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The prospect of human-robot collaborative work on construction sites introduces new workplace hazards that
must be mitigated to ensure safety. Human workers working on tasks alongside construction robots must per-
ceive the interaction to be safe in order to ensure team identification and trust. Detecting the robot pose in real-
time is thus an essential requirement to inform the workers and to enable autonomous operation. Vision-based
(marker-based, marker-less) and sensor-based are two of the primary methods for estimating robot pose. The
marker-based and sensor-based methods require some additional preinstalled sensors or markers, whereas the
marker-less method only requires an on-site camera system, which is common on today's construction sites. This
research developed a marker-less pose estimation system for on-site articulated construction robots, which is
based on a deep convolutional network human pose estimation algorithm: stacked hourglass network. Both 2D
and 3D pose are estimated. The system is trained with image datasets collected from a robotic excavator and
annotations of excavator pose, as well as conventional excavators working on construction sites. A KUKA robot
arm with a bucket mounted on the end-effector was used to represent the robotic excavator in the experiments.
The marker-less 3D method was evaluated, and the results were compared with the sensor-based results and the
robot's ground truth pose. The results demonstrated that the marker-less 2D and 3D pose estimation methods are
capable of performing proximity detection and object tracking on construction sites and can overcome the
missing data issues encountered in the sensor-based method. However, the lower accuracy of the bucket pose
estimation due to occlusion highlights the need for modifying the network and collecting additional datasets for
training in future work.

1. Introduction cannot locate all workers nearby and the workers also cannot monitor
the equipment components clearly, especially for articulated equipment
such as excavators that usually work around trenches or earth mounds

that serve as potential occlusions leading to increased possibility of

Due to the hazardous, unstructured, and dynamic working en-
vironment and labor-intensive nature, the construction industry has a

higher rate of workplace fatalities and injuries compared to other in-
dustries [1,2]. According to reports from U.S. Bureau of Labor Statistics
and CPWR, on average 53% of the fatal accidents that happen on
construction sites are either struck by vehicle or equipment overturns
and collisions between 2003 and 2010 [3], which costs approximately
$13 billion per year in U.S. [4]. On a typical construction site, workers
and heavy equipment have to work together closely, which increases
the potential safety risks [5]. Blind spots around the equipment are the
primary cause of such accidents [6]. When workers need to interact
with the equipment on job sites, the equipment operator sometimes
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blind spots. In order to prevent these type of accidents, manual jobsite
safety observations and inspections are required on construction sites
[7]. However, safety personnel have to pay attention to entire jobsites
continuously, which is time-consuming and incurs additional costs [8].

Underground utility strike incidents are another category of acci-
dents related to the operation of articulated construction robot such as
excavators [9,10]. According to the Common Ground Alliance (CGA)
2016 Damage Information Reporting Tool (DIRT) report, approximately
379,000 underground utility damage incidents were reported in 2016
in the U.S., which was an increase of 20% from 2015 and cost an
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additional $1.5 billion [11]. One key reason for the high incident rate is
the location uncertainty of the underground utilities [12]. Many of the
existing buried utilities are abandoned or undocumented, and locating
hidden utilities is the first step to address this issue [13]. The under-
ground utility record could help workers and excavator operators avoid
the potential utility locations. However, the operators sometimes
cannot locate the bucket or utilities directly from the cabin. The in-
direct guidance from workers near the bucket does little to reduce the
risks of utility strikes. Thus, utilizing sensors to estimate the excavator
pose and providing real-time information to workers and operators has
emerged as a feasible method and has been studied in developing on-
site articulated construction robot pose estimation systems [12,14-16],
and enhancing the on-site information with Augmented Reality
[17-19]. Furthermore, the pose estimation system also provides the
potential application of productivity analysis [20]. The existing pro-
ductivity analysis methods only tracked the construction equipment or
part of the equipment by sensors or computer vision method [21-23].
For example, the part of the excavator and the haul truck were iden-
tified and tracked during the dirt-loading cycle and utilized to estimate
the productivity [21]. The motion analysis or action recognition
methods are required to classify similar excavator activities such as
digging and dumping to enhance productivity analysis [24]. This can be
achieved by providing the detailed pose of the excavator for identifying
the action [25].

The prospect of human-robot collaboration (HRC) on construction
sites further heightens these proximity safety concerns [26]. Unlike
HRC in typical manufacturing settings, the robot on the construction
site has to maneuver around the unstructured environment to their next
task location. The workplace of the robot changes dynamically based on
their location, which is a challenge for HRC safety. According to stan-
dards ISO 10218-1, ISO 10218-2 and ISO/TS 15066, the safety of the
HRC must be adhered to either by stopping the robot before human
contact, or be controlled by regulating force and speed limits [27]. The
recently developed dynamic safety system utilized human detection
sensors and optical sensors to adjust the robot speed according to the
detected human action and the protective distance [28]. However, the
protective distance, or safety zone, has to be very large since the optical
sensors only identify the difference between current frame and previous
frame instead of tracking the robot's exact pose, which causes the poor
utilization of space [27]. On the other hand, the robot's onboard sensors
are often failed due to magnetic disturbance by artifacts (IMU) or signal
blockage in an urban canyon (GPS) [29]. In addition, the articulated
construction robot has arbitrary and expansive movement around the
unstructured construction site and is difficult to make the construction
site a structured environment [30]. This highlights the need for de-
veloping an effective on-site pose estimation system for articulated
construction robot and human workers.

