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A B S T R A C T

Struck-by accidents have resulted in a significant number of fatal and nonfatal injuries in the construction
industry. As a proactive safety measure against struck-by hazards, the authors present an Unmanned Aerial
Vehicle (UAV)-assisted visual monitoring method that can automatically measure proximities among con-
struction entities. To attain this end, this research conducts two research thrusts: (i) object localization using a
deep neural network, YOLO-V3; and (ii) development of an image rectification method that allows for the
measurement of actual distance from a 2D image collected from a UAV. Tests on real-site aerial videos show the
promising accuracy of the proposed method; the mean absolute distance errors for estimated proximity were less
than 0.9m and the mean absolute percentage errors were around 4%. The proposed method enables the ad-
vanced detection of struck-by hazards around workers, which in turn can make timely intervention possible. This
proactive intervention can ultimately promote a safer working environment for construction workers.

1. Introduction

Struck-by accidents involving a mobile vehicle or heavy equipment
has been one of the leading causes of fatal and nonfatal injuries of
construction workers. From 2011 to 2015, this forcible impact con-
tributed to 925 construction-related fatalities, which accounted for
more than 18% of the overall occupational deaths in the U.S. con-
struction industry [1,2]. Notably, the number of struck-by fatalities rose
34% from 2010 (N=121) to 2015 (N=162). [1,2]. During this
period, struck-by fatalities in construction were unmatched by other
industries, and the incident rate for non-fatal struck-by injuries (i.e.,
27.4 injuries per 10,000 full-time equivalent workers) runs up to nearly
twice the rate of all other industries combined [1,2].
A major research area for the prevention of the struck-by accident is

attuned to the development of automation technology for onsite
proximity monitoring among construction entities. Monitoring proxi-
mity between workers and equipment (or vehicles) enables the ad-
vanced detection of potential hazards, which allows for prompt feed-
back (e.g., visible, acoustic, and vibration alarm) to involved workers
[3–9]. This proactive intervention can lead the workers to prepare for
evasive actions, thereby reducing the chance of an impending collision
[3,6–9].
Previous research on proximity monitoring has been dominated by a

wide range of wireless sensors, including Radio Frequency

Identification (RFID) [3,4], Magnetic Field (MF) [5], Global Positioning
System (GPS) [7], and Bluetooth Low Energy (BLE) [8,9]. However, the
implementation of this sensor-based application may be challenged in
practice. For example, the prerequisite that all entities should be at-
tached with sensors could be burdensome for both contractors and
workers. It could be costly in the project where tremendous volumes of
personnel, equipment, and materials are involved [10–13], and further
be intrusive to workers who do not want to be proposedly tagged
[11,14]. Besides, the sensing range could be affected by various fac-
tors—such as ambient condition or approach angle and speed—as the
sensors operate based on wave signal propagation [5,8,9].
Against this backdrop, this research aims to develop an Unmanned

Aerial Vehicle (UAV)-assisted visual monitoring method as an alter-
native technology for the onsite proximity monitoring. An ordinary
camera mounted-UAV can capture moving entities continuously while
accessing hard-to-reach areas [15]. This mobility enables the mon-
itoring of wide areas, which is not viable with conventional imaging
devices such as surveillance or portable cameras [16–27]. Further,
computer vision can recognize multiple entities without installing any
sensors [11–14,28,30]. Accordingly, this visual monitoring has the
potential to lead cost-effective and non-invasive proximity monitoring
while complementing existing sensing technologies.
To achieve this aim, this research focuses on addressing technical

challenges facing computer vision techniques, i.e., object localization
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and distance measurement, which are fundamental for visual proximity
monitoring. Specifically, real-site videos entail uncertain variations. For
example, each frame involves different viewpoints, scene scales, and
illumination. Also, each entity (i.e., workers, equipment, or vehicle) has
an individually distinctive appearance. This variation would impose
restrictions on the localization capability of hand-crafted algorithms
since they operate as designed and thus could not be adaptive to such
variations [11–14]. In addition, measuring distance on a 2D image is
extremely challenging due to the lack of depth information (i.e., the 3rd
coordinate of a point). It therefore needs the post-processing for 3D
reconstruction, which requires a significant amount of computational
cost.
To overcome these challenges, this research conducts two research

thrusts: (i) the application of a deep neural netowork (i.e., YOLO-V3
[44]) for robust localization; and (ii) the development of an image
rectification method that enables the measurement of actual distance
on a 2D image without 3D reconstruction. This research tests the pro-
posed method on real-site aerial videos so as to evaluate its monitoring
performance in real scene settings. Finally, the result and its implication
are discussed, and future research directions toward real-world appli-
cation are provided.

2. Reviews on existing computer vision techniques

The visual proximity monitoring requires two vision processings: (i)
object localization; and (ii) distance measurement. Object localization
finds target-centered locations on a pixel-coordinate system (e.g., x-y
coordinates of a worker). Based on this spatial information, the proxi-
mity (i.e., Euclidean distance) between workers and equipment (or
vehicles) can be measured. This section reviews existing computer vi-
sion techniques for object localization and distance measurement and
discusses their pros and cons.

