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Abstract —

In construction, unanticipated struck-by hazards
often arise, which have resulted in a significant
number of construction fatalities. To address this
problem, many studies have attempted to automate
proximity monitoring and struck-by hazard detection
using various technologies, such as wireless sensors
and computer vision methods. While this technology
focuses on understanding what is happening as
hazards arise, it is not equipped to detect future
hazards. In impending situations, detecting current
hazards may not provide enough time for workers to
take evasive actions. To address this challenge this
study develops a trajectory prediction model for
mobile construction resources. Specifically, this study
conducts hyper-parameter tuning of a deep neural
network, called Social Generative Adversarial
Network to develop a prediction model capable of
predicting more than five seconds. Further, a test on
a real construction operations data follows to validate
developed models’ trajectory prediction accuracy. As
a result, a developed model could achieve promising
accuracy: the average displacement error and the
final displacement error were 0.78 and 1.27 meters,
respectively. The trajectory prediction allows for
detecting future hazards, which will support pro-
active intervention in hazardous situations. It will
ultimately contribute to promoting a safer working
environment for construction workers.
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1 Introduction

In construction, mainly due to unstructured and limited
workspaces, unanticipated struck-by hazards involving
mobile vehicle or equipment often arise, contributing to
the significant number of construction fatalities [1].
According to The Center for Construction Research and
Training, United States, from 2011 to 2015, total 925
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struck-by fatalities were reported from construction [2].
The figure accounted for 24% of overall struck-by
fatalities in the U.S. and was unmatched by other U.S.
industries [2]. Notably, the number of struck-by fatalities
rose 34% from 2010 (N=121) to 2015 (N=162) [2].

A critical element of construction safety management
is “a proactive, ongoing process to recognize hazards that
are present or that could have been anticipated” [3].
However, such continuous monitoring has not been
viable in practice as manual observation and inspection
is notoriously time-consuming, labor-intensive, and
costly [4].

A major research area for this issue is attuned to
automating object localization, proximity monitoring,
and accordingly struck-by hazard detection. Prior
research leveraged various technologies—such as
wireless sensors [5-9] and computer vision methods [1,
10-11]—and made a great progress on automation of
struck-by hazard detection. It is expected that the
successful deployment of such technologies will allow
for prompt feedback to involved workers, thereby
reducing the chance of an impending collision [1, 5, 10].

However, there remains a critical challenge that has
not been tackled yet: how to recognize not only current
hazards but also the ones that will be present in the near
future for pro-active intervention. All prior works using
wireless sensors and computer vision are limited to
understand what is happening. That is, these technologies
are only capable of detecting current hazards because
they depend on current locations of entities of interest. In
many cases, however, letting a worker know “now you
are in a danger” may not provide enough time for him/her
to take a proper evasive action. Therefore, predicting
what will happen (i.e., knowing future position of entities
and detecting future hazards) is critical in the prevention
of potential accidents.

As a preliminary study to address this challenge, this
research examines the potential of trajectory prediction
for mobile construction resources. To this end, this study
develops a trajectory prediction model through hyper-
parameter tuning of a deep neural network (DNN)), called
Social Generative Adversarial Network (GAN) [12], and
conducts test on a real construction operations data to
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evaluate the developed model’s prediction accuracy.

2  Previous Works

Considerable research efforts have been made to
automate the struck-by hazard detection in construction.
Some studies applied wireless sensors—such as Radio
Frequency Identification (RFID) [5-6], Magnetic Field
(MF) [7], Global Positioning System (GPS) [8], and
Bluetooth Low Energy (BLE) [9]—to instantly detect
hazardous proximity between entities of interest. On the
other hand, other studies applied deep neural networks
(DNNs)-based object detection framework—such as
Faster R-CNN [13], R-FCN [14], and YOLO-V3 [1]—
for continuous object localization and proximity
monitoring.

The previous works have made large strides in
automating struck-by hazard detection. However,
trajectory prediction and accordingly future hazard
detection have not been tackled yet. All prior works using
wireless sensors and computer vision are limited to detect
current hazards. To provide enough time for workers to
take a prompt evasive action, to predict what will happen,
namely recognizing future position of entities and
detecting future hazards, is required.

One possible solution that can address the above issue
is to enable trajectory prediction, which stands for a task
to predict a target’s future trajectories (a set of future
positions) by observing the target’s moving pattern.
Recently, the trajectory prediction has made a great
progress with the advancement of DNNSs, such as Long-
Short Term Memory (LSTM) [15], Gated Recurrent Unit
(GRU) [16], and social pooling layers [17], and
Generative Adversarial Network (GAN) [12]. Alahi et al.
2016 [17] first presented social pooling layers-embedded
LSTM architecture (called Social LSTM), which showed
remarkable progress in trajectory prediction. This work
demonstrated the Social LSTM can learn not only each
entity’s moving pattern, but also social behaviour of
human in crowded settings (e.g., collision avoidance).
The interconnected use of individual and social features
in turn showed a great performance in trajectory
prediction: predicted trajectories by the Social LSTM
only had 0.72 meter displacement error on average,
compared to the ground truth trajectories.