The experimental testbed of the construction articulated robot in
this paper was an excavator since it is ubiquitous equipment on jobsite
and has a large blind spot [6]. The pose of the excavator can be de-
scribed as the angle between each component (boom, stick, and bucket)
and the six degree-of-freedom (6 DOF) coordinates of each joint (cabin-
boom, boom-stick, stick-bucket, bucket end-effector). Fig. 1 depicts a
2D pose estimation system. The pose of the construction equipment,
such as an excavator, can be described as the angle between each
component (boom, stick, and bucket) and the six degree-of-freedom (6
DOF) coordinates of each joint (cabin-boom, boom-stick, stick-bucket,
bucket end-effector). In the 2D case, the pose is defined as the pixel-
wise coordinate and angle (X, Y, 68), whereas in the 3D case, the pose is
defined as the world coordinate and roll-pitch-yaw (X,Y,Z,¢,0,y).
Fig. 2 illustrates the excavator side view with the kinematic chain and
the corresponding parameters. The pose of each excavator joint can be
calculated using the angle and lengths of each component by Forward
Kinematies [31], or directly estimated by sensors or vision [12].
Therefore, determining the location of each joint and the angle between
each link is the primary goal of articulated construction robot pose

81

Automation in Construction 104 (2019) 80-94

Fig. 1. lllustration of the 2D on-site pose estimation system on a video frame for
both articulated construction robot and human workers. Red lines are the es-
timated pose. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)

estimation.

1.1. Existing pose estimation methods

In current practice, two types of pose estimation methods are
mainly used on construction equipment or human worker — these are
non-visual sensor-based and vision-based pose estimation methods. For
non-visual sensor-based pose estimation methods, sensors such as
Inertial Measurement Unit (IMU), Global Positioning System (GPS),
Wireless Local Area Network (WLAN), Radio Frequency Identification
(RFID), and Ultra-Wide Band (UWB) are mainly deployed on con-
struction equipment and construction sites. IMU sensors need to be
mounted on excavator links to measure the angle [9,32-35], which
suffers from drift issues over time and magnetic interference [36]. GPS
is effective for outdoor use only and also suffers from the signal
blockage in an urban canyon [29], which is not suitable for some indoor
or urban construction sites. WLAN systems require significant amount
of effort for calibration [37]. The accuracy of the WLAN estimation
depends on the distribution of the access point [38]. RFID and UWB
methods both require sufficient preinstalled tags and readers on
equipment and infrastructure [39-42]. They generally suffer from
missing data issues [16] and are inadequate for pose estimation [43].
Besides, most of these methods cannot provide orientation information
directly, except for IMU sensors, and are thus not suitable for con-
struction scenarios.

On the other hand, vision-based pose estimation methods are cap-
able of analyzing position information as well as orientation informa-
tion directly from input data, such as videos or point clouds [44]. These
methods generally recognize construction equipment on site
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Fig. 2. Definition of the excavator pose. The pose of each joint P can be calculated by the component effective lengths L and the angle between each component 8.

[21,45-47], then estimate their six-degrees-of-freedom (6 DOF) pose
[15,48,49], and can be categorized into two different groups: marker-
based and marker-less pose estimation methods. The marker-based pose
estimation method recognizes all the markers mounted on equipment
and estimates the pose by their geometric relations or marker network
[12,50,51], or projects infrared LEDs and analyzes the pattern to de-
termine the pose [52,53], whereas the marker-less pose estimation
method directly extracts image features and estimates the pose from
them [15,48,49]. The marker-based method has been extensively ap-
plied in indoor localization and facility management [54-57]. Similar
to the sensor-based pose estimation method, they also require pre-
installed markers on equipment and environment.

In comparison to the marker-based method, the marker-less pose
estimation method only requires an on-site camera system, which is
common on typical construction sites today, or utilizes RGB-D cameras
[58-61]. Feature descriptor based is the first type of marker-less pose
estimation method, such as Histograms of Oriented Gradient (HOG)
[21], 3D principal axes descriptor (PAD) [45], Iterative Closest Point
(ICP) [62], or Viewpoint Feature Histogram (VFH) [48]. On the other
hand, the recently emerging Convolutional Neural Networks (CNN) is
another type of pose estimation method [63], which has improved
performance (accuracy and speed) in comparison with all other vision-
based methods, especially for human pose estimation. The majority of
the human pose estimation methods are 2D-based methods [64,65],
which estimate the human pose in 2D pixel-wise coordinates, as shown
in Fig. 1. Existing human pose estimation can be categorized as de-
tection-based and repression-based [66]. The detection-based methods
utilized a heat-map to predict the joint location [67], whereas the re-
gression-based methods utilized a nonlinear function to compute the
joint coordinates directly [68]. The stacked hourglass network method
proposed by Newell et al. [69] built the foundation of the state-of-the-
art 2D human pose estimation method. Generative Adversarial Net-
works (GAN) [70], Pyramid Residual Module (PRM) [71], Conditional
Random Field (CRF) [72] were applied to the stacked hourglass net-
work to improve the performance. Besides, several existing 3D human
pose estimation methods adopted the stacked hourglass network with
coarse-to-fine volumetric architecture [73] or weakly-supervised ap-
proach [74]. The existing pose estimation method were mainly focused

Table 1
Comparison of the existing pose estimation methods by accuracy and limitations.

on the 2D pose due to the lack of 3D ground truth posture data [75]. For
human pose data collection, the motion capture system is primarily
used to obtain the ground truth data of human skeleton in an indoor
environment [76], which is difficult to employ for construction equip-
ment in an outdoor environment.