2.1. Object localization

A number of studies have investigated the computer vision techni-
ques to localize construction entities (e.g., workers, equipment, and
materials) on video frames that can be classified into one of two cate-
gories: (i) object tracking; or (ii) object detection. The object tracking
operates based on a tracker that interprets features (e.g., motion, color,
and shape) of a given target and tracks the encoded information on
successive frames. Yang et al. [28] proposed a framework using kernel
principal component analysis and kernel covariance tracking to track
multiple construction workers. On the other hand, several studies
conducted comparative analyses with existing tracking algorithms to
investigate which one is appropriate for complex construction en-
vironment. For instance, Teizer and Vela [29] investigates four dis-
tinctive algorithms (i.e., mean-shift, Bayesian segmentation, active
contours, and graph-cut) and revealed that Bayesian segmentation
performed the best in tracking a construction worker. Park et al. [30]
divided existing tracking algorithms into point, kernel and contour-
based methods and compared their performances under different con-
ditions of illumination and occlusion. This study concluded that kernel-
based tracking is the most appropriate for construction entities, but the
test results also indicated that there is no such a method that always
outperforms the others [30]. The tracking methods allow us to exploit
temporal information in successive frames, which can accelerate the
overall localization process. However, the tracking methods cannot
independently perform object localization as the location of a target
should be marked on the first frame so that a tracker can be initialized
[31,32].
On the other hand, detection methods localize targets frame-by-

frame independently. Accordingly, it doesn't require the location in-
itialization. Park et al. [11] proposed a detection framework to re-
cognize construction workers by leveraging various features such as
motion (by background subtraction), shape (i.e., Histogram of Gradient

(HOG)), and color (i.e., color histogram). Whereas Memarzadeh et al.
[12] developed a novel descriptor by combining HOG and the histo-
gram of Hue-Saturation-Value (HSV), and trained support vector ma-
chines (SVMs) to detect multi-class objects. These studies contributed to
the automation of the localization process. However, the detection al-
gorithm would require a larger amount of computational cost than the
tracking due to the exhaustive searching mechanism that investigates
every possible location in an image [31,32].
The previous localization methods were mainly based on the hand-

crafted features—such as HOG, HSV, Scale Invariant Feature Transform
(SIFT), and Speeded-Up Robust Features (SURF). Although the hand-
crafted features could work well in a customized imaging condition
(e.g., controlled viewpoint, scale, and illumination), they could lose
their representative power for a target in unconformable con-
ditions—such as viewpoint variation, scale variation, illumination
variation, background clutter, or intra-class variation [12,14,30–32].
For example, the object detector that uses HOG could fail to detect same
object if a huge illumination difference occurs, while the one that uses
SIFT could fail to detect equipment with a distinctive appearance.
Therefore, the higher-level of representation of a target is required in
localizing construction entities on a UAV-captured video where the
dynamic viewpoint gets to amplify such variations.

2.2. Distance measurement

Proximity monitoring is completed by measuring the straight-line
distances among targets, which can be straightforward given 3D spatial
information. However, using a 3D sensing device (e.g., stereo-vision
camera, RGB-D sensor, or Flash LADAR) may not be much viable for
onsite operation due to its limited sensing range and the vulnerability to
outdoor conditions [33,34]. For example, stereo-vision camera (e.g.,
Bumblebee XB3, Point Grey Research, Inc.) is restricted to low resolu-
tions and requires a significant amount of computational cost [33].
Also, RGB-D sensor (e.g., MS Kinect™) and Flash LADAR are susceptible
to sunlight as well as have restricted measuring range (i.e., 5 m and
10m, respectively) [33,34].
In construction, there have been few studies attempting to monitor

the proximity among construction entities using 2D computer vision
[13,35]. These studies estimated proximity by measuring pixel dis-
tances among detected objects and used the value in evaluating
workers' safety level. Although the pixel distance can be useful in de-
termining relative safety level, it would not be able to represent the real
scale of distance due to the lack of depth (i.e., scene scale) and the
projective distortion. To be more specific, an ordinary camera maps 3D
real space onto a 2D image plane through its monocular lens by per-
spective projection. During this compressive process, the depth in-
formation is lost, and projective distortion occurs, making the original
properties of a scene (e.g., length, area, length ratio and area ratio,
angle, and parallelism) and proximity distorted.
On this problem, several studies presented post-processing as a so-

lution to recover the depth information (i.e., the lost 3rd coordinate).
Brilakis et al. [14] proposed a triangulation framework using multiple
2D cameras to determine the 3D coordinates of construction resources
whereas Yang et al. [36] attempted another triangulation algorithm,
i.e., Structure from Motion (SFM), for 3D reconstruction.
Although the recovered depth information enables distance mea-

surement, such epipolar geometry-based post-processing requires a
significant amount of computational cost for extracting features, cal-
culating fundamental matrix, and lastly triangulation [33]. Moreover,
this triangulation is viable only if the camera's extrinsic parameters
(i.e., location and orientation) and feature matching are given at a very
precise level. Hence, this 3D reconstruction technique may not be the
best choice for onsite proximity monitoring, specifically in the context
of a mobile UAV.
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3. Research objectives

The methods to date have shown a potential of visual localization
and distance measurement on an image, but have not yet reached the
capability to be used for onsite proximity monitoring. The localization
techniques may not be sufficiently robust against casual variations of
real scenes. In addition, the 3D reconstruction would not be a viable
option for proximity monitoring on account of its massive computations
and sensitivity to given parameters (e.g., camera's location and or-
ientation).
With these challenges, the objective of this research is to achieve (i)

automated, fast, and robust localization of construction entities, and (ii)
cost-effective but reliable distance measurement directly from a 2D
image. Toward these ends, this research conducts two research thrusts:
(i) the application of a deep neural network, i.e., YOLO-V3 [44] to
object localization; and (ii) the development of an image rectification
method that allows of measuring actual distance on a 2D image without
the 3D inference (Fig. 1). In the following two sections, the details on
the proposed methods are explained with the test result. In succession,
tests on aerial construction site videos and discussions on the test result
will follow.