Encouraged by this progress, Gupta et al. 2018 [12]
more improved the Social LSTM [17] by using GAN.
This work developed unique generator and discriminator
by integrating LSTM encoder-decoder and social pooling
layers (Figure 1, please refer to Gupta et al. 2018 [12] for
detailed information). Consequently, the strict
supervision by the discriminator successfully improved
the model’s prediction performance: the displacement
error on average was 0.58 meters.

Despite the promise, applying the trajectory
prediction DNN (i.e., Social GAN) to our problem
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involves another challenge: how to modify the original
network so that it can predict longer time-steps. Note that
the published Social GAN model has 2.64 s prediction
length. To provide a worker in a danger with enough time
for evasive action, longer prediction and accordingly
more early notice are needed.

3 Research Objective and Framework

With this background, this study conducts hyper-

parameter tuning of the Social GAN [12] to develop a

trajectory prediction model for mobile construction

resources. In essence, the longer prediction is needed for
more pro-active hazard detection. This study sets five
seconds as the target to predict with the assumption that
it would be enough for workers to take prompt evasive
actions. Further, tests on real construction operations data
are conducted so as to demonstrate the developed
model’s potential in real-world applications. This study
follows the below framework to achieve these aims

(Figure 1).

e Data collection: for the purpose of hyper-parameter
tuning, ETH [18] and UCY [19] dataset widely used
for trajectory prediction are used. In addition, a real
construction  operations data that captures
interactions between construction resources is
collected for the test purpose.

e Hyper-parameter tuning: training the Social GAN
[12] with multiple hyper-parameter scenarios is
conducted to develop trajectory prediction models
capable of predicting more than 5 seconds.

e Test on a real construction operations data: the
trained models then are tested on a real construction
operations data for evaluation.

4  Data Collection

The more extensive data is used for training, the higher
performance of a model can be reached. For the hyper-
parameter tuning purpose, this study thus benchmarked
two sets of human trajectory data, ETH [18] and UCY
[19], which are the most widely used dataset in trajectory
prediction studies [12,17]. In total, the two datasets
captures four different crowded scenes and contains
1,536 human trajectories. The trajectories reflect various
human-human interactions, including (i) crossing each
other; (ii) collision avoidance, (iii) group forming; and
(iv) dispersing [17] (A in Figure 1).

In addition, this study collected a real construction
operations data for the purpose of test. UAV captured
construction site videos were collected. Of these, the total
of 916 sequential frames were sampled that captures
interactions between a worker, an excavator, and a wheel
loader (B in Figure 1). Each trajectory (i.e., a set of x-y
coordinates) of the three entities were manually
annotated over the whole frames and a complete
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inspection ensured the validity of the annotations.

* Provided by Gupta et al. 2018 [18]
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Figure 1. Research framework

5 Hyper-Parameter Tuning

To develop a long-term trajectory prediction model for
construction mobile resources, this study conducted
hyper-parameter tuning of the Social GAN [12].

The Social GAN has around 40 hyper-parameters that
might need to be considered for successful training:
batch size, number of iteration, number of epoch, model
dimensions, observation length, and prediction length, to
name a few. A small change in each hyper-parameter
might be able to affect training and a trained model’s
final performance; however, examining all possible
combinations is not viable as training a model with a
graphical processing unit (GPU, e.g., Tesla K40c) in
general takes more than five days. Hence, this study
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selected two important hyper-parameters, prediction and

observation length, as tuning targets with the following

reasons:

e Prediction length: the prediction length is the most
important hyper-parameter that literally determines
how many time-steps the model will predict. To
achieve the prediction model capable of predicting
more than five seconds, this study changed the
prediction length from the default value (8 time-
steps, 2.64 s) to 16 time-steps (5.28 s).

e Observation length: the observation length was
selected as the second important hyper-parameter
that needs to be tuned. The major input consumed for
inferring a set of future trajectory in the Social GAN
is a set of observed trajectory. The length of
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observation is therefore bound to have a significant

impact on a trained model’s prediction performance.

This work considered seven different observation

lengths: from 8 time-steps (2.64 s) to 20 time-steps

(6.6 s) with 2 time-steps interval (0.66 s).

Considering the above two hyper-parameters, total
seven different tuning scenarios were established and
applied in training (Table 1).