1.2. Applications of pose estimation methods

The existing pose estimation methods used in construction have
different target applications. The accuracy and the specific short-
comings of any pose estimation method affect the method selected for
each specific construction application. Table 1 lists the accuracy and
the limitations of the existing pose estimation methods. For the 3D
marker-less vision-based pose estimation method, the accuracy can be
achieved at 1 m. However, the largest distance of the target equipment
from the camera is 50 m; otherwise, the accuracy drops dramatically
[15]. For the 3D marker-based vision-based pose estimation method,
the accuracy can be achieved at 2cm when the distance between
camera and bucket teeth is under 6.1 m [12]. The camera occlusion is
the main drawback of the marker-based method since the markers have
to be visible in the camera view at all times in order to estimate the pose
[12]. For the sensor-based pose estimation method, the accuracy can be
achieved at 5 cm when testing on a real excavator arm with IMU sensors
[33] but could be improved depending on the type of the sensor used.
In addition, data missing or signal block is the major issue of the sensor-
based method [16,33]. Finally, for the 2D vision-based pose estimation
method, the angular accuracy can be achieved at 10° between the ex-
cavator components, which results in 122 cm vertical displacement
when the reaching length of the excavator boom is 7 m [49]. However,
this type of method can only provide 2D pixel-wise location or angle in
each image and requires extra post-processing to acquire the depth data
or 3D pose [49].

Pose estimation methods have been applied on construction sites to
address safety and quality related issues. Table 2 compares the different
pose estimation related construction applications comparing their ac-
ceptable location uncertainty and the methods currently used. The first
application is preventing accidental utility strikes during excavation,
which has a 2.5 cm acceptable location uncertainty [12]. The sensor-

3D marker-less vision-based [15]

3D marker-based vision-based [12]

Sensor-based [33] 2D vision-based [49]

2cm
Camera occlusion

Im
Distance < 50m

Accuracy
Disadvantage

10°
No depth data and 3D pose

S5cm
Data missing
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Comparison of equipment pose estimation applications in the construction industry by location uncertainty and corresponding methods.

Preventing utility strikes Grade control

Object detection and tracking

Proximity detection Autonomous excavation

Location uncertainty
Methods

2.5cm [12]
Sensor [16,33]
3D vision [12]

2.5cm [12]
Sensor [77,78]

< 1m [79] < 0.7m [81] 4 cm [83]
Sensor [79] Sensor [39,81] Sensor [83,84]
2D vision [14,80] 2D vision [82] 3D vision [15]

based method [16,33] and the 3D marker-based vision-based method
[12] are two methods used for such applications. The second applica-
tion is grade control, which also has a 2.5 em acceptable location un-
certainty [12]. Several sensor-based grade control commercial products
have claimed that their accuracy can approach 1 mm [77,78]. The
above two applications can tolerate relatively low uncertainty in pose
estimates due to their precise control features.

The third application is object detection and tracking. The object
detection and tracking methods have demonstrated a location un-
certainty of <1m [79], and sensor-based methods and 2D vision
methods are mainly utilized in this application [14,80]. The fourth
application is proximity detection in which the location uncertainty is
shown to be under 0.7 m [81]. Similar to object detection and tracking,
the sensor-based method [39,81] and the 2D vision method [82] are
used in proximity detection applications. Instead of the high accuracy,
the data consistency is more important for these two types of applica-
tions. Finally, the fifth application is autonomous excavation, and the
acceptable location uncertainty is 4 cm [83]. The sensor-based method
[83,84] and the 3D vision-based method [15] are applied.

2. Research goal and contribution

In this study, a vision-based marker-less pose estimation system for
articulated construction robots is proposed, which can distinguish robot
joints and estimate their poses in images or video frames. The excavator
is used as the experiment testbed. This system is built on a state-of-the-
art human pose estimation deep neural network called the stacked
hourglass network [69,85] and trained on an excavator image dataset
collected from a factory environment with a robotic manipulator. The
network is adapted and modified for the excavator skeleton. Both 2D
and 3D versions of the system are built and evaluated in order to
characterize the location uncertainty requirement illustrated in Table 2.
The performance of the proposed system is validated based on the da-
taset annotation and the ground truth data, and compared with the
sensor-based pose estimation method (IMU sensors). In addition, a fast
dataset collection approach for articulated construction robot pose es-
timation is also developed and described.

The remainder of this paper is organized as follows. First, a deep
neural network vision-based pose estimation method for articulated
construction robot is introduced. Both 2D and 3D version baselines are
established and evaluated. Second, the performance of the proposed

pose estimation method is investigated via an experiment and com-
pared with the IMU-based pose estimation method. Lastly, an articu-
lated construction robot pose estimation dataset is collected and eval-
uated.