4. Thrust #1: YOLO-V3 for object localization

Recently, deep neural networks (DNNs) have demonstrated superior
performance in object detection, overcoming the detection challenges
across the computer vision community—such as COCO detection
challenges (Table 1) [44]. The deep networks enable the extraction of
fine-grained features, which have demonstrated a more robust opera-
tion in the object detection [37–44]. At the same time, the DNNs have
substantially reduced their computational costs as well with the ad-
vancement of computing mechanism (e.g., parallel computing) and
hardware [e.g., graphical processing unit (GPU)] [40,44]. Table 1
shows state of the art DNNs for object detection and their performances
[i.e., mean average precision (mAP) and frame per second (FPS)] on the
COCO benchmark dataset [44].
In construction, there have been several efforts to use the DNNs for

the localization of construction entities. For example, Fang et al. [41]
attempted to detect non-hardhat-use using Faster R-CNN; Kim et al.

[42] applied region-based fully convolutional networks (R-FCN) for
detecting equipment in tunnel construction; on the other hand, Kolar
et al. [43] designed a customized DNN by combining a VGG-16 (i.e.,
feature extractor used in Faster R-CNN) and a multi-layers perception
(MLP) network for safety guardrail detection. Evidently, these studies
showed the successful introduction of the DNNs to construction re-
search, validating its detection performances (e.g., mAP) on construc-
tion data. For this study, however, the region proposal network (RPN)-
based DNNs—such as Faster R-CNN or R-FCN—would not be the best
option due to their high computational cost. As shown in Table 1, the
FPS for the Faster R-CNN (i.e., 17 FPS) and R-FCN (i.e., 12 FPS) are
insufficient for real-time operation (i.e., 30 FPS).
In this sense, this study applies YOLO-V3 [44] that allows for real-

time operation (i.e., 35 FPS) as well as state of the art detection per-
formance (i.e., 55.3 mAP on COCO dataset, Table 1). The YOLO-V3
doesn't require an additional step for region proposal. Instead, it rea-
lizes the convolutional implementation of sliding window during its
operation, thereby making one-stage detection and real-time operation
possible [44]. With this advantage, YOLO-V3 could afford to have a
deeper convolutional network and thus achieve the state of the art
performance on object detection.
The published YOLO-V3 network, pre-trained with ImageNet, is not

learned from the construction contexts such as construction equipment,
workers, and backgrounds. Furthermore, this network will not be
compatible with UAV-captured images because they are not experi-
enced with aerial viewpoints. For example, a human in a UAV-captured

Fig. 1. Two research thrusts for UAV-assisted visual proximity monitoring.

Table 1
State of the art DNNs for object detection: performance on COCO dataset
(provided by [44])

Model Train dataset Test dataset mAP FPS

Faster R-CNN COCO train-val COCO test-dev 42.70% 17
SSD321 COCO train-val COCO test-dev 45.40% 16
DSSD321 COCO train-val COCO test-dev 46.10% 12
R-FCN COCO train-val COCO test-dev 51.90% 12
Retinanet-50-500 COCO train-val COCO test-dev 50.90% 14
YOLO-V2 COCO train-val COCO test-dev 48.10% 40
YOLO-V3 COCO train-val COCO test-dev 55.30% 35
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image has a completely different appearance and scale than one in
ImageNet, which must puzzle the convolutional layers and deteriorate
the localization performance in the end. On the other hand, to train the
network with construction data from scratch must involve a significant
risk of overfitting due to the imbalance between the network capacity
and the amount of training data. Therefore, this research elects transfer
learning to avoid the potential of overfitting as well as to fine-tune the
published network to construction settings successfully.

4.1. Network description

The YOLO-V3 consists of two main networks: (i) feature extractor
and (ii) object detector (Fig. 2).

• Feature extractor (from 1st to 75th layer): the first network, called
darknet-53, takes a resized image (416×416×3) as an input and
outputs a 3D feature tensor (13× 13×1024). The darknet-53 has a
deep architecture with successive 52 convolutional layers (i.e.,
1× 1 or 3× 3), which can extract fine-grained features from a
coarse data. In particular, this network incorporates residual skip
connections in the intervals of two convolutional layers (i.e., total
23 shortcut layers). The connection initially devised for a residual
network helps the darknet-53 to deals with the vanishing gradient
problem occurring while training by residually propagating pre-
vious features into forward.
• Object detector (from 76th to 107th layer): the second network
takes the 3D feature tensor (13×13×1024) and makes detection.
The uniqueness of this network resides in its ability to achieve de-
tection at three different scales, thereby improving scale invariance.
This network gradually widens the feature tensor from 13×13 to
26× 26, and 52×52 through upsampling and concatenation
layers. Meanwhile, three branches come out and each makes a final
feature tensor at the different scale (i.e., 13× 13×42,
26× 26×42 and 52×52×42 at 82nd, 94th, and 106th layer,
respectively). Each final feature tensor is then fed into YOLO layer

that classifies object label with class-wise logistic regressions and
localizes objects with bounding box regressors.

