these bands ripen together, decreasing the total number of bands and
increasing the average size of a band. The average domain size grows logarithmically in time,
and the process does not terminate until the system reaches the minimum number of bands that
can be realized in the system under consideration (two for macroscopic phase separation or three
for periodic boundary conditions) [23] [24]. Arrested coarsening is not possible in this system;
any compositionally inhomogeneous state possessing more than the minimum number of bands

is linearly unstable.

Throughout the coarsening process, the compositions of the extended locally homogeneous
regions asymptotically approach the compositions of the bulk phases that coexist at equilibrium.
These compositions, ¢! and ¢!!, can be found by minimizing the free energy of the system, often
graphically represented by a ‘common tangent’ line across a double-welled potential f; [15], as

1llustrated in the cartoon below:

fi($)

0.95 1.00 1.05

Figure 17: Graphical representation of the common tangent rule that encodes the selection of a phase
separated steady state following a demixing instability in model B. In this case, a homogeneous material
(¢ = 1) will demix into phases with ¢! = 0.95 and ¢! = 1.05, as indicated by the intersection of the
common tangent (dashed curve) with the homogeneous potential landscape (solid curve). The common
tangent rule can be constructed from arguments of free energy minimization or from the equality of
osmotic pressures and chemical potentials between the two phases.
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Equivalently, ¢! and ¢!’ can be found by balancing the bulk osmotic pressure 7, (¢p) =

¢u(¢p) — f.(¢) and the chemical potential y; (¢p) = df;,/d¢ within the two phases:

.UL(¢1) = ML(¢II) 7TL(¢I) = 7TL(¢”) (99)

The set of compositions ¢! and ¢!/ that may co-exist at equilibrium form the ‘binodal’ lines.
For a range in temperature (or pressure) and composition, the spinodal and binodal lines
comprise an equilibrium phase diagram [15]. Any bulk system whose mean concentration lies
between the spinodal lines is linearly unstable to fluctuations when homogeneous, and stable
only when it is macroscopically phase separated. By contrast, any bulk system whose mean
concentration lies between the binodal and spinodal lines is linearly stable for both homogeneous
and macroscopically phase separated states. However, the free energy of the phase separated
state of such a system is always lower, so homogeneous states between the spinodal and binodal
lines are metastable and subject to demixing along a pathway of nucleation and growth [15] [43].
As such, linear stability analysis alone will under-estimate a system’s susceptibility to phase

separation under normal experimental conditions.

A.3 Table of variables

Variable | Definition

t Time, scaled by the equilibrium reptation time, 7, (¢,)

T Time, scaled by the diffusion time, t,(¢,) /H?

te Time, scaled by the period of an oscillation, T (¢,) /@

X Spatial position in the flow direction (not used in the ‘1D’ approximation)

y Spatial position in the flow gradient direction, scaled by gap size H

z Spatial position in the vorticity direction (not used in ‘1D’ approximation)
) Polymer volume fraction, scaled by equilibrium mean value ¢,
Uy Velocity vector of component X
Uy Velocity in the flow direction (x) for component X

Uy Velocity in the flow gradient (y) direction for component X, scaled by H/tp
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Q;j ij-component of polymer Conformation tensor, Q
I1;; ij-component of polymer stress tensor I (elastic and osmotic combined)
T ij-component of an osmotic pressure tensor
u Denotes a chemical potential (or an ‘effective’ analogue)
R;j ij-component of a stress relaxation tensor R
X, Denotes the leading order ‘outer’ solution (long times) for variable X
X0 Denotes the leading order ‘inner’ solution (short times) for variable X
€ Small parameter, 1/H?, for the high coupling friction limit
E Ratio of elastic modulus, G (¢,) to osmotic modulus, x5 2
0 Ration of reptation time to longest Rouse reorientation time
Z Average number of tube segments per chain
3 Ratio of solution correlation length, ¢, to gap dimension H
H Ratio of gap dimension H to magic length £
o Ratio of solvent viscosity to polymer zero shear viscosity
Wi Dimensionless overall shear rate, scaled by 1/75(¢,)
X Dimensionless shear stress, scaled by shear modulus G (¢,)
) Dimensionless period of an oscillation, scaled by the reptation time 7, (¢,)
b, Mean volume fraction of polymer at equilibrium
G(¢,) | Shear modulus of polymer solution at volume fraction ¢,,
7p(¢,) | Reptation time of the polymer
TR Longest Rouse reorientation time of the polymer
Y Length where stress relaxation and diffusion occur at same time, £% = Deqtp(¢5)
D, Equilibrium diffusion coefficient for long wavelength perturbations
{(¢,) | Drag coefficient for polymer and solvent at equilibrium
xot Osmotic susceptibility of the polymer solution at equilibrium
M Mobility
F Free energy
L Lyapunov functional
f.(¢) | Local (bulk) free energy density of mixing
fyL Non-local free energy density of mixing (related to concentration gradients)
A A contribution to £ arising from elastic forces induced by flow
fa ‘effective’ free energy density from local contributions to £
6X Denotes a linear perturbation on parameter X (except when it is a functional deriv)
o Growth rate for a perturbation
k Wavenumber for a perturbation
X!, X" | Values of variable X in coexisting phases states I and II after demixing.
y!,y" | Denotes the volume fraction of the system in states I and I after demixing
Vx Local shear rate duy /9y of fluid X
N Number of grid points used in a numerical simulation
L,¢ L2 norm for departure from homogeneity in the concentration profile
L,V L2 norm for departure from homogeneity in the concentration gradient
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