3. Vision-based marker-less 2D pose estimation

The proposed vision-based marker-less 2D pose estimation system is
developed based on a state-of-the-art human pose estimation algorithm,
namely the stacked hourglass network by Newell et al. [69,85]. This
network scales the training images into different resolutions and cap-
tures features, and then combines the information to predict the pose.
Compared to the complicated human pose, the construction equipment
pose is relatively simpler and thus requires less information across
different image resolutions. The detailed network architecture is further
discussed in the next section.

3.1. 2D pose estimation system network architecture

Unlike the complicated human skeleton, excavator pose only re-
quires identifying three components, which are the bucket, stick, and
boom, and their corresponding joints. Therefore, the complexity of the
network needed is lower than the original network. Two convolutional
layers followed by a max pooling layer are first applied to the training
images, which shrinks the images down to the size of 64 pixels. Then
three subsequent convolutional layers upscale the images to the size of
256 pixels before the hourglass module. Finally, four hourglass mod-
ules, output prediction modules, and residual link modules are used in
the network. According to Newell et al. [69], eight hourglass modules
are used for human pose estimation. The reason for using four hourglass
modules for the excavator pose estimation is that the excavator pose is
relatively simpler than the human and thus requires less information
across different image resolutions. All the convolutional layers are
followed by ReLu activation function, with stride 1 except the first
convolutional layer (Convl layer) with stride 2, and with batch nor-
malization except the convolutional layers in the output prediction
module. Fig. 3 shows the detailed network architecture.

The hourglass modules are the main components that collect fea-
tures across different resolution of the images. Fig. 4 shows the network
architecture of the hourglass module. The input passes into two parallel
routes. In the first route, only one convolutional layer is applied to

Fig. 3. Vision-based marker-less 2D pose estimation network architecture [69].
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Fig. 4. Hourglass module network architecture.

upscale the input to the size of 256 pixels. In the second route, one max
pooling layer followed by three convolutional layers are applied to
downscale the input to the size of 384 pixels, then resized to the size of
256 pixels, as the first route result. Finally, two route results are added
together through elementwise summation to generate the output. This
can preserve the global features and capture the local features as well.

The output prediction module and residual link module are applied
after the hourglass module. Two convolutional layers are used in the
output prediction module to generate the heat-map of the possibility
distribution of the location of each joint. Fig. 5 shows the concept of the
prediction heat-map. Each circle in the image represents the highest
probability of the corresponding joint location. The final layer is a one-
by-one convolutional layer, which aims to calculate the possibility
across the depth of the output of the previous layer. On the other hand,
the residual link module combines the output of the prior hourglass and
the output prediction module to generate the input for the next hour-
glass. The repeated hourglass and residual link modules can preserve
the spatial location and relation of each feature and apply to the final
prediction step.

Fig. 5. The concept of the prediction heat-map generated by the output pre-
diction module. Each circle represents the highest probability of corresponding
joint location.

3.2. Training details and implementation

The Lo-norm loss function is used to train the network, as shown in
Eq. (1):

Ly(Xp.X1) = ), (Kp — G(X))? ey

where Xp represents the predicted pose and X; represents the labeled
ground truth training data, and G() represents the Gaussian kernel
function with 1-pixel standard deviation. The loss function directly
calculates the error between the training ground truth heat-map and the
predicting heat-map and minimizes it.

The network system is implemented by modifying the original
network using PyTorch and the loss function described above. The
RMSprop method with learning rate 2e-4 is used for optimization. Batch
normalization is used for the training process [86]. The network is
trained with NVIDIA GeForce GTX 1060 graphic card on an excavator
image dataset, which is collected from a factory setup laboratory en-
vironment with a simulated robotic excavator. The excavator dataset
contains 3000 training images and 500 testing images aligned with
their 2D pose annotation. The detailed laboratory environment setup
and data annotation are discussed in Sections 5.1 and 5.2.

4. Vision-based marker-less 3D pose estimation

The proposed vision-based marker-less 3D pose estimation system is
adapted and modified from a 3D human pose estimation baseline net-
work [75]. This network uses the 2D pose estimation result, such as the
stacked hourglass network, to predict and reconstruct the 3D pose. This
can expedite the estimation process in order to accomplish the real-time
pose estimation. The detailed network architecture is illustrated in the
following section.

4.1. 3D pose estimation system network architecture

The objective of the baseline network is to predict and reconstruct
the 3D pose of the articulated equipment based on the input 2D pose
data. The 2D pose data from the previous vision-based marker-less 2D
pose estimation result is passed to two subsequent linear layers, which
are followed by the ReLu activation function and 0.5 dropout. The
batch normalization is also applied to the linear layer output, which can
increase the performance of the network. Next, the residual link module
combines the output of the linear layer and the input 2D pose data to
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Fig. 6. Vision-based marker-less 3D pose estimation network architecture. Two linear layers and residual link are repeated twice to reconstruct the 3D pose based on

the input 2D pose [75].

generate the predicted 3D pose, similar to the 2D pose estimation
network. The entire process is repeated twice to generate a higher ac-
curacy of the prediction and prevent overfitting. Based on the experi-
ment results from [75], the best performance of the network can be
achieved by repeating the process twice and it will saturate after re-
peating the process four times due to overfitting the network. Fig. 6
shows the 3D pose estimation network architecture.