4.2. Test result

The total of 4512 frames capturing construction workers and
equipment were extracted from construction site videos and labeled as
shown in Fig. 3. Of these, 4114 images were used for the fine-tuning
and the other data, 398 consecutive images (i.e., a section of a UAV
video), were used for testing. This test considered the three types of
object classes: (i) construction worker; (ii) wheel loader; and (iii) ex-
cavator (Fig. 3).
The first role of the YOLO-V3 in proximity monitoring is to make

correct object detections. To test the detection performance of the fine-
tuned network, this test uses mean average precision (mAP, Eq. (1)) and
average intersection over union (IoU, Eq. (2)), which are the typical
evaluation metrics used for detection challenges—such as PASCAL VOC
and COCO. As shown in Table 2, the tuned network could reach to
acceptable mAP and average IoU: (i) mAP=90.82% and (ii) average
IoU=80.97% in this test.

n
APmAP 1 1

11

n

r
r

1 0.0,0.1, , 1.0
=

= … (1)

Note: n stands for the total number of object classes; APr stands for
maximum precision at a certain recall value r (i.e., 0, 0.1, 0.2, …, 1.0).

k
AoO
AoU

Average IoU 1 k

1
=

(2)

Note: k stands for the total number of detected objects; AoO stands for
area of overlap; AoU stands for area of union.
In proximity monitoring, it is also critical to find the correct location

for detected objects (i.e., object-centered coordinates). Hence, this test
further evaluates the fine-tuned network by the average localization

Fig. 2. Architecture of YOLO-V3.
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error (ALE) (i.e., the average of the Euclidean distance between ground
truth position and estimated position, Eq. (3)). As shown in Fig. 4, the
fine-tuned network showed promising localization performance,

tracking ground truth consistently with the acceptable ALE: (i)
worker= 0.16m; (ii) wheel loader= 0.37m; and (iii) ex-
cavator= 0.31m (Table 3).

Fig. 3. Examples of training dataset and labels.

Table 2
Result of object detection by YOLO-V3: mAP and average IoU.

# Iter. Average precision mAP Average IoU Average
precision

Excavator Worker Wheel loader Reference object

500 14.01% 0.00% 17.79% 10.60% 0.00% 0.17%
600 27.04% 11.86% 42.62% 27.17% 38.83% 67.98%
700 56.97% 63.86% 62.87% 61.23% 38.77% 57.37%
∙ ∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙ ∙
1000 83.48% 80.48% 85.77% 83.24% 60.99% 89.43%
1100 90.71% 90.57% 82.65% 87.98% 69.00% 90.36%
1200 89.05% 86.98% 79.05% 85.03% 63.72% 87.04%
∙ ∙ ∙ ∙ ∙ ∙ ∙
∙ ∙ ∙ ∙ ∙ ∙ ∙
10000 90.84% 90.63% 90.79% 90.75% 77.16% 90.91%
10100 90.77% 90.73% 90.82% 90.77% 78.18% 90.86%
10200 90.79% 90.73% 90.79% 90.77% 78.65% 90.84%
∙ ∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙
19800 90.77% 90.86% 90.84% 90.82% 80.97% 90.86%
19900 90.77% 90.76% 90.84% 90.79% 80.36% 90.86%
20000 90.75% 90.84% 90.82% 90.80% 78.82% 90.84%

Note: mAP and average IoU are for excavator, worker, and wheel loader; reference object is the material to be used for image rectification whose role and function
will be detailed in the next section.

Fig. 4. Result of object localization by YOLO-V3: trajectories.
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1

2 2= +
= (3)

Note: n stands for the total number of frame; SF stands for the scale
coefficient that converts pixel distance to the metric unit (i.e., meter);
xgt and ygt stand for coordinates of ground truth; and xe and ye stands for
the estimated coordinates.

5. Thrust #2: image rectification for distance measurement

While a camera maps 3D space onto a 2D image plane, projective
distortion emerges, distorting original properties of a scene. Fig. 5
provides a detailed example of the projective distortion. In the left-side
image, the two ellipses are actually circles having same properties (i.e.,
diameter= 27.4m), and also the tetragonal object is a square (i.e.,
width=height= 2.89m). As such, measured proximity on a 2D image

must be distorted and unreliable. While previous studies have focused
on recovering depth information on a 2D image, this research ap-
proaches this problem by focusing on the removal of this projective
distortion. The key insight is that the 3D distance between two objects
placed on the same plane can be measured even with a 2D image if the
projective distortion can be successfully rectified (Fig. 5). That is, in-
stead of measuring the depth of points, this research homogenizes the
3rd coordinates of points, thereby making distance measuring possible
on a 2D image with a minimum computation. Along this way, this
method leverages a reference object whose dimension is already known
(e.g., a column foundation). This reference provides a geometric cue to
estimate the homography between a distorted and rectified image as
well as allows measuring the unique scene scale. After the rectification,
the proximity can be measured in a metric unit, and the struck-by ha-
zard can be visualized considering the unique scene scale.

Table 3
Result of object localization by YOLO-V3: ALE.

Frame # Estimated coordinates Localization error (unit: meters)

Worker Wheel loader Excavator Worker wheel Loader Excavator

X Y X Y X Y

1 203 114 262 156 362 191 0.14 0.32 0.37
2 203 115 260 156 361 191 0.16 0.15 0.27
3 203 115 261 156 361 191 0.21 0.24 0.33
4 204 115 260 156 361 191 0.17 0.17 0.17
5 204 115 260 156 361 191 0.12 0.27 0.18
6 203 115 260 156 361 192 0.14 0.35 0.06
7 204 115 259 156 360 192 0.04 0.22 0.14
8 203 115 259 156 360 192 0.09 0.21 0.18
9 203 116 259 156 359 192 0.03 0.18 0.13
10 203 116 258 156 359 192 0.08 0.17 0.17

.

.

.