Table 1. Hyper-parameter tuning scenarios

Hyper parameter
. Observation length  Prediction length
Scenarios - -
Time- Seconds Time- Seconds
steps steps
#1 8 2.64 16 5.28
#2 10 3.30 16 5.28
#3 12 3.96 16 5.28
#4 14 4.62 16 5.28
#5 16 5.28 16 5.28
#6 18 5.94 16 5.28
#71 20 6.60 16 5.28

6 Test Result and Discussion

To evaluate the trajectory prediction accuracy of the
trained models on real construction settings, a test on a
real construction operations data is conducted. As
evaluation metrics, this study applied average
displacement error (ADE) and final displacement error

(FDE) that are commonly used metrics in trajectory

prediction studies [12,17].

e ADE: average L2 distance (i.e., mean square error)
between ground truth and prediction over all
predicted time-steps [12,17].

e FDE: distance between the predicted final
destination and the ground truth destination at the
end of the prediction period [12,17].

Table 2 summarizes the ADE and FDE of each
trained model on the test dataset. Overall, all seven of the
trained models showed promising accuracy in this test:
the ADEs and FDE:s for all the models were less than one
meter (avg. ADE=0.88 meters) and 1.6 meters (avg.
FDE=1.51 meters), respectively. Given a set of
observation, predicting position of far time-step is
naturally more challenging than close one. Accordingly,
it was shown that the FDEs are 0.6 meters higher than the
ADEs on average.

In this test, it was revealed that longer observation
length does not necessarily guarantee higher accuracy.
Longer observation means that the trajectory of less
relevant time-steps are more consumed in the prediction.
For example, in the scenario #7, not that all 20 time-steps
observation are closely relevant to the future time-steps
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positions. The first several time-steps observation may
have less relevancy to the future trajectory than the last
several ones, which can be noises and have a negative
impact on the model’s prediction performance. In actual,
the ADEs and FDEs slightly increased as observation
length increased (Table 2).

It turned out that the best model for 16 time-steps
prediction (5.28 s) is the one with 8 time-steps (2.64 s)
observation (Table 2). This model consumes the shortest
observation in the prediction, which however has the
highest relevancy to the future trajectory. Consequently,
this model outperformed the others and showed the most
promising result: ADE=0.78 meters and FDE=1.27
meters (Table 2). Figure 2 illustrates the best model’s
prediction performance. Note that in this figure, green,
blue, red lines stand for predicted trajectory of the worker,
wheel loader, and excavator, respectively. And white
circles stand for their ground truth position. As shown in
Figure 2, the ground truth position of each entity well
follows the predicted trajectory in process of time. This
fact visually verifies validity of the predicted trajectories.

The developed model also demonstrated that it can
continuously update the trajectory prediction at every
0.33 s without significant time-lag. With the use of a
GPU (i.e., Tesla K40c), the model predicts three sets of
trajectories for 5.28 s (16 time-steps) within 0.12 s. Then,
at the next time step, 0.21 s later after completing the
previous prediction, it predicts new sets of trajectories
with the latest observation. That is, the model can
continuously provide trajectory prediction for 5.16 s
(5.28 s—0.12 s) at every 0.33 s.

This test shows the great potential for the developed
model in predicting construction mobile resources’
trajectories. However, there is still room for further
improvement. This study only focuses on hyper-
parameter tuning, not considering fine-tuning with
augmented construction data. Once an extensive dataset
for construction resources’ trajectory is available, this
work will have another chance that can likely improve
the prediction performance.

Table 2. Test result

Scenarios Observation ADE FDE
length (meters) (meters)
#1 80 0.78 1.27
#2 100 0.87 1.48
#3 120 0.84 1.42
#4 140 0.89 1.53
#5 160 0.89 1.54
#6 180 0.98 1.80
#7 200 0.91 1.57
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PREDICTED TRAJECTORIES: EXAMPLES

Example #1 Example #2
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Figure 2. Predicted trajectory vs. ground truth positions
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7 Conclusion

To support the pro-active struck-by hazard detection in
construction, this study developed a trajectory prediction
model for construction mobile resources. Specifically,
this study conducted hyper-parameter tuning of a deep
neural network, called Social GAN and developed a
prediction model capable of predicting target’s trajectory
more than five seconds.

As a result, the best model (i.e., scenario #1) could
achieve promising prediction accuracy: the ADE of 0.78
meters and the FDE of 1.27 meters. However, there still
remain critical opportunity to improve the prediction
accuracy—such as the fine-tuning with augmented
construction training dataset.

With such refinement, an updated model would likely
result in a more robust and accurate prediction on real
construction operations data. The proposed trajectory
prediction allows for detecting hazards that will be
present in the near future, which will support pro-active
intervention in hazardous situations. It will ultimately
contribute to promoting a safer working environment for
construction workers.
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