4.2. Training details and implementation

The Ly-norm loss function is also used to train the network, as
shown in Eq. (2):

Ly (Xp. Xap) = Z (f (X2a) — X3p)? 2

where X,; represents the input 2D pose data, and X5; represents the
labeled ground truth 3D training data, and f(*) represents the function
that maps the 2D input data to the 3D prediction. The loss function
minimizes the prediction error between 3D prediction and 3D ground
truth data. The Lo-norm loss function is derived from the loss function
of the 3D human pose estimation baseline network [75].

The network is implemented using TensorFlow, and the loss func-
tion described in Eq. (2). The Adam method with starting learning rate
2e-3 and exponential decay is used for optimization, instead of starting
learning rate le-3 [75]. Batch normalization is also used for the training
process. The network is trained with NVIDIA GeForce GTX 1060 gra-
phic card on the same image dataset collected from the laboratory with
a robotic excavator. The 3D ground truth data is measured directly from
the robot's embedded joint sensors. The complete laboratory setup is
discussed in Section 5.1.

5. Dataset collection

The image dataset is collected with an articulated robotic manip-
ulator outfitted with a simulated excavator bucket. The dataset is se-
parated into training and testing groups. The proposed networks are
trained by the training group and then evaluated by the testing group.

5.1. Dataset collection setup

For the dataset collection setup, a KUKA seven DOF robot arm
(KUKA KR120) [87] was used to simulate the excavator, and the images
of the robot arm with different poses were captured. Fig. 7 illustrates
the simulated excavator in the laboratory. The upper arm represents the
excavator stick and the lower arm represents the excavator boom. A
bucket is mounted on the robot arm end-effector for a more realistic
simulation. In order to control the robot as an excavator, the profile of
the mounted bucket must remain perpendicular to the ground level.

85

Fig. 7. The simulated robotic excavator - robot arm mounted with an excavator
bucket.

Thus, only four of the robot joints were moved during the dataset
collection process, and the others were fixed at all times. The robot arm
was controlled to follow trajectories to perform several excavator-like
tasks such as digging, swinging, or unloading. The ground truth of the
excavator pose data was acquired from the robot arm's embedded en-
coders, including 6 DOF pose of the robot's end-effector (X,Y,Z,A,B,C)
and angles of all joints (A;,Az,A3,A4,As,Ag).

In order to collect the images of the simulated excavator, a Point
Grey camera [88] was used in the process. The camera was mounted on
a second KUKA robot arm in the laboratory, as shown in Fig. 8. This
could not only provide several different locations and orientations of
the camera to increase the variety of the dataset, but also helped obtain
the 6 DOF pose of the camera itself, which is the end-effector of the
camera robot, for further processing. The mounted camera on the
second robot arm was triggered by the same controller (Programmable
Logic Controller, PLC) utilized to control the first robot arm. Thus, the
captured image and the recorded ground truth pose data were syn-
chronized with each other. In the data collection process, a total of
2500 images were collected; 2000 of them were used as training images
and 500 of them were used as testing images. The data augmentation
method was applied to increase the verity of the dataset to 3000
training images [89]. The human pose benchmark dataset FLIC [90] is
composed of 3987 training images. In addition, the human pose is much
more complicated than the excavator pose and constraint-free. The
excavator has 1 DOF joints which are finite in number, and that reduces
very dramatically the number of images needed for training. Fig. 9



C.-J. Liang, et al.

Automation in Construction 104 (2019) 80-94

Fig. 8. The camera mounted on the second robot arm to capture the images.

shows a set of the collected images from the dataset. The size of each
image is 2048 x 2048 pixels.

In addition, to increase the variety of the dataset and vary the
background of the dataset images, several images from outdoor con-
struction sites with working excavators were also collected, as shown in
Fig. 10. The images contain the variety of excavator operations on
different construction sites with single or multiple machines. These
images were only used for evaluating the 2D pose estimation network

since the 3D ground truth data could not be obtained from these
images. A total of 500 images were collected; 400 of them were used as
training images and 100 of them were used as testing images. The size
of the images was different, and thus needed rescaling and cropping to
1024 x 1024 pixels before inputting into the network.

Fig. 9. A set of the captured images for the excavator dataset with different camera location and orientation, and excavator pose.
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Fig. 10. A set of working excavator images from the dataset.

5.2. Data annotation

Data annotation is required in order to indicate the location of the
excavator's joints in the images as the ground truth. The structure of the
excavator data annotation follows the similar structure to the human
pose dataset annotation, MPII for 2D pose [63] and Human3.6 M for 3D
pose [76]. In the 2D pose annotation, excavator joint locations were
annotated in the pixel-wise coordinate. The visibility of each joint was
also marked in the annotation data. The scale of the image was mea-
sured with respect to a height of 200 pixels. On the other hand, in the
3D pose annotation, the locations of the excavator's joints were labeled
as (X, Y) in pixel-wise coordinates and Z was considered as the depth
value from the camera to each joint, which was calculated from the
robot arm end-effector and joints' ground truth data. The bounding box
was also labeled to show the area of the excavator in the image. The
annotations were performed via MATLAB and saved as two separated
annotation files, one for the 2D pose and the other for the 3D pose.
Fig. 11 shows an example of an annotated image.