.
389 211 130 92 126 228 234 0.19 0.45 0.26
390 211 130 92 126 227 234 0.15 0.43 0.24
391 211 131 91 126 228 234 0.16 0.44 0.25
392 212 130 90 126 227 233 0.19 0.34 0.27
393 212 130 90 124 226 234 0.11 0.29 0.13
394 211 130 90 124 226 233 0.04 0.25 0.21
395 212 130 90 123 226 233 0.09 0.26 0.09
396 212 130 89 123 226 233 0.08 0.23 0.02
397 212 129 89 123 226 233 0.18 0.21 0.08
398 213 129 88 122 225 233 0.14 0.11 0.13
Average localization error (ALE, unit: meters) 0.16 0.37 0.31

Fig. 5. Projective distortion: before and after rectification.
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5.1. Method description

The proposed method consists of the following six steps: (i) edge
detection; (ii) line fitting; (iii) rectification; (iv) proximity measure-
ment; (v) outlier filtering; and (iv) hazard visualization (Fig. 6). The
detail explanations are stated as follows.

• Edge detection: the Canny operator is used to detect the edges of the
reference object. Because the bounding box of the reference can be
given from the fine-tuned object detector (Table 2), it can be applied
only to the inside of the box so that the unnecessary edges irrelevant
to the reference object can be filtered out. Firstly, the Gaussian filter
(size= 7×7, sigma=1) is applied to remove noises on the input
image. Then, the Sobel operator generates the edge map with its
magnitude and direction. Subsequently, the non-maximum sup-
pression refines candidate edges to have the minimum thickness.
Lastly, the hysteresis thresholding (i.e., high threshold=0.6 and
low threshold=0.24) filters out the false positive edges. Accord-
ingly, delicate (i.e., one-pixel thickness) and accurate edges can be
detected, which are used as samples for fitting the reference object's
contours in the next step.
• Line fitting: using the detected edges, the contours of the reference
object can be inferred. Among several line fitting methods (e.g.,
HOUGH transform), this method adopts the RANdom Sample
Consensus (RANSAC) that discounts outliers for robust operation.
Through the RANSAC line fitting, the best lines passing through
detected edges are inferred as contours of the reference object.
Firstly, two points are sampled at random. Then the line passing
through them is drawn with its inline zone. In sequence, the number
of inliers is counted. By iterating this, the best line having the largest
number of inliers is saved as a contour. In this method, the threshold
value of the one-pixel distance is used for determining inlier
boundary and the model is iterated 2000 times for fitting one con-
tour. Through the RANSAC, the four contours of the reference object

are inferred, and in turn, the four anchor points (i.e., the crossing
point of two contours) can be detected.
• Rectification: the way to rectify a distorted image starts from finding
the geometric transformation matrix (i.e., homography) that links
the distorted dimension to the corresponding ground truth. By
matching the estimated location of the four anchor points and that
of the ground truth, the linear equation, i.e., Eq. (4), is established,
which can be solved by direct linear transformation (DLT) algorithm
using singular value decomposition (SVD). Once the 3×3 homo-
graphy is found, the whole frame can be rectified by applying this
homography to every single pixel over a frame (Eq. (5)).

x x
x y

x x
y x

x y
y y

x x
x y

x x
y x

x y
y y

h
h

h
h

0 0
1
0

0 0 0
1

0 0
1
0

0 0 0
1

0
0

0
0

1 1
1 1

1 1

1 1

1 1

1 1

4 4
4 4

4 4

4 4

4 4

4 4

11

12

31

32

=

(4)

Note: (x(1–4), y(1–4)) stand for the estimated locations of anchor points;
(x′(1–4), y′(1–4)) stand for the ground truth location of anchor points; and
h(11–32) stand for the elements of the 3×3 homography (h33 is always
1).

W
X
Y

h h h
h h h
h h

x
y

1 1 1

11 12 13

21 22 23

31 32

=
(5)

Note: (X,Y) stands for the rectified coordinates of an original pixel; (x,y)
stands for the coordinates of an original pixel; and W stands for a scale
factor.

• Proximity measurement: after removing the projective distortion,
the proximity between a worker and equipment can be estimated by
calculating the Euclidean distance between them. In doing so, the

Fig. 6. Overall process of automated image rectification.
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pixel distance is converted to the metric unit, considering the scene
scale known from the reference object's dimension (Eq. (6)).

Proximity
Reference
Reference

Proximitymeter
meter

pixel
pixel=

(6)

Note: Referencemeter stands for the ground truth width of the re-
ference (unit: meter); and Referencepixel stands for the estimated width
of the reference on the rectified image (unit: pixel).

• Outlier filtering: the misdetection of an anchor point will deteriorate
the overall process, resulting in irregular outliers of proximity. An
outlier filter is therefore embedded to automatically detect and
offset potential outliers. This filter tracks the mean value of previous
two estimations and determines whether the current one is an out-
lier or not by inlier thresholding (i.e., inlier buffer= 50 pixel dis-
tances). Once an outlier is detected, the filter replaces it with the
mean value of the previous two estimations.
• Struck-by hazard visualization: additionally, the struck-by hazard
around equipment is visualized with a user-adjustable diameter.
This research uses the action radius of equipment as a default value
for the diameter of a struck-by hazard.

5.2. Test result

A lab-scale test was conducted to evaluate the effect of rectification
in measuring distance (i.e., proximity). Fig. 7 illustrates the test set-
tings. The 8× 8 square checkerboard (width=height= 25 cm) was
used to describe a real ground plane (width=height= 25m) with
1:100 scale. The left top corner was selected as a worker's location and
the others as possible locations of equipment, from which the ground
truths for the 48 proximities were established (Table 4). An aerial video
was filmed using a mobile cell phone, by taking UAV-like motion (i.e.,
varying location and orientation), as if the video was recorded by a
camera-mounted UAV (Fig. 7).
This test measured the proximities both on original and rectified

images, and compared them with pre-defined ground truth proximities.
The overall accuracy (i.e., for before and after rectification) was de-
termined by the mean absolute percentage error (MAPE) (Eq. (7)).

n
P P PAccuracy 100% 1 | | 100

i

n
g e

g
1

=
= (7)

Note: n stands for the total number of targets (i.e., 48); Pg stands for
ground truth proximity; and Pe stands for estimated proximity.

Fig. 7. Rectification test: ground truth vs. test setting.

Table 4
Proximity accuracy (before rectification).

Target # Ground truth (unit: meter) Proximity after rectification (below row= frame #)

1 2 3 ······ 146 147 148

1 3.13 3.13 3.13 3.13 ······ 3.13 3.13 3.13
2 6.25 6.24 6.24 6.24 ······ 9.16 9.16 9.12
3 9.38 9.36 9.36 9.36 ······ 12.07 12.05 11.99
4 12.50 12.49 12.48 12.48 ······ 14.95 14.91 14.80
5 15.63 15.67 15.66 15.65 ······ 14.95 14.91 14.80
44 19.76 19.78 19.76 19.73 ······ 16.47 16.40 16.28
45 20.96 20.99 20.97 20.94 ······ 17.61 17.52 17.37
46 22.53 22.61 22.60 22.56 ······ 19.01 18.90 18.73
47 24.41 24.59 24.57 24.53 ······ 20.63 20.50 20.29
48 26.52 26.84 26.82 26.78 ······ 20.63 20.50 20.29
100% - MAPE 99.71 99.72 99.70 ······ 86.27 86.00 85.61
Overall accuracy (%) 93.51%
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As the result, it was shown that the average accuracy of proximity
after the rectification was more than 97% (Table 5), which outperforms
the original accuracy by 3.93 points (i.e., before= 93.51%, Table 4).
Furthermore, it was revealed that the effect of rectification is to be
greater when a higher extent of projective distortion exists on an image.
For example, in the case of the 110th frame of a diagonal viewpoint, the
rectification could improve the accuracy by 25 points (i.e., be-
fore= 68.32% and after= 93.33%) (Fig. 8). Given the fact that the
extent of the distortion is far more serious in usual UAV-captured videos
(Fig. 5), the effect of rectification is expected to be greater than this lab
scale test.

6. Tests on real-site aerial videos

To evaluate the proposed method's accuracy in real-world applica-
tion, this research conducts two tests on real-site aerial videos. The first
tests the ability for mobile construction entities to work a normal op-
eration whereas the second test targets stationary entities in a con-
trolled environment.

6.1. Test on mobile construction entities

Table 6 provides the overview of the first test. The video was filmed

at a real construction site by a camera mounted-UAV. It is comprised of
10,614 consecutive frames. The 398 frames capturing worker-equip-
ment interactions were sampled for this test. In this work, the proximity
between a worker and two pieces of equipment (i.e., wheel loader and
excavator) were analyzed (Fig. 9).
The primary challenge of this test was to secure a comparison

benchmark. While it would have been ideal to directly measure ground
truth proximity on the site while filming the video, it was a challenge to
measure the proximity on the field without interrupting the site op-
erations, while also facing additional barriers to implementation (e.g.,

Table 5
Proximity accuracy (after rectification).

Target # Ground truth (unit: meter) Proximity after rectification (below row= frame #)

1 2 3 ······ 146 147 148

1 3.13 3.13 3.13 3.13 ······ 3.13 3.13 3.13
2 6.25 6.24 6.24 6.23 ······ 6.24 6.24 6.24
3 9.38 9.36 9.34 9.31 ······ 9.35 9.33 9.34
4 12.50 12.50 12.46 12.40 ······ 12.47 12.43 12.46
5 15.63 15.69 15.63 15.53 ······ 15.63 15.55 15.60

.
.
.
.

44 19.76 19.91 19.93 19.84 ······ 20.43 20.15 20.23
45 20.96 21.11 21.12 21.00 ······ 21.65 21.33 21.43
46 22.53 22.74 22.73 22.56 ······ 23.29 22.91 23.05
47 24.41 24.73 24.70 24.47 ······ 25.31 24.86 25.03
48 26.52 27.01 26.96 26.66 ······ 27.61 27.07 27.28
100% - MAPE 99.58 99.00 99.55 ······ 92.87 91.60 92.87
Overall accuracy (%) 97.43%

Fig. 8. Proximity accuracy: before vs. after rectification.

Table 6
Overview of the test for mobile entities.

Categories Description

The # of total frames 10,614
The # of frames analyzed 398
Resolution 3840×2140
Target's action

radius
A worker 2m
A wheel loader 5.8m [46]
An excavator 12.1 m [45]

Reference object A quadrate
concrete footing

Dimension: width= height= 2.89m

Evaluation metrics ADE and MAPE
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Fig. 9. Test on mobile construction entities: operational procedure.

Fig. 10. Inference on comparison benchmark.
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safety issues). As an alternative, we used entities' location information,
which we annotated manually, and applied a statistical inference pro-
cess to secure a reasonable substitute for the ground truth proximity.
Once correct locations for the two targets were given, errorless recti-
fication allowed for calculating the ground truth proximity between
them. In the real scene application, however, the rectification could be
influenced by noises, which can result in a ground truth estimation
dispersed with outliers. As shown in Fig. 10, this raw estimation (i.e.,
each point) itself cannot be reliable as it contains a wide scope of errors
and ignores continuity of a proximity. However, the obvious trend line
exists in there, which can be a valid comparison benchmark, once a
reasonable inference process is given. The following steps were applied
to attain this end (Fig. 10): (i) removing outliers by thresholding; (ii)
fitting baseline (i.e., dotted line); (iii) removing additional outliers from
the baseline with 1.0 standard deviation; and (iv) fitting the final trend
line (i.e., solid line). In this test, 9th-order polynomial model was used
for fitting the baseline and the final trend line, considering the proxi-
mity pattern of given test dataset.
As shown in Fig. 11, the proximity estimate was compared to the

comparison benchmark. As an evaluation metric for accuracy, the mean
absolute distance error (MADE) was used (Eq. (8)) along with the
corresponding MAPE (Eq. (9)). It was shown that the estimation was

close to the benchmark proximity in both cases (i.e., worker-wheel
loader and worker-excavator) with the acceptable MAPE: 3.72% and
4.85%, respectively. The MADE for worker—wheel loader was 0.33m
and that for worker—excavator was 0.89m. Moreover, the proposed
method showed unbiased performance with having evenly spread dis-
tance errors (i.e., residuals) around median values (i.e., 0.01m and
−0.16m, respectably).