The 3D ground truth data was acquired by the robot arm's built-in
encoders and the Programmable Logic Controller (PLC). Fig. 12 illus-
trates the framework of the pose data and image acquisition. The PLC
sent the control command to both robot arms (North and South). The
South robot would perform the predefined trajectory, such as digging or
unloading, whereas the North robot would stay as it is to capture the
images. Several trigger points were set to trigger the camera on the
North robot to capture the image and acquire the pose of both robots,
and then transfer them to a computer. After the South robot finished the
entire trajectory, the North robot would move to the different pose and
re-run the process. This could increase the variety of the dataset by
having different orientations in the images. The 3D pose of the end-
effector was directly read from the robot arm, and the 3D pose of the
rest of the robot joints was obtained using inverse kinematics.
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Fig. 11. An example of the annotated image. Stars represent the joint locations
and the rectangle represents the bounding box.

5.3. Sensor-based pose estimation

For evaluating the vision-based pose estimation method, the sensor-
based pose estimation method was used to compare the performance.
Four IMU sensors were deployed to measure the angular change of the
robot joints, as shown in Fig. 13. These sensors were placed on the axis
of each joint so that they can measure the correct angle when the robot
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Fig. 12. The framework of the pose data and image acquisition.

. IMU sensors

Fig. 13. IMU sensors deployment. Only two types of orientations are considered
in the excavator pose.

changed its pose. The results were compared with the ground truth joint
angle of the robot arm. The 3D pose of each joint could be calculated by
forward kinematics. Since the exact location of a joint required location
sensors such as GPS, which was not available in the experiment, the
first joint (A1) was aligned with the ground truth Al joint location, and
then the other joints were calculated relative to the first joint. The Xsens
MTw Awinda wireless motion tracker system [91] was used for the
sensor-based method. The system contained four motion trackers with
IMU embedded and a wireless receiver to transmit the data. The sensor
data was also synchronized with the vision-based pose data and the
ground truth data, so that it could be compared with each other. The
results of the sensor-based method and the vision-based method are
presented in the next section.

6. Experimental results
The results of the pose estimation experiments are explained in the

following sub-sections. The 3D vision-based method, sensor-based
method, and ground truth are compared with each other.

6.1. Results of the marker-less 2D pose estimation

The proposed 2D network was evaluated by comparing the predic-
tion results of the testing images and the ground truth. Fig. 14
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demonstrates the results of the excavator pose estimation. The lines
represent the bucket, stick, and boom prediction. These images are
estimated in the testing dataset. The Euclidean distance between the
estimated joint location and the ground truth joint location are used to
evaluate the performance, and the error percentage of the predicted
component length and the ground truth, which can be seen in Tables 3
and 4. The average Euclidean distance between the laboratory testing
dataset and ground truth is 40.64 pixels (image size is 2048 x 2048)
and between the real site testing dataset and the ground truth is
71.84 pixels (image size is 1024 x 1024). In the laboratory dataset, the
pixel size is measured by averaging the length of the robot arm across
the entire dataset, which resulted in 1 pixel approximated to 1 mm.
Therefore, the average Euclidean distance in the laboratory dataset can
be converted to 40.64 mm. The distance between the camera and the
robotic excavator is 10 m. The distance between the camera and the
robotic excavator is 10 m. In the real site dataset, the distance between
the camera and the excavator is unknown for each image since they
were collected randomly online or on jobsite. Thus, it is difficult to
convert the result from pixel to mm. The result is roughly converted to
mm by measuring the length of the excavator stick in the testing image
and calculating the ratio with actual excavator stick length. The size of
the excavator must be similar throughout the entire testing dataset. The
stick size in the testing image is 40 pixels and the actual stick size is
2500 mm, which resulted in 1 pixel approximated to 12 mm. Therefore,
the average Euclidean distance in the rea site dataset can be converted
to 862.08 mm.

The result showed that the bucket location has the highest error
because the bucket is blocked (occluded) or out of range in some of the
images. The network still tries to find the bucket location in these cases,
which increases the error distance. The error in the real site dataset is
higher than the laboratory dataset. This is because the real site dataset
has a greater variety of excavators and backgrounds. Only some of these
variations were included in the testing dataset, so this caused a decrease
in accuracy. The number of images in the real site dataset is also in-
sufficient for training purposes.

For the error percentage of the predicted component length and the
ground truth, only the laboratory dataset was evaluated because the
length of each robot arm skeleton is known, but some of the component
sizes in the real site dataset are unknown because of occlusion. The
results are shown in Table 4. The error percentage of the boom and stick
is approximately 40% and 31%, and the bucket is 59%. The reason for
the high error percentage in the bucket case is the occlusion issue.
When the bucket is blocked or out of range in the image, the predicted
bucket location will be far away from its actual location. In addition,
the ground truth length of the bucket is short, which increases the
differences between the ground truth and the false predicted result.
Fig. 15 shows the result of a false prediction of the bucket caused by
occlusion. The excavator is partially blocked by another equipment,
and the network mispredicts the bucket pose.