n
P PMADE 1 | |

i

n

b e
1

=
= (8)

n
P P PMAPE 1 | | 100

i

n
b e

b
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=
= (9)

Note: n stands for the number of frames (i.e., 398); Pb stands for
benchmark proximity; and Pe stands for estimated proximity.

6.2. Test on stationary construction entities

The details of the second test are summarized in Table 7 and Fig. 12.
An aerial video was filmed at a real construction site using a mobile cell
phone, by taking UAV-like motion. Unlike the previous work, this test
fixed the locations of targets to secure the ground truth proximity. In
this test, the proposed method estimated the proximity between a sta-
tionary worker and an excavator (Fig. 12). And the estimate was
compared to the pre-defined ground truth proximity. Two cases of
ground truth proximity were analyzed in this test: (i) case #1: 15m and
(ii) case #2: 20m (Fig. 12).
The proximity estimate was compared to the ground truth. It turned

out that the estimation was close to the ground truth in both cases (i.e.,
15m and 20m) with the acceptable MAPE: (i) case #1: 4.214% and (ii)
case #2: 4.462% (Fig. 13). The MADE for the case #1 was 0.632m and
that for the second case was 0.892m (Fig. 13).

7. Discussion on test results

In the first test to target mobile construction entities, the fine-tuned

Fig. 11. Test result for mobile entities: estimation vs comparison benchmark.

Table 7
Overview of the test for stationary entities.

Categories Description

Resolution 1920×1080
Ground truth Case #1 15m

Case #2 20m
The # of frames

analyzed
Case #1 50 frames
Case #2 50 frames

Target A worker Stationary
An excavator Stationary

Reference object A tetragonal concrete
footing

Dimension: 2.4 m–2.6m-
0.6m-2.6m-0.8m

Evaluation metrics ADE and MAPE
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detector (i.e., YOLO-V3) showed robust localization performance; the
localization error (Eq. (3)) for the three construction entities (i.e., a
worker, a wheel loader, and an excavator) could be held around 0.3m
even under viewpoint, scale, and illumination variations occurring in
the test videos. In achieving the invariant performance were two pri-
mary contributories: (i) transfer learning; and (ii) fine-tuning with the
data having a wide range of variations. First, balancing between the
model capacity and the amount of training data is critical in avoiding
overfitting. However, the amount of data collected in this research (i.e.,
4512 images) was not ideal for training the original YOLO-V3 archi-
tecture to have deep layers (i.e., total 106 layers) from scratch. This
research, therefore, elected transfer learning. To be more specific, we
took the YOLO-V3 network pre-trained with ImageNet benchmark da-
taset and used its weights as the starting point of fine-tuning. Naturally,
network modifications were made for fitting the original architecture to
our dataset (i.e., adjustment of the size of the final feature tensors). By
starting from pre-validated weights, the network could achieve well-
balanced training without overfitting, thereby making it possible to
have an equivalently robust performance on both the training and test
dataset. Second, fine-tuning with data involving a wide range of

variations helped to enhance the invariant localization capability. This
research primarily used images extracted from the videos captured in
various construction sites, which covered a wide range of variations
regarding illumination, viewpoint, and scale. Fine-tuning with the
variable data helped to optimize parameters, e.g., coefficients of con-
volution kernels, to be invariant to such variations. The parameters
could construct consistent feature tensors in successive frames, which in
turn led to the robust localization results.
With the localization result, the image rectification method could

lead to a reliable proximity measurement between the three entities,
successfully removing the projective distortion. First of all, the anchor-
points detection using the Canny operator and the RANSAC line fitting
was hardly affected by the viewpoint, scale, and illumination variations
with advantages of non-maximum suppression and hysteresis thresh-
olding. Given the precise locations of the anchor-points, the rectifica-
tion method could solve the unique solution for the geometric trans-
formation matrix toward the undistorted original scene and thus could
get reliable proximity estimates. On the other hand, the rectification
could not be successful at times (i.e., 37/398, in the test for mobile
construction) due to aggregates of noise pixels (e.g., sands covering the

Fig. 12. Test on stationary entities: operational procedure.

Fig. 13. Test result for stationary entities: estimation vs ground truth.
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reference objects). However, all outliers of the estimated proximity
resulted from the rectification failures could be successfully detected
and refined by the outlier filter. As the result, the proposed method
could achieve a promising accuracy of the proximity estimate (i.e.,
worker—wheel loader: 0.33m MADE and 3.72% MAPE, work-
er—excavator: 0.89m MADE and 4.85% MAPE). In real-world appli-
cations, specifically, when detecting struck-by hazards, this minor
amount of error would be offset by adding an extra buffer (e.g., 1 m) to
the action radius of equipment.
Following the first test, we conducted an additional test focusing on

stationary targets (i.e., an excavator and a worker). This test is designed
to compare the proximity estimates from our method with the ground
truth proximity directly measured on the site in order to validate the
proposed method more convincingly. Consequently, the proposed
method showed promising accuracy in the second test as well. The
MADEs for both cases (i.e., 15m and 20m proximity) was less than 1m
and corresponding MAPEs were around 4%. The results clearly show
the validity of the proposed method.

8. Toward real-world applications

Despite the promising performance, there are several areas where
we can improve toward real-world applications. This section discusses
several improvement points, specifically as to (i) generalization cap-
ability of the fine-tuned network; (ii) rectification accuracy; (iii) com-
puting efficiency; and (iv) the development of an integrated system.

8.1. Generalization capability of the YOLO-V3

This study collected construction images whose extent, however,

may not be enough to generalize the YOLO-V3 to the usual construction
environment. This is because a network trained with the limited source
of data would involve high variance, whose capability would be re-
stricted into small contexts of the limited training data. The one abso-
lute solution to improving the generalization capability should be
training with a vast volume of data capturing various construction
scenes. As an axiom of deep learning, the more data a model consumes,
the better generalized capability the model will achieve. With the vast
dataset secured, a comprehensive comparative analysis of various DNNs
can also follow. The performance of a DNN depends on its model ar-
chitecture as well as adjustable hyper-parameters (e.g., the number and
size of convolutional layers or learning rate) [36–39]. Therefore, ex-
amining alternative networks with various scenarios of hyper-para-
meters will lead to finding the best network for the localization of
construction entities.

8.2. Rectification accuracy

When a reference object appears unsoiled in an image, the proposed
rectification method can output a complete rectification result. As
shown in Fig. 14, the precise locations of the anchors can be detected,
and an accordingly perfect rectification can be secured on a virtual
image. However, it may be difficult to expect such a clear state of an
object in the real construction site. In the test video, there were several
aggregates of noise pixels covering the reference object such as sands or
a plate. The presence of these noises could cause false-positive contour
lines and anchor-points because the anchor-points detection algorithms,
i.e., Canny operator and RANSAC line fitting, are operated depending
on the configuration of pixel values. In the first test, the rectification
failures happened 37 times among the total 398 frames all of which

Fig. 14. Rectification performance: virtual condition vs. onsite condition.
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were attributed to the noise pixels. As in the test with a virtual image
(Fig. 14), the use of unsoiled reference object that has clear contour
lines and distinctive color to surroundings would be the one simple but
powerful solution for this problem. Furthermore, designing a new filter
that can automatically remove aggregates of noise pixels having non-
linear patterns could also be an effective solution to reduce the chance
of a mis-rectification.

8.3. Computational efficiency

Computational efficiency significantly matters in proximity mon-
itoring as it ultimately aims at timely intervention. This research used a
single graphic processing unit (GPU, NVIDIA Tesla K40) server, and
consequently the total computational cost of the proposed method was
estimated at approximately 0.278 s per frame (i.e., 0.028 s for locali-
zation and 0.25 s for rectification). However, when considering the
travel speed of a vehicle (or equipment), the sparse estimation (i.e., 3.6
times per a second) proves insufficient. For example, a wheel loader
(B877, SDLG) can travel 3.4 m for the 0.305 s and also an excavator
(328D LCR, CAT) can swing 3.2m in that moment [41,42]. This mo-
mentary change could result in a struck-by accident while the proximity
monitoring lagged. However, there are still opportunities to improve
the computational efficiency of the proposed method. Computing cost
of a DNN significantly depends on a capacity of parallel computing.
Hence, the use of multiple GPU servers (i.e., cloud server) would im-
prove the computational efficiency in object localization. Additionally,
computing cost for the rectification would also be reduced by parallel
programming and therefore leveraging the GPU capacity.

8.4. Development of an integrated system

It is also necessary to build a system incorporating (i) imaging de-
vices (i.e., a camera-mounted UAVs), (ii) a cloud computing device, and
(iii) feedback receivers (e.g., wrist band or smart safety glasses), for
real-world applications. Leveraging Internet of Thing (IoT) cloud plat-
form currently available on the market (e.g., Amazon Web Services
(AWS) IoT Platform, Microsoft Azure IoT Hub, IBM Watson IoT
Platform, and Oracle IoT Platform) can be a promising solution to
achieve this end. This platform could connect multiple imaging devices
(i.e., UAVs) generating massive data covering a wide range of site to
cloud computing device that can process proximity monitoring in near
real-time. Also, the prompt feedbacks could be delivered to workers in
struck-by hazards via wearable devices—such as wrist band or smart
safety glasses—connected to the cloud. This IoT cloud platform would
enable rapid proximity monitoring and intervention with a huge com-
puting capacity.

9. Conclusion

As an alternative technology for onsite proximity monitoring be-
tween construction entities, computer vision methods for UAV-assisted
visual proximity monitoring were presented in this paper. A DNN for
object detection, i.e., YOLO-V3, was applied to the robust and fast lo-
calization of construction entities. In addition, an image rectification
method that allows for measuring actual proximity on a 2D image was
developed. When operated together, the methods can consistently
monitor proximity between construction entities in a fully automated
way. Tests on real-site aerial videos showed a promising performance of
the proposed method; the MADEs were less than 0.9m and the corre-
sponding MAPEs were around 4%. However, there still remains plenty
of room for improvement for real-world application: (i) improving the
generalization capability of the fine-tuned network; (ii) improving the
computational efficiency of the rectification method; and (iii) building
an IoT cloud-based integrated system. With such critical refinement, the
proposed method can serve as a proactive and applicable measure for
safety intervention against struck-by hazards on construction sites, and

can ultimately promote a safer working environment for construction
workers.
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