6.2. Results of the marker-less 3D and the sensor-based pose estimation

The proposed 3D pose estimation method was first evaluated by
comparing the prediction results and the ground truth of the laboratory
dataset. Fig. 16 shows the result of the 3D pose estimation. The left
image was the result of the 2D pose estimation, which was the input to
the 3D network. The right image was the 3D predicted result. The da-
shed line is the vision-based result, the dotted line is the sensor-based
result, and the solid line is the ground truth. The Euclidean distance
between the estimated joint location and the ground truth joint location
are used to evaluate the performance, as shown in Table 5. Since the
boom location was aligned together, it was not considered in the
comparison.

The average Euclidean distance between the 3D vision-based
method and ground truth is 144.65 mm (distance between the camera
and the robotic excavator is 10m), and between the sensor-based
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Fig. 14. The result of the excavator 2D pose estimation. On the top is the simulated excavator and on the bottom are real excavators. Lines represents the estimated

pose.

Table 3

Results of the average Euclidean distance (mm) between the predicted and the

ground truth joint location.

(mm) Laboratory dataset Real site dataset
Boom 31.58 777.12

Boom stick 39.47 701.40

Stick bucket 35.65 753.36

Bucket 55.84 1216.44

Table 4

Results of the error percentage of the predicted component length and the
ground truth in the laboratory dataset.

(%) Error percentage of the component length

Boom 39.1
Stick 30.7
Bucket 58.8

method and the ground truth is 93.66 mm. The result showed that the
error of the 3D vision-based is higher than the sensor-based method.
One of the reasons was that the 3D vision-based method predicted the
pose based on the 2D pose estimation result, wherein the error would
accumulate from 2D prediction and decrease the accuracy in the 3D
prediction. The other reason was that the camera coordinates pre-
processing mentioned in [75] was not applied to the ground truth data
because the camera matrix was not determined in the laboratory

89

Fig. 15. False prediction result of the bucket due to occlusion.

dataset. In addition, the occlusion issue also affected the prediction
result similar to the 2D results. The error caused by the occlusion also
accumulated from the 2D pose estimation results, especially for the
bucket.

Second, the bucket pose estimation accuracy was evaluated by
comparing the estimated bucket location with the sensor-based result
and the ground truth. In the laboratory dataset, a sequence of the



C.-J. Liang, et al.

Automation in Construction 104 (2019) 80-94

——ground truth
---vision-based
=='sensor-based

Fig. 16. Results of the excavator 3D pose estimation. The left image is the result from 2D pose estimation and the right image is the 3D result. The dashed line
represents the vision-based result, the dotted line represents the sensor-based result, and the solid line represents the ground truth.

Table 5
Results of the average Euclidean distance (mm) between the predicted and the
ground truth joint location.

(mm) 3D vision-based Sensor-based
Boom - -
Boom-Stick 148.16 84.35
Stick-Bucket 134.22 97.21

Bucket 151.58 99.42

excavator trajectory was repeated ten times and was captured with
different camera orientations, as demonstrated in Fig. 17. A total of 16
images were captured in the trajectory yielding a total of 160 images
that were used in the evaluation. The average pose of each of the 16
data points was calculated and compared between pose estimation
methods. Fig. 18 shows the results of the pose estimation.

The star-line is the 3D vision-based result, the circle-line is the
sensor-based result, and the cross-line is the ground truth. The error of
the 3D vision-based method is larger than the sensor-based method at
the beginning of the trajectory. The sensor-based pose is closer to the
ground truth pose than the vision-based pose before data 5 in X and Y
location. After data 6, the sensor-based pose has a higher error than the
vision-based pose. The error of the X and Y location in the sensor-based
result increased over time. The difference in the Z location in sensor-
based and vision-based pose does not change significantly. This is

because the drift occurred in the heading direction (Yaw). The sensor
system had a stabilizing mechanism to calibrate the sensors. The earth's
magnetic field was used to stabilize the heading, but is susceptible to
disturbance by artifacts such as nearby metal objects. In addition, the
cumulative error of the bucket 3D vision-based pose estimation is il-
lustrated in Fig. 19. The straight line is the error in X-axis, the cross-line
is the error in Y-axis, and the circle-line is the error in Z-axis. The cu-
mulative error along the X- and Y-axes is higher than the cumulative
error along the Z-axis since the movement of the excavator bucket in
the data points is larger in the X and Y direction. In addition, the cu-
mulative error along the X-axis is much higher than along the Y- and Z-
axes. This is because the X direction has a higher projection in the
camera viewing direction and the movement in such direction is diffi-
cult to identify by a single camera. Moreover, the Z direction is tangent
to the viewing direction of the camera (pointing up), which has a larger
displacement in the image and results in better performance.

Third, the proposed 3D vision-based pose estimation method was
evaluated by comparing the accuracy with the existing vision-based
pose estimation method. In Table 1, the accuracy of the 3D marker-less
vision-based method is 1000 mm (camera distance 50 m) [15], and the
accuracy of the 3D marker-based vision-based method is 20 mm
(camera distance 6.1 m) [12], whereas the accuracy of the proposed
method is 144.65 mm (camera distance is 10 m). The results showed
that the proposed method could achieve higher accuracy than the ex-
isting 3D marker-less method but the camera distance is shorter and

Fig. 17. A sequence of the excavator trajectory repeated ten times with different camera orientations.
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Fig. 18. Results of the bucket 3D pose estimation. The star-line is the 3D vision
result, the circle-line is the sensor result, and the cross-line is the ground truth.

had lower accuracy than the 3D marker-based method. Even though the
proposed method still has the occlusion issue, which is the standard
issue of existing vision-based methods, it can be easily addressed by
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Fig. 19. Cumulative error of the bucket 3D vision-based pose estimation. The
straight line is the error in X-axis, the cross-line is the error in Y-axis, and the
circle-line is the error in Z-axis.

providing sufficient occlusion training data or dataset augmentation
method.

Finally, the processing time for completing 500 testing images is
416 s and averaging 0.832s per image (1.2 Hz) with NVIDIA GeForce
GTX 1060 graphic card. In general pose estimation practice, the real-
time performance is defined as greater than or equal to 1Hz [92],
where the proposed method is above the threshold and thus can achieve
the real-time performance, especially for the slow-moving articulated
construction robot such as the excavator. The Pose Interpreter Net-
works method is 20 Hz for object pose with RGB-D camera and NVIDIA
GeForce Titan X graphic card [93], the VNect method is 30 Hz for 3D
human pose with RGB-D camera and NVIDIA GeForce Titan X graphic
card [94], and the Part Affinity Fields method is 8 Hz for 2D multiple
human with a single camera and NVIDIA GeForce 1080 graphic card
[95]. The processing time of the proposed method can be improved by
using advanced hardware.

7. Discussion

Based on the evaluation results, occlusion is the primary issue of the
proposed vision-based method, which can potentially be addressed by
increasing the number and variety of the training dataset. Dataset
augmentation and expansion techniques can also help address this
issue. Another problem is the multiple-machine situation. The proposed
network can only identify one machine's pose. If there are two or more
articulated machines in the image, the result is likely to fail. The other
issue is the accumulated error from the 2D pose estimation result. The
proposed 3D pose estimation network utilizes the 2D pose estimation
results as input to predict the 3D pose, which results in accumulated
error. Therefore, a new network or method for the multiple-machine
situation and the 3D pose direct training can be designed in the future
work.

The accuracy of the proposed 2D pose estimation method is
40.64 mm in the laboratory dataset, which is acceptable for the object
detection and tracking and the proximity detection application dis-
cussed in Table 2. On the other hand, the accuracy of the proposed 3D
pose estimation method is 144.65 mm, which is not adequate for pre-
venting utility strikes, grade control, and autonomous excavation ap-
plications, even though it may be acceptable in proximity detection
applications.

The camera distance is important for pose estimation on
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construction sites. The scope of some existing human pose estimation
method is not suitable for the articulated construction robot due to
short camera distance. The typical excavator working range is within
6.1 m, according to Lundeen et al. [12]. Thus, the performance of the
articulated construction robot pose estimation should be evaluated over
6.1 m for the camera distance. The camera distance in the evaluation of
the proposed method is 10 m.

The proposed pose estimation method has three limitations. First,
the network trained on the laboratory dataset was unable to achieve
high performance when applied to an excavator operating in the field.
The background and the light conditions of the laboratory dataset do
not have a wide variety since they were collected in the same indoor
environment, compared to actual construction sites where such condi-
tions may vary. Second, the latency of the proposed method is affected
by the hardware specifications and the complexity of the network ar-
chitecture, which would need extra cost for the advanced hardware in
order to achieve the great performance. Third, the system assumes the
consistency and quality of the source video stream, which is not always
available in real practice, especially on hazardous and unstructured
construction sites. Further research of the data consistency on con-
struction sites needs to be conducted to explore this issue. Fourth, the
proposed 3D pose estimation method is trained and evaluated on the
laboratory dataset due to lack of the 3D ground truth data for the real
site dataset. Future work on augmenting the real site dataset with
ground truth data from onboard sensors of the excavator, or exploring
new network to train without ground truth data need to be conducted.

8. Conclusions and future work

In this research, vision-based marker-less 2D and 3D pose estima-
tion methods for articulated construction robots were proposed, in
which an excavator was used as the experimental machine test-bed. The
excavator boom, stick, and bucket joint positions are estimated with
both 2D and 3D coordinates. A state-of-the-art human pose estimation
deep convolutional network, i.e., the stacked hourglass network, was
adapted and modified for the application. The network model was
trained on an excavator dataset, which was collected and annotated
with a KUKA robot arm representing an excavator and from real con-
struction sites with working excavators. The sensor-based pose esti-
mation method was also implemented to evaluate the performance of
the proposed network. The results showed that the proposed network
could estimate the boom and stick joints but had higher estimation
error for the bucket location due to typically encountered occlusion
issues.

Moreover, the accumulated error in the 3D pose estimation resulting
from the 2D predicted pose input needs to be resolved as well.
Therefore, in proposed future work, additional training image data with
higher variety will be collected. A further modification of the proposed
network will also be explored to adapt to the multiple-machine situa-
tion and address the accumulated error issues. Finally, the data con-
sistency on construction sites will also be considered and surveyed.
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